1
|
Singh AK, Chauhan A, Singh A. Growth kinetics and morphology characterization of binary polymeric fluid under random photo-illumination. J Chem Phys 2024; 160:024907. [PMID: 38193555 DOI: 10.1063/5.0181688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/18/2023] [Indexed: 01/10/2024] Open
Abstract
We present a comprehensive study using dissipative particle dynamics simulations to investigate phase separation kinetics (PSK) in three-dimensional (3d) polymeric fluids under random photo-illumination. We consider two scenarios: polymer blends with active radicals at one end of each immiscible chain and block copolymer (BCP) melts with photosensitive bonds linking incompatible blocks. The phase separation (PS) is induced by temperature quench of the initial homogeneously mixed system. Simultaneously, the system experiences random photo-illumination, simulated by two concurrent random events: (a) the recombination of active radicals in polymer blends and (b) the breaking of photosensitive bonds in BCP chains. Variations in the bond-breaking probability, Pb, mimic the change in light intensity. The length scale follows power law growth, R(t) ∼ tϕ, where ϕ represents the growth exponent. Increasing Pb results in a gradual transition in growth kinetics from micro-PS to macro-PS, accompanied by corresponding transition probabilities for both systems. Micro-PSK dominates the evolution process at low Pb values. The scaling functions exhibit data overlap for most scaled distances, indicating the statistical self-similarity of evolving patterns. Our study enhances the understanding of PSK in polymeric fluids, revealing the impact of photosensitive bonds and active radicals. Furthermore, it suggests the potential for designing novel polymeric materials with desired properties.
Collapse
Affiliation(s)
- Ashish Kumar Singh
- Department of Physics, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Avinash Chauhan
- Department of Physics, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Awaneesh Singh
- Department of Physics, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| |
Collapse
|
2
|
Palkar V, Thakar D, Kuksenok O. Nanogel Degradation at Soft Interfaces and in Bulk: Tracking Shape Changes and Interfacial Spreading. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Affiliation(s)
- Vaibhav Palkar
- Department of Materials Science and Engineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Devanshu Thakar
- Department of Materials Science and Engineering, Clemson University, Clemson, South Carolina 29634, United States
- Department of Chemical Engineering, Indian Institute of Technology, Gandhinagar 382055, India
| | - Olga Kuksenok
- Department of Materials Science and Engineering, Clemson University, Clemson, South Carolina 29634, United States
| |
Collapse
|
3
|
Palkar V, Kuksenok O. Controlling Degradation and Erosion of Polymer Networks: Insights from Mesoscale Modeling. J Phys Chem B 2021; 126:336-346. [PMID: 34964629 DOI: 10.1021/acs.jpcb.1c09570] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Understanding and controlling degradation of polymer networks on the mesoscale is critical for a range of applications. We utilize dissipative particle dynamics to capture photocontrolled degradation and erosion processes in hydrogels formed by end-linking of four-arm polyethylene glycol precursors. We demonstrate that the polydispersity and the fraction of broken-off fragments scale with the relative extent of reaction. The reverse gel point measured is close to the value predicted by the bond percolation theory on a diamond lattice. We characterize the erosion process via tracking the mass loss that accounts for the fragments remaining in contact with the percolated network. We quantify the dependence of the mass loss on the extent of reaction and on the properties of the film prior to degradation. These results elucidate the main features of degradation and erosion on the mesoscale and could provide guidelines for future design of degrading materials with dynamically controlled properties.
Collapse
Affiliation(s)
- Vaibhav Palkar
- Department of Materials Science and Engineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Olga Kuksenok
- Department of Materials Science and Engineering, Clemson University, Clemson, South Carolina 29634, United States
| |
Collapse
|
4
|
Liu Y, Aizenberg J, Balazs AC. Using Dissipative Particle Dynamics to Model Effects of Chemical Reactions Occurring within Hydrogels. NANOMATERIALS 2021; 11:nano11102764. [PMID: 34685205 PMCID: PMC8540124 DOI: 10.3390/nano11102764] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/11/2021] [Accepted: 10/14/2021] [Indexed: 11/25/2022]
Abstract
Computational models that reveal the structural response of polymer gels to changing, dissolved reactive chemical species would provide useful information about dynamically evolving environments. However, it remains challenging to devise one computational approach that can capture all the interconnected chemical events and responsive structural changes involved in this multi-stage, multi-component process. Here, we augment the dissipative particle dynamics (DPD) method to simulate the reaction of a gel with diffusing, dissolved chemicals to form kinetically stable complexes, which in turn cause concentration-dependent deformation of the gel. Using this model, we also examine how the addition of new chemical stimuli and subsequent reactions cause the gel to exhibit additional concentration-dependent structural changes. Through these DPD simulations, we show that the gel forms multiple latent states (not just the “on/off”) that indicate changes in the chemical composition of the fluidic environment. Hence, the gel can actuate a range of motion within the system, not just movements corresponding to the equilibrated swollen or collapsed states. Moreover, the system can be used as a sensor, since the structure of the layer effectively indicates the presence of chemical stimuli.
Collapse
Affiliation(s)
- Ya Liu
- Chemical and Petroleum Engineering Department, University of Pittsburgh, Pittsburgh, PA 15261, USA;
| | - Joanna Aizenberg
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA;
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Anna C. Balazs
- Chemical and Petroleum Engineering Department, University of Pittsburgh, Pittsburgh, PA 15261, USA;
- Correspondence:
| |
Collapse
|
5
|
Zhang Z, Hao J. Bioinspired organohydrogels with heterostructures: Fabrications, performances, and applications. Adv Colloid Interface Sci 2021; 292:102408. [PMID: 33932827 DOI: 10.1016/j.cis.2021.102408] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/01/2021] [Accepted: 04/05/2021] [Indexed: 02/08/2023]
Abstract
Since emerging in 1960, the artificial hydrogels have garnered enormous attentions in scientific community due to their high level of similarities to biological soft tissues in both structures and properties. With the proceeding of research, the concern of hydrogels is gradually shifted from fundamental investigation to abundant functionalization. In contrast to the natural soft tissues, the current artificial hydrogels still possess relatively simple structures and unsatisfactory environmental adaptability, extremely limiting their practical applications in complex environments. Enlightened by the prominent adaptability of biological organisms, the binary cooperative complementary principle is utilized to develop bioinspired organohydrogels by combining two components with opposite but cooperative physiochemical features. The present review provides the advanced progresses of bioinspired organohydrogels with sophisticated heterogeneous networks and desirably environmental adaptabilities. We clearly summarize the synthesizing strategies in regard to both corresponding mechanisms and typical examples, including macroscopic organohydrogels, organohydrogels with binary solvent, organohydrogels with heteronetworks, and emulsion-based organohydrogels. Meanwhile, the intriguing features of the reported organohydrogels, such as temperature resistance, switchable mechanics, adaptive wettability, and opposite components compatibility, are also clearly highlighted with a short overview of their promising applications. Ultimately, the current challenges and perspectives on the future development of bioinspired organohydrogels are also discussed.
Collapse
|
6
|
Feng YH, Zhang XP, Zhao ZQ, Guo XD. Dissipative Particle Dynamics Aided Design of Drug Delivery Systems: A Review. Mol Pharm 2020; 17:1778-1799. [DOI: 10.1021/acs.molpharmaceut.0c00175] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Yun Hao Feng
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P.R. China
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing 100029, China
| | - Xiao Peng Zhang
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P.R. China
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing 100029, China
| | - Ze Qiang Zhao
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P.R. China
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing 100029, China
| | - Xin Dong Guo
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P.R. China
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing 100029, China
| |
Collapse
|
7
|
Cuthbert J, Balazs AC, Kowalewski T, Matyjaszewski K. STEM Gels by Controlled Radical Polymerization. TRENDS IN CHEMISTRY 2020. [DOI: 10.1016/j.trechm.2020.02.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
8
|
Casalini T, Perale G. From Microscale to Macroscale: Nine Orders of Magnitude for a Comprehensive Modeling of Hydrogels for Controlled Drug Delivery. Gels 2019; 5:E28. [PMID: 31096685 PMCID: PMC6631542 DOI: 10.3390/gels5020028] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/14/2019] [Accepted: 05/06/2019] [Indexed: 12/21/2022] Open
Abstract
Because of their inherent biocompatibility and tailorable network design, hydrogels meet an increasing interest as biomaterials for the fabrication of controlled drug delivery devices. In this regard, mathematical modeling can highlight release mechanisms and governing phenomena, thus gaining a key role as complementary tool for experimental activity. Starting from the seminal contribution given by Flory-Rehner equation back in 1943 for the determination of matrix structural properties, over more than 70 years, hydrogel modeling has not only taken advantage of new theories and the increasing computational power, but also of the methods offered by computational chemistry, which provide details at the fundamental molecular level. Simulation techniques such as molecular dynamics act as a "computational microscope" and allow for obtaining a new and deeper understanding of the specific interactions between the solute and the polymer, opening new exciting possibilities for an in silico network design at the molecular scale. Moreover, system modeling constitutes an essential step within the "safety by design" paradigm that is becoming one of the new regulatory standard requirements also in the field-controlled release devices. This review aims at providing a summary of the most frequently used modeling approaches (molecular dynamics, coarse-grained models, Brownian dynamics, dissipative particle dynamics, Monte Carlo simulations, and mass conservation equations), which are here classified according to the characteristic length scale. The outcomes and the opportunities of each approach are compared and discussed with selected examples from literature.
Collapse
Affiliation(s)
- Tommaso Casalini
- Biomaterials Laboratory, Institute for Mechanical Engineering and Materials Technology, SUPSI-University of Applied Sciences and Arts of Southern Switzerland, Via Cantonale 2C, Galleria 2, 6928 Manno, Switzerland.
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland.
| | - Giuseppe Perale
- Biomaterials Laboratory, Institute for Mechanical Engineering and Materials Technology, SUPSI-University of Applied Sciences and Arts of Southern Switzerland, Via Cantonale 2C, Galleria 2, 6928 Manno, Switzerland.
- Department of Surgical Sciences and Integrated Diagnostics, Orthopaedic Clinic-IRCCS Ospedale Policlinico San Martino, Faculty of Biomedical Sciences, University of Genova, Largo R. Benzi 10, 16132 Genova, Italy.
| |
Collapse
|
9
|
Qin S, Yong X. Controlling the stability of Pickering emulsions by pH-responsive nanoparticles. SOFT MATTER 2019; 15:3291-3300. [PMID: 30821791 DOI: 10.1039/c8sm02407c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Electrostatic dissipative particle dynamics simulations were conducted to model the interactions between emulsion droplets stabilized by pH-sensitive polyelectrolyte-grafted nanoparticles. Using a steered molecular dynamics approach, a mechanistic study of forced coalescence was performed to probe the resistance between two particle-covered droplets. The degree of ionization of the grafted polyelectrolytes was adjusted to capture the pH responsiveness. The maximal resistance forces were measured to quantitatively discriminate the efficacy of particles in stabilizing emulsions at different degrees of ionization. Through analyzing droplet dynamics, resistance force variation, and electric field, we discovered that the resistance is attributed to direct electrostatic repulsion, the image charge effect near the water-oil interface, and steric hindrance among extended polymers. When the particle density on the droplet surface is relatively low, the increasing resistance forces at higher degrees of ionization can effectively prevent droplet coalescence. Oppositely, the ionization compromises emulsion stability when the particle surface coverage is high. Substantial desorption of particles from the interface was triggered as the degree of ionization increases. This in turn reduces resistance force and facilitates coalescence. Moreover, the nanoparticles prevent coalescence at high surface coverages by forming dense layers at individual interfaces, while the particle bridges straddling two interfaces were found at low surface coverages, which can also keep the droplets apart.
Collapse
Affiliation(s)
- Shiyi Qin
- Department of Mechanical Engineering, Binghamton University, The State University of New York, 4400 Vestal Parkway East, Binghamton, New York 13902, USA.
| | | |
Collapse
|
10
|
Cuthbert J, Zhang T, Biswas S, Olszewski M, Shanmugam S, Fu T, Gottlieb E, Kowalewski T, Balazs AC, Matyjaszewski K. Structurally Tailored and Engineered Macromolecular (STEM) Gels as Soft Elastomers and Hard/Soft Interfaces. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01880] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Julia Cuthbert
- Department of Chemistry, Center for Macromolecular Engineering, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Tao Zhang
- Chemical Engineering Department, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Santidan Biswas
- Chemical Engineering Department, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Mateusz Olszewski
- Department of Chemistry, Center for Macromolecular Engineering, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Sivaprakash Shanmugam
- Department of Chemistry, Center for Macromolecular Engineering, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Travis Fu
- Department of Chemistry, Center for Macromolecular Engineering, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Eric Gottlieb
- Department of Chemistry, Center for Macromolecular Engineering, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Tomasz Kowalewski
- Department of Chemistry, Center for Macromolecular Engineering, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Anna C. Balazs
- Chemical Engineering Department, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Center for Macromolecular Engineering, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
11
|
Gharazi S, Zarket BC, DeMella KC, Raghavan SR. Nature-Inspired Hydrogels with Soft and Stiff Zones that Exhibit a 100-Fold Difference in Elastic Modulus. ACS APPLIED MATERIALS & INTERFACES 2018; 10:34664-34673. [PMID: 30265507 DOI: 10.1021/acsami.8b14126] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Many biological materials, such as the squid beak and the spinal disc, have a combination of stiff and soft parts with very different mechanical properties, for example, the elastic modulus (stiffness) of the stiffest part of the squid beak is about 100 times that of the softest part. Researchers have attempted to mimic such structures using hydrogels but have not succeeded in synthesizing bulk gels with such large variations in moduli. Here, we present a general approach that can be used to form hydrogels with two or more zones having appreciably different mechanical characters. For this purpose, we use a technique developed in our lab for creating hybrid hydrogels with distinct zones. For the soft zone of the gel, we form a polymer network using a conventional acrylic monomer [ N, N'-dimethylacrylamide (DMAA)] and with laponite (LAP) nanoparticles as the cross-linkers. For the stiff zone, we combine DMAA, LAP, and a methacrylated silica precursor ([3-(methacryloyloxy)-propyl]trimethoxy-silane). When this mixture is polymerized, nanoscale silica particles (∼300 nm in diameter) are formed, and these serve as additional cross-links between the polymer chains, making this network very stiff. The unique character of each zone is preserved in the hybrid gel, and different zones are covalently linked to each other, thereby ensuring robust interfaces. Rheological measurements show that the elastic modulus of the stiff zone can be more than 100 times that of the soft zone. This ratio of moduli is the highest reported to date in a single, continuous gel and is comparable to the ratio in the squid beak. We present different variations of our soft-stiff hybrid gels, including multizone cylinders and core-shell discs. Such soft-stiff gels could have utility in bioengineering, such as in interfacing stiff medical implants with soft tissues.
Collapse
Affiliation(s)
- Salimeh Gharazi
- Department of Chemical & Biomolecular Engineering , University of Maryland , College Park , Maryland 20742 , United States
| | - Brady C Zarket
- Department of Chemical & Biomolecular Engineering , University of Maryland , College Park , Maryland 20742 , United States
| | - Kerry C DeMella
- Department of Chemical & Biomolecular Engineering , University of Maryland , College Park , Maryland 20742 , United States
| | - Srinivasa R Raghavan
- Department of Chemical & Biomolecular Engineering , University of Maryland , College Park , Maryland 20742 , United States
| |
Collapse
|
12
|
Hanay SB, O’Dwyer J, Kimmins SD, de Oliveira FCS, Haugh MG, O’Brien FJ, Cryan SA, Heise A. Facile Approach to Covalent Copolypeptide Hydrogels and Hybrid Organohydrogels. ACS Macro Lett 2018; 7:944-949. [PMID: 35650970 DOI: 10.1021/acsmacrolett.8b00431] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Crosslinking of tryptophan (Trp) containing copolypeptides with varying ratios of benzyl-l-glutamate (BLG) and Nα-(carbobenzyloxy)-l-lysine (Z-Lys) is achieved by the selective reaction with hexamethylene-bis-TAD (bisTAD). Conversion of the resulting organogels into biocompatible hydrogels by full BLG or Z-Lys deprotection is demonstrated. Moreover, diffusion controlled deprotection allows the design of macroscopic hybrid organohydrogels comprising hydrophilic as well as hydrophobic regions at a desired ratio and position. FTIR and SEM analysis confirm the coexistence of both hydrophilic and hydrophobic segments in one copolypeptide piece. Selective loading of hydrogel and organogel segments with hydrophilic and hydrophobic dyes, respectively, is observed on macroscopic amphiphilic gels and films. These materials offer significant potential as dual-loaded drug release gels as well as tissue engineering platforms.
Collapse
Affiliation(s)
- Saltuk B. Hanay
- Department of Chemistry, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Joanne O’Dwyer
- Drug Delivery and Advanced Materials Team, School of Pharmacy, RCSI, Dublin 2, Ireland
- Tissue Engineering Research Group, Department of Anatomy, RCSI, Dublin 2, Ireland
| | - Scott D. Kimmins
- Department of Chemistry, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | | | - Matthew G. Haugh
- Tissue Engineering Research Group, Department of Anatomy, RCSI, Dublin 2, Ireland
| | - Fergal J. O’Brien
- Tissue Engineering Research Group, Department of Anatomy, RCSI, Dublin 2, Ireland
- Trinity Centre for Bioengineering, Trinity College Dublin (TCD), Dublin 2, Ireland
- Centre for Research in Medical Devices (CURAM), RCSI, Dublin 2, and National University of Ireland, Galway, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER) RCSI and TCD, Dublin 2, Ireland
| | - Sally-Ann Cryan
- Drug Delivery and Advanced Materials Team, School of Pharmacy, RCSI, Dublin 2, Ireland
- Trinity Centre for Bioengineering, Trinity College Dublin (TCD), Dublin 2, Ireland
- Centre for Research in Medical Devices (CURAM), RCSI, Dublin 2, and National University of Ireland, Galway, Ireland
| | - Andreas Heise
- Department of Chemistry, Royal College of Surgeons in Ireland, Dublin 2, Ireland
- Centre for Research in Medical Devices (CURAM), RCSI, Dublin 2, and National University of Ireland, Galway, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER) RCSI and TCD, Dublin 2, Ireland
| |
Collapse
|
13
|
Cuthbert J, Beziau A, Gottlieb E, Fu L, Yuan R, Balazs AC, Kowalewski T, Matyjaszewski K. Transformable Materials: Structurally Tailored and Engineered Macromolecular (STEM) Gels by Controlled Radical Polymerization. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b00442] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Julia Cuthbert
- Department of Chemistry, Center for Macromolecular Engineering, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Antoine Beziau
- Department of Chemistry, Center for Macromolecular Engineering, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Eric Gottlieb
- Department of Chemistry, Center for Macromolecular Engineering, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Liye Fu
- Department of Chemistry, Center for Macromolecular Engineering, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Rui Yuan
- Department of Chemistry, Center for Macromolecular Engineering, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Anna C. Balazs
- Chemical Engineering Department, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Tomasz Kowalewski
- Department of Chemistry, Center for Macromolecular Engineering, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Center for Macromolecular Engineering, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
14
|
Biswas S, Yashin VV, Balazs AC. "Patterning with loops" to dynamically reconfigure polymer gels. SOFT MATTER 2018; 14:3361-3371. [PMID: 29663002 DOI: 10.1039/c8sm00270c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The structural and mechanical properties of gels can be controlled by promoting the unfolding (and refolding) of loops (stored lengths) embedded within the networks. As a loop unfolds, the released chain length can increase the extensibility and reconfigurability of the gel. Here, we develop a theoretical model that couples the elasticity of the gel to the dynamic transitions occurring in loops that lie between the crosslinks. Using this model, we show that a thermally-induced swelling of the gel generates an internal strain, which unfolds the loops and thereby further increases the degree of gel swelling. We exploit this cooperative behavior to reconfigure the gel by patterning the location of the loops within the sample. Through this approach, we convert flat, two-dimensional layers into three-dimensional forms and introduce architectural features into uniform 3D slabs. At a fixed temperature, an applied force produces analogous structural transformations. The shape-changes are reversible: the systems return to their original structure when the temperature is reset or the force is removed. The findings provide guidelines for creating materials that interconvert thermal, chemical and mechanical energy to perform work. Such systems could be useful for designing soft robotic materials that convert environmental stimuli into useful functionality.
Collapse
Affiliation(s)
- Santidan Biswas
- Chemical Engineering Department, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | | | | |
Collapse
|
15
|
Argun A, Gulyuz U, Okay O. Interfacing Soft and Hard Materials with Triple-Shape-Memory and Self-Healing Functions. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b00233] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Aslihan Argun
- Department of Chemistry, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey
| | - Umit Gulyuz
- Department of Chemistry, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey
- Department of Chemistry and Chemical Processing Technologies, Kirklareli University, 39750 Luleburgaz, Kirklareli, Turkey
| | - Oguz Okay
- Department of Chemistry, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey
| |
Collapse
|
16
|
Raghavan SR, Fernandes NJ, Cipriano BH. Shape-Changing Tubular Hydrogels. Gels 2018; 4:E18. [PMID: 30674794 PMCID: PMC6318631 DOI: 10.3390/gels4010018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/15/2018] [Accepted: 02/17/2018] [Indexed: 11/17/2022] Open
Abstract
We describe the creation of hollow tubular hydrogels in which different zones along the length of the tube are composed of different gels. Our method to create these gels is adapted from a technique developed previously in our lab for creating solid hybrid hydrogels. The zones of our tubular gel are covalently bonded at the interfaces; as a result, these interfaces are highly robust. Consequently, the tube can be picked up, manipulated and stretched without suffering any damage. The hollow nature of these gels allows them to respond 2⁻30-fold faster to external stimuli compared to a solid gel of identical composition. We study the case where one zone of the hybrid tube is responsive to pH (due to the incorporation of an ionic monomer) while the other zones are not. Initially, the entire tube has the same diameter, but when pH is changed, the diameter of the pH-responsive zone alone increases (i.e., this zone bulges outward) while the other zones maintain their original diameter. The net result is a drastic change in the shape of the gel, and this can be reversed by reverting the pH to its original value. Similar localized changes in gel shape are shown for two other stimuli: temperature and solvent composition. Our study points the way for researchers to design three-dimensional soft objects that can reversibly change their shape in response to stimuli.
Collapse
Affiliation(s)
- Srinivasa R Raghavan
- Department of Chemical & Biomolecular Engineering, University of Maryland, College Park, MD 20742, USA.
| | - Neville J Fernandes
- Department of Chemical & Biomolecular Engineering, University of Maryland, College Park, MD 20742, USA.
| | - Bani H Cipriano
- Department of Chemical & Biomolecular Engineering, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
17
|
Liu Y, Balazs AC. Modeling Biofilm Formation on Dynamically Reconfigurable Composite Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:1807-1816. [PMID: 29293347 DOI: 10.1021/acs.langmuir.7b03765] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We augment the dissipative particle dynamics (DPD) simulation method to model the salient features of biofilm formation. We simulate a cell as a particle containing hundreds of DPD beads and specify p, the probability of breaking the bond between the particle and surface or between the particles. At the early stages of film growth, we set p = 1, allowing all bonding interactions to be reversible. Once the bound clusters reach a critical size, we investigate scenarios where p = 0, so that incoming species form irreversible bonds, as well as cases where p lies in the range of 0.1-0.5. Using this approach, we examine the nascent biofilm development on a coating composed of a thermoresponsive gel and the embedded rigid posts. We impose a shear flow and characterize the growth rate and the morphology of the clusters on the surface at temperatures above and below Tc, the volume phase transition temperature of a gel that displays lower critical solubility temperature (LCST). At temperatures above Tc, the posts effectively inhibit the development of the nascent biofilm. For temperatures below Tc, the swelling of the gel plays the dominant role and prevents the formation of large clusters of cells. Both these antifouling mechanisms rely on physical phenomena and, hence, are advantageous over chemical methods, which can lead to unwanted, deleterious effects on the environment.
Collapse
Affiliation(s)
- Ya Liu
- Chemical Engineering Department, University of Pittsburgh , 3700 O'Hara Street, Pittsburgh, Pennsylvania 15261, United States
| | - Anna C Balazs
- Chemical Engineering Department, University of Pittsburgh , 3700 O'Hara Street, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
18
|
Beziau A, De Menezes RNL, Biswas S, Singh A, Cuthbert J, Balazs AC, Kowalewski T, Matyjaszewski K. Combining ATRP and FRP Gels: Soft Gluing of Polymeric Materials for the Fabrication of Stackable Gels. Polymers (Basel) 2017; 9:E186. [PMID: 30970867 PMCID: PMC6432409 DOI: 10.3390/polym9060186] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 05/20/2017] [Accepted: 05/20/2017] [Indexed: 11/17/2022] Open
Abstract
Stackable gels comprised of layers of dissimilar polymers were synthesized by combining conventional free radical polymerization (FRP) and atom transfer radical polymerization (ATRP) using two approaches: (i) polymerization of a pre-gel solution containing a monomer and cross-linker introduced on top of a previously prepared gel, and (ii) simultaneous polymerization of two immiscible pre-gel solutions remaining in contact. All permutations of FRP and ATRP yielded single-piece, connected, amphiphilic gels regardless of the order of polymerization. Furthermore, multi-layer ATRP gels combining different polymers were synthesized with the FRP layer as a gluing agent. A 10-layer amphiphilic stackable gel combining n-butyl methacrylate (BMA) and 2-(dimethylamino)ethyl methacrylate (DMAEMA), and a 10-layer stackable gel combining BMA, DMAEMA and di(ethylene glycol) methyl ether methacrylate (PEO₂MA) were synthesized. This patching method, combining conventional FRP gels with ATRP ones, offers an efficient path to the formation of complex stackable gel architectures.
Collapse
Affiliation(s)
- Antoine Beziau
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| | | | - Santidan Biswas
- Chemical Engineering Department, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | - Awaneesh Singh
- Chemical Engineering Department, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | - Julia Cuthbert
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| | - Anna C Balazs
- Chemical Engineering Department, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | - Tomasz Kowalewski
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| | | |
Collapse
|
19
|
Singh A, Kuksenok O, Johnson JA, Balazs AC. Photo-regeneration of severed gel with iniferter-mediated photo-growth. SOFT MATTER 2017; 13:1978-1987. [PMID: 28186517 DOI: 10.1039/c6sm02625g] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Using dissipative particle dynamics (DPD), we developed a computational approach to model the light-induced regeneration of a gel matrix when a significant portion of the material is severed. We considered photo-controlled radical polymerization (photo-CRP) within polymer networks with embedded iniferter groups: the "photo-growth" strategy. Absorption of light by the iniferter groups turns on the polymerization process, which inserts monomers and cross-linkers into the network strands. Photo-growth allows us to effectively regenerate a severed gel under the application of light even when the severed parts are not in direct contact. The growth process can be turned off once the polymerization is near completion to yield a new cross-linked gel that resembles the uncut material.
Collapse
Affiliation(s)
- Awaneesh Singh
- Chemical Engineering Department, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA.
| | - Olga Kuksenok
- Department of Materials Science and Engineering, Clemson University, Clemson, SC 29634, USA
| | - Jeremiah A Johnson
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Anna C Balazs
- Chemical Engineering Department, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA.
| |
Collapse
|
20
|
Biswas S, Singh A, Beziau A, Kowalewski T, Matyjaszewski K, Balazs AC. Modeling the formation of layered, amphiphilic gels. POLYMER 2017. [DOI: 10.1016/j.polymer.2017.01.044] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
21
|
Yong X. Hydrodynamic Interactions and Entanglements of Polymer Solutions in Many-Body Dissipative Particle Dynamics. Polymers (Basel) 2016; 8:polym8120426. [PMID: 30974702 PMCID: PMC6431898 DOI: 10.3390/polym8120426] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 12/05/2016] [Accepted: 12/06/2016] [Indexed: 11/16/2022] Open
Abstract
Using many-body dissipative particle dynamics (MDPD), polymer solutions with concentrations spanning dilute and semidilute regimes are modeled. The parameterization of MDPD interactions for systems with liquid⁻vapor coexistence is established by mapping to the mean-field Flory⁻Huggins theory. The characterization of static and dynamic properties of polymer chains is focused on the effects of hydrodynamic interactions and entanglements. The coil⁻globule transition of polymer chains in dilute solutions is probed by varying solvent quality and measuring the radius of gyration and end-to-end distance. Both static and dynamic scaling relations for polymer chains in poor, theta, and good solvents are in good agreement with the Zimm theory with hydrodynamic interactions considered. Semidilute solutions with polymer volume fractions up to 0.7 exhibit the screening of excluded volume interactions and subsequent shrinking of polymer coils. Furthermore, entanglements become dominant in the semidilute solutions, which inhibit diffusion and relaxation of chains. Quantitative analysis of topology violation confirms that entanglements are correctly captured in the MDPD simulations.
Collapse
Affiliation(s)
- Xin Yong
- Department of Mechanical Engineering, State University of New York at Binghamton, Binghamton, NY 13902, USA.
| |
Collapse
|
22
|
Liu Y, Kuksenok O, He X, Aizenberg M, Aizenberg J, Balazs AC. Harnessing Cooperative Interactions between Thermoresponsive Aptamers and Gels To Trap and Release Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2016; 8:30475-30483. [PMID: 27547846 DOI: 10.1021/acsami.6b06575] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We use computational modeling to design a device that can controllably trap and release particles in solution in response to variations in temperature. The system exploits the thermoresponsive properties of end-grafted fibers and the underlying gel substrate. The fibers mimic the temperature-dependent behavior of biological aptamers, which form a hairpin structure at low temperatures (T) and unfold at higher T, consequently losing their binding affinity. The gel substrate exhibits a lower critical solution temperature and thus, expands at low temperatures and contracts at higher T. By developing a new dissipative particle dynamics simulation, we examine the behavior of this hybrid system in a flowing fluid that contains buoyant nanoparticles. At low T, the expansion of the gel causes the hairpin-shaped fibers to extend into the path of the fluid-driven particle. Exhibiting a high binding affinity for these particles at low temperature, the fibers effectively trap and extract the particles from the surrounding solution. When the temperature is increased, the unfolding of the fiber and collapse of the supporting gel layer cause the particles to be released and transported away from the layer by the applied shear flow. Since the temperature-induced conformational changes of the fiber and polymer gel are reversible, the system can be used repeatedly to "catch and release" particles in solution. Our findings provide guidelines for creating fluidic devices that are effective at purifying contaminated solutions or trapping cells for biological assays.
Collapse
Affiliation(s)
- Ya Liu
- Department of Chemical and Petroleum Engineering, University of Pittsburgh , Pittsburgh, Pennsylvania 15261, United States
| | - Olga Kuksenok
- Materials Science and Engineering Department, Clemson University , Clemson, South Carolina 29634, United States
| | - Ximin He
- Biodesign Institute, Arizona State University , Tempe, Arizona 85281, United States
- Materials Science and Engineering, School for Engineering of Matter, Transport and Energy, Arizona State University , Tempe, Arizona 85281, United States
| | - Michael Aizenberg
- Wyss Institute for Biologically Inspired Engineering, Harvard University , Cambridge, Massachusetts 02138, United States
| | - Joanna Aizenberg
- Wyss Institute for Biologically Inspired Engineering, Harvard University , Cambridge, Massachusetts 02138, United States
- Department of Chemistry and Chemical Biology, Harvard University , Cambridge, Massachusetts 02138, United States
- School of Engineering and Applied Science, Harvard University , Cambridge, Massachusetts 02138, United States
- Kavli Institute for Bionano Science and Technology, Harvard University , Cambridge, Massachusetts 02138, United States
| | - Anna C Balazs
- Department of Chemical and Petroleum Engineering, University of Pittsburgh , Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
23
|
Beziau A, Singh A, de Menezes RN, Ding H, Simakova A, Kuksenok O, Balazs AC, Kowalewski T, Matyjaszewski K. Miktoarm star copolymers as interfacial connectors for stackable amphiphilic gels. POLYMER 2016. [DOI: 10.1016/j.polymer.2016.08.070] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
24
|
Singh A, Kuksenok O, Johnson JA, Balazs AC. Tailoring the structure of polymer networks with iniferter-mediated photo-growth. Polym Chem 2016. [DOI: 10.1039/c6py00325g] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
In the presence of light, variations in the trithiocarbonate (TTC) concentration provide a new approach for controllably tailoring the structure of polymer gels.
Collapse
Affiliation(s)
- Awaneesh Singh
- Chemical Engineering Department
- University of Pittsburgh
- Pittsburgh
- USA
| | - Olga Kuksenok
- Materials Science and Engineering Department
- Clemson University
- Clemson
- USA
| | | | - Anna C. Balazs
- Chemical Engineering Department
- University of Pittsburgh
- Pittsburgh
- USA
| |
Collapse
|
25
|
Yong X. Modeling the Assembly of Polymer-Grafted Nanoparticles at Oil-Water Interfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:11458-11469. [PMID: 26439456 DOI: 10.1021/acs.langmuir.5b03405] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Using dissipative particle dynamics (DPD), I model the interfacial adsorption and self-assembly of polymer-grafted nanoparticles at a planar oil-water interface. The amphiphilic core-shell nanoparticles irreversibly adsorb to the interface and create a monolayer covering the interface. The polymer chains of the adsorbed nanoparticles are significantly deformed by surface tension to conform to the interface. I quantitatively characterize the properties of the particle-laden interface and the structure of the monolayer in detail at different surface coverages. I observe that the monolayer of particles grafted with long polymer chains undergoes an intriguing liquid-crystalline-amorphous phase transition in which the relationship between the monolayer structure and the surface tension/pressure of the interface is elucidated. Moreover, my results indicate that the amorphous state at high surface coverage is induced by the anisotropic distribution of the randomly grafted chains on each particle core, which leads to noncircular in-plane morphology formed under excluded volume effects. These studies provide a fundamental understanding of the interfacial behavior of polymer-grafted nanoparticles for achieving complete control of the adsorption and subsequent self-assembly.
Collapse
Affiliation(s)
- Xin Yong
- Department of Mechanical Engineering, State University of New York at Binghamton , Binghamton, New York 13902, United States
| |
Collapse
|
26
|
Liu Y, McFarlin GT, Yong X, Kuksenok O, Balazs AC. Designing Composite Coatings That Provide a Dual Defense against Fouling. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:7524-7532. [PMID: 26087238 DOI: 10.1021/acs.langmuir.5b00888] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Inspired by marine organisms that utilize spines and shape changes to prevent the biofouling of their surfaces, we use computational modeling to design a gel-based composite coating that provides a two-pronged defense mechanism against the fouling of the underlying substrate. Using dissipative particle dynamics (DPD) simulations, we construct a coating that encompasses rigid posts embedded in a thermoresponsive gel, which exhibits a lower critical solution temperature (LCST). When the gel is heated above its LCST, it collapses to expose the buried posts, which act as spines or spikes that prevent a solid particle from penetrating the layer. Moreover, we show that an imposed shear flow readily dislodges these particles and washes them away from the coated substrate. As the system dissipates heat and cools, the LCST gel expands, and this dynamic morphological change can also be harnessed to dislodge the adsorbed particles. Thus, both the exposed posts and the swelling gels can provide barriers to the penetration of particulates through the coating. In this manner, the coating provides a dual mechanism against the fouling of the substrate. This physical approach can be particularly beneficial because it does not require the release of any chemical substances that could have detrimental consequences to the environment.
Collapse
Affiliation(s)
- Ya Liu
- Chemical Engineering Department, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Gerald T McFarlin
- Chemical Engineering Department, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Xin Yong
- Chemical Engineering Department, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Olga Kuksenok
- Chemical Engineering Department, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Anna C Balazs
- Chemical Engineering Department, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
27
|
Deng G, Ma Q, Yu H, Zhang Y, Yan Z, Liu F, Liu C, Jiang H, Chen Y. Macroscopic Organohydrogel Hybrid from Rapid Adhesion between Dynamic Covalent Hydrogel and Organogel. ACS Macro Lett 2015; 4:467-471. [PMID: 35596315 DOI: 10.1021/acsmacrolett.5b00096] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A macroscopic organohydrogel hybrid was prepared by fast adhesion between the hydrogel and organogel which often repel each other. The two original gels were prepared by condensation of two poly(ethylene glycol) (PEG) gelators in anisole and water, respectively. Reversible acylhydrazone bonds formed in the condensation act as linking points of the polymer networks in the gels. When the two gels were brought into contact, a robust hybridized gel was obtained in 10 min. An emulsion layer formed at the interface between the two gels and dynamic chemistry of acylhydrazone bonding are key factors in rapid adhesion of the two inherently different gels. We hope this finding will enable the development of intelligent soft objects whose macroscopic water and oil phases contain different functional components.
Collapse
Affiliation(s)
- Guohua Deng
- School
of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Qian Ma
- School
of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Hongxia Yu
- School
of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yunfei Zhang
- School
of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Zhichao Yan
- Beijing
National Laboratory for Molecular Sciences, CAS Key Laboratory of
Engineering Plastics, Joint Laboratory of Polymer Science and Materials,
Institute of Chemistry, The Chinese Academy of Sciences, Beijing 100190, China
| | - Fuyong Liu
- Beijing
National Laboratory for Molecular Sciences, CAS Key Laboratory of
Engineering Plastics, Joint Laboratory of Polymer Science and Materials,
Institute of Chemistry, The Chinese Academy of Sciences, Beijing 100190, China
| | - Chenyang Liu
- Beijing
National Laboratory for Molecular Sciences, CAS Key Laboratory of
Engineering Plastics, Joint Laboratory of Polymer Science and Materials,
Institute of Chemistry, The Chinese Academy of Sciences, Beijing 100190, China
| | - Huanfeng Jiang
- School
of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yongming Chen
- Key
Laboratory for Polymeric Composite and Functional Materials of Ministry
of Education, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|