1
|
Yazlak M, Khan QA, Steinhart M, Duran H. Melting Temperature Depression and Phase Transitions of Nitrate-Based Molten Salts in Nanoconfinement. ACS OMEGA 2022; 7:24669-24678. [PMID: 35874251 PMCID: PMC9301948 DOI: 10.1021/acsomega.2c02536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Hybrids of nitrate-based molten salts (KNO3, NaNO3, and Solar Salt) and anodic aluminum oxide (AAO) with various pore sizes (between 25 and 380 nm) were designed for concentrated solar power (CSP) plants to achieve low melting point (<200 °C) and high thermal conductivity (>1 W m-1 K-1). AAO pore surfaces were passivated with octadecyl phosphonic acid (ODPA), and the results were compared with as-anodized AAO. The change in phase transition temperatures and melting temperatures of salts was investigated as a function of pore diameter. Melting temperatures decreased for all salts inside AAO with different pore sizes while the highest melting temperature decrease (ΔT = 173 ± 2 °C) was observed for KNO3 filled in AAO with a pore diameter of 380 nm. Another nanoconfinement effect was observed in the crystal phases of the salts. The ferroelectric phase of KNO3 (γ-phase) formed at room temperature for KNO3/AAO hybrids with pore size larger than 35 nm. Thermal conductivity values of molten salt (MS)/AAO hybrids were obtained by thermal property analysis (TPS) at room temperature and above melting temperatures of the salts. The highest increase in thermal conductivity was observed as 73% for KNO3/AAO-35 nm. For NaNO3/AAO-380 nm hybrids, the thermal conductivity coefficient was 1.224 ± 0.019 at room temperature. To determine the capacity and efficiency of MS/AAO hybrids during the heat transfer process, the energy storage density per unit volume (J m-3) was calculated. The highest energy storage capacity was calculated as 2390 MJ m-3 for KNO3/AAO with a pore diameter of 400 nm. This value is approximately five times higher than that of bulk salt.
Collapse
Affiliation(s)
- Mustafa
Göktürk Yazlak
- Department
of Materials Science and Nanotechnology Engineering, TOBB University of Economics and Technology, Söğütözü
Cad. 43, 06560 Ankara, Turkey
| | - Qaiser Ali Khan
- Institut
für Chemie Neuer Materialien, Universitat
Osnabrück, D-49069 Osnabrück, Germany
| | - Martin Steinhart
- Institut
für Chemie Neuer Materialien, Universitat
Osnabrück, D-49069 Osnabrück, Germany
| | - Hatice Duran
- Department
of Materials Science and Nanotechnology Engineering, TOBB University of Economics and Technology, Söğütözü
Cad. 43, 06560 Ankara, Turkey
- UNAM
Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey
| |
Collapse
|
2
|
Palácio G, Pulcinelli SH, Santilli CV. Fingerprint of semi-crystalline structure memory in the thermal and ionic conduction properties of amorphous ureasil-polyether hybrid solid electrolytes. RSC Adv 2022; 12:5225-5235. [PMID: 35425554 PMCID: PMC8981479 DOI: 10.1039/d1ra09138g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/04/2022] [Indexed: 11/21/2022] Open
Abstract
Correlations among the structure, thermal properties, and ionic conductivity of solid polymer electrolytes (SPEs) were studied using a ureasil-polyethylene oxide (U-PEO) organic-inorganic hybrid prepared according to a simple sol-gel route, employing a low molecular weight PEO macromer (M w = 1900 g mol-1). The behavior of an amorphous sample loaded with lithium triflate (LiTFSI) at an optimum ratio between ether oxygen and lithium (EO/Li+ = 15) was compared with that of a semicrystalline sample prepared without salt loading. The temperature range investigated by differential scanning calorimetry (DSC), Raman spectroscopy, small angle X-ray scattering (SAXS), and complex impedance spectroscopy covered both the glass transition and the melting temperature of the U-PEO. The gauche to trans conformational transformation of the (O-C-C-O)Li+ sequence showed similarity between the temperature evolution of the semi-crystalline U-PEO and amorphous U-PEO:Li+ samples, providing an indication of the local structural memory of crystalline state in the amorphous SPE. The linear thermal expansion of the average correlation distance between the siloxane crosslink nodes and the long-distance period of the lamellar semi-crystalline edifice were determined by SAXS. Comparison of the expansion curves suggested that although the siloxane nodes were excluded from the PEO crystalline edifice, the sharp expansion of the amorphous region between the lamellae during melting permitted modulation of the free volume of the hybrid network. In addition, the temperature-induced Li+-EO decomplexation observed by Raman spectroscopy explained the change of the average activation energy of the conduction process revealed by the different Arrhenius regimes. These results evidence the key role of the ionic conductivity decoupling from the segmental motion of chain pair channels on the improvement of ion mobility through the free volume between chains. This concept may inspire materials chemistry researchers to design optimized structures of polymer electrolytes with minimized structural memory of crystaline building blocks and improved ionic conductivity.
Collapse
Affiliation(s)
- Gustavo Palácio
- Chemistry Institute of the São Paulo State University, UNESP 14800-060 Araraquara São Paulo Brazil
| | - Sandra H Pulcinelli
- Chemistry Institute of the São Paulo State University, UNESP 14800-060 Araraquara São Paulo Brazil
| | - Celso V Santilli
- Chemistry Institute of the São Paulo State University, UNESP 14800-060 Araraquara São Paulo Brazil
| |
Collapse
|
3
|
Ok S, Vayer M, Sinturel C. A decade of innovation and progress in understanding the morphology and structure of heterogeneous polymers in rigid confinement. SOFT MATTER 2021; 17:7430-7458. [PMID: 34341814 DOI: 10.1039/d1sm00522g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
When confined in nanoscale domains, polymers generally encounter changes in their structural, thermodynamics and dynamics properties compared to those in the bulk, due to the high amount of polymer/wall interfaces and limited amount of matter. The present review specifically deals with the confinement of heterogeneous polymers (i.e. polymer blends and block copolymers) in rigid nanoscale domains (i.e. bearing non-deformable solid walls) where the processes of phase separation and self-assembly can be deeply affected. This review focuses on the innovative contributions of the last decade (2010-2020), giving a summary of the new insights and understanding gained in this period. We conclude this review by giving our view on the most thriving directions for this topic.
Collapse
Affiliation(s)
- Salim Ok
- Petroleum Research Center, Kuwait Institute for Scientific Research, P.O. Box 24885, Safat, 13109, Kuwait.
| | | | | |
Collapse
|
4
|
Abstract
Crystallization of polymeric materials under nanoscopic confinement is highly relevant for nanotechnology applications. When a polymer is confined within rigid nanoporous anodic aluminum oxide (AAO) templates, the crystallization behavior experiences dramatic changes as the pore size is reduced, including nucleation mechanism, crystal orientation, crystallization kinetics, and polymorphic transition, etc. As an experimental prerequisite, exhaustive cleaning procedures after infiltrations of polymers in AAO pores must be performed to ensure producing an ensemble of isolated polymer-filled nanopores. Layers of residual polymers on the AAO surface percolate nanopores and lead to the so-called "fractionated crystallization", i.e., multiple crystallization peaks during cooling.Because the density of isolated nanopores in a typical AAO template exceeds the density of heterogeneities in bulk polymers, the majority of nanopores will be heterogeneity-free. This means that the nucleation will proceed by surface or homogeneous nucleation. As a consequence, a very large supercooling is necessary for crystallization, and its kinetics is reduced to a first-order process that is dominated by nucleation. Self-nucleation is a powerful method to exponentially increase nucleation density. However, when the diameter of the nanopores is lower than a critical value, confinement prevents the possibility to self-nucleate the material.Because of the anisotropic nature of AAO pores, polymer crystals inside AAO also exhibit anisotropy, which is determined by thermodynamic stability and kinetic selection rules. For low molecular weight poly(ethylene oxide) (PEO) with extended chain crystals, the orientation of polymer crystals changes from the "chain perpendicular to" to the "chain parallel to" the AAO pore axis, when the diameter of AAO decreases to the contour length of the PEO, indicating the effect of thermodynamic stability. When the thermodynamic requirement is satisfied, the orientation is determined by kinetics including crystal growth direction, nucleation, and crystal growth rate. An orientation diagram has been established for the PEO/AAO system, considering the cooling condition and pore size.The interfacial polymer layer has different physical properties as compared to the bulk. In poly(l-lactic acid), the relationship between the segmental mobility of the interfacial layer and crystallization rate is established. For the investigation of polymorphic transition of poly(butane-1), the results indicate that a 12 nm interfacial layer hinders the transition of Form II to Form I. Block and random copolymers have also been infiltrated into AAO nanopores, and their crystallization behavior is analogously affected as pore size is reduced.
Collapse
Affiliation(s)
- Guoming Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Alejandro J. Müller
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal, 3, 20018 Donostia-San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, 48009, Spain
| | - Dujin Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Sangroniz L, Wang B, Su Y, Liu G, Cavallo D, Wang D, Müller AJ. Fractionated crystallization in semicrystalline polymers. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2021.101376] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
6
|
White JM, Jurczyk J, Van Horn RM. Physical structure contributions in pH degradation of PEO-b-PCL films. Polym Degrad Stab 2021. [DOI: 10.1016/j.polymdegradstab.2020.109468] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Christodoulou E, Klonos PA, Tsachouridis K, Zamboulis A, Kyritsis A, Bikiaris DN. Synthesis, crystallization, and molecular mobility in poly(ε-caprolactone) copolyesters of different architectures for biomedical applications studied by calorimetry and dielectric spectroscopy. SOFT MATTER 2020; 16:8187-8201. [PMID: 32789409 DOI: 10.1039/d0sm01195a] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this work, we synthesized poly(ε-caprolactone) (PCL) and three copolyesters of different architectures based on three different alcohols, namely a three arm-copolymer based on 1% glycerol (PCL_Gly), a four arm-copolymer based on 1% pentaerythrytol (PCL_PE), and a linear block copolymer based on ∼50% methoxy-poly(ethylene glycol) (PCL_mPEG), all simultaneously with the ring opening polymerization (ROP) of PCL. Due to their biocompatibility and low toxicity, these systems are envisaged for use in drug delivery and tissue engineering applications. Due to the in situ ROP during the copolyesters synthesis, the molecular weight of PCL, Wm initially ∼62 kg mol-1, drops in the copolymers from ∼60k down to ∼5k. For the structure-properties investigation we employed differential scanning calorimetry (DSC and TMDSC), X-ray diffraction (XRD), nuclear magnetic resonance (NMR), Fourier transform infra red (FTIR) spectroscopy, polarized optical microscopy (POM), broadband dielectric spectroscopy (BDS) and isothermal water sorption. DSC revealed that the crystalline fraction of PCL increases whereas the crystallization rate drops in the copolymers in the order PCL ∼ PCL_Gly > PCL_PE ≫ PCL_mPEG, which coincides with that of decreasing Wm. In PCL_mPEG the major amount of PCL (87%) was found to crystallize while the majority of mPEG (92%) was found amorphous exhibiting constrained amorphous mobility and severely slower/weaker crystallization as compared to neat mPEG. Segmental dynamics in BDS, in agreement with DSC, is similar and in general slow for the samples of star-like structure for Wm ≥ 30k arising from PCL, whereas it is severely faster and enhanced in strength for the linear PCL_mPEG (lower Wm) copolymer arising from mPEG. For the latter system, the data provide indications for the formation of complex structures consisting of many small PCL crystallites surrounded by amorphous mPEG segments with constrained dynamics and severely suppressed hydrophilicity. These effects cannot be easily assessed by conventional XRD and POM, confirming the power of the dielectric technique. The overall recordings indicated that the different polymer architecture results in severe changes in the semicrystalline morphology, which demonstrates the potential for tuning the final product performance (permeability, mechanical).
Collapse
Affiliation(s)
- Evi Christodoulou
- Department of Chemistry, Laboratory of Polymer Chemistry and Technology, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki, Greece.
| | - Panagiotis A Klonos
- Department of Chemistry, Laboratory of Polymer Chemistry and Technology, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki, Greece. and Department of Physics, National Technical University of Athens (NTUA), Zografou Campus, 15780, Athens, Greece
| | - Kostas Tsachouridis
- Department of Chemistry, Laboratory of Polymer Chemistry and Technology, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki, Greece.
| | - Alexandra Zamboulis
- Department of Chemistry, Laboratory of Polymer Chemistry and Technology, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki, Greece.
| | - Apostolos Kyritsis
- Department of Physics, National Technical University of Athens (NTUA), Zografou Campus, 15780, Athens, Greece
| | - Dimitrios N Bikiaris
- Department of Chemistry, Laboratory of Polymer Chemistry and Technology, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki, Greece.
| |
Collapse
|
8
|
Tower CW, Allen K, Carandang A, Van Horn RM. Solubility considerations in relative block crystallization and morphology of PEO‐
b
‐PCL films. POLYMER CRYSTALLIZATION 2020. [DOI: 10.1002/pcr2.10107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Cole W. Tower
- Department of Chemistry Allegheny College Meadville Pennsylvania
| | - Kristi Allen
- Department of Chemistry Allegheny College Meadville Pennsylvania
| | | | - Ryan M. Van Horn
- Department of Chemistry Allegheny College Meadville Pennsylvania
- Department of Chemical and Biomolecular Engineering Lafayette College Easton Pennsylvania
| |
Collapse
|
9
|
Elmahdy MM, Gournis D, Ladavos A, Spanos C, Floudas G. H-Shaped Copolymer of Polyethylene and Poly(ethylene oxide) under Severe Confinement: Phase State and Dynamics. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:4261-4271. [PMID: 32243167 DOI: 10.1021/acs.langmuir.0c00127] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The self-assembly and the dynamics of an H-shaped copolymer composed of a polyethylene midblock and four poly(ethylene oxide) arms (PE-b-4PEO) are investigated in the bulk and under severe confinement into nanometer-spaced LAPONITE clay particles by means of small- and wide-angle X-ray diffraction (SAXS, WAXS), differential scanning calorimetry (DSC), polarizing optical microscopy (POM), rheology, and dielectric spectroscopy (DS). Because of the H-shaped architecture, the PE midblock is topologically frustrated and thus unable to crystallize. The superstructure formation in the bulk is dictated solely by the PEO arms as inferred by the crystallization/melting temperature relative to the PEO homopolymer. Confinement produced remarkable changes in the interlayer distance and PEO crystallinity but left the local segmental dynamics unaltered. To reconcile all structural, thermodynamic, and dynamic effects, a novel morphological picture is proposed with interest in emulsions. Key parameters that stabilize the final morphology are the severe chain confinement with the associated entropy loss and the presence of interactions (hydrophobic/hydrophilic) between the LAPONITE and the PEO/PE blocks.
Collapse
Affiliation(s)
- Mahdy M Elmahdy
- Department of Physics, Faculty of Science, Mansoura University, 35516 Mansoura, Egypt
- Department of Physics, University of Ioannina, 451 10 Ioannina, Greece
| | - Dimitrios Gournis
- Department of Materials Science & Engineering, University of Ioannina, 45110 Ioannina, Greece
- Institute of Materials Science and Computing, University Research Center of Ioannina (URCI), 451 10 Ioannina, Greece
| | - Athanasios Ladavos
- Department of Business Administration of Food and Agricultural Enterprises, University of Patras, 30100 Agrinio, Greece
| | - Christos Spanos
- Department of Business Administration of Food and Agricultural Enterprises, University of Patras, 30100 Agrinio, Greece
| | - George Floudas
- Department of Physics, University of Ioannina, 451 10 Ioannina, Greece
- Max Planck Institute for Polymer Research, D-55128 Mainz, Germany
- Institute of Materials Science and Computing, University Research Center of Ioannina (URCI), 451 10 Ioannina, Greece
| |
Collapse
|
10
|
Ma MC, Guo YL. Physical Properties of Polymers Under Soft and Hard Nanoconfinement: A Review. CHINESE JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1007/s10118-020-2380-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
11
|
Zhang Z, Ding J, Ocko BM, Lhermitte J, Strzalka J, Choi CH, Fisher FT, Yager KG, Black CT. Nanoconfinement and Salt Synergistically Suppress Crystallization in Polyethylene Oxide. Macromolecules 2020. [DOI: 10.1021/acs.macromol.9b01725] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zheng Zhang
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Junjun Ding
- Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| | - Benjamin M. Ocko
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Julien Lhermitte
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Joseph Strzalka
- X-ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Chang-Hwan Choi
- Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| | - Frank T. Fisher
- Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| | - Kevin G. Yager
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Charles T. Black
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| |
Collapse
|
12
|
Safari M, Maiz J, Shi G, Juanes D, Liu G, Wang D, Mijangos C, Alegría Á, Müller AJ. How Confinement Affects the Nucleation, Crystallization, and Dielectric Relaxation of Poly(butylene succinate) and Poly(butylene adipate) Infiltrated within Nanoporous Alumina Templates. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:15168-15179. [PMID: 31621336 DOI: 10.1021/acs.langmuir.9b02215] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This work describes the successful melt infiltration of poly(butylene succinate) (PBS) and poly(butylene adipate) (PBA) within 70 nm diameter anodic aluminum oxide (AAO) templates. The infiltrated samples were characterized by SEM, Raman, and FTIR spectroscopy. The crystallization behaviors and crystalline structures of both polymers, bulk and confined, were analyzed by differential scanning calorimetry (DSC) and grazing incidence wide angle X-ray scattering (GIWAXS). DSC revealed that a change in the nucleation process occurred from heterogeneous nucleation for bulk samples to homogeneous nucleation for infiltrated PBA and to surface-induced nucleation for infiltrated PBS. GIWAXS results indicate that PBS nanofibers crystallize in the α-phase, as well as their bulk samples. However, PBA nanofibers crystallize just in the β-phase, whereas PBA bulk samples crystallize in a mixture of α- and β-phases. The crystal orientation within the pores was determined, and differences between PBS and PBA were also found. Finally, broadband dielectric spectroscopy was applied to study the segmental dynamics for bulk and infiltrated samples. The glass temperature was found to significantly decrease in the PBS case upon infiltration, while that of PBA remained unchanged. These differences were correlated with the higher affinity of PBS to the AAO walls than PBA, in accordance with their nucleation behavior (surface-induced versus homogeneous nucleation, respectively).
Collapse
Affiliation(s)
- Maryam Safari
- POLYMAT and Polymer Science and Technology Department, Faculty of Chemistry , University of the Basque Country UPV/EHU , Paseo Manuel de Lardizábal, 3 , 20018 Donostia-San Sebastián , Spain
| | - Jon Maiz
- POLYMAT and Polymer Science and Technology Department, Faculty of Chemistry , University of the Basque Country UPV/EHU , Paseo Manuel de Lardizábal, 3 , 20018 Donostia-San Sebastián , Spain
| | - Guangyu Shi
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences , Institute of Chemistry, the Chinese Academy of Sciences , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Diana Juanes
- Instituto de Ciencia y Tecnología de Polímeros , Consejo Superior de Investigaciones Científicas, ICTP-CSIC , Juan de la Cierva 3 , Madrid 28006 , Spain
| | - Guoming Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences , Institute of Chemistry, the Chinese Academy of Sciences , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Dujin Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences , Institute of Chemistry, the Chinese Academy of Sciences , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Carmen Mijangos
- Instituto de Ciencia y Tecnología de Polímeros , Consejo Superior de Investigaciones Científicas, ICTP-CSIC , Juan de la Cierva 3 , Madrid 28006 , Spain
- Departamento de Física de Materiales , University of the Basque Country UPV/EHU and Centro de Física de Materiales (CFM) (CSIC-UPV/EHU) - Materials Physics Center (MPC) , Paseo Manuel de Lardizabal 5 , 20018 San Sebastián , Spain
| | - Ángel Alegría
- Departamento de Física de Materiales , University of the Basque Country UPV/EHU and Centro de Física de Materiales (CFM) (CSIC-UPV/EHU) - Materials Physics Center (MPC) , Paseo Manuel de Lardizabal 5 , 20018 San Sebastián , Spain
| | - Alejandro J Müller
- POLYMAT and Polymer Science and Technology Department, Faculty of Chemistry , University of the Basque Country UPV/EHU , Paseo Manuel de Lardizábal, 3 , 20018 Donostia-San Sebastián , Spain
- IKERBASQUE, Basque Foundation for Science , 48013 Bilbao , Spain
| |
Collapse
|
13
|
Fibrous Materials Made of Poly( ε-caprolactone)/Poly(ethylene oxide) -b-Poly( ε-caprolactone) Blends Support Neural Stem Cells Differentiation. Polymers (Basel) 2019; 11:polym11101621. [PMID: 31597231 PMCID: PMC6835932 DOI: 10.3390/polym11101621] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 09/22/2019] [Accepted: 09/27/2019] [Indexed: 02/07/2023] Open
Abstract
In this work, we design and produce micron-sized fiber mats by blending poly(ε-caprolactone) (PCL) with small amounts of block copolymers poly(ethylene oxide)m-block-poly(ε-caprolactone)n (PEOm-b-PCLn) using electrospinning. Three different PEOm-b-PCLn block copolymers, with different molecular weights of PEO and PCL, were synthesized by ring opening polymerization of ε-caprolactone using PEO as initiator and stannous octoate as catalyst. The polymer blends were prepared by homogenous solvent mixing using dichloromethane for further electrospinning procedures. After electrospinning, it was found that the addition to PCL of the different block copolymers produced micron-fibers with smaller width, equal or higher hydrophilicity, lower Young modulus, and rougher surfaces, as compared with micron-fibers obtained only with PCL. Neural stem progenitor cells (NSPC), isolated from rat brains and grown as neurospheres, were cultured on the fibrous materials. Immunofluorescence assays showed that the NSPC are able to survive and even differentiate into astrocytes and neurons on the synthetic fibrous materials without any growth factor and using the fibers as guidance. Disassembling of the cells from the NSPC and acquisition of cell specific molecular markers and morphology progressed faster in the presence of the block copolymers, which suggests the role of the hydrophilic character and porous topology of the fiber mats.
Collapse
|
14
|
Golitsyn Y, Pulst M, Samiullah MH, Busse K, Kressler J, Reichert D. Crystallization in PEG networks: The importance of network topology and chain tilt in crystals. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.01.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
15
|
Van Horn RM, Steffen MR, O'Connor D. Recent progress in block copolymer crystallization. POLYMER CRYSTALLIZATION 2018. [DOI: 10.1002/pcr2.10039] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Ryan M. Van Horn
- Department of Chemistry Allegheny College Meadville Pennsylvania
| | | | - Dana O'Connor
- Department of Chemistry Allegheny College Meadville Pennsylvania
| |
Collapse
|
16
|
Affiliation(s)
- Mark C. Staub
- Department of Materials Science and Engineering Drexel University Philadelphia Pennsylvania
| | - Christopher Y. Li
- Department of Materials Science and Engineering Drexel University Philadelphia Pennsylvania
| |
Collapse
|
17
|
Nikovia C, Theodoridis L, Alexandris S, Bilalis P, Hadjichristidis N, Floudas G, Pitsikalis M. Macromolecular Brushes by Combination of Ring-Opening and Ring-Opening Metathesis Polymerization. Synthesis, Self-Assembly, Thermodynamics, and Dynamics. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01905] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Christiana Nikovia
- Industrial Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | | | | | - Panayiotis Bilalis
- Physical Sciences and Engineering Division, Polymer Synthesis Laboratory, KAUST Catalysis Center, Thuwal 23955, Kingdom of Saudi Arabia
| | - Nikos Hadjichristidis
- Physical Sciences and Engineering Division, Polymer Synthesis Laboratory, KAUST Catalysis Center, Thuwal 23955, Kingdom of Saudi Arabia
| | - George Floudas
- Department of Physics, University of Ioannina, 45110 Ioannina, Greece
| | - Marinos Pitsikalis
- Industrial Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| |
Collapse
|
18
|
Samanta P, Srivastava R, Nandan B. Confinement‐driven cocrystallization of binary polymer mixtures of different chain length in electrospun nanofibers. POLYMER CRYSTALLIZATION 2018. [DOI: 10.1002/pcr2.10017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Pratick Samanta
- Department of Textile TechnologyIndian Institute of Technology Delhi New Delhi Delhi India
| | - Rajiv Srivastava
- Department of Textile TechnologyIndian Institute of Technology Delhi New Delhi Delhi India
| | - Bhanu Nandan
- Department of Textile TechnologyIndian Institute of Technology Delhi New Delhi Delhi India
| |
Collapse
|
19
|
Dai X, Li H, Ren Z, Russell TP, Yan S, Sun X. Confinement Effects on the Crystallization of Poly(3-hydroxybutyrate). Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01083] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Xiying Dai
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Huihui Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhongjie Ren
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Thomas P. Russell
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, 120 Governors Drive, Amherst, Massachusetts 01003, United States
| | - Shouke Yan
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaoli Sun
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
20
|
Samanta P, Srivastava R, Nandan B. Block copolymer compatibilization driven frustrated crystallization in electrospun nanofibers of polystyrene/poly(ethylene oxide) blends. RSC Adv 2018; 8:17989-18007. [PMID: 35542103 PMCID: PMC9080552 DOI: 10.1039/c8ra02391c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 05/08/2018] [Indexed: 11/21/2022] Open
Abstract
The confined crystallization behaviour of poly(ethylene oxide) (PEO) has been studied in electrospun nanofibers of the phase-separated blends of polystyrene (PS) and PEO compatibilized with polystyrene-block-poly(ethylene oxide) (PS-b-PEO) block copolymer. The PS was present as the majority component such that the electrospun nanofibers consisted of PEO domains dispersed in the PS matrix. The phase separation in the blend occurred under the radial constraint of the nanofibers which led to the formation of small-sized fibrillar PEO domains. The use of block copolymer compatibilizer resulted in a noticeable decrease in the PEO domain size in the as-spun nanofibers. Moreover, the decrease in the domain size and domain connectivity was more substantial in the thermally annealed blend nanofibers due to the suppression of the domain coalescence mechanism resulting from the localization of the PS-b-PEO block copolymer at the interface. Consequently, the fraction of PEO domains crystallizing via homogeneous nucleation increased in the compatibilized blend nanofibers due to the presence of higher number of heterogeneity free PEO domains and disruption in their spatial connectivity. Interestingly, in the compatibilized blend nanofibers consisting of low molecular weight PEO, additional crystallization event attributed to surface nucleation was observed. The surface nucleation, plausibly, resulted from the formation of wet-brush structures where the PEO homopolymers homogeneously wet the PEO blocks present at the interface. In such a scenario, the PEO crystallization occurred via surface nucleation at the domain interface. The surface nucleated crystallization was absent in the compatibilized blend nanofibers composed of high molecular weight PEO presumably due to the formation of morphology with dry-brush structures. Confined crystallization behaviour of poly(ethylene oxide) (PEO) was studied in electrospun nanofibers of the phase-separated blends of polystyrene (PS) and PEO compatibilized with polystyrene-block-poly(ethylene oxide) (PS-b-PEO) block copolymer.![]()
Collapse
Affiliation(s)
- Pratick Samanta
- Department of Textile Technology, Indian Institute of Technology Delhi Hauz Khas New Delhi 110016 India
| | - Rajiv Srivastava
- Department of Textile Technology, Indian Institute of Technology Delhi Hauz Khas New Delhi 110016 India
| | - Bhanu Nandan
- Department of Textile Technology, Indian Institute of Technology Delhi Hauz Khas New Delhi 110016 India
| |
Collapse
|
21
|
Molecular self-assembly of one-dimensional polymer nanostructures in nanopores of anodic alumina oxide templates. Prog Polym Sci 2018. [DOI: 10.1016/j.progpolymsci.2017.10.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
22
|
Staub MC, Li CY. Confined and Directed Polymer Crystallization at Curved Liquid/Liquid Interface. MACROMOL CHEM PHYS 2017. [DOI: 10.1002/macp.201700455] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Mark C. Staub
- Department of Materials Science and Engineering Drexel University College of Engineering 3141 Chestnut Street Philadelphia PA 19104 USA
| | - Christopher Y. Li
- Department of Materials Science and Engineering Drexel University College of Engineering 3141 Chestnut Street Philadelphia PA 19104 USA
| |
Collapse
|
23
|
Shi G, Liu G, Su C, Chen H, Chen Y, Su Y, Müller AJ, Wang D. Reexamining the Crystallization of Poly(ε-caprolactone) and Isotactic Polypropylene under Hard Confinement: Nucleation and Orientation. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b02284] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Guangyu Shi
- CAS
Key Laboratory of Engineering Plastics, CAS Research/Education Center
for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of
Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Guoming Liu
- CAS
Key Laboratory of Engineering Plastics, CAS Research/Education Center
for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Cui Su
- CAS
Key Laboratory of Engineering Plastics, CAS Research/Education Center
for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of
Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Haiming Chen
- CAS
Key Laboratory of Engineering Plastics, CAS Research/Education Center
for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of
Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yu Chen
- Institute
of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yunlan Su
- CAS
Key Laboratory of Engineering Plastics, CAS Research/Education Center
for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Alejandro J. Müller
- POLYMAT
and Polymer Science and Technology Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
- IKERBASQUE, Basque
Foundation for Science, Bilbao, Spain
| | - Dujin Wang
- CAS
Key Laboratory of Engineering Plastics, CAS Research/Education Center
for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of
Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
24
|
Brigham N, Nardi C, Carandang A, Allen K, Van Horn RM. Manipulation of Crystallization Sequence in PEO-b-PCL Films Using Solvent Interactions. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b02004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Natasha Brigham
- Department of Chemistry, Allegheny College, Meadville, Pennsylvania 16335, United States
| | - Christopher Nardi
- Department of Chemistry, Allegheny College, Meadville, Pennsylvania 16335, United States
| | - Allison Carandang
- Department of Chemistry, Allegheny College, Meadville, Pennsylvania 16335, United States
| | - Kristi Allen
- Department of Chemistry, Allegheny College, Meadville, Pennsylvania 16335, United States
| | - Ryan M. Van Horn
- Department of Chemistry, Allegheny College, Meadville, Pennsylvania 16335, United States
| |
Collapse
|
25
|
Yao Y, Suzuki Y, Seiwert J, Steinhart M, Frey H, Butt HJ, Floudas G. Capillary Imbibition, Crystallization, and Local Dynamics of Hyperbranched Poly(ethylene oxide) Confined to Nanoporous Alumina. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b01843] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Yang Yao
- Max Planck Institute
for Polymer Research, D-55128 Mainz, Germany
| | - Yasuhito Suzuki
- Max Planck Institute
for Polymer Research, D-55128 Mainz, Germany
| | - Jan Seiwert
- Institute
of Organic Chemistry, Johannes Gutenberg-University Mainz, D-55099 Mainz, Germany
| | - Martin Steinhart
- Institut
für Chemie neuer Materialien, Universität Osnabrück, D-49069 Osnabrück, Germany
| | - Holger Frey
- Institute
of Organic Chemistry, Johannes Gutenberg-University Mainz, D-55099 Mainz, Germany
| | - Hans-Jürgen Butt
- Max Planck Institute
for Polymer Research, D-55128 Mainz, Germany
| | - George Floudas
- Max Planck Institute
for Polymer Research, D-55128 Mainz, Germany
- Department
of Physics, University of Ioannina, P.O. Box 1186, 451 10 Ioannina, Greece
| |
Collapse
|
26
|
Zou SF, Guo XS, Wang RY, Fan B, Xu JT, Fan ZQ. Effect of annealing-induced interfacial demixing on crystallization of PEO confined in coaxial electrospun nanofibers. J Appl Polym Sci 2017. [DOI: 10.1002/app.45760] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Shu-Fen Zou
- Department of Polymer Science & Engineering, MOE Key Laboratory of Macromolecular Synthesis and Functionalization; Zhejiang University; Hangzhou 310027 China
| | - Xiao-Shuai Guo
- Department of Polymer Science & Engineering, MOE Key Laboratory of Macromolecular Synthesis and Functionalization; Zhejiang University; Hangzhou 310027 China
| | - Rui-Yang Wang
- Department of Polymer Science & Engineering, MOE Key Laboratory of Macromolecular Synthesis and Functionalization; Zhejiang University; Hangzhou 310027 China
| | - Bin Fan
- Department of Polymer Science & Engineering, MOE Key Laboratory of Macromolecular Synthesis and Functionalization; Zhejiang University; Hangzhou 310027 China
| | - Jun-Ting Xu
- Department of Polymer Science & Engineering, MOE Key Laboratory of Macromolecular Synthesis and Functionalization; Zhejiang University; Hangzhou 310027 China
| | - Zhi-Qiang Fan
- Department of Polymer Science & Engineering, MOE Key Laboratory of Macromolecular Synthesis and Functionalization; Zhejiang University; Hangzhou 310027 China
| |
Collapse
|
27
|
Yao Y, Alexandris S, Henrich F, Auernhammer G, Steinhart M, Butt HJ, Floudas G. Complex dynamics of capillary imbibition of poly(ethylene oxide) melts in nanoporous alumina. J Chem Phys 2017; 146:203320. [DOI: 10.1063/1.4978298] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
28
|
Klonos P, Kyritsis A, Bokobza L, Gun’ko VM, Pissis P. Interfacial effects in PDMS/titania nanocomposites studied by thermal and dielectric techniques. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2016.04.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
29
|
Napolitano S, Glynos E, Tito NB. Glass transition of polymers in bulk, confined geometries, and near interfaces. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2017; 80:036602. [PMID: 28134134 DOI: 10.1088/1361-6633/aa5284] [Citation(s) in RCA: 247] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
When cooled or pressurized, polymer melts exhibit a tremendous reduction in molecular mobility. If the process is performed at a constant rate, the structural relaxation time of the liquid eventually exceeds the time allowed for equilibration. This brings the system out of equilibrium, and the liquid is operationally defined as a glass-a solid lacking long-range order. Despite almost 100 years of research on the (liquid/)glass transition, it is not yet clear which molecular mechanisms are responsible for the unique slow-down in molecular dynamics. In this review, we first introduce the reader to experimental methodologies, theories, and simulations of glassy polymer dynamics and vitrification. We then analyse the impact of connectivity, structure, and chain environment on molecular motion at the length scale of a few monomers, as well as how macromolecular architecture affects the glass transition of non-linear polymers. We then discuss a revised picture of nanoconfinement, going beyond a simple picture based on interfacial interactions and surface/volume ratio. Analysis of a large body of experimental evidence, results from molecular simulations, and predictions from theory supports, instead, a more complex framework where other parameters are relevant. We focus discussion specifically on local order, free volume, irreversible chain adsorption, the Debye-Waller factor of confined and confining media, chain rigidity, and the absolute value of the vitrification temperature. We end by highlighting the molecular origin of distributions in relaxation times and glass transition temperatures which exceed, by far, the size of a chain. Fast relaxation modes, almost universally present at the free surface between polymer and air, are also remarked upon. These modes relax at rates far larger than those characteristic of glassy dynamics in bulk. We speculate on how these may be a signature of unique relaxation processes occurring in confined or heterogeneous polymeric systems.
Collapse
Affiliation(s)
- Simone Napolitano
- Laboratory of Polymer and Soft Matter Dynamics, Faculté des Sciences, Université Libre de Bruxelles (ULB), Boulevard du Triomphe, 1050 Brussels, Belgium
| | | | | |
Collapse
|
30
|
Samanta P, Srivastava R, Nandan B, Chen HL. Crystallization behavior of crystalline/crystalline polymer blends under confinement in electrospun nanofibers of polystyrene/poly(ethylene oxide)/poly(ε-caprolactone) ternary mixtures. SOFT MATTER 2017; 13:1569-1582. [PMID: 28127604 DOI: 10.1039/c6sm02748b] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We have studied the crystallization behavior of crystalline/crystalline blends of poly(ethylene oxide) (PEO) and poly(ε-caprolactone) (PCL) in electrospun nanofibers fabricated from ternary blends of polystyrene (PS), PEO, and PCL, where PS was present as the majority component. It was demonstrated previously that PEO in PS/PEO binary blend nanofibers with a low PEO weight fraction (≦0.2) crystallized predominantly through homogenous nucleation due to the small PEO domain size which excluded the presence of heterogeneities (Soft Matter, 2016, 12, 5110). Here, it was found that PCL in PS/PCL binary blend nanofibers exhibited similar behavior, but at a much lower weight fraction of PCL (≦0.1) due to the presence of an inherently higher concentration of heterogeneities in the PCL homopolymer. In the PS/PEO/PCL ternary blend nanofibers, where the combined weight fraction of PEO and PCL was kept at 0.2 or less, the crystallization of the two components took place separately through both heterogeneous and homogenous nucleation mechanisms. The phase segregated crystallization behavior was further confirmed by the melting behavior of the blend nanofibers and wide angle X-ray diffraction (WAXD) measurements. Most significantly, the homogenous nucleation of both PEO and PCL was suppressed whereas the heterogeneous nucleation was enhanced in the ternary blend nanofibers even at very low weight fraction of PEO or PCL. This was plausibly attributed to the coupling between the crystallization and the liquid-liquid phase separation (LLPS) of the PEO/PCL mixture dispersed in the PS matrix during non-isothermal cooling of the blend nanofibers. Furthermore, it was observed that thermal treatment of the PS/PEO/PCL blend nanofibers above the glass transition temperature of PS further promoted the heterogeneous nucleation-initiated crystallization of PEO because of a complex interplay between Plateau-Rayleigh instability-induced domain breakup and its further coalescence and demixing within the PEO/PCL domains embedded in the PS matrix.
Collapse
Affiliation(s)
- Pratick Samanta
- Department of Textile Technology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| | - Rajiv Srivastava
- Department of Textile Technology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| | - Bhanu Nandan
- Department of Textile Technology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| | - Hsin-Lung Chen
- Department of Chemical Engineering and Frontier Centre of Fundamental and Applied Sciences of Matters, National Tsing-Hua University, Hsinchu 30013, Taiwan.
| |
Collapse
|
31
|
Li L, Liu J, Qin L, Zhang C, Sha Y, Jiang J, Wang X, Chen W, Xue G, Zhou D. Crystallization kinetics of syndiotactic polypropylene confined in nanoporous alumina. POLYMER 2017. [DOI: 10.1016/j.polymer.2016.12.081] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
32
|
Sanz B, Ballard N, Asua JM, Mijangos C. Effect of Confinement on the Synthesis of PMMA in AAO Templates and Modeling of Free Radical Polymerization. Macromolecules 2017. [DOI: 10.1021/acs.macromol.6b02282] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Belén Sanz
- Instituto
de Ciencia y Tecnología de Polímeros, Consejo Superior de Investigaciones Científicas (CSIC), Juan de la Cierva 3, Madrid 28006, Spain
- Edificio
Joxe Mari Korta, POLYMAT, University of the Basque Country EHU-UPV, Avda. Tolosa 72, 20018 Donostia-San Sebastian, Guipúzcoa, Spain
| | - Nicholas Ballard
- Edificio
Joxe Mari Korta, POLYMAT, University of the Basque Country EHU-UPV, Avda. Tolosa 72, 20018 Donostia-San Sebastian, Guipúzcoa, Spain
| | - José M. Asua
- Edificio
Joxe Mari Korta, POLYMAT, University of the Basque Country EHU-UPV, Avda. Tolosa 72, 20018 Donostia-San Sebastian, Guipúzcoa, Spain
| | - Carmen Mijangos
- Instituto
de Ciencia y Tecnología de Polímeros, Consejo Superior de Investigaciones Científicas (CSIC), Juan de la Cierva 3, Madrid 28006, Spain
| |
Collapse
|
33
|
Alexandris S, Papadopoulos P, Sakellariou G, Steinhart M, Butt HJ, Floudas G. Interfacial Energy and Glass Temperature of Polymers Confined to Nanoporous Alumina. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b01484] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Stelios Alexandris
- Department of Physics, University of Ioannina, P.O. Box 1186, 451 10 Ioannina, Greece
| | - Periklis Papadopoulos
- Department of Physics, University of Ioannina, P.O. Box 1186, 451 10 Ioannina, Greece
| | - Georgios Sakellariou
- Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Martin Steinhart
- Institut für Chemie neuer Materialien, Universität Osnabrück, D-49069 Osnabrück, Germany
| | - Hans-Jürgen Butt
- Max Planck Institute for Polymer Research, D-55128 Mainz, Germany
| | - George Floudas
- Department of Physics, University of Ioannina, P.O. Box 1186, 451 10 Ioannina, Greece
| |
Collapse
|
34
|
Klonos P, Terzopoulou Z, Koutsoumpis S, Zidropoulos S, Kripotou S, Papageorgiou GZ, Bikiaris DN, Kyritsis A, Pissis P. Rigid amorphous fraction and segmental dynamics in nanocomposites based on poly(l–lactic acid) and nano-inclusions of 1–3D geometry studied by thermal and dielectric techniques. Eur Polym J 2016. [DOI: 10.1016/j.eurpolymj.2016.07.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
35
|
Suzuki Y, Steinhart M, Kappl M, Butt HJ, Floudas G. Effects of polydispersity, additives, impurities and surfaces on the crystallization of poly(ethylene oxide)(PEO) confined to nanoporous alumina. POLYMER 2016. [DOI: 10.1016/j.polymer.2016.07.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
36
|
Kripotou S, Psylla C, Kyriakos K, Raftopoulos KN, Zhao J, Zhang G, Pispas S, Papadakis CM, Kyritsis A. Structure and Crystallization Behavior of Poly(ethylene oxide) (PEO) Chains in Core–Shell Brush Copolymers with Poly(propylene oxide)-block-poly(ethylene oxide) Side Chains. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b00879] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Sotiria Kripotou
- Physics
Department, National Technical University of Athens, Iroon Polytechneiou
9, Zografou Campus, Athens 15780, Greece
| | - Christina Psylla
- Physik-Department,
Fachgebiet Physik weicher Materie, Technische Universität München, James-Franck-Str. 1, Garching 85748, Germany
| | - Konstantinos Kyriakos
- Physik-Department,
Fachgebiet Physik weicher Materie, Technische Universität München, James-Franck-Str. 1, Garching 85748, Germany
| | - Konstantinos N. Raftopoulos
- Physik-Department,
Fachgebiet Physik weicher Materie, Technische Universität München, James-Franck-Str. 1, Garching 85748, Germany
| | - Junpeng Zhao
- Faculty
of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, P. R. China
| | - Guangzhao Zhang
- Faculty
of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, P. R. China
| | - Stergios Pispas
- Theoretical
and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vass. Constantinou Ave., Athens 11635, Greece
| | - Christine M. Papadakis
- Physik-Department,
Fachgebiet Physik weicher Materie, Technische Universität München, James-Franck-Str. 1, Garching 85748, Germany
| | - Apostolos Kyritsis
- Physics
Department, National Technical University of Athens, Iroon Polytechneiou
9, Zografou Campus, Athens 15780, Greece
| |
Collapse
|
37
|
Sanz B, Blaszczyk-Lezak I, Mijangos C, Palacios JK, Müller AJ. New Double-Infiltration Methodology to Prepare PCL-PS Core-Shell Nanocylinders Inside Anodic Aluminum Oxide Templates. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:7860-7865. [PMID: 27420298 DOI: 10.1021/acs.langmuir.6b01258] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Melt nanomolding of core-shell nanocylinders of different sizes, employing anodic aluminum oxide (AAO) templates, is reported here for the first time. The core-shell nanostructures are achieved by a new melt double-infiltration technique. During the first infiltration step, polystyrene (PS) nanotubes are produced by an adequate choice of AAO nanopore diameter size. In the second step, PCL is infiltrated inside the PS nanotubes, as its melting point (and infiltration temperature) is lower than the glass transition temperature of PS. Scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) measurements verified the complete double-infiltration of the polymers. Differential scanning calorimetry (DSC) experiments show that the infiltrated PCL undergoes a confined fractionated crystallization with two crystallization steps located at temperatures that depend on which surface is in contact with the PCL nanocylinders (i.e., alumina or PS). The melt double-infiltration methodology represents a novel approach to study the effect of the surrounding surface on polymer crystallization under confinement.
Collapse
Affiliation(s)
- Belén Sanz
- Instituto de Ciencia y Tecnología de Polímeros, Consejo Superior de Investigaciones Científicas (CSIC) , Juan de la Cierva 3, Madrid 28006, Spain
| | - Iwona Blaszczyk-Lezak
- Instituto de Ciencia y Tecnología de Polímeros, Consejo Superior de Investigaciones Científicas (CSIC) , Juan de la Cierva 3, Madrid 28006, Spain
| | - Carmen Mijangos
- Instituto de Ciencia y Tecnología de Polímeros, Consejo Superior de Investigaciones Científicas (CSIC) , Juan de la Cierva 3, Madrid 28006, Spain
- Donostia International Physics Center (DIPC) and Centro de Física de Materiales (CFM), CSIC-UPV , 20018 Donostia-San Sebastián, Spain
| | - Jordana K Palacios
- POLYMAT and Polymer Science and Technology Department, Faculty of Chemistry, University of the Basque Country UPV/EHU , Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
| | - Alejandro J Müller
- POLYMAT and Polymer Science and Technology Department, Faculty of Chemistry, University of the Basque Country UPV/EHU , Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science , 48013 Bilbao, Spain
| |
Collapse
|
38
|
Yao Y, Sakai T, Steinhart M, Butt HJ, Floudas G. Effect of Poly(ethylene oxide) Architecture on the Bulk and Confined Crystallization within Nanoporous Alumina. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b01406] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Yang Yao
- Max Planck Institute
for Polymer Research, 55128 Mainz, Germany
| | - Takamasa Sakai
- Department
of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo,
Bunkyo-ku, Tokyo 113-8656, Japan
| | - Martin Steinhart
- Institut
für Chemie neuer Materialien, Universität Osnabrück, D-49069 Osnabrück, Germany
| | | | - George Floudas
- Department
of Physics, University of Ioannina, P.O. Box 1186, 451 10 Ioannina, Greece
| |
Collapse
|
39
|
Jo H, Haberkorn N, Pan JA, Vakili M, Nielsch K, Theato P. Fabrication of Chemically Tunable, Hierarchically Branched Polymeric Nanostructures by Multi-branched Anodic Aluminum Oxide Templates. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:6437-6444. [PMID: 27243550 DOI: 10.1021/acs.langmuir.6b00163] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In this paper, a template-assisted replication method is demonstrated for the fabrication of hierarchically branched polymeric nanostructures composed of post-modifiable poly(pentafluorophenyl acrylate). Anodic aluminum oxide templates with various shapes of hierarchically branched pores are fabricated by an asymmetric two-step anodization process. The hierarchical polymeric nanostructures are obtained by infiltration of pentafluorophenyl acrylate with a cross-linker and photoinitiator, followed by polymerization and selective removal of the template. Furthermore, the nanostructures containing reactive pentafluorophenyl ester are modified with spiropyran amine via post-polymerization modification to fabricate ultraviolet-responsive nanostructures. This method can be readily extended to other amines and offers a generalized strategy for controlling functionality and wettability of surfaces.
Collapse
Affiliation(s)
- Hanju Jo
- Institute for Technical and Macromolecular Chemistry, University of Hamburg , Bundesstraße 45, 20146 Hamburg, Germany
| | - Niko Haberkorn
- Institute of Organic Chemistry, University of Mainz , Duesbergweg 10-14, 55099 Mainz, Germany
| | - Jia-Ahn Pan
- Institute for Technical and Macromolecular Chemistry, University of Hamburg , Bundesstraße 45, 20146 Hamburg, Germany
| | - Mohammad Vakili
- Institute for Technical and Macromolecular Chemistry, University of Hamburg , Bundesstraße 45, 20146 Hamburg, Germany
| | - Kornelius Nielsch
- Institute of Applied Physics, University of Hamburg , Jungiusstraße 11, 20355 Hamburg, Germany
| | - Patrick Theato
- Institute for Technical and Macromolecular Chemistry, University of Hamburg , Bundesstraße 45, 20146 Hamburg, Germany
| |
Collapse
|
40
|
Samanta P, V T, Singh S, Srivastava R, Nandan B, Liu CL, Chen HL. Crystallization behaviour of poly(ethylene oxide) under confinement in the electrospun nanofibers of polystyrene/poly(ethylene oxide) blends. SOFT MATTER 2016; 12:5110-5120. [PMID: 27184694 DOI: 10.1039/c6sm00648e] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We have studied the confined crystallization behaviour of poly(ethylene oxide) (PEO) in the electrospun nanofibers of the phase-separated blends of polystyrene (PS) and PEO, where PS was present as the major component. The size and shape of PEO domains in the nanofibers were considerably different from those in the cast films, presumably because of the nano-dimensions of the nanofibers and the extensional forces experienced by the polymer solution during electrospinning. The phase-separated morphology in turn influenced the crystallization behaviour of PEO in the blend nanofibers. At a PEO weight fraction of ≥0.3, crystallization occurred through a heterogeneous nucleation mechanism similar to that in cast blend films. However, as the PEO weight fraction in the blend nanofibers was reduced from 0.3 to 0.2, an abrupt transformation of the nucleation mechanism from the heterogeneous to predominantly homogenous type was observed. The change in the nucleation mechanism implied a drastic reduction of the spatial continuity of PEO domains in the nanofibers, which was not encountered in the cast film. The melting temperature and crystallinity of the PEO crystallites developed in the nanofibers were also significantly lower than those in the corresponding cast films. The phenomena observed were reconciled by the morphological observation, which revealed that the phase separation under the radial constraint of the nanofibers led to the formation of small-sized fibrillar PEO domains with limited spatial connectivity. The thermal treatment of the PS/PEO blend nanofibers above the glass transition temperature of PS induced an even stronger confinement effect on PEO crystallization.
Collapse
Affiliation(s)
- Pratick Samanta
- Department of Textile Technology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| | | | | | | | | | | | | |
Collapse
|
41
|
Iacob C, Runt J. Charge Transport of Polyester Ether Ionomers in Unidirectional Silica Nanopores. ACS Macro Lett 2016; 5:476-480. [PMID: 35607228 DOI: 10.1021/acsmacrolett.6b00107] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Dielectric relaxation spectroscopy is employed to investigate charge transport properties of two polyester ether ionomers in the bulk state and when confined in unidirectional nanoporous membranes (average pore diameter = 7.5 nm). Under nanometric confinement in nonsilanized pores, the macroscopic transport quantities (dc conductivity and characteristic frequency rate) are lower by about 1.4 decades compared to the bulk. The remarkable decrease of transport quantities in nonsilanized nanoporous membranes can be quantitatively explained by considering the temperature dependence of the interfacial layer between the ionomer and the silica membrane surfaces. On the other hand, an enhancement of dc conductivity is observed when the surfaces of the pores are treated with a nonpolar organosilane. This effect becomes more pronounced at lower temperatures and is attributed to slight changes in molecular packing density caused by the two-dimensional geometrical constraint.
Collapse
Affiliation(s)
- Ciprian Iacob
- Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - James Runt
- Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
42
|
Mijangos C, Hernández R, Martín J. A review on the progress of polymer nanostructures with modulated morphologies and properties, using nanoporous AAO templates. Prog Polym Sci 2016. [DOI: 10.1016/j.progpolymsci.2015.10.003] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
43
|
Klonos P, Kyritsis A, Pissis P. Interfacial and confined dynamics of PDMS adsorbed at the interfaces and in the pores of silica–gel: Effects of surface modification and thermal annealing. POLYMER 2016. [DOI: 10.1016/j.polymer.2015.12.045] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
44
|
Mi C, Zhou J, Ren Z, Li H, Sun X, Yan S. The phase transition behavior of poly(butylene adipate) in the nanoporous anodic alumina oxide. Polym Chem 2016. [DOI: 10.1039/c5py01532d] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PBA nanotubes with different diameters have been prepared.
Collapse
Affiliation(s)
- Ce Mi
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Jiandong Zhou
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Zhongjie Ren
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Huihui Li
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Xiaoli Sun
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Shouke Yan
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| |
Collapse
|
45
|
Nie M, Kalyon DM, Fisher FT. Reverse Kebab Structure Formed inside Carbon Nanofibers via Nanochannel Flow. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:10047-10055. [PMID: 26313253 DOI: 10.1021/acs.langmuir.5b02042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The morphology of polymers inside a confined space has raised great interest in recent years. However, polymer crystallization within a one-dimensional carbon nanostructure is challenging due to the difficulty of polar solvents carrying polymers to enter a nonpolar graphitic nanotube in bulk solution at normal temperature and pressure. Here we describe a method whereby nylon-11 was crystallized and periodically distributed on the individual graphitic nanocone structure within hollow carbon nanofibers (CNF). Differential scanning calorimetry and X-ray diffraction indicate that the nylon polymer is in the crystalline phase. A mechanism is suggested for the initiation of nanochannel flow in a bulk solvent as a prerequisite condition to achieve interior polymer crystallization. Selective etching of polymer crystals on the outer wall of CNF indicates that both surface tension and viscosity affect the flow within the CNF. This approach provides an opportunity for the interior functionalization of carbon nanotubes and nanofibers for applications in the biomedical, energy, and related fields.
Collapse
Affiliation(s)
- Min Nie
- Department of Mechanical Engineering and ‡Department of Chemical Engineering and Materials Science, Stevens Institute of Technology , Hoboken, New Jersey 07030, United States
| | - Dilhan M Kalyon
- Department of Mechanical Engineering and ‡Department of Chemical Engineering and Materials Science, Stevens Institute of Technology , Hoboken, New Jersey 07030, United States
| | - Frank T Fisher
- Department of Mechanical Engineering and ‡Department of Chemical Engineering and Materials Science, Stevens Institute of Technology , Hoboken, New Jersey 07030, United States
| |
Collapse
|
46
|
Volynskii AL, Yarysheva AY, Rukhlya EG, Yarysheva LM, Bakeev NF. Effect of spatial restrictions at the nanometer scale on structuring in glassy and crystalline polymers. POLYMER SCIENCE SERIES A 2015. [DOI: 10.1134/s0965545x15050168] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
47
|
Suzuki Y, Steinhart M, Butt HJ, Floudas G. Kinetics of Ice Nucleation Confined in Nanoporous Alumina. J Phys Chem B 2015; 119:11960-6. [PMID: 26241561 DOI: 10.1021/acs.jpcb.5b06295] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The nucleation mechanism of water (heterogeneous/homogeneous) can be regulated by confinement within nanoporous alumina. The kinetics of ice nucleation is studied in confinement by employing dielectric permittivity as a probe. Both heterogeneous and homogeneous nucleation, obtained at low and high undercooling, respectively, are stochastic in nature. The temperature interval of metastability extends over ∼4 and 0.4 °C for heterogeneous and homogeneous nucleation, respectively. Nucleation within a pore is spread to all pores in the template. We have examined a possible coupling of all pores through a heat wave and a sound wave, with the latter being a more realistic scenario. In addition, dielectric spectroscopy indicates that prior to crystallization undercooled water molecules relax with an activation energy of ∼50 kJ/mol, and this process acts as precursor to ice nucleation.
Collapse
Affiliation(s)
- Yasuhito Suzuki
- Max Planck Institute for Polymer Research , 55128 Mainz, Germany
| | - Martin Steinhart
- Institut für Chemie neuer Materialien, Universität Osnabrück , D-49069 Osnabrück, Germany
| | - Hans-Jürgen Butt
- Max Planck Institute for Polymer Research , 55128 Mainz, Germany
| | - George Floudas
- Department of Physics, University of Ioannina , 45110 Ioannina, Greece
| |
Collapse
|
48
|
Study on the condensed state physics of poly( ε -caprolactone) nano-aggregates in aqueous dispersions. J Colloid Interface Sci 2015; 450:264-271. [DOI: 10.1016/j.jcis.2015.03.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 03/11/2015] [Accepted: 03/11/2015] [Indexed: 11/17/2022]
|
49
|
|
50
|
Shi W, McGrath AJ, Li Y, Lynd NA, Hawker CJ, Fredrickson GH, Kramer EJ. Cooperative and Sequential Phase Transitions in it-Poly(propylene oxide)-b-poly(ethylene oxide)-b-it-poly(propylene oxide) Triblock Copolymers. Macromolecules 2015. [DOI: 10.1021/acs.macromol.5b00326] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
| | | | | | - Nathaniel A. Lynd
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
- Materials Sciences
Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | | | | | | |
Collapse
|