1
|
Kosgallana C, Wijesinghe S, Senanayake M, Mohottalalage SS, Ohl M, Zolnierczuk P, Grest GS, Perahia D. From Molecular Constraints to Macroscopic Dynamics in Associative Networks Formed by Ionizable Polymers: A Neutron Spin Echo and Molecular Dynamics Simulations Study. ACS POLYMERS AU 2024; 4:149-156. [PMID: 38618001 PMCID: PMC11010251 DOI: 10.1021/acspolymersau.3c00049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 04/16/2024]
Abstract
The association of ionizable polymers strongly affects their motion in solutions, where the constraints arising from clustering of the ionizable groups alter the macroscopic dynamics. The interrelation between the motion on multiple length and time scales is fundamental to a broad range of complex fluids including physical networks, gels, and polymer-nanoparticle complexes where long-lived associations control their structure and dynamics. Using neutron spin echo and fully atomistic, multimillion atom molecular dynamics (MD) simulations carried out to times comparable to that of chain segmental motion, the current study resolves the dynamics of networks formed by suflonated polystryene solutions for sulfonation fractions 0 ≤ f ≤ 0.09 across time and length scales. The experimental dynamic structure factors were measured and compared with computational ones, calculated from MD simulations, and analyzed in terms of a sum of two exponential functions, providing two distinctive time scales. These time constants capture confined motion of the network and fast dynamics of the highly solvated segments. A unique relationship between the polymer dynamics and the size and distribution of the ionic clusters was established and correlated with the number of polymer chains that participate in each cluster. The correlation of dynamics in associative complex fluids across time and length scales, enabled by combining the understanding attained from reciprocal space through neutron spin echo and real space, through large scale MD studies, addresses a fundamental long-standing challenge that underline the behavior of soft materials and affect their potential uses.
Collapse
Affiliation(s)
- Chathurika Kosgallana
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Sidath Wijesinghe
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
- Department of ChemistryAppalachian State University, Boone, North Carolina 26808, United States
| | - Manjula Senanayake
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Supun S Mohottalalage
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Michael Ohl
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Piotr Zolnierczuk
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Gary S Grest
- Sandia National Laboratories, Albuquerque, New Mexico 87175, United States
| | - Dvora Perahia
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
- Department of Physics, Clemson University, Clemson, South Carolina 29631, United States
| |
Collapse
|
2
|
Wijesinghe S, Kosgallana C, Senanayake M, Mohottalalage SS, Zolnierczuk P, Stingaciu L, Grest GS, Perahia D. From ionic clusters dynamics to network constraints in ionic polymer solutions. Phys Rev E 2024; 109:034501. [PMID: 38632780 DOI: 10.1103/physreve.109.034501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 02/29/2024] [Indexed: 04/19/2024]
Abstract
Physical networks formed by ionizable polymers with ionic clusters as crosslinks are controlled by coupled dynamics that transcend from ionic clusters through chain motion to macroscopic response. Here, the coupled dynamics, across length scales, from the ionic clusters to the networks in toluene swollen polystyrene sulfonate networks, were directly correlated, as the electrostatic environment of the physical crosslinks was altered. The multiscale insight is attained by coupling neutron spin echo measurements with molecular dynamics simulations, carried out to times typical of relaxation of polymers in solutions. The experimental dynamic structure factor is in outstanding agreement with the one calculated from computer simulations, as the networks are perturbed by elevating the temperature and changing the electrostatic environment. In toluene, the long-lived clusters remain stable over hundreds of ns across a broad temperature range, while the polymer network remains dynamic. Though the size of the clusters changes as the dielectric constant of the solvent is modified through the addition of ethanol, they remain stable but morph, enhancing the polymer chain dynamics.
Collapse
Affiliation(s)
- Sidath Wijesinghe
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, USA
- Department of Chemistry, Appalachian State University, Boone, North Carolina 26808, USA
| | | | - Manjula Senanayake
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, USA
| | | | - Piotr Zolnierczuk
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Laura Stingaciu
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Gary S Grest
- Sandia National Laboratories, Albuquerque, New Mexico 87175, USA
| | - Dvora Perahia
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, USA
- Department of Physics, Clemson University, Clemson, South Carolina 29631, USA
| |
Collapse
|
3
|
Ishikawa S, Iwanaga Y, Uneyama T, Li X, Hojo H, Fujinaga I, Katashima T, Saito T, Okada Y, Chung UI, Sakumichi N, Sakai T. Percolation-induced gel-gel phase separation in a dilute polymer network. NATURE MATERIALS 2023; 22:1564-1570. [PMID: 37903925 DOI: 10.1038/s41563-023-01712-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 10/02/2023] [Indexed: 11/01/2023]
Abstract
Cosmic large-scale structures, animal flocks and living tissues can be considered non-equilibrium organized systems created by dissipative processes. Replicating such properties in artificial systems is still difficult. Herein we report a dissipative network formation process in a dilute polymer-water mixture that leads to percolation-induced gel-gel phase separation. The dilute system, which forms a monophase structure at the percolation threshold, spontaneously separates into two co-continuous gel phases with a submillimetre scale (a dilute-percolated gel) during the deswelling process after the completion of the gelation reaction. The dilute-percolated gel, which contains 99% water, exhibits unexpected hydrophobicity and induces the development of adipose-like tissues in subcutaneous tissues. These findings support the development of dissipative structures with advanced functionalities for distinct applications, ranging from physical chemistry to tissue engineering.
Collapse
Grants
- JPMJCR1992 MEXT | JST | Core Research for Evolutional Science and Technology (CREST)
- JPMJCR1852 MEXT | JST | Core Research for Evolutional Science and Technology (CREST)
- JPMJCR20E2 MEXT | JST | Core Research for Evolutional Science and Technology (CREST)
- Moon-shot R&D 1125941 MEXT | Japan Science and Technology Agency (JST)
- JPMJMS2025-14 MEXT | Japan Science and Technology Agency (JST)
- JPMXP1122714694 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 21H04688 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 20H05733 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 19H05794 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 19H05795 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 19K14672 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 22H01187 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 20J01344 MEXT | Japan Society for the Promotion of Science (JSPS)
- JPMJPR1992 MEXT | JST | Precursory Research for Embryonic Science and Technology (PRESTO)
Collapse
Affiliation(s)
- Shohei Ishikawa
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Yasuhide Iwanaga
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Takashi Uneyama
- Department of Materials Physics, Graduate School of Engineering, Nagoya University, Nagoya, Japan
| | - Xiang Li
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Hironori Hojo
- Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ikuo Fujinaga
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Takuya Katashima
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Taku Saito
- Department of Orthopaedic Surgery, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yasushi Okada
- Laboratory for Cell Polarity Regulation, RIKEN Center for Biosystems Dynamics Research (BDR), Suita, Japan
- Department of Cell Biology, Department of Physics, Universal Biology Institute (UBI) and International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo, Tokyo, Japan
| | - Ung-Il Chung
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Naoyuki Sakumichi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan.
| | - Takamasa Sakai
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
4
|
Michida S, Chung UI, Katashima T. Probing the Molecular Mechanism of Viscoelastic Relaxation in Transient Networks. Gels 2023; 9:945. [PMID: 38131931 PMCID: PMC10743357 DOI: 10.3390/gels9120945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/24/2023] [Accepted: 11/29/2023] [Indexed: 12/23/2023] Open
Abstract
Hydrogels, which have polymer networks through supramolecular and reversible interactions, exhibit various mechanical responsibilities to its surroundings. The influence of the reversible bonds on a hydrogel's macroscopic properties, such as viscoelasticity and dynamics, is not fully understood, preventing further innovative material development. To understand the relationships between the mechanical properties and molecular structures, it is required to clarify the molecular understanding of the networks solely crosslinked by reversible interactions, termed "transient networks". This review introduces our recent progress on the studies on the molecular mechanism of viscoelasticity in transient networks using multiple methods and model materials. Based on the combination of the viscoelasticity and diffusion measurements, the viscoelastic relaxation of transient networks does not undergo the diffusion of polymers, which is not explained by the framework of conventional molecular models for the viscoelasticity of polymers. Then, we show the results of the comparison between the viscoelastic relaxation and binding dynamics of reversible bonds. Viscoelastic relaxation is primarily affected by "dissociation dynamics of the bonds" and "network structures". These results are explained in the framework that the backbone, which is composed of essential chains supporting the stress, is broken by multiple dissociation events. This understanding of molecular dynamics in viscoelasticity will provide the foundation for designing transient networks.
Collapse
Affiliation(s)
- Shota Michida
- Department of Material Engineering, Faculty of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan;
| | - Ung-il Chung
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan;
- Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Takuya Katashima
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan;
| |
Collapse
|
5
|
Ge S, Tsao YH, Evans CM. Polymer architecture dictates multiple relaxation processes in soft networks with two orthogonal dynamic bonds. Nat Commun 2023; 14:7244. [PMID: 37945556 PMCID: PMC10636115 DOI: 10.1038/s41467-023-43073-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023] Open
Abstract
Materials with tunable modulus, viscosity, and complex viscoelastic spectra are crucial in applications such as self-healing, additive manufacturing, and energy damping. It is still challenging to predictively design polymer networks with hierarchical relaxation processes, as many competing factors affect dynamics. Here, networks with both pendant and telechelic architecture are synthesized with mixed orthogonal dynamic bonds to understand how the network connectivity and bond exchange mechanisms govern the overall relaxation spectrum. A hydrogen-bonding group and a vitrimeric dynamic crosslinker are combined into the same network, and multimodal relaxation is observed in both pendant and telechelic networks. This is in stark contrast to similar networks where two dynamic bonds share the same exchange mechanism. With the incorporation of orthogonal dynamic bonds, the mixed network also demonstrates excellent damping and improved mechanical properties. In addition, two relaxation processes arise when only hydrogen-bond exchange is present, and both modes are retained in the mixed dynamic networks. This work provides molecular insights for the predictive design of hierarchical dynamics in soft materials.
Collapse
Affiliation(s)
- Sirui Ge
- Department of Materials Science and Engineering, University of Illinois Urbana Champaign, Champaign, IL, USA
- Materials Research Laboratory, University of Illinois Urbana Champaign, Champaign, IL, USA
| | - Yu-Hsuan Tsao
- Department of Materials Science and Engineering, University of Illinois Urbana Champaign, Champaign, IL, USA
- Materials Research Laboratory, University of Illinois Urbana Champaign, Champaign, IL, USA
| | - Christopher M Evans
- Department of Materials Science and Engineering, University of Illinois Urbana Champaign, Champaign, IL, USA.
- Materials Research Laboratory, University of Illinois Urbana Champaign, Champaign, IL, USA.
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana Champaign, Champaign, IL, USA.
| |
Collapse
|
6
|
Nian S, Patil S, Zhang S, Kim M, Chen Q, Zhernenkov M, Ge T, Cheng S, Cai LH. Dynamics of Associative Polymers with High Density of Reversible Bonds. PHYSICAL REVIEW LETTERS 2023; 130:228101. [PMID: 37327427 DOI: 10.1103/physrevlett.130.228101] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 02/02/2023] [Accepted: 04/19/2023] [Indexed: 06/18/2023]
Abstract
An associative polymer carries many stickers that can form reversible associations. For more than 30 years, the understanding has been that reversible associations change the shape of linear viscoelastic spectra by adding a rubbery plateau in the intermediate frequency range, at which associations have not yet relaxed and thus effectively act as crosslinks. Here, we design and synthesize new classes of unentangled associative polymers carrying unprecedentedly high fractions of stickers, up to eight per Kuhn segment, that can form strong pairwise hydrogen bonding of ∼20k_{B}T without microphase separation. We experimentally show that reversible bonds significantly slow down the polymer dynamics but nearly do not change the shape of linear viscoelastic spectra. This behavior can be explained by a renormalized Rouse model that highlights an unexpected influence of reversible bonds on the structural relaxation of associative polymers.
Collapse
Affiliation(s)
- Shifeng Nian
- Soft Biomatter Laboratory, Department of Materials Science and Engineering, University of Virginia, Charlottesville, Virginia 22904, USA
| | - Shalin Patil
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan 48824, USA
| | - Siteng Zhang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, USA
| | - Myoeum Kim
- Soft Biomatter Laboratory, Department of Materials Science and Engineering, University of Virginia, Charlottesville, Virginia 22904, USA
| | - Quan Chen
- State Key Lab Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Renmin St. 5625, Changchun 130022, Jilin, People's Republic of China
| | - Mikhail Zhernenkov
- National Synchrotron Light Source-II, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Ting Ge
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, USA
| | - Shiwang Cheng
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan 48824, USA
| | - Li-Heng Cai
- Soft Biomatter Laboratory, Department of Materials Science and Engineering, University of Virginia, Charlottesville, Virginia 22904, USA
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22904, USA
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22904, USA
| |
Collapse
|
7
|
Abbes C, Zammali M, Mahjoub HF, Othman T. Microrheological study of PVA–borax physical gel: effects of charge screening. Macromol Res 2023. [DOI: 10.1007/s13233-023-00146-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
8
|
Aoki D, Yasuda K, Arimitsu K. Toughening Ionic Polymer Using Bulky Alkylammonium Counterions and Comb Architecture. ACS Macro Lett 2023; 12:462-467. [PMID: 36962000 PMCID: PMC10116644 DOI: 10.1021/acsmacrolett.2c00737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2023]
Abstract
Ionic interactions in ionic polymers, such as ionomers, polyelectrolytes, and polyampholytes, contribute to toughness in systems with high mobility and active ion dynamics, such as hydrogels and elastomers. However, it remains challenging to toughen rigid polymers through ionic interactions without lowering their elastic modulus through plasticization. Here, we present a strategy for toughening without sacrificing the elastic modulus by combining a comb polymer with bulky ammonium counterions. We designed and synthesized ionic comb polymers with oligoethylene glycol side chains and carboxylic acids in each monomer unit of the polynorbornene backbone, neutralized by trialkylamines, ranging from ethyl to octyl. The counterion size in ionic comb polymers influenced the mechanical properties of tensile testing─not the elongation at break and the elastic modulus but the ultimate strength and toughness. The ionic comb polymer containing heptylammonium counterions displayed the highest toughness of 77 MJ m-3. Tensile studies at various strain rates demonstrated a rate-dependent difference between heptyl- and octylammonium counterions. This result suggests that the heptylammonium counterion acted as a sacrificial bond by providing a moderate dissociation rate that was slightly slower than that of the octylammonium counterion, leading to toughening.
Collapse
Affiliation(s)
- Daisuke Aoki
- Department of Pure and Applied Chemistry, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Kento Yasuda
- Department of Pure and Applied Chemistry, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Koji Arimitsu
- Department of Pure and Applied Chemistry, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| |
Collapse
|
9
|
Lenoch A, Schönhoff M, Cramer C. Modelling viscoelastic relaxation mechanisms in thermorheologically complex Fe(III)-poly(acrylic acid) hydrogels. SOFT MATTER 2022; 18:8467-8475. [PMID: 36317679 DOI: 10.1039/d2sm01122k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Mechanical properties of hydrogels with reversible transition metal-polymer crosslinks can be flexibly tuned depending on the dissociation kinetics of the metal bond. We use rheology to investigate the sol-gel transition of a Fe(III)-poly(acrylic acid) network with varying crosslinker content and model the corresponding mechanical relaxation at different stages of gelation. The system transitions from an unentangled chain regime to a crosslink dissociation dominated regime, where the relaxation is governed by two timescales with different activation energies. To account for the interplay of chain and crosslinker dynamics, a time-temperature-superposition procedure is introduced for both processes separately, thus separating the dynamic processes in these thermorheologically complex dynamic networks. The activation energy of chain relaxation remains unchanged whether or not the chain participates in the network. To model contributions to the dynamic modulus of each process, we combine concepts from fractional viscoelasticity with a generalized Maxwell model, which describes the dynamics of an unentangled chain solution with reversible crosslinks. This allows us to quantify the evolution of viscoelastic parameters in the course of gelation, where we find that the terminal relaxation time of the gels increases less than expected at high crosslinker contents. This result is attributed to a facilitated crosslink exchange mechanism and a lower pH of the gel matrix.
Collapse
Affiliation(s)
- Arthur Lenoch
- Center for Soft Nanoscience, University of Muenster, Busso-Peus-Str.10, 48149 Münster, Germany
- Institut für Physikalische Chemie, University of Muenster, Corrensstraße 28/30, 48149 Münster, Germany.
| | - Monika Schönhoff
- Center for Soft Nanoscience, University of Muenster, Busso-Peus-Str.10, 48149 Münster, Germany
- Institut für Physikalische Chemie, University of Muenster, Corrensstraße 28/30, 48149 Münster, Germany.
| | - Cornelia Cramer
- Center for Soft Nanoscience, University of Muenster, Busso-Peus-Str.10, 48149 Münster, Germany
- Institut für Physikalische Chemie, University of Muenster, Corrensstraße 28/30, 48149 Münster, Germany.
| |
Collapse
|
10
|
Abstract
Arrested soft materials such as gels and glasses exhibit a slow stress relaxation with a broad distribution of relaxation times in response to linear mechanical perturbations. Although this macroscopic stress relaxation is an essential feature in the application of arrested systems as structural materials, consumer products, foods, and biological materials, the microscopic origins of this relaxation remain poorly understood. Here, we elucidate the microscopic dynamics underlying the stress relaxation of such arrested soft materials under both quiescent and mechanically perturbed conditions through X-ray photon correlation spectroscopy. By studying the dynamics of a model associative gel system that undergoes dynamical arrest in the absence of aging effects, we show that the mean stress relaxation time measured from linear rheometry is directly correlated to the quiescent superdiffusive dynamics of the microscopic clusters, which are governed by a buildup of internal stresses during arrest. We also show that perturbing the system via small mechanical deformations can result in large intermittent fluctuations in the form of avalanches, which give rise to a broad non-Gaussian spectrum of relaxation modes at short times that is observed in stress relaxation measurements. These findings suggest that the linear viscoelastic stress relaxation in arrested soft materials may be governed by nonlinear phenomena involving an interplay of internal stress relaxations and perturbation-induced intermittent avalanches.
Collapse
|
11
|
Miwa Y, Hasegawa K, Udagawa T, Shinke Y, Kutsumizu S. Effect of alkali metal cations on network rearrangement in polyisoprene ionomers. Phys Chem Chem Phys 2022; 24:17042-17049. [PMID: 35796495 DOI: 10.1039/d2cp01159j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The effects of cations, Li+, Na+, and Cs+, on the structure of ionic aggregates and network rearrangement in carboxylated polyisoprene (PI) ionomers were studied. We found that network rearrangement via interaggregate hopping of metal carboxylates is improved with a decrease in cation size, even though density functional theory (DFT) calculation indicated the increase in the attractive interaction between metal carboxylates. At the same time, we also found that as the size of the cation decreases, the inclusion of the PI segment in the ionic aggregate increases. The DFT calculation suggested the cation-π interaction between the cation and double bonds in the PI segment as the cause for the inclusion. The inclusion of the PI segment with a low glass transition temperature (Tg) plasticizes the ionic aggregate and would sterically hinder the attractive interaction between metal carboxylates. In fact, the electron spin resonance measurement revealed a decrease in the Tg of the ionic aggregate with a decrease in cation size. Based on our findings, we proposed that the inclusion of PI segments in the ionic aggregate is the possible cause for the enhancement of network rearrangement in the carboxylated PI ionomers with a decrease in the cation size.
Collapse
Affiliation(s)
- Yohei Miwa
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Yanagido, Gifu 501-1193, Japan. .,PRESTO, Japan Science and Technology Agency, Japan
| | - Koki Hasegawa
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Yanagido, Gifu 501-1193, Japan.
| | - Taro Udagawa
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Yanagido, Gifu 501-1193, Japan.
| | - Yu Shinke
- The Yokohama Rubber Co., Ltd, Hiratsuka, 254-8601, Japan
| | - Shoichi Kutsumizu
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Yanagido, Gifu 501-1193, Japan.
| |
Collapse
|
12
|
Li DT, Rudnicki PE, Qin J. Distribution Cutoff for Clusters near the Gel Point. ACS POLYMERS AU 2022; 2:361-370. [PMID: 36254314 PMCID: PMC9562459 DOI: 10.1021/acspolymersau.2c00020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/29/2022] [Accepted: 06/29/2022] [Indexed: 11/29/2022]
Abstract
![]()
The mechanical and dynamic properties of developing networks
near
the gel point are susceptible to the distribution of clusters coexisting
with percolating networks. The distribution of cluster numbers follows
a broad power law, wrapped by a cutoff function that rapidly decays
at a characteristic size. The form of the cutoff function has been
speculated based on known results from lattice percolation and, in
certain cases, solved. We obtained this cutoff function from simulated
dynamic clusters of polymeric precursor chains using a hybrid Monte
Carlo algorithm. The results obtained from three different precursor
chain lengths are consistent with each other and are consistent with
the expectation from lattice percolation.
Collapse
Affiliation(s)
- Douglas T. Li
- Department of Physics, Stanford University, Stanford, California 94305, United States
| | - Paul E. Rudnicki
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Jian Qin
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
13
|
|
14
|
Interplay of Crosslinking Structures and Segmental Dynamics in Solid-Liquid Elastomers. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2742-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Verjans J, André A, Van Ruymbeke E, Hoogenboom R. Physically Cross-Linked Polybutadiene by Quadruple Hydrogen Bonding through Side-Chain Incorporation of Ureidopyrimidinone with Branched Alkyl Side Chains. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c01908] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Jente Verjans
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University,B-9000 Ghent, Belgium
| | - Alexis André
- Bio- and Soft Matter, Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
- Department of Chemical Engineering, Katholieke Universiteit Leuven, B-3001 Leuven, Belgium
| | - Evelyne Van Ruymbeke
- Bio- and Soft Matter, Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
| | - Richard Hoogenboom
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University,B-9000 Ghent, Belgium
| |
Collapse
|
16
|
Wu S, Chen Q. Advances and New Opportunities in the Rheology of Physically and Chemically Reversible Polymers. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01605] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Shilong Wu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Quan Chen
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| |
Collapse
|
17
|
Liu S, Zhang Z, Chen Q, Matsumiya Y, Watanabe H. Nonlinear Rheology of Telechelic Ionomers Based on Sodium Sulfonate and Carboxylate. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01350] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Shuang Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022 Changchun, P. R. China
- University of Science and Technology of China, 230026 Hefei, P. R. China
| | - Zhijie Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022 Changchun, P. R. China
| | - Quan Chen
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022 Changchun, P. R. China
- University of Science and Technology of China, 230026 Hefei, P. R. China
| | - Yumi Matsumiya
- Institute for Chemical Research, Kyoto University, 611-0011 Uji, Japan
| | - Hiroshi Watanabe
- Institute for Chemical Research, Kyoto University, 611-0011 Uji, Japan
| |
Collapse
|
18
|
Yang H, Wu S, Chen Q. How to Choose a Secondary Interaction to Improve Stretchability of Associative Polymers? Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01283] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Huanhuan Yang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022 Changchun, China
- University of Science and Technology of China, 230026 Hefei, China
| | - Shilong Wu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022 Changchun, China
| | - Quan Chen
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022 Changchun, China
- University of Science and Technology of China, 230026 Hefei, China
| |
Collapse
|
19
|
Wu S, Yang H, Xu WS, Chen Q. Thermodynamics and Reaction Kinetics of Symmetric Vitrimers Based on Dioxaborolane Metathesis. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00697] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Shilong Wu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun 130022, China
| | - Huanhuan Yang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun 130022, China
| | - Wen-Sheng Xu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun 130022, China
| | - Quan Chen
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun 130022, China
| |
Collapse
|
20
|
Ghiassinejad S, Mortensen K, Rostamitabar M, Malineni J, Fustin CA, van Ruymbeke E. Dynamics and Structure of Metallo-supramolecular Polymers Based on Short Telechelic Precursors. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00373] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Sina Ghiassinejad
- Bio and Soft Matter Division, Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | - Kell Mortensen
- Niels Bohr Institute, University of Copenhagen, 1165 Copenhagen, Denmark
| | - Matin Rostamitabar
- Bio and Soft Matter Division, Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | - Jagadeesh Malineni
- Bio and Soft Matter Division, Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | - Charles-André Fustin
- Bio and Soft Matter Division, Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | - Evelyne van Ruymbeke
- Bio and Soft Matter Division, Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
21
|
Danielsen SPO, Beech HK, Wang S, El-Zaatari BM, Wang X, Sapir L, Ouchi T, Wang Z, Johnson PN, Hu Y, Lundberg DJ, Stoychev G, Craig SL, Johnson JA, Kalow JA, Olsen BD, Rubinstein M. Molecular Characterization of Polymer Networks. Chem Rev 2021; 121:5042-5092. [PMID: 33792299 DOI: 10.1021/acs.chemrev.0c01304] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Polymer networks are complex systems consisting of molecular components. Whereas the properties of the individual components are typically well understood by most chemists, translating that chemical insight into polymer networks themselves is limited by the statistical and poorly defined nature of network structures. As a result, it is challenging, if not currently impossible, to extrapolate from the molecular behavior of components to the full range of performance and properties of the entire polymer network. Polymer networks therefore present an unrealized, important, and interdisciplinary opportunity to exert molecular-level, chemical control on material macroscopic properties. A barrier to sophisticated molecular approaches to polymer networks is that the techniques for characterizing the molecular structure of networks are often unfamiliar to many scientists. Here, we present a critical overview of the current characterization techniques available to understand the relation between the molecular properties and the resulting performance and behavior of polymer networks, in the absence of added fillers. We highlight the methods available to characterize the chemistry and molecular-level properties of individual polymer strands and junctions, the gelation process by which strands form networks, the structure of the resulting network, and the dynamics and mechanics of the final material. The purpose is not to serve as a detailed manual for conducting these measurements but rather to unify the underlying principles, point out remaining challenges, and provide a concise overview by which chemists can plan characterization strategies that suit their research objectives. Because polymer networks cannot often be sufficiently characterized with a single method, strategic combinations of multiple techniques are typically required for their molecular characterization.
Collapse
Affiliation(s)
- Scott P O Danielsen
- Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Haley K Beech
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Shu Wang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Bassil M El-Zaatari
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Xiaodi Wang
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | | | | | - Zi Wang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Patricia N Johnson
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Yixin Hu
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - David J Lundberg
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Georgi Stoychev
- Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Stephen L Craig
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Jeremiah A Johnson
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Julia A Kalow
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Bradley D Olsen
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Michael Rubinstein
- Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina 27599, United States.,Department of Chemistry, Duke University, Durham, North Carolina 27708, United States.,Departments of Biomedical Engineering and Physics, Duke University, Durham, North Carolina 27708, United States.,World Primer Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21 Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
| |
Collapse
|
22
|
Liu S, Cao X, Huang C, Weiss RA, Zhang Z, Chen Q. Brittle-to-Ductile Transition of Sulfonated Polystyrene Ionomers. ACS Macro Lett 2021; 10:503-509. [PMID: 35549231 DOI: 10.1021/acsmacrolett.1c00018] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This study examines the brittle-to-ductile transition of sulfonated polystyrene ionomers (SPS) with different counterions. The polystyrene precursor was unentangled and had two ionic groups per chain on average. Thus, its terminal relaxation time was comparable to the lifetime of the associating ionic groups. Three types of ionomer samples were used to tune the association lifetime: (1) fully neutralized SPS with different alkali-metal counterions, (2) fully neutralized SPS with mixed sodium and cesium counterions, and (3) partially neutralized SPS with sodium or cesium counterions. For all three systems, the brittle-to-ductile transition could be represented by a diagram of two Weissenberg numbers, Wi and WiR, defined with respect to the terminal and Rouse relaxation times, respectively. A flowable region existed at sufficiently low Wi, independent of WiR. At higher Wi, a brittle-to-ductile transition of the ionomer melt occurred above a critical value of WiR. To achieve ductility during the application of rapid elongational flow, the Rouse-type motions should be sufficiently slow relative to the rate of ion-dissociation, so that the strain-induced breakup of the ionic cross-links would not cause very strong chain retraction that may further lead to the macroscopic fracture.
Collapse
Affiliation(s)
- Shuang Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022 Changchun, China
- University of Science and Technology of China, 230026 Hefei, China
| | - Xiao Cao
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022 Changchun, China
- University of Science and Technology of China, 230026 Hefei, China
| | - Chongwen Huang
- Department of Polymer Engineering, University of Akron, Akron, Ohio 44325, United States
| | - R. A. Weiss
- Department of Polymer Engineering, University of Akron, Akron, Ohio 44325, United States
| | - Zhijie Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022 Changchun, China
| | - Quan Chen
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022 Changchun, China
- University of Science and Technology of China, 230026 Hefei, China
| |
Collapse
|
23
|
Wang W, Madsen J, Genina N, Hassager O, Skov AL, Huang Q. Toward a Design for Flowable and Extensible Ionomers: An Example of Diamine-Neutralized Entangled Poly(styrene- co-4-vinylbenzoic acid) Ionomer Melts. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02408] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Wendi Wang
- Danish Polymer Center, Department of Chemical and Biochemical Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Jeppe Madsen
- Danish Polymer Center, Department of Chemical and Biochemical Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Natalja Genina
- Department of Pharmacy, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Ole Hassager
- Danish Polymer Center, Department of Chemical and Biochemical Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Anne L. Skov
- Danish Polymer Center, Department of Chemical and Biochemical Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Qian Huang
- Danish Polymer Center, Department of Chemical and Biochemical Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
24
|
Selezneva EV, Bakirov AV, Sedush NG, Bystrova AV, Chvalun SN, Demco DE, Möller M. How Shape Memory Effects can Contribute to Improved Self-Healing Properties in Polymer Materials. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02102] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Elizaveta V. Selezneva
- A.N.Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilova ul. 28, 119991 Moscow, Russia
- DWI-Leibniz-Institute for Interactive Materials, e.V., RWTH-Aachen University, Forckenbeckstraße 50, D-52074 Aachen, Germany
- Enikolopov Institute of Synthetic Polymeric Materials Russian Academy of Sciences, Profsoyuznaya ul. 70, 117393 Moscow, Russia
- Max Planck School Matter to Live, Jahnstraße 29, D-69120 Heidelberg, Germany
| | - Artem V. Bakirov
- Enikolopov Institute of Synthetic Polymeric Materials Russian Academy of Sciences, Profsoyuznaya ul. 70, 117393 Moscow, Russia
| | - Nikita G. Sedush
- Enikolopov Institute of Synthetic Polymeric Materials Russian Academy of Sciences, Profsoyuznaya ul. 70, 117393 Moscow, Russia
| | - Aleksandra V. Bystrova
- A.N.Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilova ul. 28, 119991 Moscow, Russia
- Enikolopov Institute of Synthetic Polymeric Materials Russian Academy of Sciences, Profsoyuznaya ul. 70, 117393 Moscow, Russia
| | - Sergei N. Chvalun
- A.N.Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilova ul. 28, 119991 Moscow, Russia
- Enikolopov Institute of Synthetic Polymeric Materials Russian Academy of Sciences, Profsoyuznaya ul. 70, 117393 Moscow, Russia
| | - Dan E. Demco
- DWI-Leibniz-Institute for Interactive Materials, e.V., RWTH-Aachen University, Forckenbeckstraße 50, D-52074 Aachen, Germany
| | - Martin Möller
- A.N.Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilova ul. 28, 119991 Moscow, Russia
- DWI-Leibniz-Institute for Interactive Materials, e.V., RWTH-Aachen University, Forckenbeckstraße 50, D-52074 Aachen, Germany
- Max Planck School Matter to Live, Jahnstraße 29, D-69120 Heidelberg, Germany
| |
Collapse
|
25
|
Abstract
We combine ideas from polymer and glassy liquid physics to construct a new model for the bond-breaking time scale of attractive sticker groups in associating copolymer liquids that form transient networks. The activated event is argued to be a two-step process, involving first the release of the nonsticker dynamic caging constraints that defines the primary alpha relaxation, followed by attractive stickers surmounting an association free-energy barrier subject to a local frictional resistance which can be strongly affected by relaxation-diffusion decoupling. The ideas embedded in the model produce a consistent and good description of the bond-breaking time scale for diverse polymer chemistries and architectures as a function of temperature and fraction of sticky groups. Chemically sensible values for association free energies are deduced. In strong contrast, the existing phenomenological models are shown to incur qualitative failures.
Collapse
|
26
|
Stress-Structure Relationship of the Reversible Associating Polymer Network under Start-up Shear Flow. CHINESE JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1007/s10118-020-2487-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
27
|
Zhang X, Vidavsky Y, Aharonovich S, Yang SJ, Buche MR, Diesendruck CE, Silberstein MN. Bridging experiments and theory: isolating the effects of metal-ligand interactions on viscoelasticity of reversible polymer networks. SOFT MATTER 2020; 16:8591-8601. [PMID: 32785407 DOI: 10.1039/d0sm01115k] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Polymer networks cross-linked by reversible metal-ligand interactions possess versatile mechanical properties achieved simply by varying the metal species and quantity. Although prior experiments have revealed the dependence of the network's viscoelastic behavior on the dynamics of metal-ligand interaction, a theoretical framework with quantitative relations that would enable efficient material design, is still lacking. One major challenge is isolating the effect of metal-ligand interaction from other factors in the polymer matrix. To address this challenge, we designed a linear precursor free from solvents, chain entanglements and polymer-metal phase separation to ensure that relaxation of the network is mainly governed by the dissociation and association of the metal-ligand cross-links. The rheological behavior of the networks was thoroughly characterized regarding the changes in cross-link density, binding stoichiometry and coordination stability, allowing quantitative comparison between experimental results and the sticky Rouse model. Through this process, we noticed that the presence of reversible cross-links increases the network modulus at high frequency compared to the linear polymer, and that the effective metal-ligand dissociation time increases dramatically with increasing the cross-link density. Informed by these findings, we modified the expression of the sticky Rouse model. For the polymer in which the metal center and ligands bond in a paired association, the relaxation follows our enhanced sticky Rouse model. For the polymer in which each reversible cross-link consists of multiple metal centers and ligands, the relaxation timescale is significantly extended due to greater restriction on the polymer chains. This systematic study bridges experiments and theory, providing deeper understanding of the mechanical properties of metallopolymers and facilitating material design.
Collapse
Affiliation(s)
- Xinyue Zhang
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, USA
| | - Yuval Vidavsky
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York 14853, USA.
| | - Sinai Aharonovich
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Steven J Yang
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York 14853, USA.
| | - Michael R Buche
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York 14853, USA.
| | - Charles E Diesendruck
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Meredith N Silberstein
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York 14853, USA.
| |
Collapse
|
28
|
Yang J, Wang R, Xie D. Self-organization in suspensions of telechelic star polymers. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
29
|
Liu S, Wu S, Chen Q. Using Coupling Motion of Connecting Ions in Designing Telechelic Ionomers. ACS Macro Lett 2020; 9:917-923. [PMID: 35648601 DOI: 10.1021/acsmacrolett.0c00256] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Conventional telechelic ionomers have one ion fixed at each end, enabling the chains to form a physical network. Here we report a type of telechelic ionomers with a distribution of the number of ions at the chain ends, which endows them with very rich rheological properties. We synthesized the ionomer samples via a two-step polymerization. Namely, we synthesized a precursor chain first and then polymerized a few ion-containing monomers at its two ends. An average number of ion-containing monomers per chain end, m, varies from 0 to 3.0. Linear viscoelasticity of these samples can be well explained through considering the Poisson distribution of m, and the hierarchical relaxation of the chains ends according to the number of connecting ions that exhibit the coupling motion.
Collapse
Affiliation(s)
- Shuang Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun 130022, People's Republic of China.,University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Shilong Wu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun 130022, People's Republic of China
| | - Quan Chen
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun 130022, People's Republic of China.,University of Science and Technology of China, Hefei 230026, People's Republic of China
| |
Collapse
|
30
|
Bocharova V, Jayakody N, Yang J, Sacci RL, Yang W, Cheng S, Doughty B, Greenbaum S, Jeong SP, Popov I, Zhao S, Gainaru C, Wojnarowska Z. Modulation of Cation Diffusion by Reversible Supramolecular Assemblies in Ionic Liquid-Based Nanocomposites. ACS APPLIED MATERIALS & INTERFACES 2020; 12:31842-31851. [PMID: 32567831 PMCID: PMC7588017 DOI: 10.1021/acsami.0c08323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 06/22/2020] [Indexed: 06/11/2023]
Abstract
Ionic liquid (IL) properties, such as high ionic conductivity under ambient conditions combined with nontoxicity and nonflammability, make them important materials for future technologies. Despite high ion conductivity desired for battery applications, cation transport numbers in ILs are not sufficient enough to attain high power density batteries. Thus, developing novel approaches directed toward improvement of cation transport properties is required for the application of ILs in energy-storing devices. In this effort, we used various experimental techniques to demonstrate that the strategy of mixing ILs with ultrasmall (1.8 nm) nanoparticles (NPs) resulted in melt-processable composites with improved transport numbers for cations at room temperature. This significant enhancement in the transport number was attributed to the specific chemistry of NPs exhibiting a weaker cation and stronger anion coordination at ambient temperature. At high temperature, significantly weakened NP-anion associations promoted a liquid-like behavior of composites, highlighting the melt-processability of these composites. These results show that designing a reversible dynamic noncovalent NP-anion association controlled by the temperature may constitute an effective strategy to control ion diffusion. Our studies provide fundamental insights into mechanisms driving the charge transport and offer practical guidance for the design of melt-processable composites with an improved cation transport number under ambient conditions.
Collapse
Affiliation(s)
- Vera Bocharova
- Chemical
Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Nishani Jayakody
- Department
of Physics & Astronomy, Hunter College
of the City University of New York, New York, New York 10065, United States
| | - Jie Yang
- Department
of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan 48864, United States
- College
of Polymer Science and Engineering, Sichuan
University, Chengdu, Sichuan 610065, People’s Republic of China
| | - Robert L. Sacci
- Chemical
Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Wei Yang
- College
of Polymer Science and Engineering, Sichuan
University, Chengdu, Sichuan 610065, People’s Republic of China
| | - Shiwang Cheng
- Department
of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan 48864, United States
| | - Benjamin Doughty
- Chemical
Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Steven Greenbaum
- Department
of Physics & Astronomy, Hunter College
of the City University of New York, New York, New York 10065, United States
| | - Seung Pyo Jeong
- Chemical
Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Ivan Popov
- Chemical
Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Sheng Zhao
- Department
of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Catalin Gainaru
- Fakultät
Physik, Technische Universität Dortmund, 44221 Dortmund, Germany
| | - Zaneta Wojnarowska
- Chemical
Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- Institute
of Physics, The University of Silesia in
Katowice, SMCEBI 75 Pulku
Piechoty 1A, 41-500 Chorzow, Poland
| |
Collapse
|
31
|
Zhang R, Zhang C, Yang Z, Wu Q, Sun P, Wang X. Hierarchical Dynamics in a Transient Polymer Network Cross-Linked by Orthogonal Dynamic Bonds. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00407] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Rongchun Zhang
- South China Advanced Institute for Soft Matter Science and Technology (AISMST), School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Chi Zhang
- Key Laboratory of Functional Polymer Materials of the Ministry of Education and College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Zhijun Yang
- Key Laboratory of Functional Polymer Materials of the Ministry of Education and College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Qiang Wu
- Key Laboratory of Functional Polymer Materials of the Ministry of Education and College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Pingchuan Sun
- Key Laboratory of Functional Polymer Materials of the Ministry of Education and College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, P. R. China
| | - Xiaoliang Wang
- Key Laboratory of High-Performance Polymer Materials and Technology of Ministry of Education, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| |
Collapse
|
32
|
Chen X, Zhong Q, Cui C, Ma L, Liu S, Zhang Q, Wu Y, An L, Cheng Y, Ye S, Chen X, Dong Z, Chen Q, Zhang Y. Extremely Tough, Puncture-Resistant, Transparent, and Photoluminescent Polyurethane Elastomers for Crack Self-Diagnose and Healing Tracking. ACS APPLIED MATERIALS & INTERFACES 2020; 12:30847-30855. [PMID: 32597173 DOI: 10.1021/acsami.0c07727] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Ensuring material performance reliability and lifetime is crucial for practical operations. Small cracks on the material surface are often detrimental to its safe operation. This study describes the development of a hydrogen bond-rich puncture-resistant polyurethane elastomer with supertoughness. The as-prepared polyurethane transparent films feature high tensile break strength (57.4 MPa) and great toughness (228 MJ m-3). Additionally, a facile, low-cost, crack self-diagnostic approach through photoluminescence using a small luminous pen is reported. The materials efficiently achieved self-healing at 90 °C after the crack formation. The change of fluorescence intensity on the crack can be used to track the self-healing process. Therefore, this work provides a guideline for the material design of supertough, puncture-resistant, transparent, and healable elastomers and a crack self-diagnosis and healing approach.
Collapse
Affiliation(s)
- Xingxing Chen
- Department of Applied Chemistry, School of Science and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter and State Key Lab for Strength and Vibration of Mechanical Structures; Xi'an Jiaotong University & Shaanxi Quantong Joint Research Institute of New Energy Vehicles Power, Xi'an Jiaotong University, Xi'an 710049, China
| | - Qianyun Zhong
- Department of Applied Chemistry, School of Science and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter and State Key Lab for Strength and Vibration of Mechanical Structures; Xi'an Jiaotong University & Shaanxi Quantong Joint Research Institute of New Energy Vehicles Power, Xi'an Jiaotong University, Xi'an 710049, China
| | - Chenhui Cui
- Department of Applied Chemistry, School of Science and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter and State Key Lab for Strength and Vibration of Mechanical Structures; Xi'an Jiaotong University & Shaanxi Quantong Joint Research Institute of New Energy Vehicles Power, Xi'an Jiaotong University, Xi'an 710049, China
| | - Li Ma
- Department of Applied Chemistry, School of Science and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter and State Key Lab for Strength and Vibration of Mechanical Structures; Xi'an Jiaotong University & Shaanxi Quantong Joint Research Institute of New Energy Vehicles Power, Xi'an Jiaotong University, Xi'an 710049, China
| | - Shuang Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Qiang Zhang
- Department of Applied Chemistry, School of Science and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter and State Key Lab for Strength and Vibration of Mechanical Structures; Xi'an Jiaotong University & Shaanxi Quantong Joint Research Institute of New Energy Vehicles Power, Xi'an Jiaotong University, Xi'an 710049, China
| | - Youshen Wu
- Department of Applied Chemistry, School of Science and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter and State Key Lab for Strength and Vibration of Mechanical Structures; Xi'an Jiaotong University & Shaanxi Quantong Joint Research Institute of New Energy Vehicles Power, Xi'an Jiaotong University, Xi'an 710049, China
| | - Le An
- State Key Lab for Strength and Vibration of Mechanical Structures, Department of Engineering Mechanics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yilong Cheng
- Department of Applied Chemistry, School of Science and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter and State Key Lab for Strength and Vibration of Mechanical Structures; Xi'an Jiaotong University & Shaanxi Quantong Joint Research Institute of New Energy Vehicles Power, Xi'an Jiaotong University, Xi'an 710049, China
| | - Shibo Ye
- Micro- and Nanotechnology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Xiaoming Chen
- Micro- and Nanotechnology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Zhen Dong
- Inose Corporation, Beijing 100089, China
| | - Quan Chen
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Yanfeng Zhang
- Department of Applied Chemistry, School of Science and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter and State Key Lab for Strength and Vibration of Mechanical Structures; Xi'an Jiaotong University & Shaanxi Quantong Joint Research Institute of New Energy Vehicles Power, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
33
|
Golkaram M, van Ruymbeke E, Portale G, Loos K. Supramolecular Polymer Brushes: Influence of Molecular Weight and Cross-Linking on Linear Viscoelastic Behavior. Macromolecules 2020; 53:4810-4820. [PMID: 32595235 PMCID: PMC7315638 DOI: 10.1021/acs.macromol.0c00074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 05/17/2020] [Indexed: 12/12/2022]
Abstract
![]()
The
origin of unique rheological response in supramolecular brush
polymers is investigated using different polymer chemistries (poly(methyl
acrylate) (PmA) and poly(ethylene glycol) (PEG)), topologies (linear
or star), and molecular weights. A recently developed hydrogen-bonding
moiety (1-(6-isocyanatohexyl)-3-(7-oxo-7,8-dihydro-1,8-naphthyridin-2-yl)-urea)
(ODIN) was coupled to PmAs and PEGs to form supramolecular brush polymers,
the backbone of which is formed by the associated moieties. At low
molecular weights of monofunctionalized polymers (both PmA and PEG),
the formed brushes are mostly composed of a thick backbone (with very
short arms) and are surrounded by other similar brush polymers, which
prevent them from diffusing and relaxing. Therefore, the monofunctionalized
PmA with a low Mn does not show terminal
flow even at the highest experimentally studied temperature (or at
longest time scales). By increasing the length of the chains, supramolecular
brushes with longer arms are obtained. Due to their lower density
of thick backbones, these last ones have more space to move and their
relaxation is therefore enhanced. In this work, we show that despite
similarities between covalent and transient brush polymers, the elastic
response in the latter does not originate from the brush entanglements
with a large Me (entanglement molecular
weight), but it rather stems from the impenetrable rigid backbone
and caging effect similar to the one described for hyperstars.
Collapse
Affiliation(s)
- Milad Golkaram
- Macromolecular Chemistry and New Polymeric Materials, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Evelyne van Ruymbeke
- Bio- and Soft Matter, Institute of Condensed Matter and Nanosciences, Université Catholique de Louvain, Croix du Sud 1, B-1348 Louvain-la-Neuve, Belgium
| | - Giuseppe Portale
- Macromolecular Chemistry and New Polymeric Materials, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Katja Loos
- Macromolecular Chemistry and New Polymeric Materials, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
34
|
Ghosh A, Schweizer KS. Microscopic Theory of the Effect of Caging and Physical Bonding on Segmental Relaxation in Associating Copolymer Liquids. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00415] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
35
|
Jiang N, Zhang H, Tang P, Yang Y. Linear Viscoelasticity of Associative Polymers: Sticky Rouse Model and the Role of Bridges. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00312] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Nuofei Jiang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Hongdong Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Ping Tang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Yuliang Yang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| |
Collapse
|
36
|
Miwa Y, Kurachi J, Sugino Y, Udagawa T, Kutsumizu S. Toward strong self-healing polyisoprene elastomers with dynamic ionic crosslinks. SOFT MATTER 2020; 16:3384-3394. [PMID: 32073111 DOI: 10.1039/d0sm00058b] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
To compromise high mechanical strength and efficient self-healing capability in an elastomer with dynamic crosslinks, optimization of the molecular structure is crucial in addition to the tuning of the dynamic properties of the crosslinks. Herein, we studied the effects of molecular weight, content of carboxy groups, and neutralization level of ionically crosslinked polyisoprene (PI) elastomers on their morphology, network rearrangement behavior, and self-healing and mechanical properties. In this PI elastomer, nanosized sphere-shaped ionic aggregates are formed by both neutralized and non-neutralized carboxy groups that act as stickers. The number density of the ionic aggregates that act as physical crosslinks increased with increase in the stickers' concentration, although the size of the ionic aggregates was independent of the molecular weight and the stickers' concentration. The ionic network was dynamically rearranged by the stickers' hopping between the ionic aggregates, and the rearrangement was accelerated by decreasing the neutralization level. We found that the 2Rg of the PI must be significantly larger than the average distance between the ionic aggregates to obtain a mechanically strong PI elastomer. We also found that further increase in the molecular weight is effective to enhance the dimensional stability of the elastomer. However, this approach reduced the elastomer's self-healing rate at the same time because the diffusion and randomization of the polymer chains between the damaged faces were reduced. In this work, we clearly demonstrated the principle in the optimization of the molecular structure for the ionically crosslinked PI elastomers to tune the mechanical and autonomous self-healing properties.
Collapse
Affiliation(s)
- Yohei Miwa
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Yanagido, Gifu 501-1193, Japan and PRESTO, Japan Science and Technology Agency, Japan
| | - Junosuke Kurachi
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Yanagido, Gifu 501-1193, Japan
| | - Yusuke Sugino
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Yanagido, Gifu 501-1193, Japan
| | - Taro Udagawa
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Yanagido, Gifu 501-1193, Japan
| | - Shoichi Kutsumizu
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Yanagido, Gifu 501-1193, Japan
| |
Collapse
|
37
|
Chen H, Liu W, Hong M, Zhang E, Dai X, Qiu X, Ji X. Viscoelastic behavior of high molecular weight polyimide/cyclohexanone solution during sol-gel transition. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122250] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
38
|
Ricarte RG, Tournilhac F, Cloître M, Leibler L. Linear Viscoelasticity and Flow of Self-Assembled Vitrimers: The Case of a Polyethylene/Dioxaborolane System. Macromolecules 2020. [DOI: 10.1021/acs.macromol.9b02415] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Ralm G. Ricarte
- Molecular, Macromolecular Chemistry, and Materials, ESPCI Paris, CNRS, PSL Research University, 75005 Paris, France
| | - François Tournilhac
- Molecular, Macromolecular Chemistry, and Materials, ESPCI Paris, CNRS, PSL Research University, 75005 Paris, France
| | - Michel Cloître
- Molecular, Macromolecular Chemistry, and Materials, ESPCI Paris, CNRS, PSL Research University, 75005 Paris, France
| | - Ludwik Leibler
- Gulliver, ESPCI Paris, CNRS, PSL Research University, 10 Rue Vauquelin, 75005 Paris, France
| |
Collapse
|
39
|
Wu S, Yang H, Huang S, Chen Q. Relationship between Reaction Kinetics and Chain Dynamics of Vitrimers Based on Dioxaborolane Metathesis. Macromolecules 2020. [DOI: 10.1021/acs.macromol.9b02162] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Shilong Wu
- Chinese Academy of Sciences, Changchun Institute of Applied Chemistry, State Key Lab of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Renmin Street 5625, Changchun 130022, Jilin, China
| | - Huanhuan Yang
- Chinese Academy of Sciences, Changchun Institute of Applied Chemistry, State Key Lab of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Renmin Street 5625, Changchun 130022, Jilin, China
| | - Shaoyong Huang
- Chinese Academy of Sciences, Changchun Institute of Applied Chemistry, State Key Lab of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Renmin Street 5625, Changchun 130022, Jilin, China
| | - Quan Chen
- Chinese Academy of Sciences, Changchun Institute of Applied Chemistry, State Key Lab of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Renmin Street 5625, Changchun 130022, Jilin, China
| |
Collapse
|
40
|
Matsumiya Y, Watanabe H, Urakawa O, Inoue T, Kwon Y. Effect of Head-to-Head Association/Dissociation on Viscoelastic and Dielectric Relaxation of Entangled Linear Polyisoprene: An Experimental Test. Macromolecules 2020. [DOI: 10.1021/acs.macromol.9b02399] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Yumi Matsumiya
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Hiroshi Watanabe
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Osamu Urakawa
- Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Tadashi Inoue
- Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Youngdon Kwon
- School of Chemical Engineering, Sungkyunkwan University, 300 Cheoncheon-dong, Jangan-gu, Suwon, Gyeonggi-do 440-746, Korea
| |
Collapse
|
41
|
Ge S, Tress M, Xing K, Cao PF, Saito T, Sokolov AP. Viscoelasticity in associating oligomers and polymers: experimental test of the bond lifetime renormalization model. SOFT MATTER 2020; 16:390-401. [PMID: 31840152 DOI: 10.1039/c9sm01930h] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Recent findings that the association bond lifetimes τα* in associating polymers diverge from their supramolecular network relaxation times τc challenge past theories. The bond lifetime renormalization proposed by Rubinstein and coworkers [Stukalin et al., Macromolecules, 2013, 46, 7525] provides a promising explanation. To examine systematically its applicability, we employ shear rheology and dielectric spectroscopy to study telechelic associating polymers with different main chain (polypropylene glycol and polydimethylsiloxane), molecular weight (below entanglement molecular weight) and end groups (amide, and carboxylic acid) which form dimeric associations by hydrogen bonding. The separation between τc (probed by rheology) and τα* (probed by dielectric spectroscopy) strongly increases with chain length as qualitatively predicted by the model. However, to describe the increase quantitatively, a transition from Rouse to reptation dynamics must be assumed. This suggests that dynamics of super-chains must be considered to properly describe the transient network.
Collapse
Affiliation(s)
- Sirui Ge
- Department of Materials Science and Engineering, University of Tennessee, Knoxville, Knoxville, Tennessee 37996, USA
| | | | | | | | | | | |
Collapse
|
42
|
Golkaram M, Loos K. A Critical Approach to Polymer Dynamics in Supramolecular Polymers. Macromolecules 2019; 52:9427-9444. [PMID: 31894159 PMCID: PMC6933822 DOI: 10.1021/acs.macromol.9b02085] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/01/2019] [Indexed: 12/15/2022]
Abstract
Over the past few years, the concurrent (1) development of polymer synthesis and (2) introduction of new mathematical models for polymer dynamics have evolved the classical framework for polymer dynamics once established by Doi-Edwards/de Gennes. Although the analysis of supramolecular polymer dynamics based on linear rheology has improved a lot recently, there are a large number of insecurities behind the conclusions, which originate from the complexity of these novel systems. The interdependent effect of supramolecular entities (stickers) and chain dynamics can be overwhelming depending on the type and location of stickers as well as the architecture and chemistry of polymers. This Perspective illustrates these parameters and strives to determine what is still missing and has to be improved in the future works.
Collapse
Affiliation(s)
- Milad Golkaram
- Macromolecular Chemistry
and New Polymeric Materials, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747
AG Groningen, The Netherlands
| | - Katja Loos
- Macromolecular Chemistry
and New Polymeric Materials, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747
AG Groningen, The Netherlands
| |
Collapse
|
43
|
Affiliation(s)
- Xiao Cao
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Xinyue Yu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Jian Qin
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Quan Chen
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| |
Collapse
|
44
|
Wu W, Zhou Y, Li J, Wan C. Shape memory and self‐healing behavior of styrene–butadiene–styrene/ethylene‐methacrylic acid copolymer (SBS/EMAA) elastomers containing ionic interactions. J Appl Polym Sci 2019. [DOI: 10.1002/app.48666] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Wenjing Wu
- International Institute for Nanocomposites Manufacturing (IINM), WMG, University of Warwick Coventry CV4 7AL UK
- Aerospace Research Institute of Materials and Processing Technology 100076 Beijing China
| | - Yutao Zhou
- International Institute for Nanocomposites Manufacturing (IINM), WMG, University of Warwick Coventry CV4 7AL UK
| | - Jie Li
- Aerospace Research Institute of Materials and Processing Technology 100076 Beijing China
| | - Chaoying Wan
- International Institute for Nanocomposites Manufacturing (IINM), WMG, University of Warwick Coventry CV4 7AL UK
| |
Collapse
|
45
|
Kwon Y, Matsumiya Y, Watanabe H. Dielectric Relaxation of Type-A Chains Undergoing Head-to-Tail Association/Dissociation: Difference from Head-to-Head Case and Correlation with Viscoelastic Relaxation. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01710] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Youngdon Kwon
- School of Chemical Engineering, Sungkyunkwan University, 300 Cheoncheon-dong, Jangan-gu, Suwon, Gyeonggi-do 440-746, Korea
| | - Yumi Matsumiya
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Hiroshi Watanabe
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
46
|
Karimineghlani P, Sukhishvili SA. Activation Energy for Dissociation of Hydrogen‐Bonding Crosslinkers in Phase‐Change Salogels: Dynamic Light Scattering versus Rheological Studies. MACROMOL CHEM PHYS 2019. [DOI: 10.1002/macp.201900329] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Parvin Karimineghlani
- Department of Materials Science and Engineering Texas A&M University 575 Ross St College Station TX 77843 USA
| | - Svetlana A. Sukhishvili
- Department of Materials Science and Engineering Texas A&M University 575 Ross St College Station TX 77843 USA
| |
Collapse
|
47
|
Scheutz GM, Lessard JJ, Sims MB, Sumerlin BS. Adaptable Crosslinks in Polymeric Materials: Resolving the Intersection of Thermoplastics and Thermosets. J Am Chem Soc 2019; 141:16181-16196. [PMID: 31525287 DOI: 10.1021/jacs.9b07922] [Citation(s) in RCA: 309] [Impact Index Per Article: 61.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The classical division of polymeric materials into thermoplastics and thermosets based on covalent network structure often implies that these categories are distinct and irreconcilable. Yet, the past two decades have seen extensive development of materials that bridge this gap through incorporation of dynamic crosslinks, enabling them to behave as both robust networks and moldable plastics. Although their potential utility is significant, the growth of covalent adaptable networks (CANs) has obscured the line between "thermoplastic" and "thermoset" and erected a conceptual barrier to the growing number of new researchers entering this discipline. This Perspective aims to both outline the fundamental theory of CANs and provide a critical assessment of their current status. We emphasize throughout that the unique properties of CANs emerge from the network chemistry, and particularly highlight the role that the crosslink exchange mechanism (i.e., dissociative exchange or associative exchange) plays in the resultant material properties under processing conditions. Predominant focus will be on thermally induced dynamic behavior, as the majority of presently employed exchange chemistries rely on thermal stimulus, and it is simple to apply to bulk materials. Lastly, this Perspective aims to identify current issues and address possible solutions for better fundamental understanding within this field.
Collapse
Affiliation(s)
- Georg M Scheutz
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry , University of Florida , Gainesville , Florida 32611 , United States
| | - Jacob J Lessard
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry , University of Florida , Gainesville , Florida 32611 , United States
| | - Michael B Sims
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry , University of Florida , Gainesville , Florida 32611 , United States
| | - Brent S Sumerlin
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry , University of Florida , Gainesville , Florida 32611 , United States
| |
Collapse
|
48
|
Microrheological study of PVA/borax physical gels: Effect of chain length and elastic reinforcement by sodium hydroxide addition. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111272] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
49
|
Mordvinkin A, Suckow M, Böhme F, Colby RH, Creton C, Saalwächter K. Hierarchical Sticker and Sticky Chain Dynamics in Self-Healing Butyl Rubber Ionomers. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00159] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Anton Mordvinkin
- Institut für Physik—NMR, Martin-Luther-Universität Halle-Wittenberg, Betty-Heimann-Str. 7, 06120 Halle (Saale), Germany
| | - Marcus Suckow
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany
| | - Frank Böhme
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany
| | - Ralph H. Colby
- Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Costantino Creton
- Laboratoire de Sciences et Ingénierie de la Matière Molle, CNRS, ESPCI Paris, PSL Research University, 10 Rue Vauquelin, 75005 Paris, France
| | - Kay Saalwächter
- Institut für Physik—NMR, Martin-Luther-Universität Halle-Wittenberg, Betty-Heimann-Str. 7, 06120 Halle (Saale), Germany
| |
Collapse
|
50
|
Gârlea IC, Jaramillo-Cano D, Likos CN. Self-organization of gel networks formed by block copolymer stars. SOFT MATTER 2019; 15:3527-3540. [PMID: 30944917 DOI: 10.1039/c9sm00111e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The equilibrium properties of block copolymer star networks (BCS) are studied via computer simulations. We employ both molecular dynamics and multiparticle collisional dynamics simulations to investigate the self-organization of BCS with f = 9 functionalized arms close to their overlap concentrations under conditions of different fractions of functionalization and varying attraction strength. We find three distinct macroscopic self-organized states depending on fraction of attractive end-monomers and the strength of the attraction. At weak attractions, ergodic, diffusive liquids result, with short-lived bonds between the stars. As the attraction strength grows, the whole system forms a percolating cluster, while at the same time the individual molecules are diffusive. Finally, arrested gels emerge when the attractions become strong. The conformation of the BCS in these solutions is found to be strongly affected by the concentration, with the stars assuming typically spherical, open configurations in seeking to maximize inter-star associations as opposed to the inter-star collapse that results at infinite dilution, giving rise to strongly aspherical shapes and reduced sizes.
Collapse
Affiliation(s)
- Ioana C Gârlea
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria.
| | | | | |
Collapse
|