1
|
Ferreira MPS, Gonçalves AS, Antunes JC, Bessa J, Cunha F, Fangueiro R. Fibrous Structures: An Overview of Their Responsiveness to External Stimuli towards Intended Application. Polymers (Basel) 2024; 16:1345. [PMID: 38794536 PMCID: PMC11125157 DOI: 10.3390/polym16101345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 05/26/2024] Open
Abstract
In recent decades, the interest in responsive fibrous structures has surged, propelling them into diverse applications: from wearable textiles that adapt to their surroundings, to filtration membranes dynamically altering selectivity, these structures showcase remarkable versatility. Various stimuli, including temperature, light, pH, electricity, and chemical compounds, can serve as triggers to unleash physical or chemical changes in response. Processing methodologies such as weaving or knitting using responsive yarns, electrospinning, as well as coating procedures, enable the integration of responsive materials into fibrous structures. They can respond to these stimuli, and comprise shape memory materials, temperature-responsive polymers, chromic materials, phase change materials, photothermal materials, among others. The resulting effects can manifest in a variety of ways, from pore adjustments and altered permeability to shape changing, color changing, and thermal regulation. This review aims to explore the realm of fibrous structures, delving into their responsiveness to external stimuli, with a focus on temperature, light, and pH.
Collapse
Affiliation(s)
- Mónica P. S. Ferreira
- Fibrenamics-Institute for Innovation in Fiber-Based Materials and Composites, University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal; (M.P.S.F.); (A.S.G.); (J.B.); (F.C.); (R.F.)
| | - Afonso S. Gonçalves
- Fibrenamics-Institute for Innovation in Fiber-Based Materials and Composites, University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal; (M.P.S.F.); (A.S.G.); (J.B.); (F.C.); (R.F.)
| | - Joana C. Antunes
- Fibrenamics-Institute for Innovation in Fiber-Based Materials and Composites, University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal; (M.P.S.F.); (A.S.G.); (J.B.); (F.C.); (R.F.)
| | - João Bessa
- Fibrenamics-Institute for Innovation in Fiber-Based Materials and Composites, University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal; (M.P.S.F.); (A.S.G.); (J.B.); (F.C.); (R.F.)
| | - Fernando Cunha
- Fibrenamics-Institute for Innovation in Fiber-Based Materials and Composites, University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal; (M.P.S.F.); (A.S.G.); (J.B.); (F.C.); (R.F.)
| | - Raúl Fangueiro
- Fibrenamics-Institute for Innovation in Fiber-Based Materials and Composites, University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal; (M.P.S.F.); (A.S.G.); (J.B.); (F.C.); (R.F.)
- Centre for Textile Science and Technology (2C2T), University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal
| |
Collapse
|
2
|
Foley K, Walters KB. Solution and Film Self-Assembly Behavior of a Block Copolymer Composed of a Poly(ionic Liquid) and a Stimuli-Responsive Weak Polyelectrolyte. ACS OMEGA 2023; 8:33684-33700. [PMID: 37744857 PMCID: PMC10515397 DOI: 10.1021/acsomega.3c03989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/10/2023] [Indexed: 09/26/2023]
Abstract
Cu(0)-mediated atom transfer radical polymerization was used to synthesize a poly(ionic liquid), poly[4-vinylbenzyl-3-butylimidazolium bis(trifluoromethylsulfonyl)imide] (PVBBImTf2N), a stimuli-responsive polyelectrolyte, poly[2-(dimethylamino)ethyl methacrylate] (PDMAEMA), and a novel block copolymer formed from these two polymers. The synthesis of the block copolymer, poly[2-(dimethylamino) ethyl methacrylate]-block-[poly(4-vinylbenzyl-3-butylimidazolium bis(trifluoromethylsulfonyl)imide] (PDMAEMA-b-PVBBImTf2N), was examined to evaluate the control of "livingness" polymerization, as indicated by molecular weight, characterizations of degree of polymerization, and 1HNMR spectroscopy. 2D DOSY NMR measurements revealed the successful formation of block copolymer and the connection between the two polymer blocks. PDMAEMA-b-PVBBImTf2N was further characterized for supramolecular interactions in both the bulk and solution states through FTIR and 1H NMR spectroscopies. While the block copolymer demonstrated similar intermolecular behavior to the PIL homopolymer in the bulk state as indicated by FTIR, hydrogen bonding and counterion interactions in solution were observed in polar organic solvent through 1H NMR measurements. The DLS characterization revealed that the PDMAEMA-b-PVBBImTf2N block copolymer forms a network-like aggregated structure due to a combination of hydrogen bonding between the PDMAEMA and PIL group and electrostatic repulsive interactions between PIL blocks. This structure was found to collapse upon the addition of KNO3 while still maintaining hydrogen bonding interactions. AFM-IR analysis demonstrated varied morphologies, with spherical PDMAEMA in PVBBImTf2N matrix morphology exhibited in the region approaching the film center. AFM-IR further revealed signals from silica nano-contaminates, which selectively interacted with the PDMAEMA spheres, demonstrating the potential for the PDMAEMA-b-PVBBImTf2N PIL block copolymer in polymer-inorganic nanoparticle composite applications.
Collapse
Affiliation(s)
- Kayla Foley
- Ralph E. Martin Department
of Chemical Engineering, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Keisha B. Walters
- Ralph E. Martin Department
of Chemical Engineering, University of Arkansas, Fayetteville, Arkansas 72701, United States
| |
Collapse
|
3
|
Belthle T, Lantzius-Beninga M, Pich A. Pre- and post-functionalization of thermoresponsive cationic microgels with ionic liquid moieties carrying different counterions. Polym Chem 2023. [DOI: 10.1039/d2py01477g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We investigate the effect of different anions on the temperature-dependent solution properties of poly(N-vinylcaprolactam) microgels carrying alkylated ionic liquid vinylimidazolium moieties synthesized by a pre- and post-functionalization approach.
Collapse
Affiliation(s)
- Thomke Belthle
- DWI - Leibniz-Institute for Interactive Materials, Forckenbeckstraße 50, 52074 Aachen, Germany
- Functional and Interactive Polymers, Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
| | - Marcus Lantzius-Beninga
- Functional and Interactive Polymers, Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
| | - Andrij Pich
- DWI - Leibniz-Institute for Interactive Materials, Forckenbeckstraße 50, 52074 Aachen, Germany
- Functional and Interactive Polymers, Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
- Aachen Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, 6167 RD Geleen, The Netherlands
| |
Collapse
|
4
|
Lechuga-Islas VD, Trejo-Maldonado M, Anufriev I, Nischang I, Terzioğlu İ, Ulbrich J, Guerrero-Santos R, Elizalde-Herrera LE, Schubert US, Guerrero-Sánchez C. All-Aqueous, Surfactant-Free, and pH-Driven Nanoformulation Methods of Dual-Responsive Polymer Nanoparticles and their Potential use as Nanocarriers of pH-Sensitive Drugs. Macromol Biosci 2023; 23:e2200262. [PMID: 36259557 DOI: 10.1002/mabi.202200262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/16/2022] [Indexed: 01/19/2023]
Abstract
All-aqueous, surfactant-free, and pH-driven nanoformulation methods to generate pH- and temperature-responsive polymer nanoparticles (NPs) are described. Copolymers comprising a poly(methyl methacrylate) (PMMA) backbone with a few units of 2-(dimethylamino)ethyl methacrylate (DMAEMA) are solubilized in acidic buffer (pH 2.0) to produce pH-sensitive NPs. Copolymers of different molar mass (2.3-11.5 kg mol-1 ) and DMAEMA composition (7.3-14.2 mol%) are evaluated using a "conventional" pH-driven nanoformulation method (i.e., adding an aqueous polymer solution (acidic buffer) into an aqueous non-solvent (basic buffer)) and a robotized method for pH adjustment of polymer dispersions. Dynamic light scattering, zeta-potential (ζ), and sedimentation-diffusion analyses suggest the formation of dual-responsive NPs of tunable size (from 20 to 110 nm) being stable for at least 28 days in the pH and temperature intervals from 2.0 to 6.0 and 25 to 50 °C, respectively. Ultraviolet-visible spectroscopic experiments show that these NPs can act as nanocarriers for the pH-sensitive dipyridamole drug, expanding its bioavailability and potential controlled release as a function of pH and temperature. These approaches offer alternative strategies to prepare stimuli-responsive NPs, avoiding the use of harmful solvents and complex purification steps, and improving the availability of biocompatible polymer nanoformulations for specific controlled release of pH-sensitive cargos.
Collapse
Affiliation(s)
- Víctor D Lechuga-Islas
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743, Jena, Germany.,Department of Macromolecular Chemistry and Nanomaterials, Research Center of Applied Chemistry (CIQA), Enrique Reyna H. 140, Saltillo, 25294, Mexico
| | - Melisa Trejo-Maldonado
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743, Jena, Germany.,Department of Macromolecular Chemistry and Nanomaterials, Research Center of Applied Chemistry (CIQA), Enrique Reyna H. 140, Saltillo, 25294, Mexico
| | - Ilya Anufriev
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743, Jena, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Ivo Nischang
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743, Jena, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - İpek Terzioğlu
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743, Jena, Germany.,Department of Polymer Science and Technology, Middle East Technical University, Dumlupınar Blv. 1, Çankaya, Ankara, 06800, Turkey
| | - Jens Ulbrich
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743, Jena, Germany
| | - Ramiro Guerrero-Santos
- Department of Macromolecular Chemistry and Nanomaterials, Research Center of Applied Chemistry (CIQA), Enrique Reyna H. 140, Saltillo, 25294, Mexico
| | - Luis E Elizalde-Herrera
- Department of Macromolecular Chemistry and Nanomaterials, Research Center of Applied Chemistry (CIQA), Enrique Reyna H. 140, Saltillo, 25294, Mexico
| | - Ulrich S Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743, Jena, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Carlos Guerrero-Sánchez
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743, Jena, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| |
Collapse
|
5
|
Salminen L, Karjalainen E, Aseyev V, Tenhu H. Phase Separation of Aqueous Poly(diisopropylaminoethyl methacrylate) upon Heating. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:5135-5148. [PMID: 34752116 PMCID: PMC9069861 DOI: 10.1021/acs.langmuir.1c02224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/18/2021] [Indexed: 06/13/2023]
Abstract
Poly(diisopropylaminoethyl methacrylate) (PDPA) is a pH- and thermally responsive water-soluble polymer. This study deepens the understanding of its phase separation behavior upon heating. Phase separation upon heating was investigated in salt solutions of varying pH and ionic strength. The effect of the counterion on the phase transition upon heating is clearly demonstrated for chloride-, phosphate-, and citrate-anions. Phase separation did not occur in pure water. The buffer solutions exhibited similar cloud points, but phase separation occurred in different pH ranges and with different mechanisms. The solution behavior of a block copolymer comprising poly(dimethylaminoethyl methacrylate) (PDMAEMA) and PDPA was investigated. Since the PDMAEMA and PDPA blocks phase separate within different pH- and temperature ranges, the block copolymer forms micelle-like structures at high temperature or pH.
Collapse
Affiliation(s)
- Linda Salminen
- Department
of Chemistry, University of Helsinki, P.O. Box 55, A.I. Virtasen aukio
1, FIN-00014 HY Helsinki, Finland
| | - Erno Karjalainen
- VTT
Technical Research Centre of Finland Ltd., P.O. Box 1000, FI-02044 VTT Espoo, Finland
| | - Vladimir Aseyev
- Department
of Chemistry, University of Helsinki, P.O. Box 55, A.I. Virtasen aukio
1, FIN-00014 HY Helsinki, Finland
| | - Heikki Tenhu
- Department
of Chemistry, University of Helsinki, P.O. Box 55, A.I. Virtasen aukio
1, FIN-00014 HY Helsinki, Finland
| |
Collapse
|
6
|
Stawski D, Rolińska K, Zielińska D, Sahariah P, Hjálmarsdóttir MÁ, Másson M. Antibacterial properties of poly ( N, N-dimethylaminoethyl methacrylate) obtained at different initiator concentrations in solution polymerization. ROYAL SOCIETY OPEN SCIENCE 2022; 9:211367. [PMID: 35242345 PMCID: PMC8753137 DOI: 10.1098/rsos.211367] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 12/03/2021] [Indexed: 06/14/2023]
Abstract
The samples of poly(N,N-dimethylaminoethyl methacrylate) were synthesized by radical polymerization. The amount of monomer and solvent was constant as opposed to an amount of initiator which was changing. No clear relationship between polymerization conditions and the molecular weight of the polymer was found, probably due to the branched configuration of produced polymer. Bactericidal interactions in all samples against Gram-positive and Gram-negative bacteria have been demonstrated. However, the observed effect has various intensities, depending on the type of bacteria and the type of sample.
Collapse
Affiliation(s)
- Dawid Stawski
- Institute of Material Technologies of Textiles and Polymer Composites, Lodz University of Technology, Lodz, Poland
| | - Karolina Rolińska
- Institute of Material Technologies of Textiles and Polymer Composites, Lodz University of Technology, Lodz, Poland
| | - Dorota Zielińska
- Institute of Material Technologies of Textiles and Polymer Composites, Lodz University of Technology, Lodz, Poland
- R&D Project Department, Institute of Security Technologies ‘MORATEX’, Lodz, Poland
| | - Priyanka Sahariah
- Faculty of Pharmaceutical Sciences, School of Health Sciences, University of Iceland, Reykjavík, Iceland
| | - Martha Á. Hjálmarsdóttir
- Faculty of Medicine, Department of Biomedical Science, University of Iceland, Stapi, Hringbraut 31,101 Reykjavík, Iceland
| | - Már Másson
- Faculty of Pharmaceutical Sciences, School of Health Sciences, University of Iceland, Reykjavík, Iceland
| |
Collapse
|
7
|
Nishimura SN, Nishida K, Ueda T, Shiomoto S, Tanaka M. Biocompatible poly( N-(ω-acryloyloxy- n-alkyl)-2-pyrrolidone)s with widely-tunable lower critical solution temperatures (LCSTs): a promising alternative to poly( N-isopropylacrylamide). Polym Chem 2022. [DOI: 10.1039/d2py00154c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The biocompatible (co)polymers undergoes a thermal stimulus-driven liquid–liquid phase separation and form coacervates above the lower critical solution temperature (LCST). The LCSTs are able to be precisely controlled between 0 °C and 100 °C.
Collapse
Affiliation(s)
- Shin-nosuke Nishimura
- Institute for Materials Chemistry and Engineering, Kyushu University, 744, Moto-oka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Kei Nishida
- Institute for Materials Chemistry and Engineering, Kyushu University, 744, Moto-oka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Tomoya Ueda
- Gladuate School of Engineering, Kyushu University, 744, Moto-oka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Shohei Shiomoto
- Institute for Materials Chemistry and Engineering, Kyushu University, 744, Moto-oka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Masaru Tanaka
- Institute for Materials Chemistry and Engineering, Kyushu University, 744, Moto-oka, Nishi-ku, Fukuoka, 819-0395, Japan
- Gladuate School of Engineering, Kyushu University, 744, Moto-oka, Nishi-ku, Fukuoka, 819-0395, Japan
| |
Collapse
|
8
|
Bozbay R, Orakdogen N. Scaling Behavior and Structure–Property Relationships of Multifunctional Ternary‐Hydrogels Based on N‐Alkyl Methacrylate Esters: Property Tunability through Versatile Synthesis. MACROMOL THEOR SIMUL 2021. [DOI: 10.1002/mats.202100068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Rabia Bozbay
- Department of Chemistry, Soft Materials Research Laboratory Istanbul Technical University Maslak Istanbul 34469 Turkey
| | - Nermin Orakdogen
- Department of Chemistry, Soft Materials Research Laboratory Istanbul Technical University Maslak Istanbul 34469 Turkey
| |
Collapse
|
9
|
Shi X, Wu P. A Smart Patch with On-Demand Detachable Adhesion for Bioelectronics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101220. [PMID: 34105250 DOI: 10.1002/smll.202101220] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/13/2021] [Indexed: 06/12/2023]
Abstract
A smart ionic skin patch with on-demand detachable adhesion has been developed as human-machine interface for physiological signal monitoring. In spite of the multifunctions demonstrated by existing ionic skin, it is still difficult to distinguish different signals simultaneously. Moreover, the secondary damages to the tissues are often overlooked when the adhesive materials are removing from the wound. Herein, a multifunctional biomimetic hydrogel with temperature, mechanical, electrical, and pH response is developed. This hydrogel is designed by in situ polymerizing of hydrophilic anion monomers in a natural cationic polysaccharide to construct multifunctional biomimetic ionic channel. Due to the reversible physical cross-linked network and thermosensitivity, the mechanical properties, adhesion, and visual effect of the hydrogel can be tuned by changing hydrogen bonding density via phase transition, thus making it an excellent biosafe material for wearable device. The hydrogel is utilized as skin patch intended for monitoring physiological signals stimulated by physical and chemical changes involving pressure, temperature, pH value, and electrocardiograph. Especially, this ionic skin patch can recognize temperature change signals precisely either in broad or extremely narrow temperature range. This smart skin patch can even recognize the pressure and temperature signals in real time and differentiate the signals simultaneously.
Collapse
Affiliation(s)
- Xiaofang Shi
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University, Shanghai, 200433, P. R. China
| | - Peiyi Wu
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University, Shanghai, 200433, P. R. China
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai, 201620, China
| |
Collapse
|
10
|
Wang Y, Gao D, Liu Y, Guo X, Chen S, Zeng L, Ma J, Zhang X, Tian Z, Yang Z. Immunogenic-cell-killing and immunosuppression-inhibiting nanomedicine. Bioact Mater 2021; 6:1513-1527. [PMID: 33294730 PMCID: PMC7689277 DOI: 10.1016/j.bioactmat.2020.11.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/06/2020] [Accepted: 11/06/2020] [Indexed: 12/12/2022] Open
Abstract
Combining chemo-therapeutics with immune checkpoint inhibitors facilitates killing cancer cells and activating the immune system through inhibiting immune escape. However, their treatment effects remain limited due to the compromised accumulation of both drugs and inhibitors in certain tumor tissues. Herein, a new poly (acrylamide-co-acrylonitrile-co-vinylimidazole-co-bis(2-methacryloyl) oxyethyl disulfide) (PAAVB) polymer-based intelligent platform with controllable upper critical solution temperature (UCST) was used for the simultaneous delivery of paclitaxel (PTX) and curcumin (CUR). Additionally, a hyaluronic acid (HA) layer was coated on the surface of PAAVB NPs to target the CD44-overexpressed tumor cells. The proposed nanomedicine demonstrated a gratifying accumulation in tumor tissue and uptake by cancer cells. Then, the acidic microenvironment and high level of glutathione (GSH) in cancer cells could spontaneously decrease the UCST of polymer, leading to the disassembly of the NPs and rapid drug release at body temperature without extra-stimuli. Significantly, the released PTX and CUR could induce the immunogenic cell death (ICD) to promote adaptive anti-tumor immunogenicity and inhibit immunosuppression through suppressing the activity of indoleamine 2,3-dioxygenase 1 (IDO1) enzyme respectively. Therefore, the synergism of this intelligent nanomedicine can suppress primary breast tumor growth and inhibit their lung metastasis.
Collapse
Affiliation(s)
- Ying Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Di Gao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yan Liu
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, United States
| | - Xiaoqing Guo
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Shuojia Chen
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Li Zeng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jinxuan Ma
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Xingcai Zhang
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, United States
- School of Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, United States
| | - Zhongmin Tian
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zhe Yang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
11
|
Baddam V, Välinen L, Tenhu H. Thermoresponsive Polycation-Stabilized Nanoparticles through PISA. Control of Particle Morphology with a Salt. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02771] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Vikram Baddam
- Department of Chemistry, University of Helsinki, PB 55, Helsinki 00014, Finland
| | - Lauri Välinen
- Department of Chemistry, University of Helsinki, PB 55, Helsinki 00014, Finland
| | - Heikki Tenhu
- Department of Chemistry, University of Helsinki, PB 55, Helsinki 00014, Finland
| |
Collapse
|
12
|
Sharker K, Shigeta Y, Ozoe S, Damsongsang P, Hoven VP, Yusa SI. Upper Critical Solution Temperature Behavior of pH-Responsive Amphoteric Statistical Copolymers in Aqueous Solutions. ACS OMEGA 2021; 6:9153-9163. [PMID: 33842784 PMCID: PMC8028163 DOI: 10.1021/acsomega.1c00351] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 03/18/2021] [Indexed: 06/12/2023]
Abstract
Amphoteric statistical equivalent copolymers (P(2VP/NaSS) n ) composed of 2-vinylpyridine (2VP) and anionic sodium p-styrenesulfonate (NaSS) were prepared via reversible addition-fragmentation chain transfer polymerization. The degrees of polymerization (n) were 19 and 95. The monomer reactivity ratio, time conversion profile, and 1H nuclear magnetic resonance diffusion-ordered spectra suggested that the copolymerization of 2VP and NaSS provided statistical or near to random copolymers. P(2VP/NaSS) n exhibited an upper critical solution temperature (UCST) in acidic aqueous solutions on the basis of the charge interactions between the protonated cationic 2VP and anionic NaSS units. With an increase in pH value, the interaction was weakened because of the deprotonation of the 2VP units, thus reducing the UCST. At high [NaCl], the electrostatic interactions among the polymers were weakened because of the screening effect, and again, the UCST was reduced. With an increase in polymer concentration, the intra- and interpolymer interactions increased because of some entanglement, and the UCST consequently increased. Electrostatic interactions among the polymer chains with high molecular weight occurred easier than those among the low-molecular-weight polymer chains, which increased the UCST. The UCST also increased when deuterium oxide was used instead of hydrogen oxide, which was due to the isotopic effect. Hence, the UCST of P(2VP/NaSS) n can be adjusted according to the desired application.
Collapse
Affiliation(s)
- Komol
Kanta Sharker
- Department
of Applied Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280, Japan
| | - Yusuke Shigeta
- Tosoh
Finechem Co., 4988 Kaisei-cho, Shunan, Yamaguchi 746-0006, Japan
| | - Shinji Ozoe
- Tosoh
Finechem Co., 4988 Kaisei-cho, Shunan, Yamaguchi 746-0006, Japan
| | - Panittha Damsongsang
- Department
of Chemistry, Faculty of Science, Chulalongkorn
University, Phayathai
Road, Pathumwan, Bangkok 10330, Thailand
| | - Voravee P. Hoven
- Department
of Chemistry, Faculty of Science, Chulalongkorn
University, Phayathai
Road, Pathumwan, Bangkok 10330, Thailand
| | - Shin-ichi Yusa
- Department
of Applied Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280, Japan
| |
Collapse
|
13
|
Pavlov GM, Gosteva AA, Okatova OV, Dommes OA, Gavrilova II, Panarin EF. Detection and evaluation of polymer–polymer interactions in dilute solutions of associating polymers. Polym Chem 2021. [DOI: 10.1039/d0py01725f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An experimental tool for the evaluation of intramolecular associative/hydrophobic interactions in polymer/solvent systems was proposed and tested.
Collapse
Affiliation(s)
| | - Anna A. Gosteva
- Institute of Macromolecular Compounds
- St. Petersburg 199004
- Russia
| | - Olga V. Okatova
- Institute of Macromolecular Compounds
- St. Petersburg 199004
- Russia
| | - Olga A. Dommes
- Institute of Macromolecular Compounds
- St. Petersburg 199004
- Russia
| | | | - Evgenii F. Panarin
- Institute of Macromolecular Compounds
- St. Petersburg 199004
- Russia
- Department of Medical Physics and Bioengineering
- St. Petersburg State Polytechnical University
| |
Collapse
|
14
|
Sharker KK, Shigeta Y, Ozoe S, Yusa SI. Amphoteric Statistical Copolymers with Well-controlled Structure and Upper Critical Solution Temperature in Aqueous Solutions. CHEM LETT 2020. [DOI: 10.1246/cl.200561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Komol Kanta Sharker
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280, Japan
| | - Yusuke Shigeta
- Tosoh Finechem Co., 4988 Kaisei-cho, Shunan, Yamaguchi 746-0006, Japan
| | - Shinji Ozoe
- Tosoh Finechem Co., 4988 Kaisei-cho, Shunan, Yamaguchi 746-0006, Japan
| | - Shin-ichi Yusa
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280, Japan
| |
Collapse
|
15
|
Wang K, Liu Q, Liu G, Zeng Y. Novel thermoresponsive homopolymers of poly[oligo(ethylene glycol) (acyloxy) methacrylate]s: LCST-type transition in water and UCST-type transition in alcohols. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122746] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
16
|
Kumar K, Mogha NK, Yadav R, Venkatesu P. Insulin-induced conformational transition of fluorescent copolymers: a perspective of self-assembly between protein and micellar solutions of smart copolymers. Phys Chem Chem Phys 2020; 22:9573-9586. [PMID: 32322851 DOI: 10.1039/d0cp00645a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Synthesizing and understanding phase transition behavior of novel block copolymers is very crucial for fabricating next generation of smart materials with foreseeable applications. In this regard, we synthesized three random (r) copolymers of poly(N-vinyl-caprolactam) (PVCL) and poly(2-dimethyl amino ethyl methacrylate) (PDMAEMA) with varying percentages of each block and characterized them using nuclear magnetic resonance (NMR), Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) patterns, time-resolved fluorescence spectroscopy, and atomic force microscopy (AFM). Synthesized copolymers i.e. PVCL30-PDMAEMA70, PVCL50-PDMAEMA50 and PVCL70-PDMAEMA30 have fluorescence properties, which were confirmed by time-resolved fluorescence spectra and emission spectra, and emission bands were observed at ∼310, ∼435 and ∼424 nm, respectively. The fluorescence lifetime for PVCL50-PDMAEMA50 is larger than those of the other two copolymers suggesting a slow decay of the excited state. The copolymers have spherical geometry as micelles, which were confirmed by TEM. We observed patterned arrangement of micelles and the arranged micelles appear to be pentagon in shape, creating space in between the arranged micelles; however, for PVCL50-PDMAEMA50, the arranged micelles do not form any particular shape. The thermal phase transition of PVCL-r-PDMAEMA in aqueous solution was studied by differential scanning calorimetry and thermal fluorescence spectroscopy. In order to design a biomimetic polymer for bio-specific applications and to understand novel concepts towards polymer-protein interactions, we studied the effect of insulin on lower critical solution temperature (LCST) of PVCL-r-PDMAEMA using multiple sophisticated techniques. The LCST is finely tuned by incorporation of two blocks with various block compositions and the value falls within the range of human body temperature, making PVCL50-PDMAEMA50 a highly compatible material for bio-medical and bio-material applications. Insulin forms a self-assembly with the monomers of PVCL-r-PDMAEMA, which leads to enhancing the micellar aggregates and the eventual decrease in the LCST of the diblock copolymer aqueous solution. The present study provides new insights into insulin-copolymer interactions and can be used for self-assembling nanocarriers and designing protein resistance surfaces.
Collapse
Affiliation(s)
- Krishan Kumar
- Department of Chemistry, University of Delhi, Delhi-110 007, India.
| | | | | | | |
Collapse
|
17
|
Zhong Q, Chen C, Mi L, Wang JP, Yang J, Wu GP, Xu ZK, Cubitt R, Müller-Buschbaum P. Thermoresponsive Diblock Copolymer Films with a Linear Shrinkage Behavior and Its Potential Application in Temperature Sensors. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:742-753. [PMID: 31895574 DOI: 10.1021/acs.langmuir.9b03462] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The linear shrinkage behavior in thermoresponsive diblock copolymer films and its potential application in temperature sensors are investigated. The copolymer is composed of two thermoresponsive blocks with different transition temperatures (TTs): di(ethylene glycol) methyl ether methacrylate (MEO2MA; TT1 = 25 °C) and poly(ethylene glycol) methyl ether methacrylate (OEGMA300; TT2 = 60 °C) with a molar ratio of 1:1. Aqueous solutions of PMEO2MA-b-POEGMA300 show a three-stage transition upon heating as seen with optical transmittance and small-angle X-ray scattering: dissolution (T < TT1), self-assembled micelles with core-shell structure (TT1 < T < TT2), and aggregation of collapsed micelles (T > TT2). Due to the restrictions in the polymer chain arrangement introduced by the solid Si substrate, spin-coated PMEO2MA-b-POEGMA300 films exhibit an entirely different internal structure and transition behavior. Neutron reflectivity shows the absence of an ordered structure normal to the Si substrate in as-prepared PMEO2MA-b-POEGMA300 films. After exposure to D2O vapor for 3 h and then increasing the temperature above its TT1 and TT2, the ordered structure is still not observed. Only a D2O enrichment layer is formed close to the hydrophilic Si substrate. Such PMEO2MA-b-POEGMA300 films show a linear shrinkage between TT1 and TT2 in a D2O vapor atmosphere. This special behavior can be attributed to the synergistic effect between the restrained collapse of the PMEO2MA blocks by the still swollen POEGMA300 blocks and the impedance of chain arrangement by the Si substrate. Based on this unique behavior, spin-coated PMEO2MA-b-POEGMA300 films are further prepared into a temperature sensor by implementing Ag electrodes. Its resistance decreases linearly with temperature between TT1 and TT2.
Collapse
Affiliation(s)
- Qi Zhong
- Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Ministry of Education , Zhejiang Sci-Tech University , 310018 Hangzhou , China
- Physik-Department, Lehrstuhl für Funktionelle Materialien , Technische Universität München , James-Franck-Str. 1 , 85748 Garching , Germany
| | - Chen Chen
- Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Ministry of Education , Zhejiang Sci-Tech University , 310018 Hangzhou , China
| | - Lei Mi
- Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Ministry of Education , Zhejiang Sci-Tech University , 310018 Hangzhou , China
| | - Ji-Ping Wang
- Shanghai University of Engineering Science , 333 Long Teng Road , 201620 Shanghai , China
| | - Jing Yang
- MOE Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering , Zhejiang University , Hangzhou 310027 , China
| | - Guang-Peng Wu
- MOE Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering , Zhejiang University , Hangzhou 310027 , China
| | - Zhi-Kang Xu
- MOE Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering , Zhejiang University , Hangzhou 310027 , China
| | - Robert Cubitt
- Institut Laue-Langevin , 6 rue Jules Horowitz , 38000 Grenoble , France
| | - Peter Müller-Buschbaum
- Physik-Department, Lehrstuhl für Funktionelle Materialien , Technische Universität München , James-Franck-Str. 1 , 85748 Garching , Germany
- Heinz Maier-Leibnitz Zentrum (MLZ) , Technische Universität München , Lichtenbergstr. 1 , 85748 Garching , Germany
| |
Collapse
|
18
|
Ningrum EO, Sakohara S, Gotoh T, Suprapto, Humaidah N. Correlating properties between sulfobetaine hydrogels and polymers with different carbon spacer lengths. POLYMER 2020. [DOI: 10.1016/j.polymer.2019.122013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
19
|
Karjalainen E, Suvarli N, Tenhu H. Thermoresponsive behavior of poly[trialkyl-(4-vinylbenzyl)ammonium] based polyelectrolytes in aqueous salt solutions. Polym Chem 2020. [DOI: 10.1039/d0py00917b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A systematic method to induce thermoresponsive behavior for polycations with salts from the reversed Hofmeister series is introduced.
Collapse
Affiliation(s)
- Erno Karjalainen
- Department of Chemistry
- University of Helsinki
- 00014 Helsingin yliopisto
- Finland
| | - Narmin Suvarli
- Department of Chemistry
- University of Helsinki
- 00014 Helsingin yliopisto
- Finland
| | - Heikki Tenhu
- Department of Chemistry
- University of Helsinki
- 00014 Helsingin yliopisto
- Finland
| |
Collapse
|
20
|
Swelling of multi-responsive spherical polyelectrolyte brushes across a wide range of grafting densities. Colloid Polym Sci 2019. [DOI: 10.1007/s00396-019-04585-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
21
|
Structure-property relationships via complementary hydrodynamic approaches: Poly(2-(dimethylamino)ethyl methacrylate)s. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.121828] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
22
|
Crosstalk between responsivities to various stimuli in multiresponsive polymers: change in polymer chain and external environment polarity as the key factor. Colloid Polym Sci 2019. [DOI: 10.1007/s00396-019-04576-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
23
|
Zhang P, She P, He J, Xiang Z, Li Z, Cao Y, Zhang X. Full-biodegradable polylactide-based thermoresponsive copolymer with a wide temperature range: Synthesis, characterization and thermoresponsive properties. REACT FUNCT POLYM 2019; 142:128-133. [DOI: 10.1016/j.reactfunctpolym.2019.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
24
|
Thermal properties of poly(N,N-dimethylaminoethyl methacrylate). PLoS One 2019; 14:e0217441. [PMID: 31166982 PMCID: PMC6550408 DOI: 10.1371/journal.pone.0217441] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 05/10/2019] [Indexed: 11/19/2022] Open
Abstract
Poly(N,N-dimethylaminoethyl methacrylate) (PDMAEMA) is a promising quite new polymer with very interesting properties. The thermal degradation process of PDMAEMA was investigated. The polymer was heated at specific time intervals, then heating was stopped, and infrared analysis was performed to obtain information on the structure of the solid residue. The thermal degradation process has a two-stage character. The limit temperature for the first decomposition step was about 390°C, after which the second stage of sample decomposition began. The order of disintegration of the macromolecules was determined. Activation energy values for the thermal decomposition process have been calculated; they are 89.8 kJ/mol for the first stage and 17.7 kJ/mol for the second stage of the degradation process.
Collapse
|
25
|
Korde JM, Kandasubramanian B. Fundamentals and Effects of Biomimicking Stimuli-Responsive Polymers for Engineering Functions. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b00683] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Jay M. Korde
- Biocomposite Laboratory, Department of Metallurgical & Materials Engineering, DIAT (DU), Ministry of Defence, Girinagar, Pune-411025, India
| | - Balasubramanian Kandasubramanian
- Biocomposite Laboratory, Department of Metallurgical & Materials Engineering, DIAT (DU), Ministry of Defence, Girinagar, Pune-411025, India
| |
Collapse
|
26
|
Wang L, Zhu X, Cai W, Shao X. Understanding the role of water in the aggregation of poly(N,N-dimethylaminoethyl methacrylate) in aqueous solution using temperature-dependent near-infrared spectroscopy. Phys Chem Chem Phys 2019; 21:5780-5789. [PMID: 30801574 DOI: 10.1039/c8cp07153e] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
For understanding the role of water in the aggregation of polymers, the variation of water structures with the structural change of polymers in the process of aggregation was studied by temperature-dependent near-infrared (NIR) spectroscopy. The NIR spectra of the aqueous poly(N,N-dimethylaminoethyl methacrylate) (PDMAEMA) solutions of different concentrations were measured at different temperatures. The spectral changes of the polymer and water with temperature were analyzed by N-way principal component analysis (NPCA). It was found that, at low concentration, the chains of the polymer tend to form a loose hydrophobic structure below 36 °C and then aggregate into a micelle at a lower critical solution temperature (LCST) of around 39 °C. In the process of the aggregation, the water species with two hydrogen bonds (S2) increases gradually before 36 °C and then a sudden decrease occurs after that temperature. The results clearly indicate that water species S2 plays an important role in the formation of the intermediate, i.e., the loose hydrophobic structure of the polymer chains linked by the two hydrogen bonds of S2 water. When the temperature increases, the dissociation of the hydrogen bonds enables the intermediate to be destroyed to form a micelle structure. For the high concentration solution, however, the spectral information of S2 was not found in the aggregation, suggesting direct formation of the micelle from the dehydrated chains.
Collapse
Affiliation(s)
- Li Wang
- Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, P. R. China.
| | | | | | | |
Collapse
|
27
|
Artificial chaperones based on thermoresponsive polymers recognize the unfolded state of the protein. Int J Biol Macromol 2018; 121:536-545. [PMID: 30312700 DOI: 10.1016/j.ijbiomac.2018.10.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 10/08/2018] [Indexed: 11/23/2022]
Abstract
Stabilization of the enzymes under stress conditions is of special interest for modern biochemistry, bioengineering, as well as for formulation and target delivery of protein-based drugs. Aiming to achieve an efficient stabilization at elevated temperature with no influence on the enzyme under normal conditions, we studied chaperone-like activity of thermoresponsive polymers based on poly(dimethylaminoethyl methacrylate) (PDMAEMA) toward two different proteins, glyceraldehyde-3-phosphate dehydrogenase and chicken egg lysozyme. The polymers has been shown to do not interact with the folded protein at room temperature but form a complex upon heating to either protein unfolding or polymer phase transition temperature. A PDMAEMA-PEO block copolymer with a dodecyl end-group (d-PDMAEMA-PEO) as well as PDMAEMA-PEO without the dodecyl groups protected the denatured protein against aggregation in contrast to PDMAEMA homopolymer. No effect of the polymers on the enzymatic activity of the client protein was observed at room temperature. The polymers also partially protected the enzyme against inactivation at high temperature. The results provide a platform for creation of artificial chaperones with unfolded protein recognition which is a major feature of natural chaperones.
Collapse
|
28
|
Poly(N,N-dimethylaminoethyl methacrylate) for removing chromium (VI) through polymer-enhanced ultrafiltration technique. REACT FUNCT POLYM 2018. [DOI: 10.1016/j.reactfunctpolym.2018.04.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
29
|
Dragan ES, Bercea M, Sacarascu L. Tuning the associative properties and micelles geometry by stepwise quaternization of PDMAEMA. REACT FUNCT POLYM 2018. [DOI: 10.1016/j.reactfunctpolym.2018.01.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
30
|
Wu L, Li Y, Pang T, Guan YB. One-pot synthesis of PDMAEMA nanocapsules for controlled release of hydrophobic cargo. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2017. [DOI: 10.1080/10601325.2017.1336725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Lin Wu
- Anhui Key Laboratory of Functional Coordination Compounds, School of Chemistry and Chemical Engineering, Anqing Normal University, Anqing, China
- Department of Colour Science, School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK
| | - Yiguo Li
- Collaborative innovation Center for Petrochemical New Materials, Anqing, China
| | - Tao Pang
- Anhui Key Laboratory of Functional Coordination Compounds, School of Chemistry and Chemical Engineering, Anqing Normal University, Anqing, China
| | - Ye-bin Guan
- Collaborative innovation Center for Petrochemical New Materials, Anqing, China
| |
Collapse
|
31
|
Gao Y, Wei M, Li X, Xu W, Ahiabu A, Perdiz J, Liu Z, Serpe MJ. Stimuli-responsive polymers: Fundamental considerations and applications. Macromol Res 2017. [DOI: 10.1007/s13233-017-5088-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
32
|
Wang K, Chen S, Zhang W. A New Family of Thermo-, pH-, and CO2-Responsive Homopolymers of Poly[Oligo(ethylene glycol) (N-dialkylamino) methacrylate]s. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b00763] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Ke Wang
- Key
Laboratory of Functional Polymer Materials of the Ministry of Education,
Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Shengli Chen
- Key
Laboratory of Functional Polymer Materials of the Ministry of Education,
Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Wangqing Zhang
- Key
Laboratory of Functional Polymer Materials of the Ministry of Education,
Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
- Collaborative
Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
| |
Collapse
|
33
|
Petitdemange R, Garanger E, Bataille L, Bathany K, Garbay B, Deming TJ, Lecommandoux S. Tuning Thermoresponsive Properties of Cationic Elastin-like Polypeptides by Varying Counterions and Side-Chains. Bioconjug Chem 2017; 28:1403-1412. [DOI: 10.1021/acs.bioconjchem.7b00082] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Rosine Petitdemange
- Université de Bordeaux/Bordeaux-INP, ENSCBP, CNRS, Laboratoire de Chimie des Polymères Organiques (UMR5629), 16 avenue Pey-Berland, Pessac 33607, France
| | - Elisabeth Garanger
- Université de Bordeaux/Bordeaux-INP, ENSCBP, CNRS, Laboratoire de Chimie des Polymères Organiques (UMR5629), 16 avenue Pey-Berland, Pessac 33607, France
| | - Laure Bataille
- Université de Bordeaux/Bordeaux-INP, ENSCBP, CNRS, Laboratoire de Chimie des Polymères Organiques (UMR5629), 16 avenue Pey-Berland, Pessac 33607, France
| | - Katell Bathany
- Université de Bordeaux/Bordeaux-INP, CNRS, Chimie et Biologie des Membranes et des Nano-objets (UMR5248), Allée Geoffroy Saint Hilaire, Pessac 33600, France
| | - Bertrand Garbay
- Université de Bordeaux/Bordeaux-INP, ENSCBP, CNRS, Laboratoire de Chimie des Polymères Organiques (UMR5629), 16 avenue Pey-Berland, Pessac 33607, France
| | - Timothy J. Deming
- Department
of Chemistry and Biochemistry, and Department of Bioengineering, University of California, Los Angeles, California 90095, United States
| | - Sébastien Lecommandoux
- Université de Bordeaux/Bordeaux-INP, ENSCBP, CNRS, Laboratoire de Chimie des Polymères Organiques (UMR5629), 16 avenue Pey-Berland, Pessac 33607, France
| |
Collapse
|
34
|
Zhang H, Wu W, Zhao X, Zhao Y. Synthesis and Thermoresponsive Behaviors of Thermo-, pH-, CO2-, and Oxidation-Responsive Linear and Cyclic Graft Copolymers. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b00220] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Hongcan Zhang
- Suzhou Key Laboratory of
Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory
of Advanced Functional Polymer Design and Application, State and Local
Joint Engineering Laboratory for Novel Functional Polymeric Materials,
College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Wentao Wu
- Suzhou Key Laboratory of
Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory
of Advanced Functional Polymer Design and Application, State and Local
Joint Engineering Laboratory for Novel Functional Polymeric Materials,
College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Xiaoqi Zhao
- Suzhou Key Laboratory of
Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory
of Advanced Functional Polymer Design and Application, State and Local
Joint Engineering Laboratory for Novel Functional Polymeric Materials,
College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Youliang Zhao
- Suzhou Key Laboratory of
Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory
of Advanced Functional Polymer Design and Application, State and Local
Joint Engineering Laboratory for Novel Functional Polymeric Materials,
College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
35
|
Stubbs E, Laskowski E, Conor P, Heinze DA, Karis D, Glogowski EM. Control of pH- and temperature-responsive behavior of mPEG-b-PDMAEMA copolymers through polymer composition. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2017. [DOI: 10.1080/10601325.2017.1282694] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
36
|
Yokomizo T, Satoh M. Temperature-Induced Swelling of Alkali Metal Polyacrylate Gels in Aqueous Organic Solvent Mixtures. J MACROMOL SCI B 2017. [DOI: 10.1080/00222348.2017.1302134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
37
|
Abstract
Responsive polymer-based materials are capable of altering their chemical and/or physical properties upon exposure to external stimuli. This review highlights their use for sensing and biosensing, drug delivery, and artificial muscles/actuators.
Collapse
Affiliation(s)
- Menglian Wei
- Department of Chemistry
- University of Alberta
- Edmonton
- Canada
| | - Yongfeng Gao
- Department of Chemistry
- University of Alberta
- Edmonton
- Canada
| | - Xue Li
- Department of Chemistry
- University of Alberta
- Edmonton
- Canada
| | | |
Collapse
|
38
|
Kong T, Guo G, Zhang H, Gao L. Post-synthetic modification of polyvinyl alcohol with a series of N-alkyl-substituted carbamates towards thermo and CO2-responsive polymers. Polym Chem 2017. [DOI: 10.1039/c7py01136a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Intensive efforts have been devoted to the synthesis of thermoresponsive polymers with terminal N-alkyl-substituted groups.
Collapse
Affiliation(s)
- Tengfei Kong
- School of Chemical Engineering and Light Industry
- Guangdong University of Technology
- Guangzhou
- China
| | - Guoqiang Guo
- School of Chemical Engineering and Light Industry
- Guangdong University of Technology
- Guangzhou
- China
| | - Huatang Zhang
- School of Chemical Engineering and Light Industry
- Guangdong University of Technology
- Guangzhou
- China
| | - Liang Gao
- School of Chemical Engineering and Light Industry
- Guangdong University of Technology
- Guangzhou
- China
| |
Collapse
|
39
|
Chen S, Wang K, Zhang W. A new thermoresponsive polymer of poly(N-acryloylsarcosine methyl ester) with a tunable LCST. Polym Chem 2017. [DOI: 10.1039/c7py00274b] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A thermoresponsive polymer of the tertiary amide-based polyacrylamide, PNASME, was synthesized and its tunable thermoresponse was investigated.
Collapse
Affiliation(s)
- Shengli Chen
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Ke Wang
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Wangqing Zhang
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| |
Collapse
|
40
|
Abstract
In this mini-review, we discuss multi-stimuli-responsive polymers, which exhibit upper critical solution temperature (UCST) behavior mainly in aqueous solutions, and focus on examples where counter ions, electricity, light, or pH influence the thermoresponsiveness of these polymers.
Collapse
Affiliation(s)
- Jukka Niskanen
- Laboratory of Polymer Chemistry
- Department of Chemistry
- University of Helsinki
- 00014 Helsinki
- Finland
| | - Heikki Tenhu
- Laboratory of Polymer Chemistry
- Department of Chemistry
- University of Helsinki
- 00014 Helsinki
- Finland
| |
Collapse
|
41
|
Takani S, Satoh M. Temperature-Induced Coil-Globule Transition of Alkali Metal Polyacrylates in Aqueous Organic Solvent Mixtures. J MACROMOL SCI B 2016. [DOI: 10.1080/00222348.2016.1219214] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
42
|
An X, Tang Q, Zhu W, Zhang K, Zhao Y. Synthesis, Thermal Properties, and Thermoresponsive Behaviors of Cyclic Poly(2-(dimethylamino)ethyl Methacrylate)s. Macromol Rapid Commun 2016; 37:980-6. [DOI: 10.1002/marc.201600152] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 04/10/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Xiaonan An
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis; Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry; Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 China
| | - Qingquan Tang
- State Key Laboratory of Polymer Physics and Chemistry; Institute of Chemistry; The Chinese Academy of Sciences; Beijing 100190 China
| | - Wen Zhu
- State Key Laboratory of Polymer Physics and Chemistry; Institute of Chemistry; The Chinese Academy of Sciences; Beijing 100190 China
| | - Ke Zhang
- State Key Laboratory of Polymer Physics and Chemistry; Institute of Chemistry; The Chinese Academy of Sciences; Beijing 100190 China
| | - Youliang Zhao
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis; Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry; Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 China
| |
Collapse
|
43
|
Chen S, Zhang Y, Wang K, Zhou H, Zhang W. N-Ester-substituted polyacrylamides with a tunable lower critical solution temperature (LCST): the N-ester-substitute dependent thermoresponse. Polym Chem 2016. [DOI: 10.1039/c6py00515b] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
New thermoresponsive polymers ofN-ester-substituted polyacrylamides were discovered, and theN-ester-substitute exerting a great influence on the solution property was demonstrated.
Collapse
Affiliation(s)
- Shengli Chen
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Institute of Polymer Chemistry
- Nankai University
- Tianjin 300071
- China
| | - Yuan Zhang
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Institute of Polymer Chemistry
- Nankai University
- Tianjin 300071
- China
| | - Ke Wang
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Institute of Polymer Chemistry
- Nankai University
- Tianjin 300071
- China
| | - Heng Zhou
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Institute of Polymer Chemistry
- Nankai University
- Tianjin 300071
- China
| | - Wangqing Zhang
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Institute of Polymer Chemistry
- Nankai University
- Tianjin 300071
- China
| |
Collapse
|
44
|
Song Z, Wang K, Gao C, Wang S, Zhang W. A New Thermo-, pH-, and CO2-Responsive Homopolymer of Poly[N-[2-(diethylamino)ethyl]acrylamide]: Is the Diethylamino Group Underestimated? Macromolecules 2015. [DOI: 10.1021/acs.macromol.5b02458] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Zefeng Song
- Key Laboratory of Functional
Polymer Materials of the Ministry of Education, Collaborative Innovation
Center of Chemical Science and Engineering (Tianjin), Institute of
Polymer Chemistry, Nankai University, Tianjin 300071, China
| | - Ke Wang
- Key Laboratory of Functional
Polymer Materials of the Ministry of Education, Collaborative Innovation
Center of Chemical Science and Engineering (Tianjin), Institute of
Polymer Chemistry, Nankai University, Tianjin 300071, China
| | - Chengqiang Gao
- Key Laboratory of Functional
Polymer Materials of the Ministry of Education, Collaborative Innovation
Center of Chemical Science and Engineering (Tianjin), Institute of
Polymer Chemistry, Nankai University, Tianjin 300071, China
| | - Shuang Wang
- Key Laboratory of Functional
Polymer Materials of the Ministry of Education, Collaborative Innovation
Center of Chemical Science and Engineering (Tianjin), Institute of
Polymer Chemistry, Nankai University, Tianjin 300071, China
| | - Wangqing Zhang
- Key Laboratory of Functional
Polymer Materials of the Ministry of Education, Collaborative Innovation
Center of Chemical Science and Engineering (Tianjin), Institute of
Polymer Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
45
|
Zhou M, Liu K, Qian X. A facile preparation of pH-temperature dual stimuli-responsive supramolecular hydrogel and its controllable drug release. J Appl Polym Sci 2015. [DOI: 10.1002/app.43279] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Mi Zhou
- College of Materials Science and Engineering; Zhejiang University of Technology; Hangzhou 310014 China
| | - Kaiyue Liu
- College of Materials Science and Engineering; Zhejiang University of Technology; Hangzhou 310014 China
| | - Xin Qian
- College of Materials Science and Engineering; Zhejiang University of Technology; Hangzhou 310014 China
| |
Collapse
|
46
|
Zhang Q, Hoogenboom R. Polymers with upper critical solution temperature behavior in alcohol/water solvent mixtures. Prog Polym Sci 2015. [DOI: 10.1016/j.progpolymsci.2015.02.003] [Citation(s) in RCA: 149] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
47
|
Sheng W, Li W, Li B, Li C, Xu Y, Guo X, Zhou F, Jia X. Mussel-Inspired Photografting on Colloidal Spheres: A Generalized Self-Template Route to Stimuli-Responsive Hollow Spheres for Controlled Pesticide Release. Macromol Rapid Commun 2015; 36:1640-5. [PMID: 26178587 DOI: 10.1002/marc.201500239] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 05/06/2015] [Indexed: 12/29/2022]
Abstract
A thermo-controlled pesticide release system composed of poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) thin film grafted polydopamine (PDA) (PDMAEMA-g-PDA) microcapsules is reported. SiO2 microparticles are used as a template to prepare PDA-coated SiO2 microparticles. The thermally-responsive PDMAEMA thin films are grafted on PDA surfaces using a metal-free surface-initiated photopolymerization approach without adding any photo-initiator or photosensitizer under UV light irradiation. The subsequent acid etching yields PDMAEMA-g-PDA hollow microcapsules. PDMAEMA-g-PDA microcapsules exhibit well-controlled release of avermectin (Av). The results show that the loading ability of PDMAEMA-g-PDA microcapsules of Av is up to 52.7% (w/w). The release kinetics of Av demonstrate that Av@PDMAEMA-g-PDA microcapsules exhibit temperature-controlled release performance. This work is significant for controlled release systems. This simple design is expected to be used in various applications, such as in controlled drug release and agriculture-related fields.
Collapse
Affiliation(s)
- Wenbo Sheng
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Key Laboratory of Materials-Oriented Chemical Engineering of Xinjiang Uygur Autonomous Region, Engineering Research Center of Materials-Oriented Chemical, Engineering of Xinjiang Bintuan Shihezi University, Shihezi, 832003, China
| | - Wei Li
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Key Laboratory of Materials-Oriented Chemical Engineering of Xinjiang Uygur Autonomous Region, Engineering Research Center of Materials-Oriented Chemical, Engineering of Xinjiang Bintuan Shihezi University, Shihezi, 832003, China
| | - Bin Li
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Cuihua Li
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Key Laboratory of Materials-Oriented Chemical Engineering of Xinjiang Uygur Autonomous Region, Engineering Research Center of Materials-Oriented Chemical, Engineering of Xinjiang Bintuan Shihezi University, Shihezi, 832003, China
| | - Yisheng Xu
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xuhong Guo
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Key Laboratory of Materials-Oriented Chemical Engineering of Xinjiang Uygur Autonomous Region, Engineering Research Center of Materials-Oriented Chemical, Engineering of Xinjiang Bintuan Shihezi University, Shihezi, 832003, China.,State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Feng Zhou
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Xin Jia
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Key Laboratory of Materials-Oriented Chemical Engineering of Xinjiang Uygur Autonomous Region, Engineering Research Center of Materials-Oriented Chemical, Engineering of Xinjiang Bintuan Shihezi University, Shihezi, 832003, China
| |
Collapse
|
48
|
Long X, Zhang Z, Han S, Tang M, Zhou J, Zhang J, Xue Z, Li Y, Zhang R, Deng L, Dong A. Structural mediation on polycation nanoparticles by sulfadiazine to enhance DNA transfection efficiency and reduce toxicity. ACS APPLIED MATERIALS & INTERFACES 2015; 7:7542-7551. [PMID: 25801088 DOI: 10.1021/am508847j] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Reducing the toxicity while maintaining high transfection efficiency is an important issue for cationic polymers as gene carriers in clinical application. In this paper, a new zwitterionic copolymer, polycaprolactone-g-poly(dimethylaminoethyl methyacrylate-co-sulfadiazine methacrylate) (PC-SDZ) with unique pH-sensitivity, was designed and prepared. The incorporation of sulfadiazine into poly(dimethylaminoethyl methacrylate) (PDMAEMA) chains successfully mediates the surface properties including compacter shell structure, lower density of positive charges, stronger proton buffer capability, and enhanced hydrophobicity, which lead to reduction in toxicity and enhancements in stability, cellular uptake, endosome escape, and transfection efficiency for the PC-SDZ2 nanoparticles (NPs)/DNA complexes. Excellent transfection efficiency at the optimal N/P ratio of 10 was observed for PC-SDZ2 NPs/DNA complexes, which was higher than that of the commercial reagent-branched polyethylenimine (PEI). The cytotoxicity was evaluated by CCK8 measurement, and the results showed significant reduction in cytotoxicity even at high concentration of complexes after sulfadiazine modification. Therefore, this work may demonstrate a new way of structural mediation of cationic polymer carriers for gene delivery with high efficiency and low toxicity.
Collapse
Affiliation(s)
- Xingwen Long
- †Department of Polymer Science and Technology and Key Laboratory of Systems Bioengineering of the Ministry of Education; Department of Polymer Science and Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Zhihui Zhang
- ∥Research Center of Basic Medical Science and Department of Immunology, Basic Medical College; Key Laboratory of Immune Microenvironment and Diseases, Ministry of Education of China; Key Laboratory of Hormones and Development (Ministry of Health), Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300070, China
| | - Shangcong Han
- †Department of Polymer Science and Technology and Key Laboratory of Systems Bioengineering of the Ministry of Education; Department of Polymer Science and Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Minjie Tang
- †Department of Polymer Science and Technology and Key Laboratory of Systems Bioengineering of the Ministry of Education; Department of Polymer Science and Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Junhui Zhou
- †Department of Polymer Science and Technology and Key Laboratory of Systems Bioengineering of the Ministry of Education; Department of Polymer Science and Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Jianhua Zhang
- †Department of Polymer Science and Technology and Key Laboratory of Systems Bioengineering of the Ministry of Education; Department of Polymer Science and Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Zhenyi Xue
- ∥Research Center of Basic Medical Science and Department of Immunology, Basic Medical College; Key Laboratory of Immune Microenvironment and Diseases, Ministry of Education of China; Key Laboratory of Hormones and Development (Ministry of Health), Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300070, China
| | - Yan Li
- ∥Research Center of Basic Medical Science and Department of Immunology, Basic Medical College; Key Laboratory of Immune Microenvironment and Diseases, Ministry of Education of China; Key Laboratory of Hormones and Development (Ministry of Health), Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300070, China
| | - Rongxin Zhang
- ∥Research Center of Basic Medical Science and Department of Immunology, Basic Medical College; Key Laboratory of Immune Microenvironment and Diseases, Ministry of Education of China; Key Laboratory of Hormones and Development (Ministry of Health), Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300070, China
| | - Liandong Deng
- †Department of Polymer Science and Technology and Key Laboratory of Systems Bioengineering of the Ministry of Education; Department of Polymer Science and Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Anjie Dong
- †Department of Polymer Science and Technology and Key Laboratory of Systems Bioengineering of the Ministry of Education; Department of Polymer Science and Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- §Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| |
Collapse
|
49
|
Guo Y, Liu H, Tang D, Li C, Zhao Y. Facile synthesis of silica nanoparticles grafted with quaternized linear, comblike and toothbrushlike copolymers. Polym Chem 2015. [DOI: 10.1039/c4py01741b] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The alkoxysilane–hydroxyl coupling reaction, quaternization and RAFT polymerization were combined to synthesize three types of quaternized copolymers grafted silica with thermo-dependent surface wettability.
Collapse
Affiliation(s)
- Yanfei Guo
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Huanhuan Liu
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Dandan Tang
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Cangxia Li
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Youliang Zhao
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| |
Collapse
|
50
|
Karjalainen E, Aseyev V, Tenhu H. Upper or lower critical solution temperature, or both? Studies on cationic copolymers of N-isopropylacrylamide. Polym Chem 2015. [DOI: 10.1039/c4py01700e] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The solution properties of statistical copolymers of N-isopropyl acrylamide (NIPAm) and cationic (3-acrylamidopropyl) trimethylammonium chloride (AMPTMA) have been studied.
Collapse
Affiliation(s)
- Erno Karjalainen
- Laboratory of Polymer Chemistry
- Department of Chemistry
- University of Helsinki
- 00014 Helsinki
- Finland
| | - Vladimir Aseyev
- Laboratory of Polymer Chemistry
- Department of Chemistry
- University of Helsinki
- 00014 Helsinki
- Finland
| | - Heikki Tenhu
- Laboratory of Polymer Chemistry
- Department of Chemistry
- University of Helsinki
- 00014 Helsinki
- Finland
| |
Collapse
|