1
|
Cheng S, Kogut D, Zheng J, Patil S, Yang F, Lu W. Dynamics of polylactic acid under ultrafine nanoconfinement: The collective interface effect and the spatial gradient. J Chem Phys 2024; 160:114904. [PMID: 38506298 DOI: 10.1063/5.0189762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/16/2024] [Indexed: 03/21/2024] Open
Abstract
Polymers under nanoconfinement can exhibit large alterations in dynamics from their bulk values due to an interface effect. However, understanding the interface effect remains a challenge, especially in the ultrafine nanoconfinement region. In this work, we prepare new geometries with ultrafine nanoconfinement ∼10nm through controlled distributions of the crystalline phases and the amorphous phases of a model semi-crystalline polymer, i.e., the polylactic acid. The broadband dielectric spectroscopy measurements show that ultrafine nanoconfinement leads to a large elevation in the glass transition temperature and a strong increment in the polymer fragility index. Moreover, new relaxation time profile analyses demonstrate a spatial gradient that can be well described by either a single-exponential decay or a double-exponential decay functional form near the middle of the film with a collective interface effect. However, the dynamics at the 1-2 nm vicinity of the interface exhibit a power-law decay that is different from the single-exponential decay or double-exponential decay functional forms as predicted by theories. Thus, these results call for further investigations of the interface effect on polymer dynamics, especially for interfaces with perturbed chain packing.
Collapse
Affiliation(s)
- Shiwang Cheng
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan 48824, USA
| | - David Kogut
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan 48824, USA
| | - Juncheng Zheng
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan 48824, USA
| | - Shalin Patil
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan 48824, USA
| | - Fuming Yang
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, Michigan 48824, USA
| | - Weiyi Lu
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan 48824, USA
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, Michigan 48824, USA
| |
Collapse
|
2
|
Minecka A, Tarnacka M, Jurkiewicz K, Żakowiecki D, Kamiński K, Kamińska E. Mesoporous Matrices as a Promising New Generation of Carriers for Multipolymorphic Active Pharmaceutical Ingredient Aripiprazole. Mol Pharm 2023; 20:5655-5667. [PMID: 37756382 PMCID: PMC10630940 DOI: 10.1021/acs.molpharmaceut.3c00524] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/09/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023]
Abstract
The enhancement of the properties (i.e., poor solubility and low bioavailability) of currently available active pharmaceutical ingredients (APIs) is one of the major goals of modern pharmaceutical sciences. Among different strategies, a novel and innovative route to reach this milestone seems to be the application of nanotechnology, especially the incorporation of APIs into porous membranes composed of pores of nanometric size and made of nontoxic materials. Therefore, in this work, taking the antipsychotic API aripiprazole (APZ) infiltrated into various types of mesoporous matrices (anodic aluminum oxide, native, and silanized silica) characterized by similar pore diameters (d = 8-10 nm) as an example, we showed the advantage of incorporated systems in comparison to the bulk substance considering the crystallization kinetics, molecular dynamics, and physical stability. Calorimetric investigations supported by the temperature-dependent X-ray diffraction measurements revealed that in the bulk system the recrystallization of polymorph III, which next is converted to the mixture of forms IV and I, is visible, while in the case of confined samples polymorphic forms I and III of APZ are produced upon heating of the molten API with different rates. Importantly, the two-step crystallization observed in thermograms obtained for the API infiltrated into native silica templates may suggest crystal formation by the interfacial and core molecules. Furthermore, dielectric studies enabled us to conclude that there is no trace of crystallization of spatially restricted API during one month of storage at T = 298 K. Finally, we found that in contrast to the crystalline and amorphous bulk samples, all examined confined systems show a logarithmic increase in API dissolution over time (very close to a prolonged release effect) without any sign of precipitation. Our data demonstrated that mesoporous matrices appear to be interesting candidates as carriers for unstable amorphous APIs, like APZ. In addition to protecting them against crystallization, they can provide the desired prolonged release effect, which may increase the drug concentration in the blood (resulting in higher bioavailability). We believe that the "nanostructirization" in terms of the application of porous membranes as a novel generation of drug carriers might open unique perspectives in the further development of drugs characterized by prolonged release.
Collapse
Affiliation(s)
- Aldona Minecka
- Department
of Pharmacognosy and Phytochemistry, Faculty of Pharmaceutical Sciences
in Sosnowiec, Medical University of Silesia
in Katowice, 41-200 Sosnowiec, Poland
| | - Magdalena Tarnacka
- A.
Chelkowski Institute of Physics, University
of Silesia in Katowice, 41-500 Chorzow, Poland
| | - Karolina Jurkiewicz
- A.
Chelkowski Institute of Physics, University
of Silesia in Katowice, 41-500 Chorzow, Poland
| | - Daniel Żakowiecki
- Chemische
Fabrik Budenheim KG, Rheinstrasse 27, 55257 Budenheim, Germany
| | - Kamil Kamiński
- A.
Chelkowski Institute of Physics, University
of Silesia in Katowice, 41-500 Chorzow, Poland
| | - Ewa Kamińska
- Department
of Pharmacognosy and Phytochemistry, Faculty of Pharmaceutical Sciences
in Sosnowiec, Medical University of Silesia
in Katowice, 41-200 Sosnowiec, Poland
| |
Collapse
|
3
|
Wang M, Li J, Zhang C, Liu G, Napolitano S, Wang D. Physical Aging of Polystyrene Confined in Anodic Aluminum Oxide Nanopores. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:3471-3480. [PMID: 36802636 DOI: 10.1021/acs.langmuir.2c03505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
We investigated the glassy dynamics of polystyrene (PS) confined in anodic aluminum oxide (AAO) nanopores by differential scanning calorimetry. Based on the outcome of our experiments, we show that the cooling rate applied to process the 2D confined PS melt has a significant impact on both the glass transition and the structural relaxation in the glassy state. A single glass transition temperature (Tg) is observed in quenched samples, while slow-cooled PS chains show two Tgs corresponding to a core-shell structure. The former phenomenon resembles what is observed in freestanding structures, while the latter is imputed to the adsorption of PS onto AAO walls. A more complex picture was drawn for physical aging. In the case of quenched samples, we observed a non-monotonic trend of the apparent aging rate that in 400 nm pores, reaches a value almost twice as larger than what is measured in bulk and decreases upon further confinement in smaller nanopores. For slow-cooled samples, by adequately varying the aging conditions, we were able to control the equilibration kinetics and either separate the two aging processes or induce an intermediate aging regime. We propose a possible explanation of these findings in terms of distribution in free volume and the presence of different aging mechanisms.
Collapse
Affiliation(s)
- Ming Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, CAS, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, CAS, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Chunbo Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, CAS, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Guoming Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, CAS, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Simone Napolitano
- Laboratory of Polymer and Soft Matter Dynamics, Experimental Soft Matter and Thermal Physics (EST), Université Libre de Bruxelles (ULB), Brussels 1050, Belgium
| | - Dujin Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, CAS, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Rationalizing the interfacial layer in polymer nanocomposites: Correlation between enthalpy and dielectric relaxation. POLYMER 2023. [DOI: 10.1016/j.polymer.2023.125765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
5
|
Pipertzis A, Ntetsikas K, Hadjichristidis N, Floudas G. Cyclic Topologies in Linear α,ω-Dihydroxy Polyisoprenes by Dielectric Spectroscopy. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Achilleas Pipertzis
- Department of Physics, University of Ioannina, P.O. Box 1186, Ioannina 451 10, Greece
| | - Konstantinos Ntetsikas
- Polymer Synthesis Laboratory, KAUST Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Nikos Hadjichristidis
- Polymer Synthesis Laboratory, KAUST Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - George Floudas
- Department of Physics, University of Ioannina, P.O. Box 1186, Ioannina 451 10, Greece
- University Research Center of Ioannina (URCI)─Institute of Materials Science and Computing, 451 10 Ioannina, Greece
| |
Collapse
|
6
|
Venkatesh RB, Lee D. Interfacial Friction Controls the Motion of Confined Polymers in the Pores of Nanoparticle Packings. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- R. Bharath Venkatesh
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Daeyeon Lee
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
7
|
Tannoury L, Solar M, Paul W. Structure and dynamics of a 1,4-polybutadiene melt in an alumina nanopore: A molecular dynamics simulation. J Chem Phys 2022; 157:124901. [DOI: 10.1063/5.0105313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present results of Molecular Dynamics simulations of a chemically realistic model of 1,4-polybutadiene (PBD)confined in a cylindrical alumina nanopore of diameter 10 nm. The simulations are done at three different temperaturesabove the glass transition temperature T g . We investigate the density layering across the nanopore as well as theorientational ordering in the polymer melt, brought about by the confinement, on both the segmental and chain scales.For the chain scale ordering, the magnitude and orientation of the axes of the gyration tensor ellipsoid of single chainsare studied and are found to prefer to align parallel to the pore axis. Even though double bonds near the wall arepreferentially oriented along the pore walls, studying the nematic order parameter indicates that there is no nematicordering at the melt-wall interface. As for the dynamics in the melt, we focus here on the mean-square-displacement ofthe monomers for several layers across the nanopore as well as the movement of the chain center of mass which bothdisplay a slowing down of the dynamics in the layer at the wall. We also show the strong adsorption of the monomersto the pore wall at lower temperatures.
Collapse
Affiliation(s)
- Lama Tannoury
- Institute of Physics, Martin Luther University Halle Wittenberg, Germany
| | - Mathieu Solar
- Institut f. Physik, Institut National des Sciences Appliques, France
| | - Wolfgang Paul
- Institut f. Physik, Martin-Luther-Universität Halle-Wittenberg, Germany
| |
Collapse
|
8
|
Kardasis P, Sakellariou G, Steinhart M, Floudas G. Non-equilibrium Effects of Polymer Dynamics under Nanometer Confinement: Effects of Architecture and Molar Mass. J Phys Chem B 2022; 126:5570-5581. [PMID: 35834553 DOI: 10.1021/acs.jpcb.2c03389] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The non-equilibrium dynamics of linear and star-shaped cis-1,4 polyisoprenes confined within nanoporous alumina is explored as a function of pore size, d, molar mass, and functionality (f = 2, 6, and 64). Two thermal protocols are tested: one resembling a quasi-static process (I) and another involving fast cooling followed by annealing (II). Although both protocols give identical equilibrium times, it is through protocol I that it is easier to extract the equilibrium times, teq, by the linear relationships of the characteristic peak frequencies with time and rate, respectively, as log(fmax) = C1 - k log(t) and log(fmax) = C2 + λ log(β). Both thermal protocols establish the existence of a critical temperature (at Tc, where k → 0 and λ → 0) below which non-equilibrium effects set-in. The critical temperature depends on the degree of confinement, 2Rg/d, and on molecular architecture. Strikingly, establishing equilibrium dynamics at all temperatures above the bulk, Tg, requires 2Rg/d ∼ 0.02, i.e., pore diameters that are much larger than the chain dimensions. This reflects non-equilibrium configurations of the adsorbed layer that extent away from the pore walls. The equilibrium times depend strongly on temperature, pore size, and functionality. In general, star-shaped polymers require longer times to reach equilibrium because of the higher tendency for adsorption. Both thermal protocols produced an increasing dielectric strength for the segmental and chain modes. The increase was beyond any densification, suggesting enhanced orientation correlations of subchain dipoles.
Collapse
Affiliation(s)
| | - Georgios Sakellariou
- Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Martin Steinhart
- Institut für Chemie neuer Materialien, Universität Osnabrück, D-49069 Osnabrück, Germany
| | - George Floudas
- Department of Physics, University of Ioannina, 45110 Ioannina, Greece.,Institute of Materials Science and Computing, University Research Center of Ioannina (URCI), 45110 Ioannina, Greece
| |
Collapse
|
9
|
Winkler R, Chat K, Unni AB, Dulski M, Laskowska M, Laskowski L, Adrjanowicz K. Glass Transition Dynamics of Poly(phenylmethylsiloxane) Confined within Alumina Nanopores with Different Atomic Layer Deposition (ALD) Coatings. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Roksana Winkler
- Institute of Physics, University of Silesia, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland
- Silesian Center for Education and Interdisciplinary Research (SMCEBI), 75 Pulku Piechoty 1, 41-500 Chorzow, Poland
| | - Katarzyna Chat
- Institute of Physics, University of Silesia, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland
- Silesian Center for Education and Interdisciplinary Research (SMCEBI), 75 Pulku Piechoty 1, 41-500 Chorzow, Poland
| | - Aparna Beena Unni
- Institute of Physics, University of Silesia, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland
- Silesian Center for Education and Interdisciplinary Research (SMCEBI), 75 Pulku Piechoty 1, 41-500 Chorzow, Poland
| | - Mateusz Dulski
- Institute of Materials Engineering, University of Silesia in Katowice, 40-007 Katowice, Poland
| | - Magdalena Laskowska
- Institute of Nuclear Physics, Polish Academy of Sciences, 31-342 Krakow, Poland
| | - Lukasz Laskowski
- Institute of Nuclear Physics, Polish Academy of Sciences, 31-342 Krakow, Poland
| | - Karolina Adrjanowicz
- Institute of Physics, University of Silesia, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland
- Silesian Center for Education and Interdisciplinary Research (SMCEBI), 75 Pulku Piechoty 1, 41-500 Chorzow, Poland
| |
Collapse
|
10
|
Sun W, Wu H, Luo Y, Li B, Mao L, Zhao X, Zhang L, Gao Y. Structure and dynamics behavior during the glass transition of the polyisoprene in the presence of pressure: A molecular dynamics simulation. POLYMER 2022. [DOI: 10.1016/j.polymer.2021.124433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
11
|
Ok S, Vayer M, Sinturel C. A decade of innovation and progress in understanding the morphology and structure of heterogeneous polymers in rigid confinement. SOFT MATTER 2021; 17:7430-7458. [PMID: 34341814 DOI: 10.1039/d1sm00522g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
When confined in nanoscale domains, polymers generally encounter changes in their structural, thermodynamics and dynamics properties compared to those in the bulk, due to the high amount of polymer/wall interfaces and limited amount of matter. The present review specifically deals with the confinement of heterogeneous polymers (i.e. polymer blends and block copolymers) in rigid nanoscale domains (i.e. bearing non-deformable solid walls) where the processes of phase separation and self-assembly can be deeply affected. This review focuses on the innovative contributions of the last decade (2010-2020), giving a summary of the new insights and understanding gained in this period. We conclude this review by giving our view on the most thriving directions for this topic.
Collapse
Affiliation(s)
- Salim Ok
- Petroleum Research Center, Kuwait Institute for Scientific Research, P.O. Box 24885, Safat, 13109, Kuwait.
| | | | | |
Collapse
|
12
|
Tu CH, Zhou J, Butt HJ, Floudas G. Adsorption Kinetics of cis-1,4-Polyisoprene in Nanopores by In Situ Nanodielectric Spectroscopy. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00821] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chien-Hua Tu
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - Jiajia Zhou
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | | | - George Floudas
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany
- Department of Physics, University of Ioannina, 45110 Ioannina, Greece
- Institute of Materials Science and Computing, University Research Center of Ioannina (URCI), 45110 Ioannina, Greece
| |
Collapse
|
13
|
Winkler R, Beena Unni A, Tu W, Chat K, Adrjanowicz K. On the Segmental Dynamics and the Glass Transition Behavior of Poly(2-vinylpyridine) in One- and Two-Dimensional Nanometric Confinement. J Phys Chem B 2021; 125:5991-6003. [PMID: 34048244 PMCID: PMC8279553 DOI: 10.1021/acs.jpcb.1c01245] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/13/2021] [Indexed: 11/30/2022]
Abstract
Geometric nanoconfinement, in one and two dimensions, has a fundamental influence on the segmental dynamics of polymer glass-formers and can be markedly different from that observed in the bulk state. In this work, with the use of dielectric spectroscopy, we have investigated the glass transition behavior of poly(2-vinylpyridine) (P2VP) confined within alumina nanopores and prepared as a thin film supported on a silicon substrate. P2VP is known to exhibit strong, attractive interactions with confining surfaces due to the ability to form hydrogen bonds. Obtained results show no changes in the temperature evolution of the α-relaxation time in nanopores down to 20 nm size and 24 nm thin film. There is also no evidence of an out-of-equilibrium behavior observed for other glass-forming systems confined at the nanoscale. Nevertheless, in both cases, the confinement effect is seen as a substantial broadening of the α-relaxation time distribution. We discussed the results in terms of the importance of the interfacial energy between the polymer and various substrates, the sensitivity of the glass-transition temperature to density fluctuations, and the density scaling concept.
Collapse
Affiliation(s)
- Roksana Winkler
- Institute
of Physics, University of Silesia, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland
- Silesian
Center for Education and Interdisciplinary Research (SMCEBI), 75 Pulku Piechoty 1a, 41-500 Chorzow, Poland
| | - Aparna Beena Unni
- Institute
of Physics, University of Silesia, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland
- Silesian
Center for Education and Interdisciplinary Research (SMCEBI), 75 Pulku Piechoty 1a, 41-500 Chorzow, Poland
| | - Wenkang Tu
- Institute
of Physics, University of Silesia, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland
- Silesian
Center for Education and Interdisciplinary Research (SMCEBI), 75 Pulku Piechoty 1a, 41-500 Chorzow, Poland
| | - Katarzyna Chat
- Institute
of Physics, University of Silesia, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland
- Silesian
Center for Education and Interdisciplinary Research (SMCEBI), 75 Pulku Piechoty 1a, 41-500 Chorzow, Poland
| | - Karolina Adrjanowicz
- Institute
of Physics, University of Silesia, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland
- Silesian
Center for Education and Interdisciplinary Research (SMCEBI), 75 Pulku Piechoty 1a, 41-500 Chorzow, Poland
| |
Collapse
|
14
|
Foroozani Behbahani A, Harmandaris V. Gradient of Segmental Dynamics in Stereoregular Poly(Methyl Methacrylate) Melts Confined between Pristine or Oxidized Graphene Sheets. Polymers (Basel) 2021; 13:830. [PMID: 33800419 PMCID: PMC7962820 DOI: 10.3390/polym13050830] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/27/2021] [Accepted: 03/02/2021] [Indexed: 12/03/2022] Open
Abstract
Segmental dynamics in unentangled isotactic, syndiotactic, and atactic poly(methyl methacrylate) (i-, a-, and s-PMMA) melts confined between pristine graphene, reduced graphene oxide, RGO, or graphene oxide, GO, sheets is studied at various temperatures, well above glass transition temperature, via atomistic molecular dynamics simulations. The model RGO and GO sheets have different degrees of oxidization. The segmental dynamics is studied through the analysis of backbone torsional motions. In the vicinity of the model nanosheets (distances less than ≈2 nm), the dynamics slows down; the effect becomes significantly stronger with increasing the concentration of the surface functional groups, and hence increasing polymer/surface specific interactions. Upon decreasing temperature, the ratios of the interfacial segmental relaxation times to the respective bulk relaxation times increase, revealing the stronger temperature dependence of the interfacial segmental dynamics relative to the bulk dynamics. This heterogeneity in temperature dependence leads to the shortcoming of the time-temperature superposition principle for describing the segmental dynamics of the model confined melts. The alteration of the segmental dynamics at different distances, d, from the surfaces is described by a temperature shift, ΔTseg(d) (roughly speaking, shift of a characteristic temperature). Next, to a given nanosheet, i-PMMA has a larger value of ΔTseg than a-PMMA and s-PMMA. This trend correlates with the better interfacial packing and longer trains of i-PMMA chains. The backbone torsional autocorrelation functions are shown in the frequency domain and are qualitatively compared to the experimental dielectric loss spectra for the segmental α-relaxation in polymer nanocomposites. The εT″(f) (analogous of dielectric loss, ε″(f), for torsional motion) curves of the model confined melts are broader (toward lower frequencies) and have lower amplitudes relative to the corresponding bulk curves; however, the peak frequencies of the εT″(f) curves are only slightly affected.
Collapse
Affiliation(s)
- Alireza Foroozani Behbahani
- Institute of Applied and Computational Mathematics, Foundation for Research and Technology-Hellas, GR-71110 Heraklion, Greece
| | - Vagelis Harmandaris
- Institute of Applied and Computational Mathematics, Foundation for Research and Technology-Hellas, GR-71110 Heraklion, Greece
- Department of Mathematics and Applied Mathematics, University of Crete, GR-70013 Heraklion, Greece
- Computation-Based Science and Technology Research Center, The Cyprus Institute, 2121 Nicosia, Cyprus
| |
Collapse
|
15
|
Tu CH, Zhou J, Doi M, Butt HJ, Floudas G. Interfacial Interactions During In Situ Polymer Imbibition in Nanopores. PHYSICAL REVIEW LETTERS 2020; 125:127802. [PMID: 33016756 DOI: 10.1103/physrevlett.125.127802] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 08/21/2020] [Indexed: 06/11/2023]
Abstract
Using in situ nanodielectric spectroscopy we demonstrate that the imbibition kinetics of cis-1,4-polyisoprene in native alumina nanopores proceeds in two time regimes both with higher effective viscosity than bulk. This finding is discussed by a microscopic picture that considers the competition from an increasing number of chains entering the pores and a decreasing number of fluctuating chain ends. The latter is a direct manifestation of increasing adsorption sites during flow. At the same time, the longest normal mode is somewhat longer than in bulk. This could reflect an increasing density of topological constraints of chains entering the pores with the longer loops formed by other chains.
Collapse
Affiliation(s)
- Chien-Hua Tu
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - Jiajia Zhou
- School of Chemistry, Beihang University, Key Lab Bioinspired Smart Interfacial Science & Technology of Ministry of Education, Beijing 100191, China
- Center of Soft Matter Physics and Its Applications, Beihang University, Beijing 100191, China
| | - Masao Doi
- Center of Soft Matter Physics and Its Applications, Beihang University, Beijing 100191, China
| | | | - George Floudas
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany
- Department of Physics, University of Ioannina, 45110 Ioannina, Greece
- University Research Center of Ioannina (URCI)-Institute of Materials Science and Computing, 45110 Ioannina, Greece
| |
Collapse
|
16
|
Tarnacka M, Wojtyniak M, Brzózka A, Talik A, Hachuła B, Kamińska E, Sulka GD, Kaminski K, Paluch M. Unique Behavior of Poly(propylene glycols) Confined within Alumina Templates Having a Nanostructured Interface. NANO LETTERS 2020; 20:5714-5719. [PMID: 32559092 PMCID: PMC7588129 DOI: 10.1021/acs.nanolett.0c01116] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 06/18/2020] [Indexed: 06/11/2023]
Abstract
Herein we show that the nanostructured interface obtained via modulation of the pore size has a strong impact on the segmental and chain dynamics of two poly(propylene glycol) (PPG) derivatives with various molecular weights (Mn = 4000 g/mol and Mn = 2000 g/mol). In fact, a significant acceleration of the dynamics was observed for PPG infiltrated into ordinary alumina templates (Dp = 36 nm), while bulklike behavior was found for samples incorporated into membranes of modulated diameter (19 nm < Dp < 28 nm). We demostrated that the modulation-induced roughness reduces surface interactions of polymer chains near the interface with respect to the ones adsorbed to the ordinary nanochannels. Interestingly, this effect is noted despite the enhanced wettability of PPG in the latter system. Consequently, as a result of weaker H-bonding surface interactions, the conformation of segments seems to locally mimic the bulk arrangement, leading to bulklike dynamics, highlighting the crucial impact of the interface on the overall behavior of confined materials.
Collapse
Affiliation(s)
- Magdalena Tarnacka
- Institute
of Physics, University of Silesia in Katowice, ul. 75 Pulku Piechoty 1, 41-500 Chorzow, Poland
- Silesian
Center of Education and Interdisciplinary Research, University of Silesia in Katowice, ul. 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
| | - Marcin Wojtyniak
- Institute
of Physics, University of Silesia in Katowice, ul. 75 Pulku Piechoty 1, 41-500 Chorzow, Poland
- Silesian
Center of Education and Interdisciplinary Research, University of Silesia in Katowice, ul. 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
| | - Agnieszka Brzózka
- Department
of Physical Chemistry and Electrochemistry, Faculty of Chemistry, Jagiellonian University, ul. Gronostajowa 2, 30-387 Krakow, Poland
| | - Agnieszka Talik
- Institute
of Physics, University of Silesia in Katowice, ul. 75 Pulku Piechoty 1, 41-500 Chorzow, Poland
- Silesian
Center of Education and Interdisciplinary Research, University of Silesia in Katowice, ul. 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
| | - Barbara Hachuła
- Institute
of Chemistry, University of Silesia in Katowice, ul. Szkolna 9, 40-007 Katowice, Poland
| | - Ewa Kamińska
- Department
of Pharmacognosy and Phytochemistry, Faculty
of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia
in Katowice, ul. Jagiellonska 4, 41-200 Sosnowiec, Poland
| | - Grzegorz D. Sulka
- Department
of Physical Chemistry and Electrochemistry, Faculty of Chemistry, Jagiellonian University, ul. Gronostajowa 2, 30-387 Krakow, Poland
| | - Kamil Kaminski
- Institute
of Physics, University of Silesia in Katowice, ul. 75 Pulku Piechoty 1, 41-500 Chorzow, Poland
- Silesian
Center of Education and Interdisciplinary Research, University of Silesia in Katowice, ul. 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
| | - Marian Paluch
- Institute
of Physics, University of Silesia in Katowice, ul. 75 Pulku Piechoty 1, 41-500 Chorzow, Poland
- Silesian
Center of Education and Interdisciplinary Research, University of Silesia in Katowice, ul. 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
| |
Collapse
|
17
|
Hwang Y, Yoo S, Lim N, Kang SM, Yoo H, Kim J, Hyun Y, Jung GY, Ko HC. Enhancement of Interfacial Adhesion Using Micro/Nanoscale Hierarchical Cilia for Randomly Accessible Membrane-Type Electronic Devices. ACS NANO 2020; 14:118-128. [PMID: 31476128 DOI: 10.1021/acsnano.9b02141] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The recent technology of transfer printing using various membrane-type flexible/stretchable electronic devices can provide electronic functions to desirable objects where direct device fabrication is difficult. However, if the target surfaces are rough and complex, the capability of accommodating surface mismatches for reliable interfacial adhesion remains a challenge. Here, we demonstrate that newly designed nanotubular cilia (NTCs), vertically aligned underneath a polyimide substrate, significantly enhance interfacial adhesion. The tubular structure easily undergoes flattening and wrapping motions to provide a large conformal contact area, and the synergetic effect of the assembled cilia strengthens the overall adhesion. Furthermore, the hierarchical structure consisting of radially spread film-type cilia combined with vertically aligned NTCs in specific regions enables successful transfer printing onto very challenging surfaces such as stone, bark, and textiles. Finally, we successfully transferred a temperature sensor onto an eggshell and indium gallium zinc oxide-based transistors onto a stone with no electrical failure.
Collapse
Affiliation(s)
- Youngkyu Hwang
- School of Materials Science and Engineering , Gwangju Institute of Science and Technology (GIST) , 261 Cheomdan-gwagiro (Oryong-Dong) , Buk-Gu, Gwangju 61005 , Republic of Korea
| | - Seonggwang Yoo
- School of Materials Science and Engineering , Gwangju Institute of Science and Technology (GIST) , 261 Cheomdan-gwagiro (Oryong-Dong) , Buk-Gu, Gwangju 61005 , Republic of Korea
| | - Namsoo Lim
- School of Materials Science and Engineering , Gwangju Institute of Science and Technology (GIST) , 261 Cheomdan-gwagiro (Oryong-Dong) , Buk-Gu, Gwangju 61005 , Republic of Korea
| | - Sang Myeong Kang
- School of Materials Science and Engineering , Gwangju Institute of Science and Technology (GIST) , 261 Cheomdan-gwagiro (Oryong-Dong) , Buk-Gu, Gwangju 61005 , Republic of Korea
| | - Hyeryun Yoo
- School of Materials Science and Engineering , Gwangju Institute of Science and Technology (GIST) , 261 Cheomdan-gwagiro (Oryong-Dong) , Buk-Gu, Gwangju 61005 , Republic of Korea
| | - Jongwoo Kim
- Center for Convergent Research of Emerging Virus Infection , Korea Research Institute of Chemical Technology (KRICT) , 141 Gajeong-ro , Yuseong-gu , Daejeon 34114 , Republic of Korea
| | - Yujun Hyun
- School of Materials Science and Engineering , Gwangju Institute of Science and Technology (GIST) , 261 Cheomdan-gwagiro (Oryong-Dong) , Buk-Gu, Gwangju 61005 , Republic of Korea
| | - Gun Young Jung
- School of Materials Science and Engineering , Gwangju Institute of Science and Technology (GIST) , 261 Cheomdan-gwagiro (Oryong-Dong) , Buk-Gu, Gwangju 61005 , Republic of Korea
| | - Heung Cho Ko
- School of Materials Science and Engineering , Gwangju Institute of Science and Technology (GIST) , 261 Cheomdan-gwagiro (Oryong-Dong) , Buk-Gu, Gwangju 61005 , Republic of Korea
| |
Collapse
|
18
|
Safari M, Maiz J, Shi G, Juanes D, Liu G, Wang D, Mijangos C, Alegría Á, Müller AJ. How Confinement Affects the Nucleation, Crystallization, and Dielectric Relaxation of Poly(butylene succinate) and Poly(butylene adipate) Infiltrated within Nanoporous Alumina Templates. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:15168-15179. [PMID: 31621336 DOI: 10.1021/acs.langmuir.9b02215] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This work describes the successful melt infiltration of poly(butylene succinate) (PBS) and poly(butylene adipate) (PBA) within 70 nm diameter anodic aluminum oxide (AAO) templates. The infiltrated samples were characterized by SEM, Raman, and FTIR spectroscopy. The crystallization behaviors and crystalline structures of both polymers, bulk and confined, were analyzed by differential scanning calorimetry (DSC) and grazing incidence wide angle X-ray scattering (GIWAXS). DSC revealed that a change in the nucleation process occurred from heterogeneous nucleation for bulk samples to homogeneous nucleation for infiltrated PBA and to surface-induced nucleation for infiltrated PBS. GIWAXS results indicate that PBS nanofibers crystallize in the α-phase, as well as their bulk samples. However, PBA nanofibers crystallize just in the β-phase, whereas PBA bulk samples crystallize in a mixture of α- and β-phases. The crystal orientation within the pores was determined, and differences between PBS and PBA were also found. Finally, broadband dielectric spectroscopy was applied to study the segmental dynamics for bulk and infiltrated samples. The glass temperature was found to significantly decrease in the PBS case upon infiltration, while that of PBA remained unchanged. These differences were correlated with the higher affinity of PBS to the AAO walls than PBA, in accordance with their nucleation behavior (surface-induced versus homogeneous nucleation, respectively).
Collapse
Affiliation(s)
- Maryam Safari
- POLYMAT and Polymer Science and Technology Department, Faculty of Chemistry , University of the Basque Country UPV/EHU , Paseo Manuel de Lardizábal, 3 , 20018 Donostia-San Sebastián , Spain
| | - Jon Maiz
- POLYMAT and Polymer Science and Technology Department, Faculty of Chemistry , University of the Basque Country UPV/EHU , Paseo Manuel de Lardizábal, 3 , 20018 Donostia-San Sebastián , Spain
| | - Guangyu Shi
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences , Institute of Chemistry, the Chinese Academy of Sciences , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Diana Juanes
- Instituto de Ciencia y Tecnología de Polímeros , Consejo Superior de Investigaciones Científicas, ICTP-CSIC , Juan de la Cierva 3 , Madrid 28006 , Spain
| | - Guoming Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences , Institute of Chemistry, the Chinese Academy of Sciences , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Dujin Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences , Institute of Chemistry, the Chinese Academy of Sciences , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Carmen Mijangos
- Instituto de Ciencia y Tecnología de Polímeros , Consejo Superior de Investigaciones Científicas, ICTP-CSIC , Juan de la Cierva 3 , Madrid 28006 , Spain
- Departamento de Física de Materiales , University of the Basque Country UPV/EHU and Centro de Física de Materiales (CFM) (CSIC-UPV/EHU) - Materials Physics Center (MPC) , Paseo Manuel de Lardizabal 5 , 20018 San Sebastián , Spain
| | - Ángel Alegría
- Departamento de Física de Materiales , University of the Basque Country UPV/EHU and Centro de Física de Materiales (CFM) (CSIC-UPV/EHU) - Materials Physics Center (MPC) , Paseo Manuel de Lardizabal 5 , 20018 San Sebastián , Spain
| | - Alejandro J Müller
- POLYMAT and Polymer Science and Technology Department, Faculty of Chemistry , University of the Basque Country UPV/EHU , Paseo Manuel de Lardizábal, 3 , 20018 Donostia-San Sebastián , Spain
- IKERBASQUE, Basque Foundation for Science , 48013 Bilbao , Spain
| |
Collapse
|
19
|
Kinsey T, Mapesa E, Cosby T, He Y, Hong K, Wang Y, Iacob C, Sangoro J. Elucidating the impact of extreme nanoscale confinement on segmental and chain dynamics of unentangled poly(cis-1,4-isoprene). THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2019; 42:137. [PMID: 31650417 DOI: 10.1140/epje/i2019-11907-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 10/11/2019] [Indexed: 06/10/2023]
Abstract
Broadband dielectric spectroscopy is employed to probe dynamics in low molecular weight poly(cis-1,4-isoprene) (PI) confined in unidirectional silica nanopores with mean pore diameter, D, of 6.5 nm. Three molecular weights of PI (3, 7 and 10 kg/mol) were chosen such that the ratio of D to the polymer radius of gyration, Rg, is varied from 3.4, 2.3 to 1.9, respectively. It is found that the mean segmental relaxation rate remains bulk-like but an additional process arises at lower frequencies with increasing molecular weight (decreasing D/Rg. In contrast, the mean relaxation rates of the end-to-end dipole vector corresponding to chain dynamics are found to be slightly slower than that in the bulk for the systems approaching D/Rg ∼ 2, but faster than the bulk for the polymer with the largest molecular weight. The analysis of the spectral shapes of the chain relaxation suggests that the resulting dynamics of the 10kg/mol PI confined at length-scales close to that of the Rg are due to non-ideal chain conformations under confinement decreasing the chain relaxation times. The understanding of these faster chain dynamics of polymers under extreme geometrical confinement is necessary in designing nanodevices that contain polymeric materials within substrates approaching the molecular scale.
Collapse
Affiliation(s)
- Thomas Kinsey
- Department of Chemical and Biomolecular Engineering, University of Tennessee, 37996, Knoxville, TN, USA
| | - Emmanuel Mapesa
- Department of Chemical and Biomolecular Engineering, University of Tennessee, 37996, Knoxville, TN, USA
| | - Tyler Cosby
- Department of Chemical and Biomolecular Engineering, University of Tennessee, 37996, Knoxville, TN, USA
| | - Youjun He
- Center for Nanophase Materials Science, Oak Ridge National Laboratory, 37831, Oak Ridge, TN, USA
| | - Kunlun Hong
- Center for Nanophase Materials Science, Oak Ridge National Laboratory, 37831, Oak Ridge, TN, USA
| | - Yangyang Wang
- Center for Nanophase Materials Science, Oak Ridge National Laboratory, 37831, Oak Ridge, TN, USA
| | - Ciprian Iacob
- National Research and Development Institute for Cryogenic and Isotopic Technologies, ICSI Rm. Valcea, Rm. Valcea, Romania
- Karlsruhe Institute of Technology (KIT), Institute for Chemical Technology and Polymer Chemistry, 76128, Karlsruhe, Germany
| | - Joshua Sangoro
- Department of Chemical and Biomolecular Engineering, University of Tennessee, 37996, Knoxville, TN, USA.
| |
Collapse
|
20
|
Tu CH, Steinhart M, Butt HJ, Floudas G. In Situ Monitoring of the Imbibition of Poly(n-butyl methacrylates) in Nanoporous Alumina by Dielectric Spectroscopy. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01383] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Chien-Hua Tu
- Max Planck Institute for Polymer Research, D-55128 Mainz, Germany
| | - Martin Steinhart
- Institut für Chemie neuer Materialien, Universität Osnabrück, D-49069 Osnabrück, Germany
| | | | - George Floudas
- Max Planck Institute for Polymer Research, D-55128 Mainz, Germany
- Department of Physics, University of Ioannina, 45110 Ioannina, Greece
| |
Collapse
|
21
|
Shi G, Guan Y, Liu G, Müller AJ, Wang D. Segmental Dynamics Govern the Cold Crystallization of Poly(lactic acid) in Nanoporous Alumina. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00542] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Guangyu Shi
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Guan
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guoming Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Alejandro J. Müller
- POLYMAT and Polymer Science and Technology Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, Donostia-San Sebastián 20018, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao 48013, Spain
| | - Dujin Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
22
|
Politidis C, Alexandris S, Sakellariou G, Steinhart M, Floudas G. Dynamics of Entangled cis-1,4-Polyisoprene Confined to Nanoporous Alumina. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00523] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
| | | | - Georgios Sakellariou
- Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Martin Steinhart
- Institut für Chemie neuer Materialien, Universität Osnabrück, D-49069 Osnabrück, Germany
| | - George Floudas
- Department of Physics, University of Ioannina, 45110 Ioannina, Greece
| |
Collapse
|
23
|
Adrjanowicz K, Winkler R, Chat K, Duarte DM, Tu W, Unni AB, Paluch M, Ngai KL. Study of Increasing Pressure and Nanopore Confinement Effect on the Segmental, Chain, and Secondary Dynamics of Poly(methylphenylsiloxane). Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00473] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- K. Adrjanowicz
- Institute of Physics, University of Silesia, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland
- Silesian Center for Education and Interdisciplinary Research (SMCEBI), 75 Pulku Piechoty 1a, 41-500 Chorzow, Poland
| | - R. Winkler
- Institute of Physics, University of Silesia, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland
- Silesian Center for Education and Interdisciplinary Research (SMCEBI), 75 Pulku Piechoty 1a, 41-500 Chorzow, Poland
| | - K. Chat
- Institute of Physics, University of Silesia, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland
- Silesian Center for Education and Interdisciplinary Research (SMCEBI), 75 Pulku Piechoty 1a, 41-500 Chorzow, Poland
| | - D. M. Duarte
- Institute of Physics, University of Silesia, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland
- Silesian Center for Education and Interdisciplinary Research (SMCEBI), 75 Pulku Piechoty 1a, 41-500 Chorzow, Poland
| | - W. Tu
- Institute of Physics, University of Silesia, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland
- Silesian Center for Education and Interdisciplinary Research (SMCEBI), 75 Pulku Piechoty 1a, 41-500 Chorzow, Poland
| | - A. B. Unni
- Institute of Physics, University of Silesia, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland
- Silesian Center for Education and Interdisciplinary Research (SMCEBI), 75 Pulku Piechoty 1a, 41-500 Chorzow, Poland
| | - M. Paluch
- Institute of Physics, University of Silesia, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland
- Silesian Center for Education and Interdisciplinary Research (SMCEBI), 75 Pulku Piechoty 1a, 41-500 Chorzow, Poland
| | - K. L. Ngai
- CNR-IPCF, Largo Bruno Pontecorvo 3, I-56127 Pisa, Italy
| |
Collapse
|
24
|
Tarnacka M, Talik A, Kamińska E, Geppert-Rybczyńska M, Kaminski K, Paluch M. The Impact of Molecular Weight on the Behavior of Poly(propylene glycol) Derivatives Confined within Alumina Templates. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00209] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
| | | | - Ewa Kamińska
- Department of Pharmacognosy and Phytochemistry, Medical University of Silesia in Katowice,School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Jagiellonska 4, 41-200 Sosnowiec, Poland
| | | | | | | |
Collapse
|
25
|
Kipnusu WK, Elmahdy MM, Elsayed M, Krause-Rehberg R, Kremer F. Counterbalance between Surface and Confinement Effects As Studied for Amino-Terminated Poly(propylene glycol) Constraint in Silica Nanopores. Macromolecules 2019. [DOI: 10.1021/acs.macromol.8b02687] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Wycliffe K. Kipnusu
- GROC.UJI, Institute of New Imaging Technologies, Universitat Jaume I, Avda. Sos Baynat s/n, 12071 Castellón, Spain
| | - Mahdy M. Elmahdy
- Department of Physics, Faculty of Science, Mansoura University, 35516 Mansoura, Egypt
| | - Mohamed Elsayed
- Department of Physics, Martin Luther University Halle, 06099 Halle, Germany
- Department of Physics, Faculty of Science, Minia University, 61519 Minia, Egypt
| | | | - Friedrich Kremer
- Peter-Debye-Institute, University of Leipzig, Linnéstraße 5, 04103 Leipzig, Germany
| |
Collapse
|
26
|
Talik A, Tarnacka M, Grudzka-Flak I, Maksym P, Geppert-Rybczynska M, Wolnica K, Kaminska E, Kaminski K, Paluch M. The Role of Interfacial Energy and Specific Interactions on the Behavior of Poly(propylene glycol) Derivatives under 2D Confinement. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b00658] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Agnieszka Talik
- Institute of Physics, University of Silesia, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland
- Silesian Center of Education and Interdisciplinary Research, University of Silesia, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
| | - Magdalena Tarnacka
- Institute of Physics, University of Silesia, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland
- Silesian Center of Education and Interdisciplinary Research, University of Silesia, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
| | - Iwona Grudzka-Flak
- Institute of Physics, University of Silesia, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland
- Silesian Center of Education and Interdisciplinary Research, University of Silesia, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
| | - Paulina Maksym
- Institute of Physics, University of Silesia, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland
- Silesian Center of Education and Interdisciplinary Research, University of Silesia, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
| | | | - Kamila Wolnica
- Institute of Physics, University of Silesia, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland
- Silesian Center of Education and Interdisciplinary Research, University of Silesia, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
| | - Ewa Kaminska
- Department of Pharmacognosy and Phytochemistry, Medical University of Silesia in Katowice, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Jagiellonska 4, 41-200 Sosnowiec, Poland
| | - Kamil Kaminski
- Institute of Physics, University of Silesia, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland
| | - Marian Paluch
- Institute of Physics, University of Silesia, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland
- Silesian Center of Education and Interdisciplinary Research, University of Silesia, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
| |
Collapse
|
27
|
Glor EC, Angrand GV, Fakhraai Z. Exploring the broadening and the existence of two glass transitions due to competing interfacial effects in thin, supported polymer films. J Chem Phys 2018; 146:203330. [PMID: 28571332 DOI: 10.1063/1.4979944] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In this report, we use ellipsometry to characterize the glass transition in ultra-thin films of poly(2-vinyl pyridine) (P2VP) supported on a silicon substrate. P2VP is known to have attractive substrate interactions, which can increase the Tg of ultra-thin films compared to the bulk value. Here, we use an extended temperature range to show that the glass transition can be extremely broad, indicating that a large gradient of the dynamics exists through the film with slow dynamics near the substrate and enhanced dynamics at the free surface. To observe the effect of these two interfaces on the average thin film dynamics, cooling rate-dependent Tg (CR-Tg) measurements were used to indirectly probe the average relaxation times of the films. We demonstrate that ultra-thin films have lower fragility compared to bulk films, and, when cooled at slow cooling rates (<1 K/min), exhibit extreme broadening of the dynamics (<70 nm) and eventually complete decoupling between the free surface and substrate regions to produce films with two distinct Tg's (<16 nm). Tg,high increases with decreasing thickness in a similar manner to what has been observed in previous studies on P2VP, and Tg,low decreases with decreasing film thickness in a similar manner to what has been observed in polymer films with enhanced free surfaces and neutral substrate interactions. These observations indicate that the dynamics in thin films of P2VP can be strongly coupled over a length scale of ∼10-20 nm, resulting in two co-existing layers with two distinct glass transitions when the range of the dynamical gradients become too large to sustain (breadth of the transition > 50 K).
Collapse
Affiliation(s)
- Ethan C Glor
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Gabriel V Angrand
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Zahra Fakhraai
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
28
|
Yao Y, Butt HJ, Floudas G, Zhou J, Doi M. Theory on Capillary Filling of Polymer Melts in Nanopores. Macromol Rapid Commun 2018; 39:e1800087. [DOI: 10.1002/marc.201800087] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/22/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Yang Yao
- Max Planck Institute for Polymer Research; D55128 Mainz Germany
| | | | - George Floudas
- Max Planck Institute for Polymer Research; D55128 Mainz Germany
| | - Jiajia Zhou
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education; School of Chemistry; Beihang University; Beijing 100191 China
- Center of Soft Matter Physics & Its Applications; Beihang University; Beijing 100191 China
| | - Masao Doi
- Center of Soft Matter Physics & Its Applications; Beihang University; Beijing 100191 China
| |
Collapse
|
29
|
Molecular self-assembly of one-dimensional polymer nanostructures in nanopores of anodic alumina oxide templates. Prog Polym Sci 2018. [DOI: 10.1016/j.progpolymsci.2017.10.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
30
|
Zhang C, Sha Y, Zhang Y, Cai T, Li L, Zhou D, Wang X, Xue G. Nanostructures and Dynamics of Isochorically Confined Amorphous Drug Mediated by Cooling Rate, Interfacial, and Intermolecular Interactions. J Phys Chem B 2017; 121:10704-10716. [PMID: 29111765 DOI: 10.1021/acs.jpcb.7b08545] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The production and stabilization of amorphous drugs by the nanoconfinement effect has recently become a research hotspot in pharmaceutical sciences. Herein, two guest/host systems, indomethacin (IMC) and griseofulvin (GSF) confined in anodic aluminum oxide (AAO) templates with different pore diameters (25-250 nm) are investigated by differential scanning calorimetry (DSC) and broadband dielectric spectroscopy (BDS). The crystallization of the confined drugs is suppressed, and their glass transition temperatures show an evident pore-size dependency. Moreover, a combination of dielectric and calorimetric results demonstrates that the significant change in the temperature dependence of the structural relaxation time during the cooling process is attributed to the vitrification of the interfacial molecules and the local density heterogeneity under isochoric confinement. Interestingly, compared with the case of IMC/AAO, which can be described by a typical two-layer model, GSF/AAO presents an rare scenario of three glass transition temperatures under fast cooling (40-10 K/min), indicating that there exists a thermodynamic nonequilibrium interlayer between the bulk-like core and interfacial layer. In contrast, the slow cooling process (0.5 K/min) would lead confined GSF into the stable core-shell nanostructure. Using surface modification, the interfacial effect is confirmed to be an important reason for the different phenomena between these two guest/host systems, and intermolecular hydrogen bonding is also suggested to be emphasized considering the long-range effect of interfacial interactions. Our results not only provide insight into the glass transition behavior of geometrically confined supercooled liquids, but also offer a means of adjusting and stabilizing the nanostructure of amorphous drugs under two-dimensional confinement.
Collapse
Affiliation(s)
- Chen Zhang
- Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Microstructures, Nanjing University , Nanjing 210093, P. R. China
| | - Ye Sha
- Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Microstructures, Nanjing University , Nanjing 210093, P. R. China
| | - Yue Zhang
- Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Microstructures, Nanjing University , Nanjing 210093, P. R. China
| | - Ting Cai
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, and Department of Pharmaceutics, College of Pharmacy, China Pharmaceutical University , Nanjing 210009, P. R. China
| | - Linling Li
- Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Microstructures, Nanjing University , Nanjing 210093, P. R. China
| | - Dongshan Zhou
- Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Microstructures, Nanjing University , Nanjing 210093, P. R. China
| | - Xiaoliang Wang
- Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Microstructures, Nanjing University , Nanjing 210093, P. R. China
| | - Gi Xue
- Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Microstructures, Nanjing University , Nanjing 210093, P. R. China
| |
Collapse
|
31
|
Rissanou AN, Papananou H, Petrakis VS, Doxastakis M, Andrikopoulos KS, Voyiatzis GA, Chrissopoulou K, Harmandaris V, Anastasiadis SH. Structural and Conformational Properties of Poly(ethylene oxide)/Silica Nanocomposites: Effect of Confinement. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b00811] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
| | - Hellen Papananou
- Institute
of Electronic Structure and Laser, Foundation for Research and Technology - Hellas,
P.O. Box 1527, 711 10 Heraklion, Crete, Greece
| | | | - Manolis Doxastakis
- Department
of Chemical Engineering, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Konstantinos S. Andrikopoulos
- Institute
of Chemical Engineering Sciences, Foundation for Research and Technology - Hellas,
P.O. Box 1414, 265 04 Patras, Greece
| | - George A. Voyiatzis
- Institute
of Chemical Engineering Sciences, Foundation for Research and Technology - Hellas,
P.O. Box 1414, 265 04 Patras, Greece
| | - Kiriaki Chrissopoulou
- Institute
of Electronic Structure and Laser, Foundation for Research and Technology - Hellas,
P.O. Box 1527, 711 10 Heraklion, Crete, Greece
| | - Vagelis Harmandaris
- Institute
of Applied and Computational Mathematics, Foundation for Research and Technology - Hellas, P.O. Box 1385, 711 10 Heraklion, Crete, Greece
| | - Spiros H. Anastasiadis
- Institute
of Electronic Structure and Laser, Foundation for Research and Technology - Hellas,
P.O. Box 1527, 711 10 Heraklion, Crete, Greece
| |
Collapse
|
32
|
Krutyeva M, Pasini S, Monkenbusch M, Allgaier J, Maiz J, Mijangos C, Hartmann-Azanza B, Steinhart M, Jalarvo N, Richter D. Polymer dynamics under cylindrical confinement featuring a locally repulsive surface: A quasielastic neutron scattering study. J Chem Phys 2017; 146:203306. [DOI: 10.1063/1.4974836] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- M. Krutyeva
- Jülich Centre for Neutron Science (JCNS) and Institute for Complex Systems (ICS), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - S. Pasini
- Jülich Centre for Neutron Science (JCNS) and Institute for Complex Systems (ICS), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - M. Monkenbusch
- Jülich Centre for Neutron Science (JCNS) and Institute for Complex Systems (ICS), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - J. Allgaier
- Jülich Centre for Neutron Science (JCNS) and Institute for Complex Systems (ICS), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - J. Maiz
- Instituto de Ciencia y Tecnología de Polímeros, CSIC. Juan de la Cierva 3, Madrid 28006, Spain
| | - C. Mijangos
- Instituto de Ciencia y Tecnología de Polímeros, CSIC. Juan de la Cierva 3, Madrid 28006, Spain
| | - B. Hartmann-Azanza
- Institut für Chemie neuer Materialen, Universität Osnabrück, Barbarastraße 7, D-46069 Osnabrück, Germany
| | - M. Steinhart
- Institut für Chemie neuer Materialen, Universität Osnabrück, Barbarastraße 7, D-46069 Osnabrück, Germany
| | - N. Jalarvo
- Jülich Centre for Neutron Science (JCNS) and Institute for Complex Systems (ICS), Forschungszentrum Jülich GmbH, Jülich, Germany
- Chemical and Engineering Materials Division, Oak Ridge National Laboratory (ORNL), P.O. Box 2008, Oak Ridge, Tennessee 37831, USA
| | - D. Richter
- Jülich Centre for Neutron Science (JCNS) and Institute for Complex Systems (ICS), Forschungszentrum Jülich GmbH, Jülich, Germany
| |
Collapse
|
33
|
Yao Y, Alexandris S, Henrich F, Auernhammer G, Steinhart M, Butt HJ, Floudas G. Complex dynamics of capillary imbibition of poly(ethylene oxide) melts in nanoporous alumina. J Chem Phys 2017; 146:203320. [DOI: 10.1063/1.4978298] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
34
|
Napolitano S, Glynos E, Tito NB. Glass transition of polymers in bulk, confined geometries, and near interfaces. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2017; 80:036602. [PMID: 28134134 DOI: 10.1088/1361-6633/aa5284] [Citation(s) in RCA: 247] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
When cooled or pressurized, polymer melts exhibit a tremendous reduction in molecular mobility. If the process is performed at a constant rate, the structural relaxation time of the liquid eventually exceeds the time allowed for equilibration. This brings the system out of equilibrium, and the liquid is operationally defined as a glass-a solid lacking long-range order. Despite almost 100 years of research on the (liquid/)glass transition, it is not yet clear which molecular mechanisms are responsible for the unique slow-down in molecular dynamics. In this review, we first introduce the reader to experimental methodologies, theories, and simulations of glassy polymer dynamics and vitrification. We then analyse the impact of connectivity, structure, and chain environment on molecular motion at the length scale of a few monomers, as well as how macromolecular architecture affects the glass transition of non-linear polymers. We then discuss a revised picture of nanoconfinement, going beyond a simple picture based on interfacial interactions and surface/volume ratio. Analysis of a large body of experimental evidence, results from molecular simulations, and predictions from theory supports, instead, a more complex framework where other parameters are relevant. We focus discussion specifically on local order, free volume, irreversible chain adsorption, the Debye-Waller factor of confined and confining media, chain rigidity, and the absolute value of the vitrification temperature. We end by highlighting the molecular origin of distributions in relaxation times and glass transition temperatures which exceed, by far, the size of a chain. Fast relaxation modes, almost universally present at the free surface between polymer and air, are also remarked upon. These modes relax at rates far larger than those characteristic of glassy dynamics in bulk. We speculate on how these may be a signature of unique relaxation processes occurring in confined or heterogeneous polymeric systems.
Collapse
Affiliation(s)
- Simone Napolitano
- Laboratory of Polymer and Soft Matter Dynamics, Faculté des Sciences, Université Libre de Bruxelles (ULB), Boulevard du Triomphe, 1050 Brussels, Belgium
| | | | | |
Collapse
|
35
|
Zhang C, Li L, Wang X, Xue G. Stabilization of Poly(methyl methacrylate) Nanofibers with Core–Shell Structures Confined in AAO Templates by the Balance between Geometric Curvature, Interfacial Interactions, and Cooling Rate. Macromolecules 2017. [DOI: 10.1021/acs.macromol.6b02469] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Chen Zhang
- Key Laboratory of High Performance
Polymer Materials and Technology of Ministry of Education, Department
of Polymer Science and Engineering, School of Chemistry and Chemical
Engineering, State Key Laboratory of Coordination Chemistry, Nanjing
National Laboratory of Microstructures, Nanjing University, Nanjing 210093, P. R. China
| | - Linling Li
- Key Laboratory of High Performance
Polymer Materials and Technology of Ministry of Education, Department
of Polymer Science and Engineering, School of Chemistry and Chemical
Engineering, State Key Laboratory of Coordination Chemistry, Nanjing
National Laboratory of Microstructures, Nanjing University, Nanjing 210093, P. R. China
| | - Xiaoliang Wang
- Key Laboratory of High Performance
Polymer Materials and Technology of Ministry of Education, Department
of Polymer Science and Engineering, School of Chemistry and Chemical
Engineering, State Key Laboratory of Coordination Chemistry, Nanjing
National Laboratory of Microstructures, Nanjing University, Nanjing 210093, P. R. China
| | - Gi Xue
- Key Laboratory of High Performance
Polymer Materials and Technology of Ministry of Education, Department
of Polymer Science and Engineering, School of Chemistry and Chemical
Engineering, State Key Laboratory of Coordination Chemistry, Nanjing
National Laboratory of Microstructures, Nanjing University, Nanjing 210093, P. R. China
| |
Collapse
|
36
|
Schönhals A, Zorn R, Frick B. Inelastic neutron spectroscopy as a tool to investigate nanoconfined polymer systems. POLYMER 2016. [DOI: 10.1016/j.polymer.2016.06.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
37
|
Alexandris S, Papadopoulos P, Sakellariou G, Steinhart M, Butt HJ, Floudas G. Interfacial Energy and Glass Temperature of Polymers Confined to Nanoporous Alumina. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b01484] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Stelios Alexandris
- Department of Physics, University of Ioannina, P.O. Box 1186, 451 10 Ioannina, Greece
| | - Periklis Papadopoulos
- Department of Physics, University of Ioannina, P.O. Box 1186, 451 10 Ioannina, Greece
| | - Georgios Sakellariou
- Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Martin Steinhart
- Institut für Chemie neuer Materialien, Universität Osnabrück, D-49069 Osnabrück, Germany
| | - Hans-Jürgen Butt
- Max Planck Institute for Polymer Research, D-55128 Mainz, Germany
| | - George Floudas
- Department of Physics, University of Ioannina, P.O. Box 1186, 451 10 Ioannina, Greece
| |
Collapse
|
38
|
Tarnacka M, Kaminski K, Mapesa EU, Kaminska E, Paluch M. Studies on the Temperature and Time Induced Variation in the Segmental and Chain Dynamics in Poly(propylene glycol) Confined at the Nanoscale. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b01237] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Magdalena Tarnacka
- Institute
of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice, Poland
- Silesian
Center for Education and Interdisciplinary Research, University of Silesia, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
| | - Kamil Kaminski
- Institute
of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice, Poland
| | - Emmanuel U. Mapesa
- Institute
of Experimental Physics I, University of Leipzig, Linnéstraße
5, 04103 Leipzig, Germany
| | - Ewa Kaminska
- Department
of Pharmacognosy and Phytochemistry, Medical University of Silesia in Katowice, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Jagiellonska 4, 41-200 Sosnowiec, Poland
| | - Marian Paluch
- Institute
of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice, Poland
- Silesian
Center for Education and Interdisciplinary Research, University of Silesia, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
| |
Collapse
|
39
|
Affiliation(s)
- Chia-Chun Lin
- Department of Materials Science
and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6272, United States
| | - Emmabeth Parrish
- Department of Materials Science
and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6272, United States
| | - Russell J. Composto
- Department of Materials Science
and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6272, United States
| |
Collapse
|
40
|
Yao Y, Sakai T, Steinhart M, Butt HJ, Floudas G. Effect of Poly(ethylene oxide) Architecture on the Bulk and Confined Crystallization within Nanoporous Alumina. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b01406] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Yang Yao
- Max Planck Institute
for Polymer Research, 55128 Mainz, Germany
| | - Takamasa Sakai
- Department
of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo,
Bunkyo-ku, Tokyo 113-8656, Japan
| | - Martin Steinhart
- Institut
für Chemie neuer Materialien, Universität Osnabrück, D-49069 Osnabrück, Germany
| | | | - George Floudas
- Department
of Physics, University of Ioannina, P.O. Box 1186, 451 10 Ioannina, Greece
| |
Collapse
|
41
|
Tung WS, Griffin PJ, Meth JS, Clarke N, Composto RJ, Winey KI. Temperature-Dependent Suppression of Polymer Diffusion in Polymer Nanocomposites. ACS Macro Lett 2016; 5:735-739. [PMID: 35614652 DOI: 10.1021/acsmacrolett.6b00294] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The polymer center-of-mass tracer diffusion coefficient in athermal polymer nanocomposites (PNCs) composed of polystyrene and phenyl-capped, spherical silica nanoparticles was measured over a range of temperatures and nanoparticle concentrations using elastic recoil detection. The polymer tracer diffusion coefficient in the PNC relative to the bulk decreases with increasing nanoparticle concentration and is unexpectedly more strongly reduced at higher temperatures. This unusual temperature dependence of polymer diffusion in PNCs cannot be explained by the reptation model or a modified version incorporating an effective tube diameter. Instead we show that our results are consistent with a mechanism based on nanoparticle-imposed configurational entropy barriers.
Collapse
Affiliation(s)
- Wei-Shao Tung
- Department
of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19803, United States
| | - Philip J. Griffin
- Department
of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19803, United States
| | - Jeffrey S. Meth
- Central
Research and Development, DuPont Co., Wilmington, Delaware 19803, United States
| | - Nigel Clarke
- Department
of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, United Kingdom
| | - Russell J. Composto
- Department
of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19803, United States
| | - Karen I. Winey
- Department
of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19803, United States
| |
Collapse
|
42
|
Iacob C, Runt J. Charge Transport of Polyester Ether Ionomers in Unidirectional Silica Nanopores. ACS Macro Lett 2016; 5:476-480. [PMID: 35607228 DOI: 10.1021/acsmacrolett.6b00107] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Dielectric relaxation spectroscopy is employed to investigate charge transport properties of two polyester ether ionomers in the bulk state and when confined in unidirectional nanoporous membranes (average pore diameter = 7.5 nm). Under nanometric confinement in nonsilanized pores, the macroscopic transport quantities (dc conductivity and characteristic frequency rate) are lower by about 1.4 decades compared to the bulk. The remarkable decrease of transport quantities in nonsilanized nanoporous membranes can be quantitatively explained by considering the temperature dependence of the interfacial layer between the ionomer and the silica membrane surfaces. On the other hand, an enhancement of dc conductivity is observed when the surfaces of the pores are treated with a nonpolar organosilane. This effect becomes more pronounced at lower temperatures and is attributed to slight changes in molecular packing density caused by the two-dimensional geometrical constraint.
Collapse
Affiliation(s)
- Ciprian Iacob
- Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - James Runt
- Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
43
|
Mijangos C, Hernández R, Martín J. A review on the progress of polymer nanostructures with modulated morphologies and properties, using nanoporous AAO templates. Prog Polym Sci 2016. [DOI: 10.1016/j.progpolymsci.2015.10.003] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
44
|
Franz C, Lange F, Golitsyn Y, Hartmann-Azanza B, Steinhart M, Krutyeva M, Saalwächter K. Chain Dynamics and Segmental Orientation in Polymer Melts Confined to Nanochannels. Macromolecules 2015. [DOI: 10.1021/acs.macromol.5b02309] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Cornelius Franz
- Institut
für Physik − NMR, Martin-Luther-Universität Halle-Wittenberg, Betty-Heimann-Str.
7, D-06120 Halle, Germany
| | - Frank Lange
- Institut
für Physik − NMR, Martin-Luther-Universität Halle-Wittenberg, Betty-Heimann-Str.
7, D-06120 Halle, Germany
| | - Yury Golitsyn
- Institut
für Physik − NMR, Martin-Luther-Universität Halle-Wittenberg, Betty-Heimann-Str.
7, D-06120 Halle, Germany
| | - Brigitte Hartmann-Azanza
- Institut
für Chemie neuer Materialien, Universität Osnabrück, Barbarastr.
7, D-49069 Osnabrück, Germany
| | - Martin Steinhart
- Institut
für Chemie neuer Materialien, Universität Osnabrück, Barbarastr.
7, D-49069 Osnabrück, Germany
| | - Margarita Krutyeva
- Jülich
Centre for Neutron Science (JCNS) and Institute for Complex Systems
(ICS), Forschungszentrum Jülich GmbH, D-52428 Jülich, Germany
| | - Kay Saalwächter
- Institut
für Physik − NMR, Martin-Luther-Universität Halle-Wittenberg, Betty-Heimann-Str.
7, D-06120 Halle, Germany
| |
Collapse
|
45
|
Cheng S, Mirigian S, Carrillo JMY, Bocharova V, Sumpter BG, Schweizer KS, Sokolov AP. Revealing spatially heterogeneous relaxation in a model nanocomposite. J Chem Phys 2015; 143:194704. [DOI: 10.1063/1.4935595] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Shiwang Cheng
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Stephen Mirigian
- Department of Materials Science and Chemistry, Frederick Seitz Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801, USA
| | - Jan-Michael Y. Carrillo
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
- Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Vera Bocharova
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Bobby G. Sumpter
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
- Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Kenneth S. Schweizer
- Department of Materials Science and Chemistry, Frederick Seitz Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801, USA
| | - Alexei P. Sokolov
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
- Department of Chemistry, Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA
| |
Collapse
|
46
|
Chen J, Li L, Zhou D, Wang X, Xue G. Effect of geometric curvature on vitrification behavior for polymer nanotubes confined in anodic aluminum oxide templates. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:032306. [PMID: 26465472 DOI: 10.1103/physreve.92.032306] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Indexed: 06/05/2023]
Abstract
The glass transition behavior of polystyrene (PS) nanotubes confined in cylindrical alumina nanopores was studied as a function of pore diameter (d) and polymer tube thickness (δ). Both the calorimetric glass transition temperature and the microstructure measured by a nonradiative energy transfer method indicated that the polymer nanotube, or concave polymer thin film, exhibited significant differences in vitrification behavior compared to the planar one. A closer interchain proximity and an increased T_{g} were observed for polymer nanotubes with respect to the bulk polymer. T_{g} for polymer nanotubes was primarily dependent on the curvature radius d of the template, while it was less dependent on the thickness δ of the PS tube wall in the range of 11-23 nm. For small nanotubes (d=55nm), the T_{g} increased as high as 18 °C above the bulk value. This vitrified property reverted back to the bulk value when the substrate was chemically removed, which indicated the crucial importance of the interfacial effect imposed by the hard wall with a concave geometry.
Collapse
Affiliation(s)
- Jiao Chen
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Key Laboratory of High Performance Polymer Materials and Technology (Nanjing University), Ministry of Education, Nanjing National Laboratory of Microstructures, Nanjing University, Nanjing 210093, People's Republic of China
| | - Linling Li
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Key Laboratory of High Performance Polymer Materials and Technology (Nanjing University), Ministry of Education, Nanjing National Laboratory of Microstructures, Nanjing University, Nanjing 210093, People's Republic of China
| | - Dongshan Zhou
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Key Laboratory of High Performance Polymer Materials and Technology (Nanjing University), Ministry of Education, Nanjing National Laboratory of Microstructures, Nanjing University, Nanjing 210093, People's Republic of China
| | - Xiaoliang Wang
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Key Laboratory of High Performance Polymer Materials and Technology (Nanjing University), Ministry of Education, Nanjing National Laboratory of Microstructures, Nanjing University, Nanjing 210093, People's Republic of China
| | - Gi Xue
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Key Laboratory of High Performance Polymer Materials and Technology (Nanjing University), Ministry of Education, Nanjing National Laboratory of Microstructures, Nanjing University, Nanjing 210093, People's Republic of China
| |
Collapse
|
47
|
Affiliation(s)
- Sung A Kim
- School
of Chemical and Biomolecular
Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Rahul Mangal
- School
of Chemical and Biomolecular
Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Lynden A. Archer
- School
of Chemical and Biomolecular
Engineering, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
48
|
Androulaki K, Chrissopoulou K, Prevosto D, Labardi M, Anastasiadis SH. Dynamics of Hyperbranched Polymers under Confinement: A Dielectric Relaxation Study. ACS APPLIED MATERIALS & INTERFACES 2015; 7:12387-12398. [PMID: 25603491 DOI: 10.1021/am507571y] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The effect of severe confinement on the dynamics of three different generations of hyperbranched polyesters of the Boltorn family is investigated by dielectric relaxation spectroscopy (DRS). The polymer chains are intercalated within the galleries of natural montmorillonite (Na+-MMT), thus forming 1 nm polymer films confined between solid walls. The structure of the nanocomposites is studied with X-ray diffraction and the thermal behavior of the polymers in bulk and under confinement is determined by differential scanning calorimetry. The glass transition temperatures of the polymers show a clear dependence on the generation whereas the transition is completely suppressed when all the polymer chains are intercalated. The dynamic investigation of the bulk polymers reveals two sub-Tg processes, with similar behavior for the three polymers with the segmental relaxation observed above the Tg of each polymer. For the nanocomposites, where all the polymer chains are severely confined, the dynamics show significant differences compared to that of the bulk polymers. The sub-Tg processes are similar for the three generations but significantly faster and with weaker temperature dependence than those in the bulk. The segmental process appears at temperatures below the bulk polymer Tg, it exhibits an Arrhenius temperature dependence and shows differences for the three generations. A slow process that appears at higher temperatures is due to interfacial polarization.
Collapse
Affiliation(s)
- Krystalenia Androulaki
- †Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, 711 10 Heraklion Crete, Greece
- ‡Department of Chemistry, University of Crete, 710 03 Heraklion Crete, Greece
| | - Kiriaki Chrissopoulou
- †Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, 711 10 Heraklion Crete, Greece
| | - Daniele Prevosto
- §CNR-IPCF, Department of Physics, University of Pisa, Pisa, Italy
| | | | - Spiros H Anastasiadis
- †Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, 711 10 Heraklion Crete, Greece
- ‡Department of Chemistry, University of Crete, 710 03 Heraklion Crete, Greece
| |
Collapse
|
49
|
Kipnusu WK, Elmahdy MM, Mapesa EU, Zhang J, Böhlmann W, Smilgies DM, Papadakis CM, Kremer F. Structure and Dynamics of Asymmetric Poly(styrene-b-1,4-isoprene) Diblock Copolymer under 1D and 2D Nanoconfinement. ACS APPLIED MATERIALS & INTERFACES 2015; 7:12328-12338. [PMID: 25660102 DOI: 10.1021/am506848s] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The impact of 1- and 2-dimensional (2D) confinement on the structure and dynamics of poly(styrene-b-1,4-isoprene) P(S-b-I) diblock copolymer is investigated by a combination of Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), Grazing-Incidence Small-Angle X-ray Scattering (GISAXS), and Broadband Dielectric Spectroscopy (BDS). 1D confinement is achieved by spin coating the P(S-b-I) to form nanometric thin films on silicon substrates, while in the 2D confinement, the copolymer is infiltrated into cylindrical anodized aluminum oxide (AAO) nanopores. After dissolving the AAO matrix having mean pore diameter of 150 nm, the SEM images of the exposed P(S-b-I) show straight nanorods. For the thin films, GISAXS and AFM reveal hexagonally packed cylinders of PS in a PI matrix. Three dielectrically active relaxation modes assigned to the two segmental modes of the styrene and isoprene blocks and the normal mode of the latter are studied selectively by BDS. The dynamic glass transition, related to the segmental modes of the styrene and isoprene blocks, is independent of the dimensionality and the finite sizes (down to 18 nm) of confinement, but the normal mode is influenced by both factors with 2D geometrical constraints exerting greater impact. This reflects the considerable difference in the length scales on which the two kinds of fluctuations take place.
Collapse
Affiliation(s)
- Wycliffe K Kipnusu
- †Institute of Experimental Physics I, University of Leipzig, Linnéstraße 5, 04103 Leipzig, Germany
| | - Mahdy M Elmahdy
- †Institute of Experimental Physics I, University of Leipzig, Linnéstraße 5, 04103 Leipzig, Germany
- ‡Department of Physics, Mansoura University, Mansoura 35516, Egypt
| | - Emmanuel U Mapesa
- †Institute of Experimental Physics I, University of Leipzig, Linnéstraße 5, 04103 Leipzig, Germany
| | - Jianqi Zhang
- ¶Physik-Department, Physik weicher Materie, Technische Universität München, James-Franck-Straße 1, 85748 Garching, Germany
| | - Winfried Böhlmann
- §Institute for Experimental Physics II, University of Leipzig, Linnéstraße 5, 04103 Leipzig, Germany
| | - Detlef-M Smilgies
- ∥Cornell High Energy Synchrotron Source (CHESS), Wilson Laboratory, Cornell University, Ithaca, New York 14853, United States
| | - Christine M Papadakis
- ¶Physik-Department, Physik weicher Materie, Technische Universität München, James-Franck-Straße 1, 85748 Garching, Germany
| | - Friedrich Kremer
- †Institute of Experimental Physics I, University of Leipzig, Linnéstraße 5, 04103 Leipzig, Germany
| |
Collapse
|
50
|
Chrissopoulou K, Anastasiadis SH. Effects of nanoscopic-confinement on polymer dynamics. SOFT MATTER 2015; 11:3746-3766. [PMID: 25869864 DOI: 10.1039/c5sm00554j] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The static and dynamic behavior of polymers in confinement close to interfaces can be very different from that in the bulk. Among the various geometries, intercalated nanocomposites, in which polymer films of ∼1 nm thickness reside between the parallel inorganic surfaces of layered silicates in a well-ordered multilayer, offer a unique avenue for the investigation of the effects of nanoconfinement on polymer structure and dynamics by utilizing conventional analytical techniques and macroscopic specimens. In this article, we provide a review of research activities mainly in our laboratory on polymer dynamics under severe confinement utilizing different polymer systems: polar and non-polar polymers were mixed with hydrophilic or organophilic silicates, respectively, whereas hyperbranched polymers were studied in an attempt to probe the effect of polymer-surface interactions by altering the number and the kinds of functional groups in the periphery of the branched polymers. The polymer dynamics was probed by quasielastic neutron scattering and dielectric relaxation spectroscopy and was compared with that of the polymers in the bulk. In all cases, very local sub-Tg processes related to the motion of side and/or end groups as well as the segmental α-relaxation were identified with distinct differences recorded between the bulk and the confined systems. Confinement was found not to affect the very local motion in the case of the linear chains whereas it made it easier for hyperbranched polymers due to modifications of the hydrogen bond network. The segmental relaxation in confinement becomes faster than that in the bulk, exhibits Arrhenius temperature dependence and is observed even below the bulk Tg due to reduced cooperativity in the confined systems.
Collapse
Affiliation(s)
- Kiriaki Chrissopoulou
- Institute of Electronic Structure and Laser, Foundation for Research and Technology - Hellas, P. O. Box 1527, 711 10 Heraklion Crete, Greece.
| | | |
Collapse
|