1
|
Liu Y, Wang S, Dong J, Huo P, Zhang D, Han S, Yang J, Jiang Z. External Stimuli-Induced Welding of Dynamic Cross-Linked Polymer Networks. Polymers (Basel) 2024; 16:621. [PMID: 38475305 DOI: 10.3390/polym16050621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 03/14/2024] Open
Abstract
Thermosets have been crucial in modern engineering for decades, finding applications in various industries. Welding cross-linked components are essential in the processing of thermosets for repairing damaged areas or fabricating complex structures. However, the inherent insolubility and infusibility of thermoset materials, attributed to their three-dimensional network structure, pose challenges to welding development. Incorporating dynamic chemical bonds into highly cross-linked networks bridges the gap between thermosets and thermoplastics presenting a promising avenue for innovative welding techniques. External stimuli, including thermal, light, solvent, pH, electric, and magnetic fields, induce dynamic bonds' breakage and reformation, rendering the cross-linked network malleable. This plasticity facilitates the seamless linkage of two parts to an integral whole, attracting significant attention for potential applications in soft actuators, smart devices, solid batteries, and more. This review provides a comprehensive overview of dynamic bonds employed in welding dynamic cross-linked networks (DCNs). It extensively discusses the classification and fabrication of common epoxy DCNs and acrylate DCNs. Notably, recent advancements in welding processes based on DCNs under external stimuli are detailed, focusing on the welding dynamics among covalent adaptable networks (CANs).
Collapse
Affiliation(s)
- Yun Liu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150040, China
| | - Sheng Wang
- Key Laboratory of Bio-Based Materials Science & Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Jidong Dong
- Key Laboratory of Bio-Based Materials Science & Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Pengfei Huo
- Key Laboratory of Bio-Based Materials Science & Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Dawei Zhang
- Key Laboratory of Bio-Based Materials Science & Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Shuaiyuan Han
- Key Laboratory of Bio-Based Materials Science & Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Jie Yang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Zaixing Jiang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150040, China
| |
Collapse
|
2
|
Wang T, Gao D, Yin H, Zhao J, Wang X, Niu H. Kinetic Study of the Diels-Alder Reaction between Maleimide and Furan-Containing Polystyrene Using Infrared Spectroscopy. Polymers (Basel) 2024; 16:441. [PMID: 38337328 DOI: 10.3390/polym16030441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
The Diels-Alder (D-A) reaction between furan and maleimide is a thermally reversible reaction that has become a vital chemical technique for designing polymer structures and functions. The kinetics of this reaction, particularly in polymer bulk states, have significant practical implications. In this study, we investigated the feasibility of utilizing infrared spectroscopy to measure the D-A reaction kinetics in bulk-state polymer. Specifically, we synthesized furan-functionalized polystyrene and added a maleimide small-molecule compound to form a D-A adduct. The intensity of the characteristic absorption peak of the D-A adduct was quantitatively measured by infrared spectroscopy, and the dependence of conversion of the D-A reaction on time was obtained at different temperatures. Subsequently, the D-A reaction apparent kinetic coefficient kapp and the Arrhenius activation energy Ea,D-A were calculated. These results were compared with those determined from 1H-NMR in the polymer solution states.
Collapse
Affiliation(s)
- Tongtong Wang
- Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Dali Gao
- SINOPEC (Beijing) Research Institute of Chemical Industry Co., Ltd., Beijing 100013, China
| | - Hua Yin
- SINOPEC (Beijing) Research Institute of Chemical Industry Co., Ltd., Beijing 100013, China
| | - Jiawei Zhao
- SINOPEC (Beijing) Research Institute of Chemical Industry Co., Ltd., Beijing 100013, China
| | - Xingguo Wang
- SINOPEC (Beijing) Research Institute of Chemical Industry Co., Ltd., Beijing 100013, China
| | - Hui Niu
- Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
3
|
Wang F, Zhang Y, Hu S, Zhong X, Bai J, Zhang Y, Bao J. Preparation and Characterization of Conductive/Self-Healing Resin Nanocomposites Based on Tetrafunctional Furan-Functionalized Aniline Trimer Modified Graphene. Polymers (Basel) 2023; 16:90. [PMID: 38201755 PMCID: PMC10780900 DOI: 10.3390/polym16010090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/17/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
The nanocomposites with reversible cross-linking covalent bonds were prepared by reacting furfurylamine (FA)-modified diglycidyl ether of bisphenol A (DGEBA) and furfuryl-functionalized aniline trimer-modified graphene (TFAT-G) with bismaleimide (BMI) via the Diels-Alder (DA) reaction. The successful synthesis of the TFAT modifier is confirmed by nuclear magnetic resonance (NMR) hydrogen spectroscopy and IR spectroscopy tests. The structure and properties of TFAT-G epoxy nanocomposites are characterized by scanning electron microscopy (SEM), differential scanning calorimeter (DSC), tensile, and resistivity. The results show that TFAT-G was uniformly dispersed in the resin, and 1 wt% TFAT-G composites increased to 233% for tensile strength, 63% for elongation at break, 66% for modulus, and 7.8 °C for Tg. In addition, the addition of unmodified graphene degrades the mechanical properties of the composite. Overall, the graphene/self-healing resin nanocomposites have both good self-healing function and electrical conductivity by adding 1 wt% modified graphene; this allows for the maintenance of the original 83% strength and 89% electrical conductivity after one cycle of heating repair.
Collapse
Affiliation(s)
- Feng Wang
- AVIC Composite Corporation Ltd., Beijing 101300, China; (F.W.); (Y.Z.); (S.H.)
| | - Yichuan Zhang
- AVIC Composite Corporation Ltd., Beijing 101300, China; (F.W.); (Y.Z.); (S.H.)
| | - Su Hu
- AVIC Composite Corporation Ltd., Beijing 101300, China; (F.W.); (Y.Z.); (S.H.)
| | - Xiangyu Zhong
- Key Laboratory of Advanced Composite, Composite Technology Center, AVIC Composite Corporation Ltd., Beijing 101300, China
| | - Jiangbo Bai
- School of Transportation Science and Engineering, Beihang University, Beijing 100191, China
| | - Yang Zhang
- AVIC Composite Corporation Ltd., Beijing 101300, China; (F.W.); (Y.Z.); (S.H.)
| | - Jianwen Bao
- AVIC Composite Corporation Ltd., Beijing 101300, China; (F.W.); (Y.Z.); (S.H.)
- Key Laboratory of Advanced Composite, Composite Technology Center, AVIC Composite Corporation Ltd., Beijing 101300, China
| |
Collapse
|
4
|
Gu S, Xiao YF, Tan SH, Liu BW, Guo DM, Wang YZ, Chen L. Neighboring Molecular Engineering in Diels-Alder Chemistry Enabling Easily Recyclable Carbon Fiber Reinforced Composites. Angew Chem Int Ed Engl 2023:e202312638. [PMID: 37759361 DOI: 10.1002/anie.202312638] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/27/2023] [Accepted: 09/27/2023] [Indexed: 09/29/2023]
Abstract
Although a variety of dynamic covalent bonds have been successfully used in the development of diverse sustainable thermosetting polymers and their composites, solving the trade-off between recovery efficiency and comprehensive properties is still a major challenge. Herein, a "one-stone-two-birds" strategy of lower rotational energy barrier (Er ) phosphate-derived Diels-Alder (DA) cycloadditions was proposed for easily recyclable carbon fiber (CF)-reinforced epoxy resins (EPs) composites. In such a strategy, the phosphate spacer with lower Er accelerated the segmental mobility and dynamic DA exchange reaction for network rearrangement to achieve high-efficiency repairing, reprocessing of the EPs matrix and its composites and rapid nondestructive recycling of CF; meanwhile, incorporating phosphorus-based units especially reduced their fire hazards. The resulting materials simultaneously showed excellent thermal/mechanical properties, superb fire safety and facile recyclability, realizing the concept of recycling for high-performance thermosetting polymers and composites. This strategy is of great significance for understanding and enriching the molecular connotation of DA chemistry, making it potentially applicable to the design and development of a wide range of dynamic covalent adaptable materials toward practical cutting-edge-tech applications.
Collapse
Affiliation(s)
- Song Gu
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Yan-Fang Xiao
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Shi-Huan Tan
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Bo-Wen Liu
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - De-Ming Guo
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Yu-Zhong Wang
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Li Chen
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
5
|
Wang J, Li J, Zhang J, Liu S, Wan L, Liu Z, Huang F. High-Performance Reversible Furan-Maleimide Resins Based on Furfuryl Glycidyl Ether and Bismaleimides. Polymers (Basel) 2023; 15:3470. [PMID: 37631526 PMCID: PMC10459929 DOI: 10.3390/polym15163470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/12/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
Two reversible furan-maleimide resins, in which there are rigid -Ph-CH2-Ph- structures and flexible -(CH2)6- structures in bismaleimides, were synthesized from furfuryl glycidyl ethers (FGE), 4,4'-diaminodiphenyl ether (ODA), N,N'-4,4'-diphenylmethane-bismaleimide (DBMI), and N,N'-hexamethylene-bismaleimide (HBMI). The structures of the resins were confirmed using Fourier transform infrared analysis, and the thermoreversibility was evidenced using differential scanning calorimetry (DSC) analysis, as well as the sol-gel transformation process. Mechanical properties and recyclability of the resins were preliminarily evaluated using the flexural test. The results show the Diels-Alder (DA) reaction occurs at about 90 °C and the reversible DA reaction occurs at 130-140 °C for the furan-maleimide resin. Thermally reversible furan-maleimide resins have high mechanical properties. The flexural strength of cured FGE-ODA-HBMI resin arrives at 141 MPa. The resins have a repair efficiency of over 75%. After being hot-pressed three times, two resins display flexural strength higher than 80 MPa.
Collapse
Affiliation(s)
- Jiawen Wang
- Key Laboratory for Specially Functional Materials and Related Technology of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China; (J.W.); (S.L.)
| | - Jixian Li
- Key Laboratory for Specially Functional Materials and Related Technology of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China; (J.W.); (S.L.)
| | - Jun Zhang
- Key Laboratory for Specially Functional Materials and Related Technology of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China; (J.W.); (S.L.)
| | - Shuyue Liu
- Key Laboratory for Specially Functional Materials and Related Technology of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China; (J.W.); (S.L.)
| | - Liqiang Wan
- Key Laboratory for Specially Functional Materials and Related Technology of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China; (J.W.); (S.L.)
| | - Zuozhen Liu
- Key Laboratory for Specially Functional Materials and Related Technology of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China; (J.W.); (S.L.)
- Huachang Polymers Co., Ltd., East China University of Science and Technology, Shanghai 200241, China
| | - Farong Huang
- Key Laboratory for Specially Functional Materials and Related Technology of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China; (J.W.); (S.L.)
| |
Collapse
|
6
|
Jiang Y, Wang S, Dong W, Kaneko T, Chen M, Shi D. High-Strength, Degradable and Recyclable Epoxy Resin Based on Imine Bonds for Its Carbon-Fiber-Reinforced Composites. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1604. [PMID: 36837235 PMCID: PMC9963643 DOI: 10.3390/ma16041604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 06/18/2023]
Abstract
Carbon fiber (CF) is widely used in the preparation of carbon-fiber-reinforced polymer composites (CFRP) in which it is combined with epoxy resin due to its good mechanical properties. Thermosetting bisphenol A epoxy resin, as one of the most common polymer materials, is a non-renewable resource, leading to a heavy environmental burden and resource waste. To solve the above problems and achieve high mechanical and thermal properties comparable to those of bisphenol A, herein, a high-performance, degradable and recyclable bio-based epoxy resin was developed by reacting the lignin derivative vanillin with 4-amino cyclohexanol via Schiff base. This bio-based epoxy resin showed a Young's modulus of 2.68 GPa and tensile strength of 44 MPa, 36.8% and 15.8% higher than those of bisphenol A epoxy, respectively. Based on the reversible exchange reaction of the imine bond, the resin exhibited good degradation in an acidic environment and was recoverable by heat treatment. Moreover, the prepared epoxy resin could be used to prepare carbon fiber (CF)-reinforced composites. By washing off the epoxy resin, the carbon fiber could be completely recycled. The recovered carbon fiber was well preserved and could be used again for the preparation of composite materials to realize the complete recovery and utilization of carbon fiber. This study opens a way for the preparation of high-performance epoxy resin and the effective recycling of carbon fiber.
Collapse
Affiliation(s)
- Yue Jiang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Shuai Wang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Weifu Dong
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Tatsuo Kaneko
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
- Graduate School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, Nomi 923-1292, Ishikawa, Japan
| | - Mingqing Chen
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Dongjian Shi
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
7
|
Cardosa-Gutierrez M, De Bo G, Duwez AS, Remacle F. Bond breaking of furan-maleimide adducts via a diradical sequential mechanism under an external mechanical force. Chem Sci 2023; 14:1263-1271. [PMID: 36756317 PMCID: PMC9891376 DOI: 10.1039/d2sc05051j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/27/2022] [Indexed: 01/06/2023] Open
Abstract
Substituted furan-maleimide Diels-Alder adducts are bound by dynamic covalent bonds that make them particularly attractive mechanophores. Thermally activated [4 + 2] retro-Diels-Alder (DA) reactions predominantly proceed via a concerted mechanism in the ground electronic state. We show that an asymmetric mechanical force along the anchoring bonds in both the endo and exo isomers of proximal dimethyl furan-maleimide adducts favors a sequential pathway. The switching from a concerted to a sequential mechanism occurs at external forces of ≈1 nN. The first bond rupture occurs for a projection of the pulling force on the scissile bond at ≈4.3 nN for the exo adduct and ≈3.8 nN for the endo one. The reaction is inhibited for external forces up to ≈3.4 nN for the endo adduct and 3.6 nN for the exo one after which it is activated. In the activated region, at 4 nN, the rupture rate of the first bond for the endo adduct is computed to be ≈3 orders of magnitude larger than for the exo one in qualitative agreement with recent sonication experiments [Z. Wang and S. L. Craig, Chem. Commun., 2019, 55, 12263-12266]. In the intermediate region of the path between the rupture of the first and the second bond, the lowest singlet state exhibits a diradical character for both adducts and is close in energy to a diradical triplet state. The computed values of spin-orbit coupling along the path are too small for inducing intersystem crossings. These findings open the way for the rational design of DA mechanophores for polymer science and photochemistry.
Collapse
Affiliation(s)
| | - Guillaume De Bo
- Department of Chemistry, University of ManchesterManchesterM13 9PLUK
| | - Anne-Sophie Duwez
- UR Molecular Systems, Department of Chemistry, University of Liège 4000 Liège Belgium
| | - Francoise Remacle
- UR Molecular Systems, Department of Chemistry, University of Liège 4000 Liège Belgium
| |
Collapse
|
8
|
Liu L, Wang F, Zhu Y, Qi H. Degradable Schiff base benzoxazine thermosets with high glass transition temperature and its high‐performance epoxy alloy: Synthesis and properties. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Lele Liu
- Key Laboratory of Specially Functional Polymeric Materials and Related Technology of Ministry of Education School of Materials Science and Engineering, East China University of Science & Technology Shanghai China
| | - Fan Wang
- Key Laboratory of Specially Functional Polymeric Materials and Related Technology of Ministry of Education School of Materials Science and Engineering, East China University of Science & Technology Shanghai China
| | - Yaping Zhu
- Key Laboratory of Specially Functional Polymeric Materials and Related Technology of Ministry of Education School of Materials Science and Engineering, East China University of Science & Technology Shanghai China
| | - Huimin Qi
- Key Laboratory of Specially Functional Polymeric Materials and Related Technology of Ministry of Education School of Materials Science and Engineering, East China University of Science & Technology Shanghai China
| |
Collapse
|
9
|
Yeingst TJ, Arrizabalaga JH, Hayes DJ. Ultrasound-Induced Drug Release from Stimuli-Responsive Hydrogels. Gels 2022; 8:554. [PMID: 36135267 PMCID: PMC9498906 DOI: 10.3390/gels8090554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/27/2022] [Accepted: 08/29/2022] [Indexed: 12/16/2022] Open
Abstract
Stimuli-responsive hydrogel drug delivery systems are designed to release a payload when prompted by an external stimulus. These platforms have become prominent in the field of drug delivery due to their ability to provide spatial and temporal control for drug release. Among the different external triggers that have been used, ultrasound possesses several advantages: it is non-invasive, has deep tissue penetration, and can safely transmit acoustic energy to a localized area. This review summarizes the current state of understanding about ultrasound-responsive hydrogels used for drug delivery. The mechanisms of inducing payload release and activation using ultrasound are examined, along with the latest innovative formulations and hydrogel design strategies. We also report on the most recent applications leveraging ultrasound activation for both cancer treatment and tissue engineering. Finally, the future perspectives offered by ultrasound-sensitive hydrogels are discussed.
Collapse
Affiliation(s)
- Tyus J. Yeingst
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Centre County, PA 16802, USA
| | - Julien H. Arrizabalaga
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Centre County, PA 16802, USA
| | - Daniel J. Hayes
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Centre County, PA 16802, USA
- Materials Research Institute, Millennium Science Complex, The Pennsylvania State University, University Park, Centre County, PA 16802, USA
- The Huck Institute of the Life Sciences, Millennium Science Complex, The Pennsylvania State University, University Park, Centre County, PA 16802, USA
| |
Collapse
|
10
|
Weerathaworn S, Abetz V. Tailor‐made Vinylogous Urethane Vitrimers Based on Binary and Ternary Block and Random Copolymers: An Approach toward Reprocessable Materials. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202200248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Siraphat Weerathaworn
- Institute of Physical Chemistry Universität Hamburg Grindelallee 117 20146 Hamburg Germany
| | - Volker Abetz
- Institute of Physical Chemistry Universität Hamburg Grindelallee 117 20146 Hamburg Germany
- Institute of Membrane Research Helmholtz‐Zentrum Hereon Max‐Planck‐Straße 1 21502 Geesthacht Germany
| |
Collapse
|
11
|
Zhang H, Zhou L, Zhang F, Yang Q, Chen M, Chen Z, Zhang Y, Xiao P, Yu S, Song L, Wu Y, Zhao X, Chen M. Aromatic disulfide epoxy vitrimer packaged electronic devices: Nondestructive healing and recycling. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
12
|
Bailey SJ, Barney CW, Sinha NJ, Pangali SV, Hawker CJ, Helgeson ME, Valentine MT, Read de Alaniz J. Rational mechanochemical design of Diels-Alder crosslinked biocompatible hydrogels with enhanced properties. MATERIALS HORIZONS 2022; 9:1947-1953. [PMID: 35575385 DOI: 10.1039/d2mh00338d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
An important but often overlooked feature of Diels-Alder (DA) cycloadditions is the ability for DA adducts to undergo mechanically induced cycloreversion when placed under force. Herein, we demonstrate that the commonly employed DA cycloaddition between furan and maleimide to crosslink hydrogels results in slow gelation kinetics and "mechanolabile" crosslinks that relate to reduced material strength. Through rational computational design, "mechanoresistant" DA adducts were identified by constrained geometries simulate external force models and employed to enhance failure strength of crosslinked hydrogels. Additionally, utilization of a cyclopentadiene derivative, spiro[2.4]hepta-4,6-diene, provided mechanoresistant DA adducts and rapid gelation in minutes at room temperature. This study illustrates that strategic molecular-level design of DA crosslinks can provide biocompatible materials with improved processing, mechanical durability, lifetime, and utility.
Collapse
Affiliation(s)
- Sophia J Bailey
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA 93106, USA.
| | - Christopher W Barney
- Department of Mechanical Engineering, University of California Santa Barbara, Santa Barbara, CA 93106, USA
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA 93106, USA
- Materials Research Laboratory, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Nairiti J Sinha
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA 93106, USA
- Materials Research Laboratory, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Sai Venkatesh Pangali
- Center for Structural Molecular Biology, Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Craig J Hawker
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA 93106, USA.
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA 93106, USA
- Materials Research Laboratory, University of California Santa Barbara, Santa Barbara, CA 93106, USA
- Materials Department, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Matthew E Helgeson
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA 93106, USA
- Materials Research Laboratory, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Megan T Valentine
- Department of Mechanical Engineering, University of California Santa Barbara, Santa Barbara, CA 93106, USA
- Materials Research Laboratory, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Javier Read de Alaniz
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA 93106, USA.
| |
Collapse
|
13
|
Overholts AC, Robb MJ. Examining the Impact of Relative Mechanophore Activity on the Selectivity of Ultrasound-Induced Mechanochemical Chain Scission. ACS Macro Lett 2022; 11:733-738. [PMID: 35608186 DOI: 10.1021/acsmacrolett.2c00217] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Despite recent advances in polymer mechanochemistry, a more complete understanding of the factors that dictate the ultrasound-induced mechanochemical activation efficiency of mechanophores is necessary. Here, we examine how the identity of a mechanophore, and hence its unique force-coupled reactivity, affects the competition between mechanophore activation and nonspecific polymer backbone scission. Polymers incorporating distinct mechanophores but with putatively similar "chain-centeredness" exhibit widely different mechanochemical activation efficiencies. Furthermore, we employ mechanophores that can be orthogonally cleaved following ultrasonication using heat or light to report on the degree of nonspecific backbone scission that occurs for different mechanophore-containing polymers subjected to ultrasound-induced mechanical force. Our results illustrate that the identity of the mechanophore as well as its position in the polymer chain are inextricably important parameters that together control the selectivity of mechanophore activation during ultrasonication.
Collapse
Affiliation(s)
- Anna C. Overholts
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Maxwell J. Robb
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
14
|
Mihajlovic M, Rikkers M, Mihajlovic M, Viola M, Schuiringa G, Ilochonwu BC, Masereeuw R, Vonk L, Malda J, Ito K, Vermonden T. Viscoelastic Chondroitin Sulfate and Hyaluronic Acid Double-Network Hydrogels with Reversible Cross-Links. Biomacromolecules 2022; 23:1350-1365. [PMID: 35195399 PMCID: PMC8924925 DOI: 10.1021/acs.biomac.1c01583] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/11/2022] [Indexed: 12/13/2022]
Abstract
Viscoelastic hydrogels are gaining interest as they possess necessary requirements for bioprinting and injectability. By means of reversible, dynamic covalent bonds, it is possible to achieve features that recapitulate the dynamic character of the extracellular matrix. Dually cross-linked and double-network (DN) hydrogels seem to be ideal for the design of novel biomaterials and bioinks, as a wide range of properties required for mimicking advanced and complex tissues can be achieved. In this study, we investigated the fabrication of chondroitin sulfate/hyaluronic acid (CS/HA)-based DN hydrogels, in which two networks are interpenetrated and cross-linked with the dynamic covalent bonds of very different lifetimes. Namely, Diels-Alder adducts (between methylfuran and maleimide) and hydrazone bonds (between aldehyde and hydrazide) were chosen as cross-links, leading to viscoelastic hydrogels. Furthermore, we show that viscoelasticity and the dynamic character of the resulting hydrogels could be tuned by changing the composition, that is, the ratio between the two types of cross-links. Also, due to a very dynamic nature and short lifetime of hydrazone cross-links (∼800 s), the DN hydrogel is easily processable (e.g., injectable) in the first stages of gelation, allowing the material to be used in extrusion-based 3D printing. The more long-lasting and robust Diels-Alder cross-links are responsible for giving the network enhanced mechanical strength and structural stability. Being highly charged and hydrophilic, the cross-linked CS and HA enable a high swelling capacity (maximum swelling ratio ranging from 6 to 12), which upon confinement results in osmotically stiffened constructs, able to mimic the mechanical properties of cartilage tissue, with the equilibrium moduli ranging from 0.3 to 0.5 MPa. Moreover, the mesenchymal stromal cells were viable in the presence of the hydrogels, and the effect of the degradation products on the macrophages suggests their safe use for further translational applications. The DN hydrogels with dynamic covalent cross-links hold great potential for the development of novel smart and tunable viscoelastic materials to be used as biomaterial inks or bioinks in bioprinting and regenerative medicine.
Collapse
Affiliation(s)
- Marko Mihajlovic
- Department
of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, 3584 CG Utrecht, The Netherlands
- Department
of Biomedical Engineering, Eindhoven University
of Technology, 5612 AZ Eindhoven, The Netherlands
| | - Margot Rikkers
- Department
of Orthopaedics, University Medical Center Utrecht, Utrecht University, 3508
GA Utrecht, The Netherlands
| | - Milos Mihajlovic
- Department
of Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Martina Viola
- Department
of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, 3584 CG Utrecht, The Netherlands
- Department
of Orthopaedics, University Medical Center Utrecht, Utrecht University, 3508
GA Utrecht, The Netherlands
| | - Gerke Schuiringa
- Department
of Biomedical Engineering, Eindhoven University
of Technology, 5612 AZ Eindhoven, The Netherlands
| | - Blessing C. Ilochonwu
- Department
of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Rosalinde Masereeuw
- Department
of Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Lucienne Vonk
- Department
of Orthopaedics, University Medical Center Utrecht, Utrecht University, 3508
GA Utrecht, The Netherlands
| | - Jos Malda
- Department
of Orthopaedics, University Medical Center Utrecht, Utrecht University, 3508
GA Utrecht, The Netherlands
- Department
of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, 3508
GA Utrecht, the Netherlands
| | - Keita Ito
- Department
of Biomedical Engineering, Eindhoven University
of Technology, 5612 AZ Eindhoven, The Netherlands
- Department
of Orthopaedics, University Medical Center Utrecht, Utrecht University, 3508
GA Utrecht, The Netherlands
| | - Tina Vermonden
- Department
of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
15
|
An X, Ding Y, Xu Y, Zhu J, Wei C, Pan X. Epoxy resin with exchangeable diselenide crosslinks to obtain reprocessable, repairable and recyclable fiber-reinforced thermoset composites. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Ou ZR, Peng WL, Rong MZ, Zhang MQ. Controllable Depolymerization and Recovery of Interlocked Covalent Adaptable Networks via Cascading Reactions of the Built-In Reversible Bonds. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01737] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zhi Rong Ou
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, GD HPPC Lab, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Wei Li Peng
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, GD HPPC Lab, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Min Zhi Rong
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, GD HPPC Lab, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Ming Qiu Zhang
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, GD HPPC Lab, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| |
Collapse
|
17
|
Diels–Alder Cycloadditions of Bio-Derived Furans with Maleimides as a Sustainable «Click» Approach towards Molecular, Macromolecular and Hybrid Systems. Processes (Basel) 2021. [DOI: 10.3390/pr10010030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
This mini-review highlights the recent research trends in designing organic or organic-inorganic hybrid molecular, biomolecular and macromolecular systems employing intermolecular Diels–Alder cycloadditions of biobased, furan-containing substrates and maleimide dienophiles. The furan/maleimide Diels–Alder reaction is a well-known process that may proceed with high efficiency under non-catalytic and solvent-free conditions. Due to the simplicity, 100% atom economy and biobased nature of many furanic substrates, this type of [4+2]-cycloaddition may be recognized as a sustainable “click” approach with high potential for application in many fields, such as fine organic synthesis, bioorganic chemistry, material sciences and smart polymers development.
Collapse
|
18
|
Tu L, Liao Z, Luo Z, Wu Y, Herrmann A, Huo S. Ultrasound-controlled drug release and drug activation for cancer therapy. EXPLORATION (BEIJING, CHINA) 2021; 1:20210023. [PMID: 37323693 PMCID: PMC10190934 DOI: 10.1002/exp.20210023] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/02/2021] [Indexed: 06/15/2023]
Abstract
Traditional chemotherapy suffers from severe toxicity and side effects that limit its maximum application in cancer therapy. To overcome this challenge, an ideal treatment strategy would be to selectively control the release or regulate the activity of drugs to minimize the undesirable toxicity. Recently, ultrasound (US)-responsive drug delivery systems (DDSs) have attracted significant attention due to the non-invasiveness, high tissue penetration depth, and spatiotemporal controllability of US. Moreover, the US-induced mechanical force has been proven to be a robust method to site-selectively rearrange or cleave bonds in mechanochemistry. This review describes the US-activated DDSs from the fundamental basics and aims to present a comprehensive summary of the current understanding of US-responsive DDSs for controlled drug release and drug activation. First, we summarize the typical mechanisms for US-responsive drug release and drug activation. Second, the main factors affecting the ultrasonic responsiveness of drug carriers are outlined. Furthermore, representative examples of US-controlled drug release and drug activation are discussed, emphasizing their novelty and design principles. Finally, the challenges and an outlook on this promising therapeutic strategy are discussed.
Collapse
Affiliation(s)
- Li Tu
- Fujian Provincial Key Laboratory of Innovative Drug Target ResearchSchool of Pharmaceutical SciencesXiamen UniversityXiamenP. R. China
| | - Zhihuan Liao
- Fujian Provincial Key Laboratory of Innovative Drug Target ResearchSchool of Pharmaceutical SciencesXiamen UniversityXiamenP. R. China
| | - Zheng Luo
- Fujian Provincial Key Laboratory of Innovative Drug Target ResearchSchool of Pharmaceutical SciencesXiamen UniversityXiamenP. R. China
| | - Yun‐Long Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target ResearchSchool of Pharmaceutical SciencesXiamen UniversityXiamenP. R. China
| | - Andreas Herrmann
- DWI – Leibniz Institute for Interactive MaterialsAachenGermany
- Institute of Technical and Macromolecular ChemistryRWTH Aachen UniversityAachenGermany
| | - Shuaidong Huo
- Fujian Provincial Key Laboratory of Innovative Drug Target ResearchSchool of Pharmaceutical SciencesXiamen UniversityXiamenP. R. China
| |
Collapse
|
19
|
Tano K, Sato E. Synthesis and Dissociation Behavior of Degradable Network Polymers Consisting of Epoxides and 9-Anthracene Carboxylic Acid Dimer. CHEM LETT 2021. [DOI: 10.1246/cl.210332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Kinuka Tano
- Department of Applied Chemistry and Bioengineering, Graduate School of Engineering, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Eriko Sato
- Department of Applied Chemistry and Bioengineering, Graduate School of Engineering, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| |
Collapse
|
20
|
Synthesis of robust and self-healing polyurethane/halloysite coating via in-situ polymerization. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02742-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
21
|
Rowlett JR, Deglmann P, Sprafke J, Roy N, Mülhaupt R, Bruchmann B. Small-Molecule Investigation of Diels-Alder Complexes for Thermoreversible Crosslinking in Polymeric Applications. J Org Chem 2021; 86:8933-8944. [PMID: 34153187 DOI: 10.1021/acs.joc.1c00855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Combinations of dienes and dienophiles were examined in order to elicit possible combinations for thermoreversible crosslinking units. Comparison of experimental results and quantum calculations indicated that reaction kinetics and activation energy were much better prediction factors than change in enthalpy for the prediction of successful cycloaddition. Further testing on diene-dienophile pairs that underwent successful cycloaddition determined the feasibility of thermoreversibility/retro-reaction of each of the Diels-Alder compounds. Heating and testing of the compounds in the presence of a trapping agent allowed for experimental determination of reverse kinetics and activation energy for the retro-reaction. The experimental values were in good agreement with quantum calculations. The combination of chemical calculations with experimental results provided a strong insight into the structure-property relationships and how quantum calculations can be used to examine the feasibility of the thermoreversibility of new Diels-Alder complexes in potential polymer systems or to fine-tune thermoreversible Diels-Alder systems already in use.
Collapse
Affiliation(s)
- Jarrett R Rowlett
- Joint Research Network on Advanced Materials and Systems (JONAS), Freiburg Materials Research Center, University of Freiburg, Stefan-Meier-Str. 21, D-79104 Freiburg, Germany
| | - Peter Deglmann
- Advanced Materials and Systems Research, BASF SE, Carl-Bosch-Strasse 38, D-67056 Ludwigshafen, Germany
| | - Johannes Sprafke
- Advanced Materials and Systems Research, BASF SE, Carl-Bosch-Strasse 38, D-67056 Ludwigshafen, Germany
| | - Nabarun Roy
- BASF Polyurethanes GmbH, Elastogranstr 60, D-49448 Lemfoerde, Germany
| | - Rolf Mülhaupt
- Institute for Macromolecular Chemistry, University of Freiburg, Stefan-Meier-Str. 31, D-79104 Freiburg, Germany
| | - Bernd Bruchmann
- Joint Research Network on Advanced Materials and Systems (JONAS), Freiburg Materials Research Center, University of Freiburg, Stefan-Meier-Str. 21, D-79104 Freiburg, Germany.,Advanced Materials and Systems Research, BASF SE, Carl-Bosch-Strasse 38, D-67056 Ludwigshafen, Germany
| |
Collapse
|
22
|
Hassouna L, Enganati SK, Bally-Le Gall F, Mertz G, Bour J, Ruch D, Roucoules V. Using TOF-SIMS Spectrometry to Study the Kinetics of the Interfacial Retro Diels-Alder Reaction. MATERIALS 2021; 14:ma14102674. [PMID: 34065263 PMCID: PMC8161361 DOI: 10.3390/ma14102674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/04/2021] [Accepted: 05/07/2021] [Indexed: 11/19/2022]
Abstract
In this work, the use of Time of Flight Secondary Ion Mass Spectrometry (TOF-SIMS) was explored as a technique for monitoring the interfacial retro Diels–Alder (retro DA) reaction occurring on well-controlled self-assembled monolayers (SAMs). A molecule containing a Diels–Alder (DA) adduct was grafted on to the monolayers, then the surface was heated at different temperatures to follow the reaction conversion. A TOF-SIMS analysis of the surface allowed the detection of a fragment from the molecule, which is released from the surface when retro DA reaction occurs. Hence, by monitoring the decay of this fragment’s peak integral, the reaction conversion could be determined in function of the time and for different temperatures. The viability of this method was then discussed in comparison with the results obtained by 1H NMR spectroscopy.
Collapse
Affiliation(s)
- Lilia Hassouna
- Materials and Research Technology Department, Luxembourg Institute of Science and Technology, 5 Avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg; (L.H.); (S.K.E.); (J.B.); (D.R.)
- Department of Physics and Materials Science, University of Luxembourg, 2 Avenue de l’Université, L-4365 Esch-sur-Alzette, Luxembourg
| | - Sachin Kumar Enganati
- Materials and Research Technology Department, Luxembourg Institute of Science and Technology, 5 Avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg; (L.H.); (S.K.E.); (J.B.); (D.R.)
- Department of Physics and Materials Science, University of Luxembourg, 2 Avenue de l’Université, L-4365 Esch-sur-Alzette, Luxembourg
| | - Florence Bally-Le Gall
- University of Haute-Alsace, University of Strasbourg, CNRS, IS2M UMR 7361, F-68100 Mulhouse, France; (F.B.-L.G.); (V.R.)
| | - Grégory Mertz
- Materials and Research Technology Department, Luxembourg Institute of Science and Technology, 5 Avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg; (L.H.); (S.K.E.); (J.B.); (D.R.)
- Correspondence:
| | - Jérôme Bour
- Materials and Research Technology Department, Luxembourg Institute of Science and Technology, 5 Avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg; (L.H.); (S.K.E.); (J.B.); (D.R.)
| | - David Ruch
- Materials and Research Technology Department, Luxembourg Institute of Science and Technology, 5 Avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg; (L.H.); (S.K.E.); (J.B.); (D.R.)
| | - Vincent Roucoules
- University of Haute-Alsace, University of Strasbourg, CNRS, IS2M UMR 7361, F-68100 Mulhouse, France; (F.B.-L.G.); (V.R.)
| |
Collapse
|
23
|
A NIR laser induced self-healing PDMS/Gold nanoparticles conductive elastomer for wearable sensor. J Colloid Interface Sci 2021; 599:360-369. [PMID: 33962197 DOI: 10.1016/j.jcis.2021.04.117] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/19/2021] [Accepted: 04/22/2021] [Indexed: 12/20/2022]
Abstract
Self-healing conductive elastomers have been widely used in smart electronic devices, such as wearable sensors. However, nano fillers hinder the flow of polymer segments, which make the development of conductive elastomer with rapid repair and high ductility a challenge. In this work, thioctic acid (TA) was grafted onto amino-modified polysiloxane (PDMS-NH2) by dehydration condensation of amino group and carboxyl group. By introducing gold nanoparticles, a dynamic network based on S-Au interaction was constructed. The dynamic gold cross-linking could effectively dissipate the energy exerted by external force and improve the extensibility of conductive elastomer. In addition, S-Au interaction had a good optothermal effect, so that the elastomer rapidly healed under NIR irradiation, and the repair efficiency reached 92%. We further evaluated the performance of the conductive elastomer as a strain sensor. The sample could accurately monitor the bending of human joints and small muscle state changes. This kind of self-healable conductive elastomer based on dynamic S-Au interaction has great potential in the fields of interpersonal interaction and health monitoring.
Collapse
|
24
|
Kato S, Furukawa S, Aoki D, Goseki R, Oikawa K, Tsuchiya K, Shimada N, Maruyama A, Numata K, Otsuka H. Crystallization-induced mechanofluorescence for visualization of polymer crystallization. Nat Commun 2021; 12:126. [PMID: 33402691 PMCID: PMC7785725 DOI: 10.1038/s41467-020-20366-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 11/24/2020] [Indexed: 11/09/2022] Open
Abstract
The growth of lamellar crystals has been studied in particular for spherulites in polymeric materials. Even though such spherulitic structures and their growth are of crucial importance for the mechanical and optical properties of the resulting polymeric materials, several issues regarding the residual stress remain unresolved in the wider context of crystal growth. To gain further insight into micro-mechanical forces during the crystallization process of lamellar crystals in polymeric materials, herein, we introduce tetraarylsuccinonitrile (TASN), which generates relatively stable radicals with yellow fluorescence upon homolytic cleavage at the central C-C bond in response to mechanical stress, into crystalline polymers. The obtained crystalline polymers with TASN at the center of the polymer chain allow not only to visualize the stress arising from micro-mechanical forces during polymer crystallization via fluorescence microscopy but also to evaluate the micro-mechanical forces upon growing polymer lamellar crystals by electron paramagnetic resonance, which is able to detect the radicals generated during polymer crystallization.
Collapse
Affiliation(s)
- Sota Kato
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Shigeki Furukawa
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Daisuke Aoki
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Raita Goseki
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Kazusato Oikawa
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Kousuke Tsuchiya
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Naohiko Shimada
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan
| | - Atsushi Maruyama
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan
| | - Keiji Numata
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Hideyuki Otsuka
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan.
| |
Collapse
|
25
|
Kane AQ, Esper AM, Searles K, Ehm C, Veige AS. Probing β-alkyl elimination and selectivity in polyolefin hydrogenolysis through DFT. Catal Sci Technol 2021. [DOI: 10.1039/d1cy01088c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A long chain substrate with [(SiO)3ZrH] has been investigated to elucidate selectivity rules in β-alkyl elimination. DFT studies indicate that polypropylene preferentially undergoes β-Me elimination.
Collapse
Affiliation(s)
- Alexander Q. Kane
- University of Florida, Department of Chemistry, Center for Catalysis, P.O. Box 117200, Gainesville, FL, 32611, USA
| | - Alec M. Esper
- University of Florida, Department of Chemistry, Center for Catalysis, P.O. Box 117200, Gainesville, FL, 32611, USA
| | - Keith Searles
- University of Florida, Department of Chemistry, Center for Catalysis, P.O. Box 117200, Gainesville, FL, 32611, USA
| | - Christian Ehm
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Via Cintia, 80126 Napoli, Italy
| | - Adam S. Veige
- University of Florida, Department of Chemistry, Center for Catalysis, P.O. Box 117200, Gainesville, FL, 32611, USA
| |
Collapse
|
26
|
Chen Y, Mellot G, van Luijk D, Creton C, Sijbesma RP. Mechanochemical tools for polymer materials. Chem Soc Rev 2021; 50:4100-4140. [DOI: 10.1039/d0cs00940g] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This review aims to provide a field guide for the implementation of mechanochemistry in synthetic polymers by summarizing the molecules, materials, and methods that have been developed in this field.
Collapse
Affiliation(s)
- Yinjun Chen
- Department of Chemical Engineering & Chemistry and Institute for Complex Molecular Systems
- Eindhoven University of Technology
- 5600 MB Eindhoven
- The Netherlands
| | - Gaëlle Mellot
- Laboratoire Sciences et Ingénierie de la Matière Molle
- ESPCI Paris
- PSL University
- Sorbonne Université
- CNRS
| | - Diederik van Luijk
- Department of Chemical Engineering & Chemistry and Institute for Complex Molecular Systems
- Eindhoven University of Technology
- 5600 MB Eindhoven
- The Netherlands
| | - Costantino Creton
- Laboratoire Sciences et Ingénierie de la Matière Molle
- ESPCI Paris
- PSL University
- Sorbonne Université
- CNRS
| | - Rint P. Sijbesma
- Department of Chemical Engineering & Chemistry and Institute for Complex Molecular Systems
- Eindhoven University of Technology
- 5600 MB Eindhoven
- The Netherlands
| |
Collapse
|
27
|
Yang X, Guo M, Wu Y, Xue S, Li Z, Zhou H, Smith AT, Sun L. Biomimetic Boroxine-Based Multifunctional Thermosets via One-Pot Synthesis. ACS APPLIED MATERIALS & INTERFACES 2020; 12:56445-56453. [PMID: 33327055 DOI: 10.1021/acsami.0c16736] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Boroxine-based thermosets with remarkable mechanical tunability, self-healing ability, recyclability, and adhesive strength are of significant importance in various applications. However, complex multistep reactions are often required to prepare such thermosets. Herein, a facile one-pot approach to synthesize boroxine-based malleable thermosets is proposed. Random copolymers with pendant boronic acid groups were synthesized from alkenyl monomers containing boronic acids [4-vinylphenylboronic acid (4-VPBA), 3-vinylphenylboronic acid, or 3-acrylamidophenylboronic acid] and octadecanoxy polyethylene glycol methacrylate. Then, the as-prepared copolymers were cured to form thermosets with boroxine bonds. The tensile strengths of the thermosets were tailored to range from 9.3 to 27.5 MPa by increasing the concentration of 4-VPBA. Moreover, because of the reversible nature of dynamic boroxine bonds (transformation between boroxines and boronic acids) induced by water, the thermosets exhibit remarkable self-healing efficiency (up to 99%), tunable mechanical properties, and excellent recyclability. Additionally, the thermosets also demonstrate superior adhesive strength (as high as 73.9 MPa) on different substrates.
Collapse
Affiliation(s)
- Xi Yang
- The Center of Functional Materials for Working Fluids of Oil and Gas Field, School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China
| | - Meiling Guo
- The Center of Functional Materials for Working Fluids of Oil and Gas Field, School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China
| | - Yuanpeng Wu
- The Center of Functional Materials for Working Fluids of Oil and Gas Field, School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, Sichuan, China
| | - Shishan Xue
- The Center of Functional Materials for Working Fluids of Oil and Gas Field, School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China
| | - Zhenyu Li
- The Center of Functional Materials for Working Fluids of Oil and Gas Field, School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China
| | - Hongwei Zhou
- Shaanxi Key Laboratory of Photoelectric Functional Materials and Devices, School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710021, China
| | - Andrew T Smith
- Polymer Program, Institute of Materials Science and Department of Chemical & Biomolecular Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Luyi Sun
- Polymer Program, Institute of Materials Science and Department of Chemical & Biomolecular Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| |
Collapse
|
28
|
Schoustra SK, Dijksman JA, Zuilhof H, Smulders MMJ. Molecular control over vitrimer-like mechanics - tuneable dynamic motifs based on the Hammett equation in polyimine materials. Chem Sci 2020; 12:293-302. [PMID: 34163597 PMCID: PMC8178953 DOI: 10.1039/d0sc05458e] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 10/27/2020] [Indexed: 12/17/2022] Open
Abstract
In this work, we demonstrate that fine-grained, quantitative control over macroscopic dynamic material properties can be achieved using the Hammett equation in tuneable dynamic covalent polyimine materials. Via this established physical-organic principle, operating on the molecular level, one can fine-tune and control the dynamic material properties on the macroscopic level, by systematic variation of dynamic covalent bond dynamics through selection of the appropriate substituent of the aromatic imine building blocks. Five tuneable, crosslinked polyimine network materials, derived from dianiline monomers with varying Hammett parameter (σ) were studied by rheology, revealing a distinct correlation between the σ value and a range of corresponding dynamic material properties. Firstly, the linear correlation of the kinetic activation energy (E a) for the imine exchange to the σ value, enabled us to tune the E a from 16 to 85 kJ mol-1. Furthermore, the creep behaviour (γ), glass transition (T g) and the topology freezing transition temperature (T v), all showed a strong, often linear, dependence on the σ value of the dianiline monomer. These combined results demonstrate for the first time how dynamic material properties can be directly tuned and designed in a quantitative - and therefore predictable - manner through correlations based on the Hammett equation. Moreover, the polyimine materials were found to be strong elastic rubbers (G' > 1 MPa at room temperature) that were stable up to 300 °C, as confirmed by TGA. Lastly, the dynamic nature of the imine bond enabled not only recycling, but also intrinsic self-healing of the materials over multiple cycles without the need for solvent, catalysts or addition of external chemicals.
Collapse
Affiliation(s)
- Sybren K Schoustra
- Laboratory of Organic Chemistry, Wageningen University Stippeneng 4 6708 WE Wageningen The Netherlands
| | - Joshua A Dijksman
- Physical Chemistry and Soft Matter, Wageningen University Stippeneng 4 6708 WE Wageningen The Netherlands
| | - Han Zuilhof
- Laboratory of Organic Chemistry, Wageningen University Stippeneng 4 6708 WE Wageningen The Netherlands
- School of Pharmaceutical Sciences and Technology, Tianjin University 92 Weijin Road Tianjin China
- Department of Chemical and Materials Engineering, Faculty of Engineering, King Abdulaziz University Jeddah Saudi Arabia
| | - Maarten M J Smulders
- Laboratory of Organic Chemistry, Wageningen University Stippeneng 4 6708 WE Wageningen The Netherlands
| |
Collapse
|
29
|
Zhang K, Sun J, Song J, Gao C, Wang Z, Song C, Wu Y, Liu Y. Self-Healing Ti 3C 2 MXene/PDMS Supramolecular Elastomers Based on Small Biomolecules Modification for Wearable Sensors. ACS APPLIED MATERIALS & INTERFACES 2020; 12:45306-45314. [PMID: 32921045 DOI: 10.1021/acsami.0c13653] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Flexible conductive composites can be used as wearable strain sensors, which are widely used in the fields of new-generation robotics, electronic skin, and human detection. However, how to make conductive composites that simultaneously possess flexibility, stretchability, self-healing, and sensing capability is challenging research. In this work, we innovatively designed and prepared a silicone polymer conductive composite. MXenes and amino poly(dimethylsiloxane) were modified by small biomolecules via an esterification reaction and a Schiff base reaction, respectively. The modified MXenes are uniformly dispersed, which endows the composite with good electrical conductivity. The reversibility of multiple hydrogen bonds and imine bonds in the composite system makes it have ideal tensile properties and high-efficiency self-healing ability without external stimulation. The conductive composite containing 10 wt % A-MXenes showed an elongation of 81%, and its mechanical strength could reach 1.81 MPa. After repair, the tensile properties and the electrical conductivity could be restored to 98.4 and 97.6%, respectively. In addition, the conductive composite is further evaluated for the value of wearable strain sensors. Even after cut-healed processes, the conductive composite can still accurately detect tiny human movements (including speaking, swallowing, and pressing). This kind of self-healing MXene/PDMS elastomers based on the modification of small biomolecules has great potential as wearable strain sensors. This simple preparation method provides guidance for future multifunctional flexible electronic materials.
Collapse
Affiliation(s)
- Kaiming Zhang
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jiawen Sun
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Jingyao Song
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Chuanhui Gao
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Zhe Wang
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Chengxin Song
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yumin Wu
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yuetao Liu
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|
30
|
A self-healing and recyclable polyurethane/halloysite nanocomposite based on thermoreversible Diels-Alder reaction. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122894] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
31
|
Maassen EEL, Anastasio R, Breemen LCA, Sijbesma RP, Heuts JPA. Thermally Reversible Diels–Alder Bond‐Containing Acrylate Networks Showing Improved Lifetime. MACROMOL CHEM PHYS 2020. [DOI: 10.1002/macp.202000208] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Eveline E. L. Maassen
- Laboratory of Macromolecular and Organic Chemistry Department of Chemical Engineering and Chemistry Eindhoven University of Technology P.O. Box 513 Eindhoven MB 5600 The Netherlands
- Brightlands Materials Center (BMC) P.O. Box 18 Geleen MD 6160 The Netherlands
| | - Rosaria Anastasio
- Brightlands Materials Center (BMC) P.O. Box 18 Geleen MD 6160 The Netherlands
- Polymer Technology Materials Technology Institute Department of Mechanical Engineering Eindhoven University of Technology P.O. Box 513 Eindhoven MB 5600 The Netherlands
| | - Lambèrt C. A. Breemen
- Polymer Technology Materials Technology Institute Department of Mechanical Engineering Eindhoven University of Technology P.O. Box 513 Eindhoven MB 5600 The Netherlands
| | - Rint P. Sijbesma
- Laboratory of Macromolecular and Organic Chemistry Department of Chemical Engineering and Chemistry Eindhoven University of Technology P.O. Box 513 Eindhoven MB 5600 The Netherlands
- Institute for Complex Molecular Systems Eindhoven University of Technology P.O. Box 513 Eindhoven MB 5600 The Netherlands
| | - Johan P. A. Heuts
- Laboratory of Macromolecular and Organic Chemistry Department of Chemical Engineering and Chemistry Eindhoven University of Technology P.O. Box 513 Eindhoven MB 5600 The Netherlands
- Institute for Complex Molecular Systems Eindhoven University of Technology P.O. Box 513 Eindhoven MB 5600 The Netherlands
| |
Collapse
|
32
|
Zhang K, Liu Y, Wang Z, Song C, Gao C, Wu Y. A type of self-healable, dissoluble and stretchable organosilicon elastomer for flexible electronic devices. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109857] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
33
|
Huang W, Zhai J, Zhang C, Hu X, Zhu N, Chen K, Guo K. 100% Bio-Based Polyamide with Temperature/Ultrasound Dually Triggered Reversible Cross-Linking. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c02028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Weijun Huang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211800, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211800, China
| | - Jinglin Zhai
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211800, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211800, China
| | - Changqi Zhang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211800, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211800, China
| | - Xin Hu
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing, Jiangsu 211800, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211800, China
| | - Ning Zhu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211800, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211800, China
| | - Kequan Chen
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211800, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211800, China
| | - Kai Guo
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211800, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211800, China
| |
Collapse
|
34
|
Peng WL, Zhang ZP, Rong MZ, Zhang MQ. Reversibly Interlocked Macromolecule Networks with Enhanced Mechanical Properties and Wide pH Range of Underwater Self-Healability. ACS APPLIED MATERIALS & INTERFACES 2020; 12:27614-27624. [PMID: 32468811 DOI: 10.1021/acsami.0c07040] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A novel strategy for developing homogeneous reversibly interlocking polymer networks (RILNs) with enhanced mechanical properties and underwater self-healing ability is proposed. The RILNs are prepared by the topological reorganization of two preformed cross-linked polymers containing reversible catechol-Fe3+ coordinate bonds and imine bonds and exhibit enhanced mechanical properties, superior underwater self-healing effect within a wide pH range, and water-assisted recycling ability through synergetic action between the reversible catechol-Fe3+ and imine bonds. At higher pH values, the catechol-Fe3+ coordinate bonds are responsible for self-healing, while the imine bonds maintain the stability of the materials. In neutral water, the imine bonds mainly account for self-healing, and hydrogen bonds and entanglements between the two networks prevent the material from collapsing. Under a lower pH value, intermolecular hydrogen bonds and entanglements contribute to self-healing. The outcomes of this work provide a new idea for developing robust multifunctional underwater self-healing materials.
Collapse
Affiliation(s)
- Wei Li Peng
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, GD HPPC Lab, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Ze Ping Zhang
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, GD HPPC Lab, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Min Zhi Rong
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, GD HPPC Lab, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Ming Qiu Zhang
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, GD HPPC Lab, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| |
Collapse
|
35
|
Recycling of carbon fiber with epoxy composites by chemical recycling for future perspective: a review. CHEMICAL PAPERS 2020. [DOI: 10.1007/s11696-020-01198-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
36
|
Wang K, Zhou Z, Zhang J, Tang J, Wu P, Wang Y, Zhao Y, Leng Y. Electrical and Thermal and Self-Healing Properties of Graphene-Thermopolyurethane Flexible Conductive Films. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E753. [PMID: 32326612 PMCID: PMC7221931 DOI: 10.3390/nano10040753] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 04/09/2020] [Indexed: 12/30/2022]
Abstract
We fabricated graphene-thermopolyurethane (G-TPU) flexible conductive film by a blending method and systematically investigated the electrical, thermal and self-healing properties of the G-TPU flexible conductive film by infrared light and electricity. The experimental results demonstrate that the G-TPU composite films have good conductivity and thermal conductivity in the appropriate mass content of graphene in the composite film. The composite films have the good electro-thermal and infrared light thermal response performances and electro-thermal response performance is closely related to the mass content of graphene in the composite film, but the infrared light thermal response performance is not. The scratch on the composite film can be completely healed, using electricity or infrared light. The healing efficiency of the composite film healed using infrared light is higher than that of using the electricity, while the healing time of the composite film is shorter. Regardless of the self-healing method, the temperature of the self-healing is a very important factor. The self-healing conductive composite film still exhibits a good conductivity.
Collapse
Affiliation(s)
- Ke Wang
- Zhongshan Institute, University of Electronic Science and Technology of China, Zhongshan 528402, Guangdong, China; (K.W.); (Z.Z.); (J.Z.); (J.T.); (P.W.)
| | - Zhimin Zhou
- Zhongshan Institute, University of Electronic Science and Technology of China, Zhongshan 528402, Guangdong, China; (K.W.); (Z.Z.); (J.Z.); (J.T.); (P.W.)
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Jiahao Zhang
- Zhongshan Institute, University of Electronic Science and Technology of China, Zhongshan 528402, Guangdong, China; (K.W.); (Z.Z.); (J.Z.); (J.T.); (P.W.)
| | - Jinyuan Tang
- Zhongshan Institute, University of Electronic Science and Technology of China, Zhongshan 528402, Guangdong, China; (K.W.); (Z.Z.); (J.Z.); (J.T.); (P.W.)
| | - Peiyu Wu
- Zhongshan Institute, University of Electronic Science and Technology of China, Zhongshan 528402, Guangdong, China; (K.W.); (Z.Z.); (J.Z.); (J.T.); (P.W.)
| | - Yuehui Wang
- Zhongshan Institute, University of Electronic Science and Technology of China, Zhongshan 528402, Guangdong, China; (K.W.); (Z.Z.); (J.Z.); (J.T.); (P.W.)
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Yuzhen Zhao
- Department of Materials Science and Engineering, Tsinghua University, Beijing 100084, China;
| | - Yong Leng
- Zhongshan Breathtex Speciality Material Co., Ltd., Zhongshan 528441, Guangdong, China;
| |
Collapse
|
37
|
Fang Y, Du X, Cheng X, Zhou M, Du Z, Wang H. Preparation of living and highly stable blended polyurethane emulsions for self-healing films with enhancive toughness and recyclability. POLYMER 2020. [DOI: 10.1016/j.polymer.2019.122142] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
38
|
Xu N, Kim S, Liu Y, Adraro YA, Li Z, Hu J, Liu L, Hu Z, Huang Y. Facile preparation of rapidly recyclable tough thermosetting composites via cross-linking structure regulation. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122163] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
39
|
Memon H, Liu H, Rashid MA, Chen L, Jiang Q, Zhang L, Wei Y, Liu W, Qiu Y. Vanillin-Based Epoxy Vitrimer with High Performance and Closed-Loop Recyclability. Macromolecules 2020. [DOI: 10.1021/acs.macromol.9b02006] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Hafeezullah Memon
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
- Center for Civil Aviation Composites, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Haiyang Liu
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
- Center for Civil Aviation Composites, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Muhammad A. Rashid
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
- Center for Civil Aviation Composites, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Li Chen
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
- Center for Civil Aviation Composites, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Qiuran Jiang
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Liying Zhang
- Center for Civil Aviation Composites, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Yi Wei
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
- Center for Civil Aviation Composites, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Wanshuang Liu
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
- Center for Civil Aviation Composites, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Yiping Qiu
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| |
Collapse
|
40
|
Chen Z, Yang M, Shi Q, Kuang X, Qi HJ, Wang T. Recycling Waste Circuit Board Efficiently and Environmentally Friendly through Small-Molecule Assisted Dissolution. Sci Rep 2019; 9:17902. [PMID: 31784554 PMCID: PMC6884634 DOI: 10.1038/s41598-019-54045-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 10/07/2019] [Indexed: 11/09/2022] Open
Abstract
With the increasing amount of electronic waste (e-waste) generated globally, it is an enormous challenge to recycle printed circuit boards (PCBs) efficiently and environmentally friendly. However, conventional recycling technologies have low efficiency and require tough treatment such as high temperature (>200 °C) and high pressure. In this paper, a small-molecule assisted approach based on dynamic reaction was proposed to dissolve thermosetting polymers containing ester groups and recycle electronic components from PCBs. This effective approach operates below 200 °C and the polymer could be dissolved in a short time. It has a remarkable ability to recycle a wide range of commercial PCBs, including boards made of typical anhydride epoxy or polyester substrate. Besides, it is environmentally friendly as even the recycling solution could be reused multiple times. In addition, the wasted solution after recycling could be used for board bonding and damage repair. This work also demonstrates the advantage of using polymers containing ester groups as the PCB substrate in consideration of eco-friendly and efficient recycling.
Collapse
Affiliation(s)
- Zhiqiang Chen
- State Key Lab for Strength and Vibration of Mechanical Structures, Department of Engineering Mechanics, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Meng Yang
- State Key Lab for Strength and Vibration of Mechanical Structures, Department of Engineering Mechanics, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Qian Shi
- State Key Lab for Strength and Vibration of Mechanical Structures, Department of Engineering Mechanics, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Xiao Kuang
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - H Jerry Qi
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| | - Tiejun Wang
- State Key Lab for Strength and Vibration of Mechanical Structures, Department of Engineering Mechanics, Xi'an Jiaotong University, Xi'an, 710049, China.
| |
Collapse
|
41
|
Handique J, Gogoi J, Nath J, Dolui SK. Synthesis of Self‐Healing Bio‐Based Tannic Acid‐Based Methacrylates By Thermoreversible Diels–Alder Reaction. POLYM ENG SCI 2019. [DOI: 10.1002/pen.25267] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Junali Handique
- Department of Chemical SciencesTezpur University Napaam, Tezpur Assam 784028 India
| | - Joly Gogoi
- Department of Chemical SciencesTezpur University Napaam, Tezpur Assam 784028 India
| | - Jayashree Nath
- Department of Chemical SciencesTezpur University Napaam, Tezpur Assam 784028 India
| | - Swapan Kumar Dolui
- Department of Chemical SciencesTezpur University Napaam, Tezpur Assam 784028 India
| |
Collapse
|
42
|
Zolghadr M, Shakeri A, Zohuriaan‐Mehr MJ, Salimi A. Self‐healing semi‐IPN materials from epoxy resin by solvent‐free furan–maleimide Diels–Alder polymerization. J Appl Polym Sci 2019. [DOI: 10.1002/app.48015] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Mohsen Zolghadr
- School of ChemistryUniversity of Tehran, Alborz Campus P.O. Box 14155‐6619 Tehran Iran
| | - Alireza Shakeri
- School of Chemistry, College of ScienceUniversity of Tehran P.O. Box 14155‐6619 Tehran Iran
| | - Mohammad Jalal Zohuriaan‐Mehr
- Biobased Monomers and Polymers Division (BIOBASED Division)Iran Polymer and Petrochemical Institute (IPPI) P.O. Box 14965‐115 Tehran Iran
| | - Ali Salimi
- Adhesive and Resin DepartmentIran Polymer and Petrochemical Institute (IPPI) P.O. Box 14965‐115 Tehran Iran
| |
Collapse
|
43
|
Guo Y, Zou D, Zhu W, Yang X, Zhao P, Chen C, Shuai M. Infrared induced repeatable self-healing and removability of mechanically enhanced graphene-epoxy flexible materials. RSC Adv 2019; 9:14024-14032. [PMID: 35519330 PMCID: PMC9064049 DOI: 10.1039/c9ra00261h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 03/24/2019] [Indexed: 01/27/2023] Open
Abstract
A repeatable self-healing epoxy composite mechanically enhanced by graphene nanosheets (GNS) was prepared from an epoxy monomer with Diels-Alder (DA) bonds, octanediol glycidyl ether (OGE) and polyether amine (D230). The GNS/epoxy composites, with a maximum tensile modulus of 14.52 ± 0.45 MPa and elongation at break more than 100%, could be healed several times under Infrared (IR) light with the healing efficiency as high as 90% through the molecule chain mobility and the rebonding of reversible DA bonds between furan and maleimide. Also, they displayed excellent recyclable ability by transforming into a soluble polymer, which offers a wide range of possibilities to produce epoxy flexible materials with healing and removable abilities.
Collapse
Affiliation(s)
- Yakun Guo
- Science and Technology on Surface Physics and Chemistry Laboratory No. 9, Huafengxincun Jiangyou City Sichuan Province 621908 P. R. China
| | - Dongli Zou
- Institute of Materials, China Academy of Engineering Physics Mianyang City Sichuan Province 621907 P. R. China
| | - Wanqiu Zhu
- Department of Materials, Southwest University of Science and Technology Mianyang 621010 P. R. China
| | - Xiaojiao Yang
- Science and Technology on Surface Physics and Chemistry Laboratory No. 9, Huafengxincun Jiangyou City Sichuan Province 621908 P. R. China
| | - Pengxiang Zhao
- Chengdu Science and Technology Development Center Chengdu 610200 P. R. China
| | - Changan Chen
- Science and Technology on Surface Physics and Chemistry Laboratory No. 9, Huafengxincun Jiangyou City Sichuan Province 621908 P. R. China
| | - Maobing Shuai
- Institute of Materials, China Academy of Engineering Physics Mianyang City Sichuan Province 621907 P. R. China
| |
Collapse
|
44
|
|
45
|
Feng Z, Yu B, Hu J, Zuo H, Li J, Sun H, Ning N, Tian M, Zhang L. Multifunctional Vitrimer-Like Polydimethylsiloxane (PDMS): Recyclable, Self-Healable, and Water-Driven Malleable Covalent Networks Based on Dynamic Imine Bond. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.8b05309] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Zhanbin Feng
- State Key Laboratory of Organic−Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Bing Yu
- State Key Laboratory of Organic−Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jing Hu
- State Key Laboratory of Organic−Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hongli Zuo
- State Key Laboratory of Organic−Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jianping Li
- State Key Laboratory of Organic−Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Haibin Sun
- State Key Laboratory of Organic−Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Nanying Ning
- State Key Laboratory of Organic−Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ming Tian
- State Key Laboratory of Organic−Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029, China
| | - Liqun Zhang
- State Key Laboratory of Organic−Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
46
|
Wang Z, Craig SL. Stereochemical effects on the mechanochemical scission of furan–maleimide Diels–Alder adducts. Chem Commun (Camb) 2019; 55:12263-12266. [DOI: 10.1039/c9cc06361g] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
An internal competition between mechanochemical reactions unveils the relative mechanical reactivity of furan–maleimide Diels–Alder (DA) stereoisomers.
Collapse
Affiliation(s)
- Zi Wang
- Department of Chemistry
- Duke University
- Durham
- USA
| | | |
Collapse
|
47
|
|
48
|
Kida J, Imato K, Goseki R, Aoki D, Morimoto M, Otsuka H. The photoregulation of a mechanochemical polymer scission. Nat Commun 2018; 9:3504. [PMID: 30158595 PMCID: PMC6115466 DOI: 10.1038/s41467-018-05996-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 08/07/2018] [Indexed: 01/15/2023] Open
Abstract
Control over mechanochemical polymer scission by another external stimulus may offer an avenue to further advance the fields of polymer chemistry, mechanochemistry, and materials science. Herein, we demonstrate that light can regulate the mechanochemical behavior of a diarylethene-conjugated Diels-Alder adduct (DAE/DA) that reversibly isomerizes from a weaker open form to a stronger closed form under photoirradiation. Pulsed ultrasonication experiments, spectroscopic analyses, and density functional theory calculations support the successful photoregulation of the reactivity of this DAE/DA mechanophore, which is incorporated at the mid-chain of a polymer, and indicate that higher force and energy are required to cleave the closed form of the DAE/DA mechanophore relative to the open form. The present photoregulation concept provides an attractive approach toward the generation of new mechanofunctional polymers.
Collapse
Affiliation(s)
- Jumpei Kida
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Keiichi Imato
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Raita Goseki
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Daisuke Aoki
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Masakazu Morimoto
- Department of Chemistry, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo, 171-8501, Japan
| | - Hideyuki Otsuka
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan.
| |
Collapse
|
49
|
Zhang L, Qiu T, Zhu Z, Guo L, Li X. Self-Healing Polycaprolactone Networks through Thermo-Induced Reversible Disulfide Bond Formation. Macromol Rapid Commun 2018; 39:e1800121. [DOI: 10.1002/marc.201800121] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 05/27/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Liangdong Zhang
- State Key Laboratory of Organic-Inorganic Composites; Key Laboratory of Carbon Fiber and Functional Polymers; Ministry of Education; Beijing University of Chemical Technology; Beijing 100029 P. R. China
| | - Teng Qiu
- State Key Laboratory of Organic-Inorganic Composites; Key Laboratory of Carbon Fiber and Functional Polymers; Ministry of Education; Beijing University of Chemical Technology; Beijing 100029 P. R. China
| | - Zhiqiang Zhu
- State Key Laboratory of Organic-Inorganic Composites; Key Laboratory of Carbon Fiber and Functional Polymers; Ministry of Education; Beijing University of Chemical Technology; Beijing 100029 P. R. China
| | - Longhai Guo
- State Key Laboratory of Organic-Inorganic Composites; Key Laboratory of Carbon Fiber and Functional Polymers; Ministry of Education; Beijing University of Chemical Technology; Beijing 100029 P. R. China
| | - Xiaoyu Li
- State Key Laboratory of Organic-Inorganic Composites; Key Laboratory of Carbon Fiber and Functional Polymers; Ministry of Education; Beijing University of Chemical Technology; Beijing 100029 P. R. China
| |
Collapse
|
50
|
Hu Z, Zhang D, Lu F, Yuan W, Xu X, Zhang Q, Liu H, Shao Q, Guo Z, Huang Y. Multistimuli-Responsive Intrinsic Self-Healing Epoxy Resin Constructed by Host–Guest Interactions. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01124] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Zhen Hu
- School of Chemistry and Chemical Engineering, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, Harbin Institute of Technology, Harbin 150001, China
| | - Dayu Zhang
- School of Chemistry and Chemical Engineering, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, Harbin Institute of Technology, Harbin 150001, China
| | - Fei Lu
- School of Chemistry and Chemical Engineering, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, Harbin Institute of Technology, Harbin 150001, China
| | - Weihao Yuan
- School of Chemistry and Chemical Engineering, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, Harbin Institute of Technology, Harbin 150001, China
| | - Xirong Xu
- School of Chemistry and Chemical Engineering, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, Harbin Institute of Technology, Harbin 150001, China
| | - Qian Zhang
- School of Chemistry and Chemical Engineering, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, Harbin Institute of Technology, Harbin 150001, China
| | - Hu Liu
- National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450002, China
- Integrated Composites Laboratory (ICL), Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Qian Shao
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Zhanhu Guo
- Integrated Composites Laboratory (ICL), Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Yudong Huang
- School of Chemistry and Chemical Engineering, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|