1
|
Shi CY, Zhang Q, Wang BS, Chen M, Qu DH. Intrinsically Photopolymerizable Dynamic Polymers Derived from a Natural Small Molecule. ACS APPLIED MATERIALS & INTERFACES 2021; 13:44860-44867. [PMID: 34499480 DOI: 10.1021/acsami.1c11679] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Developing photopolymerizable polymeric materials offers many opportunities to process materials in a remote and controllable manner. However, most photopolymerizable technologies require the external introduction of photoabsorbing units, whereas designing intrinsically photopolymerizable polymers is still highly challenging. Here, we report that a natural small-molecule disulfide, thioctic acid, can be directly transformed into a poly(disulfides) network under the irradiation of visible light without any external additives. The resulting polymer network exhibits optical transparency, mechanical stretchability and toughness, ambient self-healing ability, and especially strong adhesive ability to different surfaces. The dynamic covalent backbones of the poly(disulfides) endow the depolymerization ability to recycle the material in a closed-loop manner. We foresee that this facile and robust photopolymerization system is of great promise toward low-cost and high-performance photocuring coatings and adhesives.
Collapse
Affiliation(s)
- Chen-Yu Shi
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology 130 Meilong Road, Shanghai 200237, China
| | - Qi Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology 130 Meilong Road, Shanghai 200237, China
| | - Bang-Sen Wang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology 130 Meilong Road, Shanghai 200237, China
| | - Meng Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology 130 Meilong Road, Shanghai 200237, China
| | - Da-Hui Qu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
2
|
Romano A, Sangermano M, Rossegger E, Mühlbacher I, Griesser T, Giebler M, Palmara G, Frascella F, Roppolo I, Schlögl S. Hybrid silica micro-particles with light-responsive surface properties and Janus-like character. Polym Chem 2021. [DOI: 10.1039/d1py00459j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The present work highlights the synthesis and post-modification of silica-based micro-particles containing photo-responsive polymer brushes with photolabile o-nitrobenzyl ester (o-NBE) chromophores.
Collapse
Affiliation(s)
- A. Romano
- Department of Applied Science and Technology
- Politecnico di Torino
- 10129 Torino
- Italy
| | - M. Sangermano
- Department of Applied Science and Technology
- Politecnico di Torino
- 10129 Torino
- Italy
| | - E. Rossegger
- Polymer Competence Center Leoben GmbH
- A-8700 Leoben
- Austria
| | - I. Mühlbacher
- Polymer Competence Center Leoben GmbH
- A-8700 Leoben
- Austria
| | - T. Griesser
- Institute of Chemistry of Polymeric Materials
- Montanuniversitaet Leoben
- A-8700 Leoben
- Austria
| | - M. Giebler
- Polymer Competence Center Leoben GmbH
- A-8700 Leoben
- Austria
| | - G. Palmara
- Department of Applied Science and Technology
- Politecnico di Torino
- 10129 Torino
- Italy
| | - F. Frascella
- Department of Applied Science and Technology
- Politecnico di Torino
- 10129 Torino
- Italy
| | - I. Roppolo
- Department of Applied Science and Technology
- Politecnico di Torino
- 10129 Torino
- Italy
| | - S. Schlögl
- Polymer Competence Center Leoben GmbH
- A-8700 Leoben
- Austria
| |
Collapse
|
3
|
Huang HY, Skripka A, Zaroubi L, Findlay BL, Vetrone F, Skinner C, Oh JK, Cuccia LA. Electrospun Upconverting Nanofibrous Hybrids with Smart NIR-Light-Controlled Drug Release for Wound Dressing. ACS APPLIED BIO MATERIALS 2020; 3:7219-7227. [DOI: 10.1021/acsabm.0c01019] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ho Ying Huang
- Department of Biochemistry and Chemistry, Concordia University, Montreal, Quebec, Canada H4B 1R6
| | - Artiom Skripka
- Centre Énergie, Matériaux et Télécommunications, Institut National de la Recherche Scientifique, Université du Québec, Varennes, Quebec, Canada J3X 1S2
| | - Liana Zaroubi
- Department of Biochemistry and Chemistry, Concordia University, Montreal, Quebec, Canada H4B 1R6
| | - Brandon L. Findlay
- Department of Biochemistry and Chemistry, Concordia University, Montreal, Quebec, Canada H4B 1R6
| | - Fiorenzo Vetrone
- Centre Énergie, Matériaux et Télécommunications, Institut National de la Recherche Scientifique, Université du Québec, Varennes, Quebec, Canada J3X 1S2
| | - Cameron Skinner
- Department of Biochemistry and Chemistry, Concordia University, Montreal, Quebec, Canada H4B 1R6
| | - Jung Kwon Oh
- Department of Biochemistry and Chemistry, Concordia University, Montreal, Quebec, Canada H4B 1R6
| | - Louis A. Cuccia
- Department of Biochemistry and Chemistry, Concordia University, Montreal, Quebec, Canada H4B 1R6
| |
Collapse
|
4
|
Lo YL, Tsai MF, Soorni Y, Hsu C, Liao ZX, Wang LF. Dual Stimuli-Responsive Block Copolymers with Adjacent Redox- and Photo-Cleavable Linkages for Smart Drug Delivery. Biomacromolecules 2020; 21:3342-3352. [DOI: 10.1021/acs.biomac.0c00773] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yu-Lun Lo
- Department of Medicinal and Applied Chemistry, College of Life Sciences, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Physiology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Ming-Fong Tsai
- Department of Medicinal and Applied Chemistry, College of Life Sciences, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Yugendhar Soorni
- Department of Medicinal and Applied Chemistry, College of Life Sciences, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Chin Hsu
- Department of Physiology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Zi-Xian Liao
- Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Li-Fang Wang
- Department of Medicinal and Applied Chemistry, College of Life Sciences, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| |
Collapse
|
5
|
Romano A, Roppolo I, Rossegger E, Schlögl S, Sangermano M. Recent Trends in Applying Rrtho-Nitrobenzyl Esters for the Design of Photo-Responsive Polymer Networks. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E2777. [PMID: 32575481 PMCID: PMC7344511 DOI: 10.3390/ma13122777] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/11/2020] [Accepted: 06/16/2020] [Indexed: 01/08/2023]
Abstract
Polymers with light-responsive groups have gained increased attention in the design of functional materials, as they allow changes in polymers properties, on demand, and simply by light exposure. For the synthesis of polymers and polymer networks with photolabile properties, the introduction o-nitrobenzyl alcohol (o-NB) derivatives as light-responsive chromophores has become a convenient and powerful route. Although o-NB groups were successfully exploited in numerous applications, this review pays particular attention to the studies in which they were included as photo-responsive moieties in thin polymer films and functional polymer coatings. The review is divided into four different sections according to the chemical structure of the polymer networks: (i) acrylate and methacrylate; (ii) thiol-click; (iii) epoxy; and (iv) polydimethylsiloxane. We conclude with an outlook of the present challenges and future perspectives of the versatile and unique features of o-NB chemistry.
Collapse
Affiliation(s)
- Angelo Romano
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; (A.R.); (I.R.)
| | - Ignazio Roppolo
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; (A.R.); (I.R.)
| | - Elisabeth Rossegger
- Polymer Competence Center Leoben GmbH, Roseggerstrasse 12, Leoben 8700, Austria; (E.R.); (S.S.)
| | - Sandra Schlögl
- Polymer Competence Center Leoben GmbH, Roseggerstrasse 12, Leoben 8700, Austria; (E.R.); (S.S.)
| | - Marco Sangermano
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; (A.R.); (I.R.)
| |
Collapse
|
6
|
Qi Y, Nathani A, Zhang J, Song Z, Sharma CS, Varshney SK. Synthesis of amphiphilic poly(ethylene glycol)-block-poly(methyl methacrylate) containing trityl ether acid cleavable junction group and its self-assembly into ordered nanoporous thin films. E-POLYMERS 2020. [DOI: 10.1515/epoly-2020-0013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractA strategy for the synthesis of well defined poly(ethylene glycol)-block-poly(methyl methacrylate) diblock copolymers containing trityl ether acid cleavable junctions is demonstrated. This approach is achieved by using a combination of poly(ethylene glycol) macroinitiator containing a trityl ether end group, which is susceptible to acid cleavage, and atom transfer radical polymerization technique. The trityl ether linkage between blocks can be readily cleaved in solution or in solid phase under very mild acid condition, which has been confirmed by 1H NMR. These diblock copolymers have been used to successfully fabricate nanoporous thin films by acid cleavage of trityl ether junction followed by complete removal of poly(ethylene glycol) block. The fabricated nanoporous thin films may have a wide range of application such as Recessed Nanodisk-array electrode (RNE) or as a template to fabricate nanoelectrode array for senor applications.
Collapse
Affiliation(s)
- Yinghua Qi
- Polymer Source Inc., 124 Avro Street, Dorval (Montreal), Quebec H9P 2X8, Canada
| | - Akash Nathani
- Creative & Advanced Research Based On Nanomaterials (CARBON) Lab, Department of Chemical engineering, Indian Institute of Technology, Hyderabad, Kandi-502285, Telangana, India
| | - Jianxin Zhang
- Polymer Source Inc., 124 Avro Street, Dorval (Montreal), Quebec H9P 2X8, Canada
| | - Zhengji Song
- Polymer Source Inc., 124 Avro Street, Dorval (Montreal), Quebec H9P 2X8, Canada
| | - Chandra Shekhar Sharma
- Creative & Advanced Research Based On Nanomaterials (CARBON) Lab, Department of Chemical engineering, Indian Institute of Technology, Hyderabad, Kandi-502285, Telangana, India
| | - Sunil K. Varshney
- Polymer Source Inc., 124 Avro Street, Dorval (Montreal), Quebec H9P 2X8, Canada
| |
Collapse
|
7
|
Fang JY, Lin YK, Wang SW, Lee RS. Synthesis, and characterization folate-conjugated photocleavable poly(4-substituted- ε-caprolactone) polymers for drug delivery. INT J POLYM MATER PO 2020. [DOI: 10.1080/00914037.2018.1539987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Jia-You Fang
- Graduate Institute of Natural Products, Chang Gung University, Tao-Yuan, Taiwan
| | - Yin-Ku Lin
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital at Keelung, Keelung, Taiwan
| | - Shiu-Wei Wang
- Division of Natural Science, Center of General Education, Chang Gung University, Tao-Yuan, Taiwan
| | - Ren-Shen Lee
- Division of Natural Science, Center of General Education, Chang Gung University, Tao-Yuan, Taiwan
| |
Collapse
|
8
|
Ji S, Xu L, Fu X, Sun J, Li Z. Light- and Metal Ion-Induced Self-Assembly and Reassembly Based on Block Copolymers Containing a Photoresponsive Polypeptide Segment. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00475] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Sifan Ji
- Key Laboratory of Biobased Polymer Materials, Shandong Provincial Education Department; School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Lili Xu
- Key Laboratory of Biobased Polymer Materials, Shandong Provincial Education Department; School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xiaohui Fu
- Key Laboratory of Biobased Polymer Materials, Shandong Provincial Education Department; School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jing Sun
- Key Laboratory of Biobased Polymer Materials, Shandong Provincial Education Department; School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Zhibo Li
- Key Laboratory of Biobased Polymer Materials, Shandong Provincial Education Department; School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|
9
|
Li L, Li D, Zhang M, He J, Liu J, Ni P. One-Pot Synthesis of pH/Redox Responsive Polymeric Prodrug and Fabrication of Shell Cross-Linked Prodrug Micelles for Antitumor Drug Transportation. Bioconjug Chem 2018; 29:2806-2817. [PMID: 30005157 DOI: 10.1021/acs.bioconjchem.8b00421] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Shell cross-linked (SCL) polymeric prodrug micelles have the advantages of good blood circulation stability and high drug content. Herein, we report on a new kind of pH/redox responsive dynamic covalent SCL micelle, which was fabricated by self-assembly of a multifunctional polymeric prodrug. At first, a macroinitiator PBYP- ss- iBuBr was prepared via ring-opening polymerization (ROP), wherein PBYP represents poly[2-(but-3-yn-1-yloxy)-2-oxo-1,3,2-dioxaphospholane]. Subsequently, PBYP- hyd-DOX- ss-P(DMAEMA- co-FBEMA) prodrug was synthesized by a one-pot method with a combination of atom transfer radical polymerization (ATRP) and a Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) reaction using a doxorubicin (DOX) derivative containing an azide group to react with the alkynyl group of the side chain in the PBYP block, while DMAEMA and FBEMA are the abbriviations of N, N-(2-dimethylamino)ethyl methacrylate and 2-(4-formylbenzoyloxy)ethyl methacrylate, respectively. The chemical structures of the polymer precursors and the prodrugs have been fully characterized. The SCL prodrug micelles were obtained by self-assembly of the prodrug and adding cross-linker dithiol bis(propanoic dihydrazide) (DTP). Compared with the shell un-cross-linked prodrug micelles, the SCL prodrug micelles can enhance the stability and prevent the drug from leaking in the body during blood circulation. The average size and morphology of the SCL prodrug micelles were measured by dynamic light scattering (DLS) and transmission electron microscopy (TEM), respectively. The SCL micelles can be dissociated under a moderately acidic and/or reductive microenvironment, that is, endosomal/lysosomal pH medium or high GSH level in the tumorous cytosol. The results of DOX release also confirmed that the SCL prodrug micelles possessed pH/reduction responsive properties. Cytotoxicity and cellular uptake analyses further revealed that the SCL prodrug micelles could be rapidly internalized into tumor cells through endocytosis and efficiently release DOX into the HeLa and HepG2 cells, which could efficiently inhibit the cell proliferation. This study provides a fast and precise synthesis method for preparing multifunctional polymer prodrugs, which hold great potential for optimal antitumor therapy.
Collapse
Affiliation(s)
- Lei Li
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis , Soochow University , Suzhou 215123 , People's Republic of China
| | - Dian Li
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis , Soochow University , Suzhou 215123 , People's Republic of China
| | - Mingzu Zhang
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis , Soochow University , Suzhou 215123 , People's Republic of China
| | - Jinlin He
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis , Soochow University , Suzhou 215123 , People's Republic of China
| | - Jian Liu
- Institute of Functional Nano and Soft Materials (FUNSOM) , Soochow University , Suzhou , 215123 , People's Republic of China
| | - Peihong Ni
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis , Soochow University , Suzhou 215123 , People's Republic of China
| |
Collapse
|
10
|
Zhang K, Liu J, Guo Y, Li Y, Ma X, Lei Z. Synthesis of temperature, pH, light and dual-redox quintuple-stimuli-responsive shell-crosslinked polymeric nanoparticles for controlled release. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 87:1-9. [DOI: 10.1016/j.msec.2018.02.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 12/04/2017] [Accepted: 02/08/2018] [Indexed: 12/21/2022]
|
11
|
Saravanakumar G, Park H, Kim J, Park D, Pramanick S, Kim DH, Kim WJ. Miktoarm Amphiphilic Block Copolymer with Singlet Oxygen-Labile Stereospecific β-Aminoacrylate Junction: Synthesis, Self-Assembly, and Photodynamically Triggered Drug Release. Biomacromolecules 2018; 19:2202-2213. [DOI: 10.1021/acs.biomac.8b00290] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Gurusamy Saravanakumar
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Hyeongmok Park
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Jinhwan Kim
- Center for Self-assembly and Complexity, Institute for Basic Science (IBS), Pohang, 37673, Republic of Korea
| | - Dongsik Park
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Swapan Pramanick
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Dae Heon Kim
- Department of Biology, Sunchon National University, Sunchon 57922, Republic of Korea
| | - Won Jong Kim
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| |
Collapse
|
12
|
CO 2 switchable hollow nanospheres. J Colloid Interface Sci 2018; 522:10-19. [PMID: 29574264 DOI: 10.1016/j.jcis.2018.03.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 03/06/2018] [Accepted: 03/07/2018] [Indexed: 01/30/2023]
Abstract
HYPOTHESIS Hollow nanospheres, characterized by a cavity inside a solid shell, have potential applications due to their unique structure, but the unchangeable morphology and permeability of the shell restrain their further practical utilization. While several smart hollow nanospheres that can respond to pH, ion strength, and temperature have been developed, they are inclined to suffer from problems associated with high energy consumption or the difficult removal of residual stimulants. Thus, it is desirable to develop a novel and free-of-residual trigger stimulating mode. EXPERIMENTS In this work, CO2 is used to fabricate smart hollow nanospheres composed of crosslinked poly(diethylamino-ethyl methacrylate) (PDEAEMA) network from polystyrene (PS)/PDEAEMA core-shell nanospheres by a template-removal technique. The morphology evolution of the resultant nanospheres during the fabrication process was characterized by X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), thermogravimetry analysis (TGA) and dynamic light scattering (DLS) and was visualized by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). FINDINGS Hollow nanospheres can be generated by experiencing a morphology change from a core nanosphere, core-shell, yolk-shell to a final hollow structure. The increase in shell-stiffness can restrain the collapse of hollow spheres. It is demonstrated that CO2 is easy to introduce and remove (via N2 input) without stimulation residues in this system. In addition, mild CO2/N2 purging can only reversibly change the swelling/collapse of hollow particles; violent CO2/N2 bubbling can reversibly regulate both the size and aggregation/re-dispersion state of the hollow nanospheres, which can be intuitively observed by atomic force microscopy (AFM).
Collapse
|
13
|
Li L, Li NK, Tu Q, Im O, Mo CK, Han W, Fuss WH, Carroll NJ, Chilkoti A, Yingling YG, Zauscher S, López GP. Functional Modification of Silica through Enhanced Adsorption of Elastin-Like Polypeptide Block Copolymers. Biomacromolecules 2018; 19:298-306. [PMID: 29195275 PMCID: PMC5809277 DOI: 10.1021/acs.biomac.7b01307] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A powerful tool for controlling interfacial properties and molecular architecture relies on the tailored adsorption of stimuli-responsive block copolymers onto surfaces. Here, we use computational and experimental approaches to investigate the adsorption behavior of thermally responsive polypeptide block copolymers (elastin-like polypeptides, ELPs) onto silica surfaces, and to explore the effects of surface affinity and micellization on the adsorption kinetics and the resultant polypeptide layers. We demonstrate that genetic incorporation of a silica-binding peptide (silaffin R5) results in enhanced adsorption of these block copolymers onto silica surfaces as measured by quartz crystal microbalance and ellipsometry. We find that the silaffin peptide can also direct micelle adsorption, leading to close-packed micellar arrangements that are distinct from the sparse, patchy arrangements observed for ELP micelles lacking a silaffin tag, as evidenced by atomic force microscopy measurements. These experimental findings are consistent with results of dissipative particle dynamics simulations. Wettability measurements suggest that surface immobilization hampers the temperature-dependent conformational change of ELP micelles, while adsorbed ELP unimers (i.e., unmicellized block copolymers) retain their thermally responsive property at interfaces. These observations provide guidance on the use of ELP block copolymers as building blocks for fabricating smart surfaces and interfaces with programmable architecture and functionality.
Collapse
Affiliation(s)
- Linying Li
- Department of Biomedical Engineering, Duke University, Durham NC 27708, U.S.A
- NSF Research Triangle Materials Research Science and Engineering Center, Durham NC 27708, U.S.A
| | - Nan K. Li
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695, U.S.A
- NSF Research Triangle Materials Research Science and Engineering Center, Durham NC 27708, U.S.A
| | - Qing Tu
- Department of Mechanical Engineering and Materials Science, Duke University, Durham NC 27708, U.S.A
| | - Owen Im
- Department of Biomedical Engineering, Duke University, Durham NC 27708, U.S.A
| | - Chia-Kuei Mo
- Department of Biomedical Engineering, Duke University, Durham NC 27708, U.S.A
| | - Wei Han
- Department of Biomedical Engineering, Duke University, Durham NC 27708, U.S.A
- NSF Research Triangle Materials Research Science and Engineering Center, Durham NC 27708, U.S.A
| | - William H. Fuss
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695, U.S.A
| | - Nick J. Carroll
- Department of Biomedical Engineering, Duke University, Durham NC 27708, U.S.A
- NSF Research Triangle Materials Research Science and Engineering Center, Durham NC 27708, U.S.A
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering, Duke University, Durham NC 27708, U.S.A
- Department of Mechanical Engineering and Materials Science, Duke University, Durham NC 27708, U.S.A
- NSF Research Triangle Materials Research Science and Engineering Center, Durham NC 27708, U.S.A
| | - Yaroslava G. Yingling
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695, U.S.A
- NSF Research Triangle Materials Research Science and Engineering Center, Durham NC 27708, U.S.A
| | - Stefan Zauscher
- Department of Mechanical Engineering and Materials Science, Duke University, Durham NC 27708, U.S.A
- NSF Research Triangle Materials Research Science and Engineering Center, Durham NC 27708, U.S.A
| | - Gabriel P. López
- Department of Biomedical Engineering, Duke University, Durham NC 27708, U.S.A
- Department of Mechanical Engineering and Materials Science, Duke University, Durham NC 27708, U.S.A
- NSF Research Triangle Materials Research Science and Engineering Center, Durham NC 27708, U.S.A
- Center for Biomedical Engineering, Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM 87131, U.S.A
| |
Collapse
|
14
|
Lu Y, Zou H, Yuan H, Gu S, Yuan W, Li M. Triple stimuli-responsive supramolecular assemblies based on host-guest inclusion complexation between β-cyclodextrin and azobenzene. Eur Polym J 2017. [DOI: 10.1016/j.eurpolymj.2017.04.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
15
|
Karimi M, Zangabad PS, Mehdizadeh F, Malekzad H, Ghasemi A, Bahrami S, Zare H, Moghoofei M, Hekmatmanesh A, Hamblin MR. Nanocaged platforms: modification, drug delivery and nanotoxicity. Opening synthetic cages to release the tiger. NANOSCALE 2017; 9:1356-1392. [PMID: 28067384 PMCID: PMC5300024 DOI: 10.1039/c6nr07315h] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Nanocages (NCs) have emerged as a new class of drug-carriers, with a wide range of possibilities in multi-modality medical treatments and theranostics. Nanocages can overcome such limitations as high toxicity caused by anti-cancer chemotherapy or by the nanocarrier itself, due to their unique characteristics. These properties consist of: (1) a high loading-capacity (spacious interior); (2) a porous structure (analogous to openings between the bars of the cage); (3) enabling smart release (a key to unlock the cage); and (4) a low likelihood of unfavorable immune responses (the outside of the cage is safe). In this review, we cover different classes of NC structures such as virus-like particles (VLPs), protein NCs, DNA NCs, supramolecular nanosystems, hybrid metal-organic NCs, gold NCs, carbon-based NCs and silica NCs. Moreover, NC-assisted drug delivery including modification methods, drug immobilization, active targeting, and stimulus-responsive release mechanisms are discussed, highlighting the advantages, disadvantages and challenges. Finally, translation of NCs into clinical applications, and an up-to-date assessment of the nanotoxicology considerations of NCs are presented.
Collapse
Affiliation(s)
- Mahdi Karimi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Parham Sahandi Zangabad
- Research Center for Pharmaceutical Nanotechnology (RCPN), Tabriz University of Medical Science (TUOMS), Tabriz, Iran
- Advanced Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran, Iran
- Department of Materials Science and Engineering, Sharif University of Technology, 11365-9466, Tehran, Iran
- Nanomedicine Research Association (NRA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | | | - Hedieh Malekzad
- Advanced Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran, Iran
- Faculty of Chemistry, Kharazmi University of Tehran, Tehran, Iran
| | - Alireza Ghasemi
- Department of Materials Science and Engineering, Sharif University of Technology, 11365-9466, Tehran, Iran
| | - Sajad Bahrami
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Zare
- Biomaterials Group, Materials Science & Engineering Department, Iran University of Science & Technology, P.O. Box 1684613114 Tehran, Iran
| | - Mohsen Moghoofei
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amin Hekmatmanesh
- Laboratory of Intelligent Machines, Lappeenranta University of Technology, 53810, Finland
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
16
|
Alaimo D, Grignard B, Kuppan C, Adriaensen Y, Genet MJ, Dupont-Gillain C, Gohy JF, Fustin CA, Detrembleur C, Jérôme C. A photocleavable stabilizer for the preparation of PHEMA nanogels by dispersion polymerization in supercritical carbon dioxide. Polym Chem 2017. [DOI: 10.1039/c6py01633b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Synthesis of PHEMA nanogels stable in water by a scCO2 process.
Collapse
|
17
|
Cao Z, Li Q, Wang G. Photodegradable polymer nanocapsules fabricated from dimethyldiethoxysilane emulsion templates for controlled release. Polym Chem 2017. [DOI: 10.1039/c7py01153a] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A photodegradable polymer nanocapsule was prepared from dimethyldiethoxysilane emulsion templates and applied for light- and pH-controlled cargo release.
Collapse
Affiliation(s)
- Ziquan Cao
- School of Materials Science and Engineering
- University of Science and Technology Beijing
- Beijing 100083
- P. R. China
| | - Qingwei Li
- School of Materials Science and Engineering
- University of Science and Technology Beijing
- Beijing 100083
- P. R. China
| | - Guojie Wang
- School of Materials Science and Engineering
- University of Science and Technology Beijing
- Beijing 100083
- P. R. China
| |
Collapse
|
18
|
Abstract
This review summarizes pH-responsive monomers, polymers and their derivative nano- and micro-structures including micelles, cross-linked micelles, microgels and hydrogels.
Collapse
Affiliation(s)
- G. Kocak
- Department of Chemistry
- Faculty of Arts and Science
- Eskisehir Osmangazi University
- Eskisehir
- Turkey
| | - C. Tuncer
- Department of Chemistry
- Faculty of Arts and Science
- Eskisehir Osmangazi University
- Eskisehir
- Turkey
| | - V. Bütün
- Department of Chemistry
- Faculty of Arts and Science
- Eskisehir Osmangazi University
- Eskisehir
- Turkey
| |
Collapse
|
19
|
Abstract
Photo-responsive polymers are able to change their structure, conformation and properties upon light irradiation.
Collapse
Affiliation(s)
- Olivier Bertrand
- Institute of Condensed Matter and Nanosciences (IMCN)
- Bio- and Soft Matter (BSMA)
- Université catholique de Louvain
- 1348 Louvain-la-Neuve
- Belgium
| | - Jean-François Gohy
- Institute of Condensed Matter and Nanosciences (IMCN)
- Bio- and Soft Matter (BSMA)
- Université catholique de Louvain
- 1348 Louvain-la-Neuve
- Belgium
| |
Collapse
|
20
|
Zhang Z, Xue Y, Zhang P, Müller AHE, Zhang W. Hollow Polymeric Capsules from POSS-Based Block Copolymer for Photodynamic Therapy. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b02414] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Zhenghe Zhang
- Shanghai
Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Yudong Xue
- Shanghai
Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Pengcheng Zhang
- Shanghai
Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Axel H. E. Müller
- Institut
für Organische Chemie, Johannes Gutenberg-Universität Mainz, D-55099 Mainz, Germany
| | - Weian Zhang
- Shanghai
Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| |
Collapse
|
21
|
Yuan T, Dong J, Han G, Wang G. Polymer nanoparticles self-assembled from photo-, pH- and thermo-responsive azobenzene-functionalized PDMAEMA. RSC Adv 2016. [DOI: 10.1039/c5ra26894j] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Polymer nanoparticles self-assembled from an amphiphilic azobenzene-functionalized PDMAEMA have been constructed, the morphological changes of which under stimulation of UV light, temperature and pH changes are demonstrated.
Collapse
Affiliation(s)
- Tingting Yuan
- School of Materials Science and Engineering
- University of Science and Technology Beijing
- Beijing 100083
- China
| | - Jie Dong
- School of Materials Science and Engineering
- University of Science and Technology Beijing
- Beijing 100083
- China
| | - Guoxiang Han
- School of Materials Science and Engineering
- University of Science and Technology Beijing
- Beijing 100083
- China
| | - Guojie Wang
- School of Materials Science and Engineering
- University of Science and Technology Beijing
- Beijing 100083
- China
| |
Collapse
|
22
|
Bertrand O, Vlad A, Hoogenboom R, Gohy JF. Redox-controlled upper critical solution temperature behaviour of a nitroxide containing polymer in alcohol–water mixtures. Polym Chem 2016. [DOI: 10.1039/c5py01864a] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Research on stimuli responsive polymers builds momentum as nature-inspired applications using man-made materials are increasingly sought.
Collapse
Affiliation(s)
- Olivier Bertrand
- Institute of Condensed Matter and Nanoscience (IMCN)
- Bio- and Soft Matter (BSMA)
- Université Catholique de Louvain
- 1348 Louvain-la-Neuve
- Belgium
| | - Alexandru Vlad
- Institute of Condensed Matter and Nanoscience (IMCN)
- Molecules
- Solid and Reactivity (MOST)
- Université Catholique de Louvain
- 1348 Louvain-la-Neuve
| | - Richard Hoogenboom
- Supramolecular Chemistry Group
- Department of Organic and Macromolecular Chemistry
- Ghent University
- Ghent
- Belgium
| | - Jean-François Gohy
- Institute of Condensed Matter and Nanoscience (IMCN)
- Bio- and Soft Matter (BSMA)
- Université Catholique de Louvain
- 1348 Louvain-la-Neuve
- Belgium
| |
Collapse
|
23
|
Amphiphilic graft copolymers with ethyl cellulose backbone: Synthesis, self-assembly and tunable temperature–CO2 response. Carbohydr Polym 2016; 136:216-23. [DOI: 10.1016/j.carbpol.2015.09.052] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 08/21/2015] [Accepted: 09/16/2015] [Indexed: 12/11/2022]
|
24
|
Soares AMS, Hungerford G, Costa SPG, Gonçalves MST. Photoactivation of Butyric Acid from 6-Aminobenzocoumarin Cages. European J Org Chem 2015. [DOI: 10.1002/ejoc.201500396] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
25
|
Sun T, Li P, Oh JK. Dual Location Dual Reduction/Photoresponsive Block Copolymer Micelles: Disassembly and Synergistic Release. Macromol Rapid Commun 2015; 36:1742-8. [DOI: 10.1002/marc.201500306] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 06/30/2015] [Indexed: 12/11/2022]
Affiliation(s)
- Tongbing Sun
- Department of Chemistry and Biochemistry; Centre for NanoScience Research; Concordia University; Montreal Quebec H4B 1R6 Canada
| | - Puzhen Li
- Department of Chemistry and Biochemistry; Centre for NanoScience Research; Concordia University; Montreal Quebec H4B 1R6 Canada
| | - Jung Kwon Oh
- Department of Chemistry and Biochemistry; Centre for NanoScience Research; Concordia University; Montreal Quebec H4B 1R6 Canada
| |
Collapse
|
26
|
Fang JY, Wang SW, Li YC, Lee RS. Bio-recognizable and photo-cleavable block copolymers based on sugar and poly(4-substituted-ε-caprolactone) bearing a photo-cleavable junction. JOURNAL OF POLYMER RESEARCH 2015. [DOI: 10.1007/s10965-015-0803-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
27
|
Yang Y, Mo F, Chen Y, Liu Y, Chen S, Zuo J. Preparation of 2-(dimethylamino) ethyl methacrylate copolymer micelles for shape memory materials. J Appl Polym Sci 2015. [DOI: 10.1002/app.42312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Yan Yang
- Shenzhen Key Laboratory of Special Functional Materials, Nanshan District Key Lab for Biopolymers and Safety Evaluation, College of Materials Science and Engineering, Shenzhen University; Shenzhen 518060 China
| | - Funian Mo
- Shenzhen Key Laboratory of Special Functional Materials, Nanshan District Key Lab for Biopolymers and Safety Evaluation, College of Materials Science and Engineering, Shenzhen University; Shenzhen 518060 China
| | - Yangyang Chen
- Shenzhen Key Laboratory of Special Functional Materials, Nanshan District Key Lab for Biopolymers and Safety Evaluation, College of Materials Science and Engineering, Shenzhen University; Shenzhen 518060 China
| | - Yingyi Liu
- Shenzhen Key Laboratory of Special Functional Materials, Nanshan District Key Lab for Biopolymers and Safety Evaluation, College of Materials Science and Engineering, Shenzhen University; Shenzhen 518060 China
| | - Shaojun Chen
- Shenzhen Key Laboratory of Special Functional Materials, Nanshan District Key Lab for Biopolymers and Safety Evaluation, College of Materials Science and Engineering, Shenzhen University; Shenzhen 518060 China
| | - Jiandong Zuo
- Shenzhen Key Laboratory of Special Functional Materials, Nanshan District Key Lab for Biopolymers and Safety Evaluation, College of Materials Science and Engineering, Shenzhen University; Shenzhen 518060 China
| |
Collapse
|
28
|
Dual Location Reduction-Responsive Degradable Nanocarriers: A New Strategy for Intracellular Anticancer Drug Delivery with Accelerated Release. ACTA ACUST UNITED AC 2015. [DOI: 10.1021/bk-2015-1188.ch017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
29
|
Lee RS, Li YC, Wang SW. Synthesis and characterization of amphiphilic photocleavable polymers based on dextran and substituted-ɛ-caprolactone. Carbohydr Polym 2015; 117:201-210. [DOI: 10.1016/j.carbpol.2014.09.062] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 09/17/2014] [Accepted: 09/24/2014] [Indexed: 12/11/2022]
|
30
|
Hu J, Liu S. Supramolecular Assembly-Assisted Synthesis of Responsive Polymeric Materials with Controlled Chain Topologies. MACROMOL CHEM PHYS 2015. [DOI: 10.1002/macp.201400578] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Jinming Hu
- CAS Key Laboratory of Soft Matter Chemistry; University of Science and Technology of China; Hefei Anhui 230026 China
- Department of Polymer Science and Engineering; University of Science and Technology of China; Hefei Anhui 230026 China
| | - Shiyong Liu
- CAS Key Laboratory of Soft Matter Chemistry; University of Science and Technology of China; Hefei Anhui 230026 China
- Department of Polymer Science and Engineering; University of Science and Technology of China; Hefei Anhui 230026 China
- Hefei National Laboratory for Physical Sciences at the Microscale; University of Science and Technology of China; Hefei Anhui 230026 China
- Collaborative Innovation Center of Chemistry for Energy Materials; University of Science and Technology of China; Hefei Anhui 230026 China
| |
Collapse
|
31
|
Mo B, Liu H, Zhou X, Zhao Y. Facile synthesis of photolabile dendritic-unit-bridged hyperbranched graft copolymers for stimuli-triggered topological transition and controlled release of Nile red. Polym Chem 2015. [DOI: 10.1039/c5py00132c] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Successive RAFT SCVP and ROP were used to generate novel hyperbranched graft copolymers with the ability for the photo-triggered degradation and accelerative release of hydrophobic dye.
Collapse
Affiliation(s)
- Bin Mo
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Huanhuan Liu
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Xiangdong Zhou
- College of Textile and Clothing Engineering
- Soochow University
- Suzhou 215123
- China
| | - Youliang Zhao
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| |
Collapse
|
32
|
Bertrand O, Wilson P, Burns JA, Bell GA, Haddleton DM. Cu(0)-mediated living radical polymerisation in dimethyl lactamide (DML); an unusual green solvent with limited environmental impact. Polym Chem 2015. [DOI: 10.1039/c5py01420d] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The synthesis of poly-acrylates, methacrylates and styrene derivatives by SET-LRP is reported in a user and environmentally friendly “green” solvent, dimethyl lactamide (DML).
Collapse
Affiliation(s)
| | - Paul Wilson
- Dept. of Chemistry
- University of Warwick
- Coventry
- UK
| | - James A. Burns
- Formulation Technology Group
- Syngenta
- Jealotts Hill international Research Centre
- Bracknell
- UK
| | - Gordon A. Bell
- Formulation Technology Group
- Syngenta
- Jealotts Hill international Research Centre
- Bracknell
- UK
| | | |
Collapse
|
33
|
Patil NG, Basutkar NB, Ambade AV. Visible light-triggered disruption of micelles of an amphiphilic block copolymer with BODIPY at the junction. Chem Commun (Camb) 2015; 51:17708-11. [DOI: 10.1039/c5cc06820g] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Photocleavable BODIPY functionalised with ATRP initiator and alkyne was used to obtain amphiphilic block copolymer in a single step. Micellar assembly of the polymer was disintegrated under visible light irradiation with controlled release of cargo.
Collapse
Affiliation(s)
- Naganath G. Patil
- Polymer Science and Engineering Division
- CSIR-National Chemical Laboratory
- Pune-411008
- India
- Academy of Scientific and Innovative Research
| | - Nitin B. Basutkar
- Polymer Science and Engineering Division
- CSIR-National Chemical Laboratory
- Pune-411008
- India
| | - Ashootosh V. Ambade
- Polymer Science and Engineering Division
- CSIR-National Chemical Laboratory
- Pune-411008
- India
- Academy of Scientific and Innovative Research
| |
Collapse
|
34
|
McIntosh JT, Nazemi A, Bonduelle CV, Lecommandoux S, Gillies ER. Synthesis, self-assembly, and degradation of amphiphilic triblock copolymers with fully photodegradable hydrophobic blocks. CAN J CHEM 2015. [DOI: 10.1139/cjc-2014-0263] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The development of stimuli-responsive materials is of significant interest for many applications including drug delivery, medical imaging, sensors, and microfluidic devices. Among the available stimuli, light is particularly attractive as it can be applied with high spatial and temporal resolution. We describe here the synthesis of amphiphilic triblock copolymers composed of poly(ethylene glycol) and a hydrophobic block containing o-nitrobenzyl esters throughout the backbone using copper-catalyzed azide–alkyne cycloaddition chemistry. These materials were designed to have a high weight fraction of the hydrophobic block to favour nonmicellar aggregates. The self-assembly in water was studied using nanoprecipitation and the resulting assemblies were characterized by dynamic light scattering and transmission electron microscopy. Under optimized conditions, it was possible to prepare polymer vesicles, commonly referred to as polymersomes, with diameters of approximately 100 nm. The degradation of these materials in response to UV light was studied by spectroscopy, light scattering, and electron microscopy, demonstrating that the vesicles were broken down. These results suggest the potential of these materials for applications such as encapsulation and release.
Collapse
Affiliation(s)
- J. Trevor McIntosh
- Department of Chemistry, The University of Western Ontario, London, ON N6G 5B7, Canada
| | - Ali Nazemi
- Department of Chemistry, The University of Western Ontario, London, ON N6G 5B7, Canada
| | - Colin V. Bonduelle
- CNRS, Laboratoire de Chimie des Polymeres Organiques, UMR5629, Pessac, France
- Université de Bordeaux/IPB, ENSCBP, 16 avenue Pey Berland, 33607 Pessac Cedex, France
| | - Sebastien Lecommandoux
- CNRS, Laboratoire de Chimie des Polymeres Organiques, UMR5629, Pessac, France
- Université de Bordeaux/IPB, ENSCBP, 16 avenue Pey Berland, 33607 Pessac Cedex, France
| | - Elizabeth R. Gillies
- Department of Chemistry, The University of Western Ontario, London, ON N6G 5B7, Canada
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada
| |
Collapse
|
35
|
Bertrand O, Ernould B, Boujioui F, Vlad A, Gohy JF. Synthesis of polymer precursors of electroactive materials by SET-LRP. Polym Chem 2015. [DOI: 10.1039/c5py00896d] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
SET-LRP is used for the controlled copolymerisation of 2,2,6,6-tetramethylpiperidin-4-yl methacrylate (TMPM) with 3-azidopropyl methacrylate (AzPMA), followed by the oxidation of TMPM to produce electroactive poly(TEMPO methacrylate) (PTMA).
Collapse
Affiliation(s)
- Olivier Bertrand
- Institute of condensed Matter and Nanoscience (IMCN)
- Bio- and Soft Matter (BSMA)
- Université catholique de Louvain
- 1348 Louvain-la-Neuve
- Belgium
| | - Bruno Ernould
- Institute of condensed Matter and Nanoscience (IMCN)
- Bio- and Soft Matter (BSMA)
- Université catholique de Louvain
- 1348 Louvain-la-Neuve
- Belgium
| | - Fadoi Boujioui
- Institute of condensed Matter and Nanoscience (IMCN)
- Bio- and Soft Matter (BSMA)
- Université catholique de Louvain
- 1348 Louvain-la-Neuve
- Belgium
| | - Alexandru Vlad
- Information and Communication Technologies
- Electronics and Applied Mathematics (ICTEAM)
- Université catholique de Louvain
- 1348 Louvain-la-Neuve
- Belgium
| | - Jean-François Gohy
- Institute of condensed Matter and Nanoscience (IMCN)
- Bio- and Soft Matter (BSMA)
- Université catholique de Louvain
- 1348 Louvain-la-Neuve
- Belgium
| |
Collapse
|
36
|
Ko NR, Oh JK. Glutathione-Triggered Disassembly of Dual Disulfide Located Degradable Nanocarriers of Polylactide-Based Block Copolymers for Rapid Drug Release. Biomacromolecules 2014; 15:3180-9. [DOI: 10.1021/bm5008508] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Na Re Ko
- Department of Chemistry and
Biochemistry and Center for Nanoscience Research, Concordia University, Montreal, Quebec Canada H4B 1R6
| | - Jung Kwon Oh
- Department of Chemistry and
Biochemistry and Center for Nanoscience Research, Concordia University, Montreal, Quebec Canada H4B 1R6
| |
Collapse
|
37
|
Fluorescent boronic acid terminated polymer grafted silica particles synthesized via click chemistry for affinity separation of saccharides. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 40:228-34. [DOI: 10.1016/j.msec.2014.03.066] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 02/22/2014] [Accepted: 03/17/2014] [Indexed: 12/11/2022]
|