1
|
Yin R, Tarnsangpradit J, Gul A, Jeong J, Hu X, Zhao Y, Wu H, Li Q, Fytas G, Karim A, Bockstaller MR, Matyjaszewski K. Organic nanoparticles with tunable size and rigidity by hyperbranching and cross-linking using microemulsion ATRP. Proc Natl Acad Sci U S A 2024; 121:e2406337121. [PMID: 38985759 PMCID: PMC11260123 DOI: 10.1073/pnas.2406337121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/13/2024] [Indexed: 07/12/2024] Open
Abstract
Unlike inorganic nanoparticles, organic nanoparticles (oNPs) offer the advantage of "interior tailorability," thereby enabling the controlled variation of physicochemical characteristics and functionalities, for example, by incorporation of diverse functional small molecules. In this study, a unique inimer-based microemulsion approach is presented to realize oNPs with enhanced control of chemical and mechanical properties by deliberate variation of the degree of hyperbranching or cross-linking. The use of anionic cosurfactants led to oNPs with superior uniformity. Benefitting from the high initiator concentration from inimer and preserved chain-end functionality during atom transfer radical polymerization (ATRP), the capability of oNPs as a multifunctional macroinitiator for the subsequent surface-initiated ATRP was demonstrated. This facilitated the synthesis of densely tethered poly(methyl methacrylate) brush oNPs. Detailed analysis revealed that exceptionally high grafting densities (~1 nm-2) were attributable to multilayer surface grafting from oNPs due to the hyperbranched macromolecular architecture. The ability to control functional attributes along with elastic properties renders this "bottom-up" synthetic strategy of macroinitiator-type oNPs a unique platform for realizing functional materials with a broad spectrum of applications.
Collapse
Affiliation(s)
- Rongguan Yin
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA15213
| | - Jirameth Tarnsangpradit
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA15213
| | - Akhtar Gul
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX77204
| | - Jaepil Jeong
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA15213
| | - Xiaolei Hu
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA15213
| | - Yuqi Zhao
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA15213
| | - Hanshu Wu
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA15213
| | - Qiqi Li
- Max Planck Institute for Polymer Research, Mainz55128, Germany
- Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology-Hellas (FORTH), Heraklion70013, Greece
| | - George Fytas
- Max Planck Institute for Polymer Research, Mainz55128, Germany
- Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology-Hellas (FORTH), Heraklion70013, Greece
| | - Alamgir Karim
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX77204
| | - Michael R. Bockstaller
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA15213
| | | |
Collapse
|
2
|
Hu X, Yin R, Jeong J, Matyjaszewski K. Robust Miniemulsion PhotoATRP Driven by Red and Near-Infrared Light. J Am Chem Soc 2024; 146:13417-13426. [PMID: 38691625 PMCID: PMC11099965 DOI: 10.1021/jacs.4c02553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 05/03/2024]
Abstract
Photoinduced polymerization techniques have gathered significant attention due to their mild conditions, spatiotemporal control, and simple setup. In addition to homogeneous media, efforts have been made to implement photopolymerization in emulsions as a practical and greener process. However, previous photoinduced reversible deactivation radical polymerization (RDRP) in heterogeneous media has relied on short-wavelength lights, which have limited penetration depth, resulting in slow polymerization and relatively poor control. In this study, we demonstrate the first example of a highly efficient photoinduced miniemulsion ATRP in the open air driven by red or near-infrared (NIR) light. This was facilitated by the utilization of a water-soluble photocatalyst, methylene blue (MB+). Irradiation by red/NIR light allowed for efficient excitation of MB+ and subsequent photoreduction of the ATRP deactivator in the presence of water-soluble electron donors to initiate and mediate the polymerization process. The NIR light-driven miniemulsion photoATRP provided a successful synthesis of polymers with low dispersity (1.09 ≤ Đ ≤ 1.29) and quantitative conversion within an hour. This study further explored the impact of light penetration on polymerization kinetics in reactors of varying sizes and a large-scale reaction (250 mL), highlighting the advantages of longer-wavelength light, particularly NIR light, for large-scale polymerization in dispersed media owing to its superior penetration. This work opens new avenues for robust emulsion photopolymerization techniques, offering a greener and more practical approach with improved control and efficiency.
Collapse
Affiliation(s)
- Xiaolei Hu
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Rongguan Yin
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Jaepil Jeong
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
3
|
Yin R, Zhao Y, Jeong J, Tarnsangpradit J, Liu T, An SY, Zhai Y, Hu X, Bockstaller MR, Matyjaszewski K. Composition-Orientation Induced Mechanical Synergy in Nanoparticle Brushes with Grafted Gradient Copolymers. Macromolecules 2023; 56:9626-9635. [PMID: 38105929 PMCID: PMC10720466 DOI: 10.1021/acs.macromol.3c01799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/08/2023] [Accepted: 11/10/2023] [Indexed: 12/19/2023]
Abstract
Gradient poly(methyl methacrylate/n-butyl acrylate) copolymers, P(MMA/BA), with various compositional ratios, were grafted from surface-modified silica nanoparticles (SiO2-g-PMMA-grad-PBA) via complete conversion surface-initiated activator regenerated by electron transfer (SI-ARGET) atom transfer radical polymerization (ATRP). Miniemulsion as the reaction medium effectively confined the interparticle brush coupling within micellar compartments, preventing macroscopic gelation and enabling complete conversion. Isolation of dispersed and gelled fractions revealed dispersed particle brushes to feature a higher Young's modulus, toughness, and ultimate strain compared with those of the "gel" counterparts. Upon purification, brush nanoparticles from the dispersed phase formed uniform microstructures. Uniaxial tension testing revealed a "mechanical synergy" for copolymers with MMA/BA = 3:2 molar ratio to concurrently exhibit higher toughness and stiffness. When compared with linear analogues of similar composition, the brush nanoparticles with gradient copolymers had better mechanical properties, attributed to the synergistic effects of the combination of composition and propagation orientation, highlighting the significance of architectural design for tethered brush layers of such hybrid materials.
Collapse
Affiliation(s)
- Rongguan Yin
- Department
of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Yuqi Zhao
- Department
of Materials Science and Engineering, Carnegie
Mellon University, 5000
Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Jaepil Jeong
- Department
of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Jirameth Tarnsangpradit
- Department
of Materials Science and Engineering, Carnegie
Mellon University, 5000
Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Tong Liu
- Department
of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - So Young An
- Department
of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Yue Zhai
- Department
of Materials Science and Engineering, Carnegie
Mellon University, 5000
Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Xiaolei Hu
- Department
of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Michael R. Bockstaller
- Department
of Materials Science and Engineering, Carnegie
Mellon University, 5000
Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Krzysztof Matyjaszewski
- Department
of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
4
|
Phiromphu N, Juthathan M, Suktanarak P, Sukwattanasinitt M, Tuntulani T, Leeladee P. Selective copper-catalysed atom transfer radical addition (ATRA) in water under environmentally benign conditions. Dalton Trans 2023; 52:14235-14241. [PMID: 37766676 DOI: 10.1039/d3dt02044d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Simple and green conditions for copper-catalysed ATRA reactions in water have been developed. Firstly, [Cu(ADPA)(H2O)(ClO4)2] (1b, ADPA = 9-[(2,2'-dipicolylamino)methyl]anthracene) was demonstrated to be capable of selectively catalysing the ATRA of CCl4 to styrene using L-ascorbic acid (AsH2) as a reducing agent in organic solvent mixtures under ambient atmosphere. Mechanistic investigation suggested that our ATRA reaction proceeded via a single-electron transfer (SET) mechanism through an inner-sphere complex, which is consistent with the widely accepted mechanism for copper-catalysed ATRA. To perform the reaction in water as a sole solvent, a biocompatible surfactant (2 wt% Tween 20 or Tween 80) was added to improve solubility and increase the local concentration of organic reagents and the copper catalyst. Without the need for a complicated oxygen-free set-up, the ATRA reaction catalysed by this simple aqueous-dispersed system can be performed at a mild temperature (60 °C) and a relatively short reaction time (6 h) using 1 mol% of the catalyst. Furthermore, this facile protocol is also applicable for other alkene substrates demonstrated in this work, resulting in satisfactory to excellent substrate conversion and product yields.
Collapse
Affiliation(s)
- Nutchanikan Phiromphu
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Methasit Juthathan
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Pattira Suktanarak
- Faculty of Sport and Health Sciences, Thailand National Sports University Lampang Campus, Lampang, 52100, Thailand
| | | | - Thawatchai Tuntulani
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Pannee Leeladee
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
5
|
Wang Y, Lorandi F, Fantin M, Matyjaszewski K. Atom transfer radical polymerization in dispersed media with low-ppm catalyst loading. POLYMER 2023. [DOI: 10.1016/j.polymer.2023.125913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
|
6
|
Yin R, Chmielarz P, Zaborniak I, Zhao Y, Szczepaniak G, Wang Z, Liu T, Wang Y, Sun M, Wu H, Tarnsangpradit J, Bockstaller MR, Matyjaszewski K. Miniemulsion SI-ATRP by Interfacial and Ion-Pair Catalysis for the Synthesis of Nanoparticle Brushes. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01114] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Rongguan Yin
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Paweł Chmielarz
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
- Department of Physical Chemistry, Faculty of Chemistry, Rzeszow University of Technology, Al. Powstańców Warszawy 6, 35-959 Rzeszow, Poland
| | - Izabela Zaborniak
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
- Department of Physical Chemistry, Faculty of Chemistry, Rzeszow University of Technology, Al. Powstańców Warszawy 6, 35-959 Rzeszow, Poland
| | - Yuqi Zhao
- Department of Materials Science & Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Grzegorz Szczepaniak
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Zongyu Wang
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Tong Liu
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Yi Wang
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Mingkang Sun
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Hanshu Wu
- Department of Materials Science & Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Jirameth Tarnsangpradit
- Department of Materials Science & Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Michael R. Bockstaller
- Department of Materials Science & Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
7
|
Fadil Y, Thickett SC, Agarwal V, Zetterlund PB. Synthesis of graphene-based polymeric nanocomposites using emulsion techniques. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2021.101476] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
8
|
Awad M, Dhib R, Duever T. Atom transfer radical polymerization initiated by activator generated by electron transfer in emulsion media: a review of recent advances and challenges from an engineering perspective. J DISPER SCI TECHNOL 2021. [DOI: 10.1080/01932691.2021.2021089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Mohammed Awad
- Department of Chemical Engineering, Ryerson University, Toronto, Canada
| | - Ramdhane Dhib
- Department of Chemical Engineering, Ryerson University, Toronto, Canada
| | - Thomas Duever
- Department of Chemical Engineering, Ryerson University, Toronto, Canada
| |
Collapse
|
9
|
Wang Y, Matyjaszewski K. Catalytic Halogen Exchange in Miniemulsion ARGET ATRP: A Pathway to Well-Controlled Block Copolymers. Macromol Rapid Commun 2020; 41:e2000264. [PMID: 32529731 DOI: 10.1002/marc.202000264] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 05/28/2020] [Indexed: 11/10/2022]
Abstract
Halogen exchange in atom transfer radical polymerization (ATRP) is an efficient way to chain-extend from a less active macroinitiator (MI) to a more active monomer. This has been previously achieved by using CuCl/L in the equimolar amount to Pn -Br MI in the chain extension step. However, this approach cannot be effectively applied in systems based on regeneration of activators (ARGET ATRP), since they operate with ppm amounts of catalysts. Herein, a catalytic halogen exchange procedure is reported using a catalytic amount of Cu in miniemulsion ARGET ATRP to chain-extend from a less active poly(n-butyl acrylate) (PBA) MI to a more active methyl methacrylate (MMA) monomer. Influence of different reagents on the initiation efficiency and dispersity is studied. Addition of 0.1 m NaCl or tetraethylammonium chloride to ATRP of MMA initiated by methyl 2-bromopropionate leads to high initiation efficiency and polymers with low dispersity. The optimized conditions are then employed in chain extension of PBA MI with MMA to prepare diblock and triblock copolymers.
Collapse
Affiliation(s)
- Yi Wang
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA, 15213, USA
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA, 15213, USA
| |
Collapse
|
10
|
Affiliation(s)
- Hyun-Seok Yu
- Institute of Materials Science, Polymer Program and Department of Chemistry University of Connecticut, 97 North Eagleville Road, Storrs, Connecticut 06269-3136, United States
| | - Joon-Sung Kim
- Institute of Materials Science, Polymer Program and Department of Chemistry University of Connecticut, 97 North Eagleville Road, Storrs, Connecticut 06269-3136, United States
| | - Vignesh Vasu
- Institute of Materials Science, Polymer Program and Department of Chemistry University of Connecticut, 97 North Eagleville Road, Storrs, Connecticut 06269-3136, United States
| | - Christopher P. Simpson
- Institute of Materials Science, Polymer Program and Department of Chemistry University of Connecticut, 97 North Eagleville Road, Storrs, Connecticut 06269-3136, United States
| | - Alexandru D. Asandei
- Institute of Materials Science, Polymer Program and Department of Chemistry University of Connecticut, 97 North Eagleville Road, Storrs, Connecticut 06269-3136, United States
| |
Collapse
|
11
|
Surmacz K, Chmielarz P. Low Ppm Atom Transfer Radical Polymerization in (Mini)Emulsion Systems. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E1717. [PMID: 32268579 PMCID: PMC7178667 DOI: 10.3390/ma13071717] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 03/28/2020] [Accepted: 04/03/2020] [Indexed: 12/17/2022]
Abstract
In the last decade, unceasing interest in atom transfer radical polymerization (ATRP) has been noted, especially in aqueous dispersion systems. Emulsion or miniemulsion is a preferred environment for industrial polymerization due to easier heat dissipation and lower production costs associated with the use of water as a dispersant. The main purpose of this review is to summarize ATRP methods used in emulsion media with different variants of initiating systems. A comparison of a dual over single catalytic approache by interfacial and ion pair catalysis is presented. In addition, future development directions for these methods are suggested for better use in biomedical and electronics industries.
Collapse
Affiliation(s)
- Karolina Surmacz
- Doctoral School of Engineering and Technical Sciences at the Rzeszow University of Technology, Al. Powstańców Warszawy 8, 35-959 Rzeszów, Poland;
| | - Paweł Chmielarz
- Department of Physical Chemistry, Faculty of Chemistry, Rzeszow University of Technology, Al. Powstańców Warszawy 6, 35-959 Rzeszów, Poland
| |
Collapse
|
12
|
Ribelli TG, Lorandi F, Fantin M, Matyjaszewski K. Atom Transfer Radical Polymerization: Billion Times More Active Catalysts and New Initiation Systems. Macromol Rapid Commun 2018; 40:e1800616. [DOI: 10.1002/marc.201800616] [Citation(s) in RCA: 151] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 09/18/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Thomas G. Ribelli
- Department of Chemistry Carnegie Mellon University 4400 Fifth Avenue Pittsburgh PA 15213 USA
| | - Francesca Lorandi
- Department of Chemistry Carnegie Mellon University 4400 Fifth Avenue Pittsburgh PA 15213 USA
| | - Marco Fantin
- Department of Chemistry Carnegie Mellon University 4400 Fifth Avenue Pittsburgh PA 15213 USA
| | - Krzysztof Matyjaszewski
- Department of Chemistry Carnegie Mellon University 4400 Fifth Avenue Pittsburgh PA 15213 USA
| |
Collapse
|
13
|
Rusen E, Diacon A, Mocanu A, Culita DC, Dinescu A, Zecheru T. “A real” emulsion polymerization using simple ATRP reaction in the presence of an oligo-initiator with a dual activity of emulsifier and initiator. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2018.06.062] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
14
|
Lorandi F, Wang Y, Fantin M, Matyjaszewski K. Ab Initio Emulsion Atom‐Transfer Radical Polymerization. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201804647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Francesca Lorandi
- Department of Chemistry Carnegie Mellon University 4400 Fifth Avenue Pittsburgh PA 15213 USA
| | - Yi Wang
- Department of Chemistry Carnegie Mellon University 4400 Fifth Avenue Pittsburgh PA 15213 USA
| | - Marco Fantin
- Department of Chemistry Carnegie Mellon University 4400 Fifth Avenue Pittsburgh PA 15213 USA
| | - Krzysztof Matyjaszewski
- Department of Chemistry Carnegie Mellon University 4400 Fifth Avenue Pittsburgh PA 15213 USA
| |
Collapse
|
15
|
Wang Y, Dadashi-Silab S, Matyjaszewski K. Photoinduced Miniemulsion Atom Transfer Radical Polymerization. ACS Macro Lett 2018; 7:720-725. [PMID: 35632954 DOI: 10.1021/acsmacrolett.8b00371] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Photomediated atom transfer radical polymerization (photoATRP) of (meth)acrylic monomers was conducted in miniemulsion media. The polymerization procedures took advantage of an ion-pair catalyst formed by interaction of Cu/TPMA2 (TPMA = tris(2-pyridylmethyl)amine) and an anionic surfactant, sodium dodecyl sulfate (SDS). The ion-pair catalyst was efficient in controlling ATRP reactions with catalyst loadings as low as 100 ppm. The effect of different polymerization parameters, such as the size of the reaction vial, amount of surfactant, and solids content influencing the photoATRP in miniemulsion, was studied. The polymerization was conducted with solids content ranging from 5 to 50 vol % under a moderate surfactant loading (<5 wt % relative to monomer). Excellent temporal control was achieved upon switching the UV light on and off multiple times, and the polymer was successfully chain extended, indicating high retention of chain-end fidelity.
Collapse
Affiliation(s)
- Yi Wang
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Sajjad Dadashi-Silab
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
16
|
Lorandi F, Wang Y, Fantin M, Matyjaszewski K. Ab Initio Emulsion Atom-Transfer Radical Polymerization. Angew Chem Int Ed Engl 2018; 57:8270-8274. [PMID: 29845718 DOI: 10.1002/anie.201804647] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Indexed: 11/09/2022]
Abstract
Stable latexes of poly(meth)acrylates with predetermined molecular weights, narrow molecular-weight distributions, and controlled architecture were prepared by true ab initio emulsion atom-transfer radical polymerization. Water-soluble (macro)initiators in combination with a hydrophilic catalyst, Cu/tris(2-pyridylmethyl)amine, initiated the polymerization in the aqueous phase. The catalyst strongly interacted with the surfactant sodium dodecyl sulfate (SDS), thereby tuning the polymerization within nucleated hydrophobic polymer particles. Long-term stable latexes were obtained, even with SDS loading below 3 wt % relative to monomer. Block and gradient copolymers were prepared in situ. The reaction volume and solid content were successfully increased to 100 mL and 40 vol %, respectively, thus suggesting facile scale-up of this technique. The proposed setup could be integrated in existing industrial plants used for emulsion polymerization.
Collapse
Affiliation(s)
- Francesca Lorandi
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA, 15213, USA
| | - Yi Wang
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA, 15213, USA
| | - Marco Fantin
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA, 15213, USA
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA, 15213, USA
| |
Collapse
|
17
|
Zhao Y, Gong H, Jiang K, Yan S, Lin J, Chen M. Organocatalyzed Photoredox Polymerization from Aromatic Sulfonyl Halides: Facilitating Graft from Aromatic C–H Bonds. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b00134] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Yucheng Zhao
- State Key Laboratory
of Molecular Engineering of Polymers, Department of Macromolecular
Science, Fudan University, Shanghai 200433, China
- Key Laboratory of Medicinal Chemistry for
Natural Resource, Ministry Education, School of Chemical Science and
Technology, Yunnan University, Kunming 650091, China
| | - Honghong Gong
- State Key Laboratory
of Molecular Engineering of Polymers, Department of Macromolecular
Science, Fudan University, Shanghai 200433, China
| | - Kunming Jiang
- State Key Laboratory
of Molecular Engineering of Polymers, Department of Macromolecular
Science, Fudan University, Shanghai 200433, China
| | - Shengjiao Yan
- Key Laboratory of Medicinal Chemistry for
Natural Resource, Ministry Education, School of Chemical Science and
Technology, Yunnan University, Kunming 650091, China
| | - Jun Lin
- Key Laboratory of Medicinal Chemistry for
Natural Resource, Ministry Education, School of Chemical Science and
Technology, Yunnan University, Kunming 650091, China
| | - Mao Chen
- State Key Laboratory
of Molecular Engineering of Polymers, Department of Macromolecular
Science, Fudan University, Shanghai 200433, China
| |
Collapse
|
18
|
Wang Y, Lorandi F, Fantin M, Chmielarz P, Isse AA, Gennaro A, Matyjaszewski K. Miniemulsion ARGET ATRP via Interfacial and Ion-Pair Catalysis: From ppm to ppb of Residual Copper. Macromolecules 2017; 50:8417-8425. [PMID: 29983450 PMCID: PMC6029244 DOI: 10.1021/acs.macromol.7b01730] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
It was recently reported that copper catalysts used in atom transfer radical polymerization (ATRP) can combine with anionic surfactants used in emulsion polymerization to form ion pairs. The ion pairs predominately reside at the surface of the monomer droplets, but they can also migrate inside the droplets and induce a controlled polymerization. This concept was applied to activator regenerated by electron transfer (ARGET) ATRP, with ascorbic acid as reducing agent. ATRP of n-butyl acrylate (BA) and n-butyl methacrylate (BMA) was carried out in miniemulsion using CuII/tris(2-pyridylmethyl)amine (TPMA) as catalyst, with several anionic surfactants forming the reactive ion-pair complexes. The amount and structure of surfactant controlled both the polymerization rate and the final particle size. Well-controlled polymers were prepared with catalyst loadings as low as 50 ppm, leaving only 300 ppb of Cu in the precipitated polymer. Efficient chain extension of a poly(BMA)-Br macroinitiator confirmed high retention of chain-end functionality. This procedure was exploited to prepare polymers with complex architectures such as block copolymers, star polymers, and molecular brushes.
Collapse
Affiliation(s)
- Yi Wang
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Francesca Lorandi
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Marco Fantin
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Paweł Chmielarz
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
- Department of Physical Chemistry, Faculty of Chemistry, Rzeszów University of Technology, Al. Powstańców Warszawy 6, 35-959 Rzeszow, Poland
| | - Abdirisak A. Isse
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Armando Gennaro
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
19
|
Fantin M, Chmielarz P, Wang Y, Lorandi F, Isse AA, Gennaro A, Matyjaszewski K. Harnessing the interaction between surfactant and hydrophilic catalyst to control eATRP in miniemulsion. Macromolecules 2017; 50:3726-2732. [PMID: 29977099 PMCID: PMC6029256 DOI: 10.1021/acs.macromol.7b00530] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In contrast with previous accounts, it is reported that a single, strongly hydrophilic Cu complex can control an electrochemically mediated atom transfer radical polymerization (eATRP) in oil-in-water miniemulsion in the presence of anionic surfactants, such as sodium dodecyl sulfate (SDS). The anionic surfactant interacted strongly with cationic copper complexes, enabling controlled polymerization by a combination of "interfacial" and "ion-pair" catalysis, whereby ion pairs transport the catalyst to the monomer droplets. The ion-pair system was assembled in situ by mixing commercially available reagents (NaBr, SDS, and traditional hydrophilic copper complexes). Polymer purification was very facile because after reaction >99% of the hydrophilic copper complexes spontaneously left the hydrophobic polymer particles.
Collapse
Affiliation(s)
- Marco Fantin
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213
| | - Paweł Chmielarz
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213
- Department of Physical Chemistry, Faculty of Chemistry, Rzeszow University of Technology, Al. Powstańców Warszawy 6, 35-959 Rzeszow, Poland
| | - Yi Wang
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213
| | - Francesca Lorandi
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Abdirisak A. Isse
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Armando Gennaro
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213
| |
Collapse
|
20
|
Hadzir NHN, Dong S, Kuchel RP, Lucien FP, Zetterlund PB. Mechanistic Aspects of Aqueous Heterogeneous Radical Polymerization of Styrene under Compressed CO2. MACROMOL CHEM PHYS 2017. [DOI: 10.1002/macp.201700128] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Noor Hadzuin Nik Hadzir
- Centre for Advanced Macromolecular Design (CAMD); School of Chemical Engineering; University of New South Wales; UNSW Sydney NSW 2052 Australia
- Department of Food Technology; Faculty of Food Science and Technology; Universiti Putra Malaysia; 43400 Serdang Selangor Malaysia
| | - Siming Dong
- Centre for Advanced Macromolecular Design (CAMD); School of Chemical Engineering; University of New South Wales; UNSW Sydney NSW 2052 Australia
| | - Rhiannon P. Kuchel
- Electron Microscope Unit; Mark Wainwright Analytical Centre; University of New South Wales; UNSW Sydney NSW 2052 Australia
| | - Frank P. Lucien
- Centre for Advanced Macromolecular Design (CAMD); School of Chemical Engineering; University of New South Wales; UNSW Sydney NSW 2052 Australia
| | - Per B. Zetterlund
- Centre for Advanced Macromolecular Design (CAMD); School of Chemical Engineering; University of New South Wales; UNSW Sydney NSW 2052 Australia
| |
Collapse
|
21
|
Affiliation(s)
- Paul Wilson
- University of Warwick; Department of Chemistry; Coventry Library Rd CV4 7AL UK
| |
Collapse
|
22
|
Bultz E, Ouchi M, Fujimura K, Sawamoto M, Cunningham MF. Ferrocene cocatalysis for ruthenium-catalyzed radical miniemulsion polymerization. POLYMER 2016. [DOI: 10.1016/j.polymer.2016.08.084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
23
|
Fantin M, Park S, Wang Y, Matyjaszewski K. Electrochemical Atom Transfer Radical Polymerization in Miniemulsion with a Dual Catalytic System. Macromolecules 2016; 49:8838-8847. [PMID: 29977097 PMCID: PMC6029247 DOI: 10.1021/acs.macromol.6b02037] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
An electrochemical approach was used to control atom transfer radical polymerization (ATRP) of n-butyl acrylate (BA) in miniemulsion. Electropolymerization required a dual catalytic system, composed of an aqueous phase catalyst and an organic phase catalyst. This allowed shuttling the electrochemical stimulus from the working electrode (WE) to the continuous aqueous phase and to the dispersed monomer droplets. As aqueous phase catalysts, the hydrophilic Cu complexes with the ligands N,N-bis( 2-pyridylmethyl)-2-hydroxyethylamine (BPMEA), 2,2'-bipyridine (bpy), and tris(2-pyridylmethyl)amine (TPMA) were tested. As organic phase catalysts, the hydrophobic complexes with the ligands bis(2-pyridylmethyl)-octadecylamine (BPMODA) and bis[2-(4-methoxy-3,5-dimethyl)-pyridylmethyl]octadecylamine (BPMODA*) were evaluated. Highest rates and best control of BA electropolymerization were obtained with the water-soluble Cu/BPMEA used in combination with the oil-soluble Cu/BPMODA*. The polymerization rate could be further enhanced by changing the potential applied at the WE. Differently from traditional ATRP systems, reactivity of the dual catalytic system did not depend on the redox potential of the catalysts but instead depended on the hydrophobicity and partition coefficient of the aqueous phase catalyst.
Collapse
Affiliation(s)
- Marco Fantin
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Sangwoo Park
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Yi Wang
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
24
|
van Ravensteijn BGP, Kegel WK. Versatile procedure for site-specific grafting of polymer brushes on patchy particles via atom transfer radical polymerization (ATRP). Polym Chem 2016. [DOI: 10.1039/c6py00450d] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Combining chemically anisotropic colloids with Surface-Initiated ATRP enables for site-specific grafting of p(NIPAM) brushes. The resulting, partially grafted particles are employed as colloidal building blocks for finite-sized clusters.
Collapse
Affiliation(s)
- Bas G. P. van Ravensteijn
- Van 't Hoff Laboratory for Physical and Colloid Chemistry
- Debye Institute for NanoMaterials Science
- Utrecht University
- Utrecht
- The Netherlands
| | - Willem K. Kegel
- Van 't Hoff Laboratory for Physical and Colloid Chemistry
- Debye Institute for NanoMaterials Science
- Utrecht University
- Utrecht
- The Netherlands
| |
Collapse
|
25
|
Lorandi F, Fantin M, Isse AA, Gennaro A. Electrochemically mediated atom transfer radical polymerization of n-butyl acrylate on non-platinum cathodes. Polym Chem 2016. [DOI: 10.1039/c6py01032f] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Inexpensive metals and metal alloys were used as cathodes in well-controlled, electrochemically mediated ATRP ofn-butyl acrylate in DMF with the ppm level of catalysts.
Collapse
Affiliation(s)
- Francesca Lorandi
- Department of Chemical Sciences
- University of Padova
- 35131 Padova
- Italy
| | - Marco Fantin
- Department of Chemical Sciences
- University of Padova
- 35131 Padova
- Italy
- Center for Molecular Engineering
| | - Abdirisak A. Isse
- Department of Chemical Sciences
- University of Padova
- 35131 Padova
- Italy
| | - Armando Gennaro
- Department of Chemical Sciences
- University of Padova
- 35131 Padova
- Italy
| |
Collapse
|
26
|
Loiko OP, Spoelstra AB, van Herk AM, Meuldijk J, Heuts JPA. An ATRP-based approach towards water-borne anisotropic polymer–Gibbsite nanocomposites. Polym Chem 2016. [DOI: 10.1039/c6py00225k] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
This paper describes the synthesis of anisotropic polymer–Gibbsite nanocomposites with “muffin-like” morphology via a starved-feed ATRP emulsion polymerisation.
Collapse
Affiliation(s)
- Olessya P. Loiko
- Department of Chemical Engineering and Chemistry
- Eindhoven University of Technology
- 5600 MB Eindhoven
- The Netherlands
| | - Anne B. Spoelstra
- Department of Chemical Engineering and Chemistry
- Eindhoven University of Technology
- 5600 MB Eindhoven
- The Netherlands
| | - Alexander M. van Herk
- Department of Chemical Engineering and Chemistry
- Eindhoven University of Technology
- 5600 MB Eindhoven
- The Netherlands
- Institute of Chemical and Engineering Sciences
| | - Jan Meuldijk
- Department of Chemical Engineering and Chemistry
- Eindhoven University of Technology
- 5600 MB Eindhoven
- The Netherlands
| | - Johan P. A. Heuts
- Department of Chemical Engineering and Chemistry
- Eindhoven University of Technology
- 5600 MB Eindhoven
- The Netherlands
| |
Collapse
|
27
|
Zetterlund PB, Thickett SC, Perrier S, Bourgeat-Lami E, Lansalot M. Controlled/Living Radical Polymerization in Dispersed Systems: An Update. Chem Rev 2015; 115:9745-800. [PMID: 26313922 DOI: 10.1021/cr500625k] [Citation(s) in RCA: 330] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Per B Zetterlund
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales , Sydney, NSW 2052, Australia
| | - Stuart C Thickett
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales , Sydney, NSW 2052, Australia
| | - Sébastien Perrier
- Department of Chemistry, The University of Warwick , Coventry CV4 7AL, U.K.,Faculty of Pharmacy and Pharmaceutical Sciences, Monash University , Melbourne, VIC 3052, Australia
| | - Elodie Bourgeat-Lami
- Laboratory of Chemistry, Catalysis, Polymers and Processes (C2P2), LCPP group, Université de Lyon, Université Lyon 1, CPE Lyon, CNRS, UMR 5265, 43, Boulevard du 11 Novembre 1918, F-69616 Villeurbanne, France
| | - Muriel Lansalot
- Laboratory of Chemistry, Catalysis, Polymers and Processes (C2P2), LCPP group, Université de Lyon, Université Lyon 1, CPE Lyon, CNRS, UMR 5265, 43, Boulevard du 11 Novembre 1918, F-69616 Villeurbanne, France
| |
Collapse
|
28
|
Xue Z, Wang Z, He D, Zhou X, Xie X. Synthesis of poly(n
-butyl acrylate) homopolymer and poly(styrene-b
-n
-butyl acrylate-b
-styrene) triblock copolymer via AGET emulsion ATRP using a cationic surfactant. ACTA ACUST UNITED AC 2015. [DOI: 10.1002/pola.27809] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Zhigang Xue
- Key Laboratory for Large-Format Battery Materials and Systems, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology; Wuhan 430074 China
| | - Zhen Wang
- Key Laboratory for Large-Format Battery Materials and Systems, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology; Wuhan 430074 China
| | - Dan He
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, School of Chemical and Environmental Engineering, Jianghan University; Wuhan 430056 China
| | - Xingping Zhou
- Key Laboratory for Large-Format Battery Materials and Systems, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology; Wuhan 430074 China
| | - Xiaolin Xie
- Key Laboratory for Large-Format Battery Materials and Systems, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology; Wuhan 430074 China
| |
Collapse
|
29
|
Zhang Q, Li M, Zhu C, Nurumbetov G, Li Z, Wilson P, Kempe K, Haddleton DM. Well-Defined Protein/Peptide–Polymer Conjugates by Aqueous Cu-LRP: Synthesis and Controlled Self-Assembly. J Am Chem Soc 2015; 137:9344-53. [DOI: 10.1021/jacs.5b04139] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Qiang Zhang
- Department of Chemistry, University of Warwick, CV4 7AL, Coventry, United Kingdom
| | - Muxiu Li
- Department of Chemistry, University of Warwick, CV4 7AL, Coventry, United Kingdom
| | - Chongyu Zhu
- Department of Chemistry, University of Warwick, CV4 7AL, Coventry, United Kingdom
| | - Gabit Nurumbetov
- Department of Chemistry, University of Warwick, CV4 7AL, Coventry, United Kingdom
| | - Zaidong Li
- Department of Chemistry, University of Warwick, CV4 7AL, Coventry, United Kingdom
| | - Paul Wilson
- Department of Chemistry, University of Warwick, CV4 7AL, Coventry, United Kingdom
| | - Kristian Kempe
- Department of Chemistry, University of Warwick, CV4 7AL, Coventry, United Kingdom
| | - David M. Haddleton
- Department of Chemistry, University of Warwick, CV4 7AL, Coventry, United Kingdom
| |
Collapse
|
30
|
Ding M, Jiang X, Zhang L, Cheng Z, Zhu X. Recent Progress on Transition Metal Catalyst Separation and Recycling in ATRP. Macromol Rapid Commun 2015; 36:1702-21. [PMID: 26079178 DOI: 10.1002/marc.201500085] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Revised: 03/31/2015] [Indexed: 12/29/2022]
Abstract
Atom transfer radical polymerization (ATRP) is a versatile and robust tool to synthesize a wide spectrum of monomers with various designable structures. However, it usually needs large amounts of transition metal as the catalyst to mediate the equilibrium between the dormant and propagating species. Unfortunately, the catalyst residue may contaminate or color the resultant polymers, which limits its application, especially in biomedical and electronic materials. How to efficiently and economically remove or reduce the catalyst residue from its products is a challenging and encouraging task. Herein, recent advances in catalyst separation and recycling are highlighted with a focus on (1) highly active ppm level transition metal or metal free catalyzed ATRP; (2) post-purification method; (3) various soluble, insoluble, immobilized/soluble, and reversible supported catalyst systems; and (4) liquid-liquid biphasic catalyzed systems, especially thermo-regulated catalysis systems.
Collapse
Affiliation(s)
- Mingqiang Ding
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Xiaowu Jiang
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Lifen Zhang
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Zhenping Cheng
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Xiulin Zhu
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| |
Collapse
|