1
|
Liang X, Guo S, Kuang X, Wan X, Liu L, Zhang F, Jiang G, Cong H, He H, Tan SC. Recent advancements and perspectives on processable natural biopolymers: Cellulose, chitosan, eggshell membrane, and silk fibroin. Sci Bull (Beijing) 2024; 69:3444-3466. [PMID: 39244421 DOI: 10.1016/j.scib.2024.08.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/12/2024] [Accepted: 08/20/2024] [Indexed: 09/09/2024]
Abstract
With the rapid development of the global economy and the continuous consumption of fossil resources, sustainable and biodegradable natural biomass has garnered extensive attention as a promising substitute for synthetic polymers. Due to their hierarchical and nanoscale structures, natural biopolymers exhibit remarkable mechanical properties, along with excellent innate biocompatibility and biodegradability, demonstrating significant potential in various application scenarios. Among these biopolymers, proteins and polysaccharides are the most commonly studied due to their low cost, abundance, and ease of use. However, the direct processing/conversion of proteins and polysaccharides into their final products has been a long-standing challenge due to their natural morphology and compositions. In this review, we emphasize the importance of processing natural biopolymers into high-value-added products through sustainable and cost-effective methods. We begin with the extraction of four types of natural biopolymers: cellulose, chitosan, eggshell membrane, and silk fibroin. The processing and post-functionalization strategies for these natural biopolymers are then highlighted. Alongside their unique structures, the versatile potential applications of these processable natural biopolymers in biomedical engineering, biosensors, environmental engineering, and energy applications are illustrated. Finally, we provide a summary and future outlook on processable natural biopolymers, underscoring the significance of converting natural biopolymers into valuable biomaterial platforms.
Collapse
Affiliation(s)
- Xinhua Liang
- Engineering Research Center for Knitting Technology (Ministry of Education), Jiangnan University, Wuxi 214122, China
| | - Shuai Guo
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117574, Singapore
| | - Xiaoju Kuang
- Engineering Research Center for Knitting Technology (Ministry of Education), Jiangnan University, Wuxi 214122, China
| | - Xiaoqian Wan
- Engineering Research Center for Knitting Technology (Ministry of Education), Jiangnan University, Wuxi 214122, China
| | - Lu Liu
- Engineering Research Center for Knitting Technology (Ministry of Education), Jiangnan University, Wuxi 214122, China
| | - Fei Zhang
- Department of Sport Medicine, The Ninth People's Hospital affiliated to Soochow University, Wuxi 215200, China
| | - Gaoming Jiang
- Engineering Research Center for Knitting Technology (Ministry of Education), Jiangnan University, Wuxi 214122, China
| | - Honglian Cong
- Engineering Research Center for Knitting Technology (Ministry of Education), Jiangnan University, Wuxi 214122, China
| | - Haijun He
- Engineering Research Center for Knitting Technology (Ministry of Education), Jiangnan University, Wuxi 214122, China.
| | - Swee Ching Tan
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117574, Singapore.
| |
Collapse
|
2
|
Ryu J, Choi J, Lee J, Kim SH. Orientation Distribution of Crystalline β-Sheet Domains in Bombyx mori Silk Fiber Studied with Vibrational Sum Frequency Generation Spectroscopy. Biomacromolecules 2024; 25:7178-7190. [PMID: 39413299 DOI: 10.1021/acs.biomac.4c00774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
Silk fibers have good biocompatibility and mechanical properties, which make them attractive in biomaterial applications as well as textile industries. It is believed that the superior mechanical property is associated with the crystalline β-sheet structure in the fiber; but a deeper understanding of the structure-property relationship is still needed for full exploitation of its physical properties. Especially, accurate information on hydrogen-bonding interactions within β-sheet domains at the nanoscale and their spatial distributions at the mesoscale are critically needed. In this study, we demonstrate the selective detection of crystalline β-sheet domains in Bombyx mori silk fiber using sum frequency generation (SFG) spectroscopy and its use to determine the angular distribution of the β-sheet crystallites with respect to the fiber axis. Numerical simulations of the SFG signal of the amide-I band were carried out using tensors based on the B2 symmetry of the D2 point group and compared with experimental data. This comparison found that the crystalline β-sheet domains are aligned along the fiber axis with a standard deviation of ∼27° and parallel to the fiber surface with a standard deviation of ∼5°. It was also found that the amide bands in the SFG spectra cannot be fully explained with the assumption that the crystalline β-sheet vibrations can be described with the D2 point group. Being able to monitor the amide group vibrations sensitive to both interchain hydrogen bonding and crystallite orientations, SFG analysis has a potential to unveil the structure-mechanical property relationship that may not be readily assessable with other characterization techniques.
Collapse
Affiliation(s)
- Jihyeong Ryu
- Department of Chemical Engineering, Materials Research Institute, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Juseok Choi
- Department of Chemical Engineering, Materials Research Institute, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Jongcheol Lee
- Department of Chemical Engineering, Materials Research Institute, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Seong H Kim
- Department of Chemical Engineering, Materials Research Institute, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
3
|
Li X, Zhang Z, Zheng Y, Liao J, Peng Z, Li P, Yang X, Yan X, Hong Y, Liu S, Shan Y, Khoo BL, Yang Z. One-step high-speed thermal-electric aerosol printing of piezoelectric bio-organic films for wirelessly powering bioelectronics. SCIENCE ADVANCES 2024; 10:eadq3195. [PMID: 39453993 PMCID: PMC11506135 DOI: 10.1126/sciadv.adq3195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 09/20/2024] [Indexed: 10/27/2024]
Abstract
Piezoelectric biomaterials hold a pivotal role in the progression of bioelectronics and biomedicine, owing to their remarkable electromechanical properties, biocompatibility, and bioresorbability. However, their technological potential is restrained by certain challenges, including precise manipulation of nanobiomolecules, controlling their growth across nano-to-macro hierarchy, and tuning desirable mechanical properties. We report a high-speed thermal-electric driven aerosol (TEA) printing method capable of fabricating piezoelectric biofilms in a singular step. Electrohydrodynamic aerosolizing and in situ electrical poling allow instantaneous tuning of the spatial organization of biomolecular inks. We demonstrate TEA printing of β-glycine/polyvinylpyrrolidone films, and such films exhibit the piezoelectric voltage coefficient of 190 × 10-3 volt-meters per newton, surpassing that of industry-standard lead zirconate titanate by approximately 10-fold. Furthermore, these films demonstrate nearly two orders of magnitude improvement in mechanical flexibility compared to glycine crystals. We also demonstrate the ultrasonic energy harvesters based on the biofilms, providing the possibility of wirelessly powering bioelectronics.
Collapse
Affiliation(s)
- Xuemu Li
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Zhuomin Zhang
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China
| | - Yi Zheng
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China
| | - Junchen Liao
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Zehua Peng
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China
| | - Pengyu Li
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China
| | - Xiaodan Yang
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China
| | - Xiaodong Yan
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Ying Hong
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
- Institute of Electrical and Micro Engineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Shiyuan Liu
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Yao Shan
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Bee Luan Khoo
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Zhengbao Yang
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| |
Collapse
|
4
|
Deng Q, Wang F, Gough CR, Hu X. Tunable microphase-regulated silk fibroin/poly (lactic acid) biocomposite materials generated from ionic liquids. Int J Biol Macromol 2022; 197:55-67. [PMID: 34952094 DOI: 10.1016/j.ijbiomac.2021.12.060] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 11/23/2021] [Accepted: 12/09/2021] [Indexed: 12/30/2022]
Abstract
One of the most effective and promising strategies to develop novel biomaterials with unique, tunable structure and physicochemical properties is by creating composite materials that combine synthetic polymers with natural proteins using ionic liquids. In this study, biodegradable poly(d,l-lactic acid) (PDLLA) was blended with silk fibroin (SF) to create biocompatible films using an ionic liquid-based binary solvent system (1-butyl-3-methylimidazolium chloride/N,N-dimethylformamide), which can maintain the molecular weights of the proteins/polymers and encourage intermolecular interactions between the molecules. The effects of varying the ratio of PLA to SF were studied using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), water contact angle testing, and cytotoxicity analysis as well as enzymatic degradation. Results showed that the composite films were homogeneously blended on the macroscopic scale and exhibited typical fully miscible polymer blend characteristics. By increasing the SF content in the composites, the amounts of β-sheets in the films were significantly increased, allowing for SF to act as a physical crosslinker to maintain the stability of the protein-polymer network. Additionally, SF significantly improved the hydrophilicity and biocompatibility of the material and promoted the self-assembly of micelle structures in the biocomposites. Different topologies in the films also provided beneficial surface morphology for cell adhesion, growth, and proliferation. Overall, this study demonstrated an effective fabrication method for a fine-tuned polymer blends combining synthetic polymer and protein for a wide variety of biomedical and green material applications.
Collapse
Affiliation(s)
- Qianqian Deng
- Center of Analysis and Testing, Nanjing Normal University, Nanjing 210023, China; School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Fang Wang
- Center of Analysis and Testing, Nanjing Normal University, Nanjing 210023, China; School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Christopher R Gough
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA
| | - Xiao Hu
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA; Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA; Department of Molecular and Cellular Biosciences, Rowan University, Glassboro, NJ 08028, USA.
| |
Collapse
|
5
|
Li C, Wu J, Shi H, Xia Z, Sahoo JK, Yeo J, Kaplan DL. Fiber-Based Biopolymer Processing as a Route toward Sustainability. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2105196. [PMID: 34647374 PMCID: PMC8741650 DOI: 10.1002/adma.202105196] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/04/2021] [Indexed: 05/02/2023]
Abstract
Some of the most abundant biomass on earth is sequestered in fibrous biopolymers like cellulose, chitin, and silk. These types of natural materials offer unique and striking mechanical and functional features that have driven strong interest in their utility for a range of applications, while also matching environmental sustainability needs. However, these material systems are challenging to process in cost-competitive ways to compete with synthetic plastics due to the limited options for thermal processing. This results in the dominance of solution-based processing for fibrous biopolymers, which presents challenges for scaling, cost, and consistency in outcomes. However, new opportunities to utilize thermal processing with these types of biopolymers, as well as fibrillation approaches, can drive renewed opportunities to bridge this gap between synthetic plastic processing and fibrous biopolymers, while also holding sustainability goals as critical to long-term successful outcomes.
Collapse
Affiliation(s)
- Chunmei Li
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Junqi Wu
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Haoyuan Shi
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca NY 14853, USA
| | - Zhiyu Xia
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Jugal Kishore Sahoo
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Jingjie Yeo
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca NY 14853, USA
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| |
Collapse
|
6
|
Characterization of undegraded and degraded silk fibroin and its significant impact on the properties of the resulting silk biomaterials. Int J Biol Macromol 2021; 176:578-588. [PMID: 33607133 DOI: 10.1016/j.ijbiomac.2021.02.100] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/01/2021] [Accepted: 02/13/2021] [Indexed: 01/26/2023]
Abstract
The silk fibroin (SF) regeneration process significantly affects the resulting biomaterials, unfortunately, there has been insufficient study regarding the most suitable regeneration method for SF. In this study, we prepared undegraded SF (uSF) and degraded SF (dSF) by common regeneration methods and studied their difference in detail. The results demonstrated that the degradation degree of SF peptide chain had little influence on the secondary structure and thermal stability of SF materials. While, uSF solution showed higher viscosity and surface tension than dSF solution. The uSF membrane (uSFM) could be elongated approximately 134%, 1.6 times the degraded SF membrane (dSFM). SEM implied that both uSF and dSF existed in aqueous solution as micelles with a diameter of approximately 30 nm. dSF could directly form SF nanoparticles (dSFNPs) when poured into acetone while uSF could only form nanoparticles (uSFNP) with the addition of SDS. Glucose oxidase embedded into dSFM and dSFNP showed high catalytic activities, but uSFNP demonstrated nearly no activity. In addition, the dSFM was more appropriate for L929 cell culture. Considering the obvious difference between the two SF proteins, our results are significant in guiding the application of appropriate SF proteins in tissue engineering materials, bioactive materials, bioink, etc.
Collapse
|
7
|
González-Obeso C, González-Pérez M, Mano JF, Alonso M, Rodríguez-Cabello JC. Complex Morphogenesis by a Model Intrinsically Disordered Protein. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2005191. [PMID: 33216415 DOI: 10.1002/smll.202005191] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/14/2020] [Indexed: 05/13/2023]
Abstract
The development of intricate and complex self-assembling structures in the micrometer range, such as biomorphs, is a major challenge in materials science. Although complex structures can be obtained from self-assembling materials as they segregate from solution, their size is usually in the nanometer range or requires accessory techniques. Previous studies with intrinsically disordered proteins (IDPs) have shown that the active interplay of different molecular interactions provides access to new and more complex nanostructures. As such, it is hypothesized that enriching the variety of intra- and intermolecular interactions in a model IDP will widen the landscape of sophisticated intermediate structures that can be accessed. In this study, a model silk-elastin-like recombinamer capable of interacting via three non-covalent interactions, namely hydrophobic, ion-pairing, and H-bonding is built. This model material is shown to self-assemble into complex stable micrometer-sized biomorphs. Variation of the block composition, pH, and temperature demonstrates the necessary interplay of all three interactions for the formation of such complex structures.
Collapse
Affiliation(s)
- Constancio González-Obeso
- BIOFORGE (Group for Advanced Materials and Nanobiotechnology), University of Valladolid-CIBER-BBN, Paseo de Belén 19, Valladolid, 47011, Spain
- Department of Biomedical Engineering, Tufts University, 4 Colby St., Medford, MA, 02155, USA
| | - Miguel González-Pérez
- BIOFORGE (Group for Advanced Materials and Nanobiotechnology), University of Valladolid-CIBER-BBN, Paseo de Belén 19, Valladolid, 47011, Spain
| | - João F Mano
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Aveiro, 3810-193, Portugal
| | - Matilde Alonso
- BIOFORGE (Group for Advanced Materials and Nanobiotechnology), University of Valladolid-CIBER-BBN, Paseo de Belén 19, Valladolid, 47011, Spain
| | - José Carlos Rodríguez-Cabello
- BIOFORGE (Group for Advanced Materials and Nanobiotechnology), University of Valladolid-CIBER-BBN, Paseo de Belén 19, Valladolid, 47011, Spain
| |
Collapse
|
8
|
Xiao Y, Liu Y, Zhang W, Qi P, Ren J, Pei Y, Ling S. Formation, Structure, and Mechanical Performance of Silk Nanofibrils Produced by Heat-Induced Self-Assembly. Macromol Rapid Commun 2020; 42:e2000435. [PMID: 33196127 DOI: 10.1002/marc.202000435] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/29/2020] [Indexed: 12/25/2022]
Abstract
The heat-induced self-assembly of silk fibroin (SF) is studied by combing fluorescence assessment, infrared nanospectroscopy, wide-angle X-ray scattering, and Derjaguin-Muller-Toporov coupled with atomic force microscopy. Several fundamental issues regarding the formation, structure, and mechanical performance of silk nanofibrils (SNFs) under heat-induced self-assembly are discussed. Accordingly, SF in aqueous solution is rod-like in shape and not micellar. The formation of SNFs occurs through nucleation-dependent aggregation, but the assembly period is variable and irregular. SF shows inherent fractal growth, and this trend is critical for the short-term assembly. The long-term assembly of SF, however, mainly involves an elongation growth process. SNFs produced by different methods, such as ethanol treatment and heat incubation, have similar secondary structure and mechanical properties. These investigations improve the in-depth understanding of fundamental issues related to self-assembly of SNFs, and thus provide inspiration and guidance in designing of silk nanomaterials.
Collapse
Affiliation(s)
- Yuelong Xiao
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Yawen Liu
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China
| | - Wenwen Zhang
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China
| | - Ping Qi
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China
| | - Jing Ren
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China
| | - Ying Pei
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Shengjie Ling
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China
| |
Collapse
|
9
|
Xue Y, Wang F, Torculas M, Lofland S, Hu X. Formic Acid Regenerated Mori, Tussah, Eri, Thai, and Muga Silk Materials: Mechanism of Self-Assembly. ACS Biomater Sci Eng 2019; 5:6361-6373. [PMID: 33417811 DOI: 10.1021/acsbiomaterials.9b00577] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Flexible and water-insoluble regenerated silk materials have caught considerable interest due to their mechanical properties and numerous potential applications in medical fields. In this study, regenerated Mori (China), Thai, Eri, Muga, and Tussah silk films were prepared by a formic acid-calcium chloride (FA) method, and their structures, morphologies, and other physical properties were comparatively studied through Fourier transform infrared spectroscopy (FTIR), wide-angle X-ray scattering (WAXS), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), and thermogravimetric analysis (TGA). FTIR results demonstrated that the secondary structures of those five types of silk films are different from those of their respective natural silk fibers, whose structures are dominated by stacked rigid intermolecular β-sheet crystals. Instead, intramolecular β-sheet structures were found to dominate these silk films made by FA method, as confirmed by WAXS. We propose that silk I-like structures with intramolecular β-sheets lead to water insolubility and mechanical flexibility. This comparative study offers a new pathway to understanding the tunable properties of silk-based biomaterials.
Collapse
Affiliation(s)
| | - Fang Wang
- Center of Analysis and Testing, Nanjing Normal University, Nanjing 210023, China
| | | | | | | |
Collapse
|
10
|
Zhong J, Liu Y, Ren J, Tang Y, Qi Z, Zhou X, Chen X, Shao Z, Chen M, Kaplan DL, Ling S. Understanding Secondary Structures of Silk Materials via Micro- and Nano-Infrared Spectroscopies. ACS Biomater Sci Eng 2019; 5:3161-3183. [PMID: 33405510 DOI: 10.1021/acsbiomaterials.9b00305] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The secondary structures (also termed conformations) of silk fibroin (SF) in animal silk fibers and regenerated SF materials are critical in determining mechanical performance and function of the materials. In order to understand the structure-mechanics-function relationships of silk materials, a variety of advanced infrared spectroscopic techniques, such as micro-infrared spectroscopies (micro-IR spectroscopies for short), synchrotron micro-IR spectroscopy, and nano-infrared spectroscopies (nano-IR spectroscopies for short), have been used to determine the conformations of SF in silk materials. These IR spectroscopic methods provide a useful toolkit to understand conformations and conformational transitions of SF in various silk materials with spatial resolution from the nano-scale to the micro-scale. In this Review, we first summarize progress in understanding the structure and structure-mechanics relationships of silk materials. We then discuss the state-of-the-art micro- and nano-IR spectroscopic techniques used for silk materials characterization. We also provide a systematic discussion of the strategies to collect high-quality spectra and the methods to analyze these spectra. Finally, we demonstrate the challenges and directions for future exploration of silk-based materials with IR spectroscopies.
Collapse
Affiliation(s)
- Jiajia Zhong
- National Facility for Protein Science in Shanghai, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Yawen Liu
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Jing Ren
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Yuzhao Tang
- National Facility for Protein Science in Shanghai, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Zeming Qi
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China
| | - Xiaojie Zhou
- National Facility for Protein Science in Shanghai, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Xin Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China
| | - Zhengzhong Shao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China
| | - Min Chen
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Shengjie Ling
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| |
Collapse
|
11
|
Adali T, Kalkan R, Karimizarandi L. The chondrocyte cell proliferation of a chitosan/silk fibroin/egg shell membrane hydrogels. Int J Biol Macromol 2019; 124:541-547. [DOI: 10.1016/j.ijbiomac.2018.11.226] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/18/2018] [Accepted: 11/25/2018] [Indexed: 11/28/2022]
|
12
|
Ghezzi CE, Marelli B, Omenetto FG, Funderburgh JL, Kaplan DL. 3D Functional Corneal Stromal Tissue Equivalent Based on Corneal Stromal Stem Cells and Multi-Layered Silk Film Architecture. PLoS One 2017; 12:e0169504. [PMID: 28099503 PMCID: PMC5242458 DOI: 10.1371/journal.pone.0169504] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 12/19/2016] [Indexed: 12/13/2022] Open
Abstract
The worldwide need for human cornea equivalents continues to grow. Few clinical options are limited to allogenic and synthetic material replacements. We hypothesized that tissue engineered human cornea systems based on mechanically robust, patterned, porous, thin, optically clear silk protein films, in combination with human corneal stromal stem cells (hCSSCs), would generate 3D functional corneal stroma tissue equivalents, in comparison to previously developed 2D approaches. Silk film contact guidance was used to control the alignment and distribution of hCSSCs on RGD-treated single porous silk films, which were then stacked in an orthogonally, multi-layered architecture and cultured for 9 weeks. These systems were compared similar systems generated with human corneal fibroblasts (hCFs). Both cell types were viable and preferentially aligned along the biomaterial patterns for up to 9 weeks in culture. H&E histological sections showed that the systems seeded with the hCSSCs displayed ECM production throughout the entire thickness of the constructs. In addition, the ECM proteins tested positive for keratocyte-specific tissue markers, including keratan sulfate, lumican, and keratocan. The quantification of hCSSC gene expression of keratocyte-tissue markers, including keratocan, lumican, human aldehyde dehydrogenase 3A1 (ALDH3A1), prostaglandin D2 synthase (PTDGS), and pyruvate dehydrogenase kinase, isozyme 4 (PDK4), within the 3D tissue systems demonstrated upregulation when compared to 2D single silk films and to the systems generated with the hCFs. Furthermore, the production of ECM from the hCSSC seeded systems and subsequent remodeling of the initial matrix significantly improved cohesiveness and mechanical performance of the constructs, while maintaining transparency after 9 weeks.
Collapse
Affiliation(s)
- Chiara E. Ghezzi
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, United States of America
| | - Benedetto Marelli
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, United States of America
| | - Fiorenzo G. Omenetto
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, United States of America
| | - James L. Funderburgh
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, United States of America
| |
Collapse
|
13
|
Vu T, Xue Y, Vuong T, Erbe M, Bennet C, Palazzo B, Popielski L, Rodriguez N, Hu X. Comparative Study of Ultrasonication-Induced and Naturally Self-Assembled Silk Fibroin-Wool Keratin Hydrogel Biomaterials. Int J Mol Sci 2016; 17:E1497. [PMID: 27618011 PMCID: PMC5037774 DOI: 10.3390/ijms17091497] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 08/24/2016] [Accepted: 08/30/2016] [Indexed: 11/30/2022] Open
Abstract
This study reports the formation of biocompatible hydrogels using protein polymers from natural silk cocoon fibroins and sheep wool keratins. Silk fibroin protein contains β-sheet secondary structures, allowing for the formation of physical cross-linkers in the hydrogels. Comparative studies were performed on two groups of samples. In the first group, ultrasonication was used to induce a quick gelation of a protein aqueous solution, enhancing the ability of Bombyx mori silk fibroin chains to quickly entrap the wool keratin protein molecules homogenously. In the second group, silk/keratin mixtures were left at room temperature for days, resulting in naturally-assembled gelled solutions. It was found that silk/wool blended solutions can form hydrogels at different mixing ratios, with perfectly interconnected gel structure when the wool content was less than 30 weight percent (wt %) for the first group (ultrasonication), and 10 wt % for the second group (natural gel). Differential scanning calorimetry (DSC) and temperature modulated DSC (TMDSC) were used to confirm that the fibroin/keratin hydrogel system was well-blended without phase separation. Fourier transform infrared spectroscopy (FTIR) was used to investigate the secondary structures of blended protein gels. It was found that intermolecular β-sheet contents significantly increase as the system contains more silk for both groups of samples, resulting in stable crystalline cross-linkers in the blended hydrogel structures. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were used to analyze the samples' characteristic morphology on both micro- and nanoscales, which showed that ultrasonic waves can significantly enhance the cross-linker formation and avoid phase separation between silk and keratin molecules in the blended systems. With the ability to form cross-linkages non-chemically, these silk/wool hydrogels may be economically useful for various biomedical applications, thanks to the good biocompatibility of protein molecules and the various characteristics of hydrogel systems.
Collapse
Affiliation(s)
- Trang Vu
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA.
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA.
- Department of Chemical Engineering, Rowan University, Glassboro, NJ 08028, USA.
| | - Ye Xue
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA.
| | - Trinh Vuong
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA.
| | - Matthew Erbe
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA.
| | - Christopher Bennet
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA.
| | - Ben Palazzo
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA.
| | - Lucas Popielski
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA.
| | - Nelson Rodriguez
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA.
| | - Xiao Hu
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA.
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA.
- Department of Biomedical and Translational Sciences, Rowan University, Glassboro, NJ 08028, USA.
| |
Collapse
|
14
|
Silk fibroin as a non-thrombogenic biomaterial. Int J Biol Macromol 2016; 90:11-9. [DOI: 10.1016/j.ijbiomac.2016.01.088] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 01/15/2016] [Accepted: 01/22/2016] [Indexed: 02/06/2023]
|
15
|
Degradation of silk films in multipocket corneal stromal rabbit models. J Appl Biomater Funct Mater 2016; 14:e266-76. [PMID: 27230452 DOI: 10.5301/jabfm.5000274] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2016] [Indexed: 11/20/2022] Open
Abstract
INTRODUCTION The need for human cornea tissues continues to grow as an alternative option to donor tissues. Silk protein has been successfully used as a substrate to engineer corneal epithelium and stroma in vitro. Herein, we investigated the in vivo response and the effect of silk crystalline structure (beta sheet) on degradation rate of silk films in rabbit multipocket corneal models. METHODS Three different surgical techniques (peripheral-median P-M, central-superficial C-S, central-deep C-D) were used to assess the in vivo response as well as the degradation profile of silk films with low, medium and high beta sheet (crystalline) content at 2 and 3 months after surgery. RESULTS Approach C-D showed signs of sample degradation without inflammation, with one single incision and a pocket created by flushing air two thirds deep in the corneal stroma. In comparison, approaches P-M and C-S with multiple incisions presented manually dissected surgical pockets resulted in inflammation and possible extrusion of the samples, respectively. Low beta sheet samples lost structural integrity at 2 months after surgery C-D, while medium and high beta sheet content films showed initial evidence of degradation. CONCLUSIONS The in vivo response to the silk films was dependent on the location of the implant and pocket depth. Crystallinity content in silk films played a significant role in the timing of material degradation, without signs of inflammation and vascularization or changes in stromal organization.
Collapse
|
16
|
Han H, Ning H, Liu S, Lu Q, Fan Z, Lu H, Lu G, Kaplan DL. Silk Biomaterials with Vascularization Capacity. ADVANCED FUNCTIONAL MATERIALS 2016; 26:421-436. [PMID: 27293388 PMCID: PMC4895924 DOI: 10.1002/adfm.201504160] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Functional vascularization is critical for the clinical regeneration of complex tissues such as kidney, liver or bone. The immobilization or delivery of growth factors has been explored to improve vascularization capacity of tissue engineered constructs, however, the use of growth factors has inherent problems such as the loss of signaling capability and the risk of complications such as immunological responses and cancer. Here, a new method of preparing water-insoluble silk protein scaffolds with vascularization capacity using an all aqueous process is reported. Acid was added temporally to tune the self-assembly of silk in lyophilization process, resulting in water insoluble scaffold formation directly. These biomaterials are mainly noncrystalline, offering improved cell proliferation than previously reported silk materials. These systems also have appropriate softer mechanical property that could provide physical cues to promote cell differentiation into endothelial cells, and enhance neovascularization and tissue ingrowth in vivo without the addition of growth factors. Therefore, silk-based degradable scaffolds represent an exciting biomaterial option, with vascularization capacity for soft tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Hongyan Han
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, People's Republic of China
| | - Hongyan Ning
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, People's Republic of China
| | - Shanshan Liu
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, People's Republic of China
| | - Qiang Lu
- National Engineering Laboratory for Modern Silk, College of Textile and ClothingEngineering, Soochow University, Suzhou 215123, People's Republic of China
| | - Zhihai Fan
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou 215000, People's Republic of China
| | - Haijun Lu
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou 215000, People's Republic of China
| | - Guozhong Lu
- Department of Burns and Plastic Surgery, The third Affiliated Hospital of Nantong University, Wuxi 214041, People's Republic of China
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, People's Republic of China
| |
Collapse
|
17
|
Jia L, Ghezzi CE, Kaplan DL. Optimization of silk films as substrate for functional corneal epithelium growth. J Biomed Mater Res B Appl Biomater 2015; 104:431-41. [PMID: 25891207 DOI: 10.1002/jbm.b.33408] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Revised: 01/05/2015] [Accepted: 02/19/2015] [Indexed: 11/10/2022]
Abstract
The corneal epithelium is the first cellular barrier to protect the cornea. Thus, functional tissue engineering of the corneal epithelium is a strategy for clinical transplantation. In this study, the optimization of silk films (SFs) as substrates for functional human corneal epithelium growth was investigated with primary human corneal epithelial cells on SFs, poly-D-lysine (PDL) coated SFs, arginine-glycine-aspartic acid (RGD) modified SFs and PDL blended SFs. PDL coated SFs significantly promoted cell adhesion at early phases in comparison to the other study groups, while PDL blended SF significantly promoted cell migration in a "wound healing" model. All film modifications promoted cell proliferation and viability, and a multi-layered epithelium was achieved in 4 weeks of culture. The epithelia formed were tightly apposed and maintained an intact barrier function against rose bengal dye penetration. The results suggested that a differentiated human corneal epithelium can be established with primary corneal epithelial cells on SFs in vitro, by optimizing SF composition with PDL.
Collapse
Affiliation(s)
- Liang Jia
- Department of Biomedical Engineering, Tufts University, Medford, Massachuttes, 02155.,Department of Ophthalmology, Chinese PLA General Hospital, Beijing, 100853, People's Republic of China
| | - Chiara E Ghezzi
- Department of Biomedical Engineering, Tufts University, Medford, Massachuttes, 02155
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachuttes, 02155
| |
Collapse
|
18
|
Li G, Liu J, Zheng Z, Wang X, Kaplan DL. Structural Mimetic Silk Fiber-Reinforced Composite Scaffolds Using Multi-Angle Fibers. Macromol Biosci 2015; 15:1125-33. [DOI: 10.1002/mabi.201400502] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 01/17/2015] [Indexed: 01/03/2023]
Affiliation(s)
- Gang Li
- National Engineering Laboratory for Modern Silk; College of Textile and Clothing Engineering; Soochow University; Suzhou 215123 P. R. China
| | - Jian Liu
- National Engineering Laboratory for Modern Silk; College of Textile and Clothing Engineering; Soochow University; Suzhou 215123 P. R. China
| | - Zhaozhu Zheng
- National Engineering Laboratory for Modern Silk; College of Textile and Clothing Engineering; Soochow University; Suzhou 215123 P. R. China
| | - Xiaoqin Wang
- National Engineering Laboratory for Modern Silk; College of Textile and Clothing Engineering; Soochow University; Suzhou 215123 P. R. China
| | - David L. Kaplan
- Department of Biomedical Engineering; Tufts University; 4 Colby St., Room 153 Medford MA 02155 USA
| |
Collapse
|
19
|
Dong Y, Dong P, Huang D, Mei L, Xia Y, Wang Z, Pan X, Li G, Wu C. Fabrication and characterization of silk fibroin-coated liposomes for ocular drug delivery. Eur J Pharm Biopharm 2015; 91:82-90. [DOI: 10.1016/j.ejpb.2015.01.018] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 01/20/2015] [Accepted: 01/22/2015] [Indexed: 10/24/2022]
|
20
|
Borkner CB, Elsner MB, Scheibel T. Coatings and films made of silk proteins. ACS APPLIED MATERIALS & INTERFACES 2014; 6:15611-15625. [PMID: 25004395 DOI: 10.1021/am5008479] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Silks are a class of proteinaceous materials produced by arthropods for various purposes. Spider dragline silk is known for its outstanding mechanical properties, and it shows high biocompatibility, good biodegradability, and a lack of immunogenicity and allergenicity. The silk produced by the mulberry silkworm B. mori has been used as a textile fiber and in medical devices for a long time. Here, recent progress in the processing of different silk materials into highly tailored isotropic and anisotropic coatings for biomedical applications such as tissue engineering, cell adhesion, and implant coatings as well as for optics and biosensors is reviewed.
Collapse
Affiliation(s)
- Christian B Borkner
- Lehrstuhl Biomaterialien, Fakultät für Ingenieurwissenschaften, ‡Bayreuther Zentrum für Kolloide und Grenzflächen (BZKG), §Institut für Bio-Makromoleküle (bio-mac), ∥Bayreuther Zentrum für Molekulare Biowissenschaften (BZMB), and ⊥Bayreuther Materialzentrum (BayMAT), Universität Bayreuth , Universitätsstrasse 30, 95440 Bayreuth, Germany
| | | | | |
Collapse
|
21
|
Liu G, Xu S, Cao TT, Lin H, Tang X, Zhang YQ, Wang X. Thermally induced increase in energy transport capacity of silkworm silks. Biopolymers 2014; 101:1029-37. [PMID: 24723331 DOI: 10.1002/bip.22496] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 04/07/2014] [Accepted: 04/08/2014] [Indexed: 11/11/2022]
Abstract
This work reports on the first study of thermally induced effect on energy transport in single filaments of silkworm (Bombyx mori) fibroin degummed mild (type 1), moderate (type 2), to strong (type 3). After heat treatment from 140 to 220°C, the thermal diffusivity of silk fibroin type 1, 2, and 3 increases up to 37.9, 20.9, and 21.5%, respectively. Our detailed scanning electron microscopy study confirms that the sample diameter change is almost negligible before and after heat treatment. Raman analysis is performed on the original and heat-treated (at 147°C) samples. After heat treatment at 147°C, the Raman peaks at 1081, 1230, and 1665 cm(-1) become stronger and narrower, indicating structural transformation from amorphous to crystalline. A structure model composed of amorphous, crystalline, and laterally ordered regions is proposed to explain the structural change by heat treatment. Owing to the close packing of more adjacent laterally ordered regions, the number and size of the crystalline regions of Bombyx mori silk fibroin increase by heat treatment. This structure change gives the observed significant thermal diffusivity increase by heat treatment.
Collapse
Affiliation(s)
- Guoqing Liu
- Department of Mechanical Engineering, Iowa State University, Ames, 50011, Iowa
| | | | | | | | | | | | | |
Collapse
|
22
|
Hao W, Porter D, Shao Z. Influences of film thickness and fabrication method on the surface structure and mineralization-templating of silk fibroin. RSC Adv 2014. [DOI: 10.1039/c4ra06971d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The mineralization templating of Bombyx mori silkworm silk fibroin film on calcium carbonate is found to depend on the β-structure of the surface.
Collapse
Affiliation(s)
- Wei Hao
- State Key Laboratory of Molecular Engineering of Polymers
- Advanced Materials Laboratory
- Department of Macromolecular Science
- Fudan University
- Shanghai, People's Republic of China
| | - David Porter
- Department of Zoology
- University of Oxford
- Oxford OX1 3PS, UK
| | - Zhengzhong Shao
- State Key Laboratory of Molecular Engineering of Polymers
- Advanced Materials Laboratory
- Department of Macromolecular Science
- Fudan University
- Shanghai, People's Republic of China
| |
Collapse
|
23
|
Hicks T, Verbeek CJR, Lay MC, Bier JM. Effect of oxidative treatment on the secondary structure of decoloured bloodmeal. RSC Adv 2014. [DOI: 10.1039/c4ra03890h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Synchrotron-based Fourier-transform infrared (FTIR) spectroscopy was used to assess the effect of peracetic acid decolouring on the spatial distribution of secondary structures within particles of bloodmeal.
Collapse
Affiliation(s)
- Talia Hicks
- School of Engineering
- Faculty of Science and Engineering
- University of Waikato
- Hamilton 3240, New Zealand
| | - Casparus J. R. Verbeek
- School of Engineering
- Faculty of Science and Engineering
- University of Waikato
- Hamilton 3240, New Zealand
| | - Mark C. Lay
- School of Engineering
- Faculty of Science and Engineering
- University of Waikato
- Hamilton 3240, New Zealand
| | - James M. Bier
- School of Engineering
- Faculty of Science and Engineering
- University of Waikato
- Hamilton 3240, New Zealand
| |
Collapse
|
24
|
Stability of silk and collagen protein materials in space. Sci Rep 2013; 3:3428. [PMID: 24305951 PMCID: PMC3851920 DOI: 10.1038/srep03428] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 11/19/2013] [Indexed: 11/08/2022] Open
Abstract
Collagen and silk materials, in neat forms and as silica composites, were flown for 18 months on the International Space Station [Materials International Space Station Experiment (MISSE)-6] to assess the impact of space radiation on structure and function. As natural biomaterials, the impact of the space environment on films of these proteins was investigated to understand fundamental changes in structure and function related to the future utility in materials and medicine in space environments. About 15% of the film surfaces were etched by heavy ionizing particles such as atomic oxygen, the major component of the low-Earth orbit space environment. Unexpectedly, more than 80% of the silk and collagen materials were chemically crosslinked by space radiation. These findings are critical for designing next-generation biocompatible materials for contact with living systems in space environments, where the effects of heavy ionizing particles and other cosmic radiation need to be considered.
Collapse
|
25
|
Hu X, Tang-Schomer MD, Huang W, Xia XX, Weiss AS, Kaplan DL. Charge-Tunable Silk-Tropoelastin Protein Alloys That Control Neuron Cell Responses. ADVANCED FUNCTIONAL MATERIALS 2013; 23:3875-3884. [PMID: 25093018 PMCID: PMC4118775 DOI: 10.1002/adfm.201202685] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Tunable protein composites are important for constructing extracellular matrix mimics of human tissues with control of biochemical, structural, and mechanical properties. Molecular interaction mechanisms between silk fibroin protein and recombinant human tropoelastin, based on charge, are utilized to generate a new group of multifunctional protein alloys (mixtures of silk and tropoelastin) with different net charges. These new biomaterials are then utilized as a biomaterial platform to control neuron cell response. With a +38 net charge in water, tropoelastin molecules provide extraordinary elasticity and selective interactions with cell surface integrins. In contrast, negatively charged silk fibroin protein (net charge -36) provides remarkable toughness and stiffness with morphologic stability in material formats via autoclaving-induced beta-sheet crystal physical crosslinks. The combination of these properties in alloy format extends the versatility of both structural proteins, providing a new biomaterial platform. The alloys with weak positive charges (silk/tropoelastin mass ratio 75/25, net charge around +16) significantly improved the formation of neuronal networks and maintained cell viability of rat cortical neurons after 10 days in vitro. The data point to these protein alloys as an alternative to commonly used poly-L-lysine (PLL) coatings or other charged synthetic polymers, particularly with regard to the versatility of material formats (e.g., gels, sponges, films, fibers). The results also provide a practical example of physically designed protein materials with control of net charge to direct biological outcomes, in this case for neuronal tissue engineering.
Collapse
Affiliation(s)
- Xiao Hu
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155 (USA)
| | - Min D. Tang-Schomer
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155 (USA)
| | - Wenwen Huang
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155 (USA)
| | - Xiao-Xia Xia
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155 (USA)
| | - Anthony S. Weiss
- School of Molecular Bioscience, The University of Sydney, Sydney, NSW 2006 (Australia)
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155 (USA)
| |
Collapse
|
26
|
Brenckle MA, Partlow B, Tao H, Kaplan DL, Omenetto FG. Interface Control of Semicrystalline Biopolymer Films through Thermal Reflow. Biomacromolecules 2013; 14:2189-95. [DOI: 10.1021/bm400305r] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mark A. Brenckle
- Department
of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts
02155, United States
| | - Benjamin Partlow
- Department
of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts
02155, United States
| | - Hu Tao
- Department
of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts
02155, United States
| | - David L. Kaplan
- Department
of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts
02155, United States
| | - Fiorenzo G. Omenetto
- Department
of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts
02155, United States
| |
Collapse
|
27
|
Kundu B, Rajkhowa R, Kundu SC, Wang X. Silk fibroin biomaterials for tissue regenerations. Adv Drug Deliv Rev 2013; 65:457-70. [PMID: 23137786 DOI: 10.1016/j.addr.2012.09.043] [Citation(s) in RCA: 794] [Impact Index Per Article: 66.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 08/26/2012] [Accepted: 09/25/2012] [Indexed: 12/31/2022]
Abstract
Regeneration of tissues using cells, scaffolds and appropriate growth factors is a key approach in the treatments of tissue or organ failure. Silk protein fibroin can be effectively used as a scaffolding material in these treatments. Silk fibers are obtained from diverse sources such as spiders, silkworms, scorpions, mites and flies. Among them, silk of silkworms is a good source for the development of biomedical device. It possesses good biocompatibility, suitable mechanical properties and is produced in bulk in the textile sector. The unique combination of elasticity and strength along with mammalian cell compatibility makes silk fibroin an attractive material for tissue engineering. The present article discusses the processing of silk fibroin into different forms of biomaterials followed by their uses in regeneration of different tissues. Applications of silk for engineering of bone, vascular, neural, skin, cartilage, ligaments, tendons, cardiac, ocular, and bladder tissues are discussed. The advantages and limitations of silk systems as scaffolding materials in the context of biocompatibility, biodegradability and tissue specific requirements are also critically reviewed.
Collapse
Affiliation(s)
- Banani Kundu
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur-721302, India
| | | | | | | |
Collapse
|
28
|
Guan J, Porter D, Vollrath F. Thermally Induced Changes in Dynamic Mechanical Properties of Native Silks. Biomacromolecules 2013; 14:930-7. [DOI: 10.1021/bm400012k] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Juan Guan
- Department
of Zoology, University of Oxford, OX1 3PS,
Oxford, U.K
| | - David Porter
- Department
of Zoology, University of Oxford, OX1 3PS,
Oxford, U.K
| | - Fritz Vollrath
- Department
of Zoology, University of Oxford, OX1 3PS,
Oxford, U.K
| |
Collapse
|
29
|
Hao R, Zhang J, Xu T, Huang L, Yao J, Chen X, Shao Z. Characterization and assembly investigation of a dodecapeptide hydrolyzed from the crystalline domain of Bombyx mori silk fibroin. Polym Chem 2013. [DOI: 10.1039/c3py21096k] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
30
|
|
31
|
Skotnicki M, Gaweł A, Cebe P, Pyda M. Thermal behavior and phase identification of Valsartan by standard and temperature-modulated differential scanning calorimetry. Drug Dev Ind Pharm 2012; 39:1508-14. [DOI: 10.3109/03639045.2012.704379] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
32
|
Cormier AR, Ruiz-Orta C, Alamo RG, Paravastu AK. Solid State Self-Assembly Mechanism of RADA16-I Designer Peptide. Biomacromolecules 2012; 13:1794-804. [DOI: 10.1021/bm300313h] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Ashley R. Cormier
- Department of Chemical and Biomedical Engineering,
FAMU-FSU College of Engineering, Florida State University, 2525 Pottsdamer Street, Tallahassee, Florida 32310-6046, United
States
- National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee,
Florida 32310, United
States
| | - Carolina Ruiz-Orta
- Department of Chemical and Biomedical Engineering,
FAMU-FSU College of Engineering, Florida State University, 2525 Pottsdamer Street, Tallahassee, Florida 32310-6046, United
States
- National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee,
Florida 32310, United
States
| | - Rufina G. Alamo
- Department of Chemical and Biomedical Engineering,
FAMU-FSU College of Engineering, Florida State University, 2525 Pottsdamer Street, Tallahassee, Florida 32310-6046, United
States
- National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee,
Florida 32310, United
States
| | - Anant K. Paravastu
- Department of Chemical and Biomedical Engineering,
FAMU-FSU College of Engineering, Florida State University, 2525 Pottsdamer Street, Tallahassee, Florida 32310-6046, United
States
- National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee,
Florida 32310, United
States
| |
Collapse
|
33
|
Karakutuk I, Ak F, Okay O. Diepoxide-Triggered Conformational Transition of Silk Fibroin: Formation of Hydrogels. Biomacromolecules 2012; 13:1122-8. [DOI: 10.1021/bm300006r] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ilknur Karakutuk
- Istanbul Technical University, Department of Chemistry, 34469 Istanbul, Turkey
| | - Fatih Ak
- Istanbul Technical University, Department of Chemistry, 34469 Istanbul, Turkey
| | - Oguz Okay
- Istanbul Technical University, Department of Chemistry, 34469 Istanbul, Turkey
| |
Collapse
|
34
|
Tao Y, Xu W, Yan Y, Cao Y. Preparation and characterization of silk fibroin nanocrystals. POLYM INT 2012. [DOI: 10.1002/pi.4136] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
35
|
Wohlrab S, Spieß K, Scheibel T. Varying surface hydrophobicities of coatings made of recombinant spider silk proteins. ACTA ACUST UNITED AC 2012. [DOI: 10.1039/c2jm35075k] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
36
|
Wittmer CR, Hu X, Gauthier PC, Weisman S, Kaplan DL, Sutherland TD. Production, structure and in vitro degradation of electrospun honeybee silk nanofibers. Acta Biomater 2011; 7:3789-95. [PMID: 21689795 DOI: 10.1016/j.actbio.2011.06.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Revised: 05/26/2011] [Accepted: 06/01/2011] [Indexed: 10/18/2022]
Abstract
Honeybees produce silken cocoons containing four related fibrous proteins. High levels of each of the honeybee silk proteins can be produced recombinantly by fermentation in Escherichia coli. In this study we have used electrospinning to fabricate a single recombinant honeybee silk protein, AmelF3, into nanofibers of around 200 nm diameter. Infrared spectroscopy found that the molecular structure of the nanofibers was predominantly coiled coil, essentially the same as native honeybee silk. Mats of the honeybee nanofibers were treated with methanol or by water annealing, which increased their β-sheet content and rendered them water insensitive. The insoluble mats were degraded by protease on a time scale of hours to days. The protease gradually released proteins from the solid state and these were subsequently rapidly degraded into small peptides without the accumulation of partial degradation products. Cell culture assays demonstrated that the mats allowed survival, attachment and proliferation of fibroblasts. These results indicate that honeybee silk proteins meet many prerequisites for use as a biomaterial.
Collapse
|
37
|
Rockwood DN, Preda RC, Yücel T, Wang X, Lovett ML, Kaplan DL. Materials fabrication from Bombyx mori silk fibroin. Nat Protoc 2011; 6:1612-31. [PMID: 21959241 DOI: 10.1038/nprot.2011.379] [Citation(s) in RCA: 1743] [Impact Index Per Article: 124.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Silk fibroin, derived from Bombyx mori cocoons, is a widely used and studied protein polymer for biomaterial applications. Silk fibroin has remarkable mechanical properties when formed into different materials, demonstrates biocompatibility, has controllable degradation rates from hours to years and can be chemically modified to alter surface properties or to immobilize growth factors. A variety of aqueous or organic solvent-processing methods can be used to generate silk biomaterials for a range of applications. In this protocol, we include methods to extract silk from B. mori cocoons to fabricate hydrogels, tubes, sponges, composites, fibers, microspheres and thin films. These materials can be used directly as biomaterials for implants, as scaffolding in tissue engineering and in vitro disease models, as well as for drug delivery.
Collapse
Affiliation(s)
- Danielle N Rockwood
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, USA
| | | | | | | | | | | |
Collapse
|
38
|
Hu X, Park SH, Gil ES, Xia XX, Weiss AS, Kaplan DL. The influence of elasticity and surface roughness on myogenic and osteogenic-differentiation of cells on silk-elastin biomaterials. Biomaterials 2011; 32:8979-89. [PMID: 21872326 DOI: 10.1016/j.biomaterials.2011.08.037] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 08/14/2011] [Indexed: 12/22/2022]
Abstract
The interactions of C2C12 myoblasts and human bone marrow stem cells (hMSCs) with silk-tropoelastin biomaterials, and the capacity of each to promote attachment, proliferation, and either myogenic- or osteogenic-differentiation were investigated. Temperature-controlled water vapor annealing was used to control beta-sheet crystal formation to generate insoluble silk-tropoelastin biomaterial matrices at defined ratios of the two proteins. These ratios controlled surface roughness and micro/nano-scale topological patterns, and elastic modulus, stiffness, yield stress, and tensile strength. A combination of low surface roughness and high stiffness in the silk-tropoelastin materials promoted proliferation and myogenic-differentiation of C2C12 cells. In contrast, high surface roughness with micro/nano-scale surface patterns was favored by hMSCs. Increasing the content of human tropoelastin in the silk-tropoelastin materials enhanced the proliferation and osteogenic-differentiation of hMSCs. We conclude that the silk-tropoelastin composition facilitates fine tuning of the growth and differentiation of these cells.
Collapse
Affiliation(s)
- Xiao Hu
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | | | | | | | | | | |
Collapse
|
39
|
Wray LS, Hu X, Gallego J, Georgakoudi I, Omenetto FG, Schmidt D, Kaplan DL. Effect of processing on silk-based biomaterials: reproducibility and biocompatibility. J Biomed Mater Res B Appl Biomater 2011; 99:89-101. [PMID: 21695778 DOI: 10.1002/jbm.b.31875] [Citation(s) in RCA: 234] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2010] [Revised: 03/13/2011] [Accepted: 03/17/2011] [Indexed: 11/07/2022]
Abstract
Silk fibroin has been successfully used as a biomaterial for tissue regeneration. To prepare silk fibroin biomaterials for human implantation a series of processing steps are required to purify the protein. Degumming to remove inflammatory sericin is a crucial step related to biocompatibility and variability in the material. Detailed characterization of silk fibroin degumming is reported. The degumming conditions significantly affected cell viability on the silk fibroin material and the ability to form three-dimensional porous scaffolds from the silk fibroin, but did not affect macrophage activation or β-sheet content in the materials formed. Methods are also provided to determine the content of residual sericin in silk fibroin solutions and to assess changes in silk fibroin molecular weight. Amino acid composition analysis was used to detect sericin residuals in silk solutions with a detection limit between 1.0 and 10% wt/wt, while fluorescence spectroscopy was used to reproducibly distinguish between silk samples with different molecular weights. Both methods are simple and require minimal sample volume, providing useful quality control tools for silk fibroin preparation processes.
Collapse
Affiliation(s)
- Lindsay S Wray
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Hu X, Shmelev K, Sun L, Gil ES, Park SH, Cebe P, Kaplan DL. Regulation of silk material structure by temperature-controlled water vapor annealing. Biomacromolecules 2011; 12:1686-96. [PMID: 21425769 PMCID: PMC3090511 DOI: 10.1021/bm200062a] [Citation(s) in RCA: 392] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We present a simple and effective method to obtain refined control of the molecular structure of silk biomaterials through physical temperature-controlled water vapor annealing (TCWVA). The silk materials can be prepared with control of crystallinity, from a low content using conditions at 4 °C (α helix dominated silk I structure), to highest content of ∼60% crystallinity at 100 °C (β-sheet dominated silk II structure). This new physical approach covers the range of structures previously reported to govern crystallization during the fabrication of silk materials, yet offers a simpler, green chemistry, approach with tight control of reproducibility. The transition kinetics, thermal, mechanical, and biodegradation properties of the silk films prepared at different temperatures were investigated and compared by Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), uniaxial tensile studies, and enzymatic degradation studies. The results revealed that this new physical processing method accurately controls structure, in turn providing control of mechanical properties, thermal stability, enzyme degradation rate, and human mesenchymal stem cell interactions. The mechanistic basis for the control is through the temperature-controlled regulation of water vapor to control crystallization. Control of silk structure via TCWVA represents a significant improvement in the fabrication of silk-based biomaterials, where control of structure-property relationships is key to regulating material properties. This new approach to control crystallization also provides an entirely new green approach, avoiding common methods that use organic solvents (methanol, ethanol) or organic acids. The method described here for silk proteins would also be universal for many other structural proteins (and likely other biopolymers), where water controls chain interactions related to material properties.
Collapse
Affiliation(s)
- Xiao Hu
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - Karen Shmelev
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - Lin Sun
- Department of Chemical and Biological Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - Eun-Seok Gil
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - Sang-Hyug Park
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - Peggy Cebe
- Department of Physics and Astronomy, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
- Department of Chemical and Biological Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| |
Collapse
|
41
|
Kuktaite R, Plivelic TS, Cerenius Y, Hedenqvist MS, Gällstedt M, Marttila S, Ignell R, Popineau Y, Tranquet O, Shewry PR, Johansson E. Structure and morphology of wheat gluten films: from polymeric protein aggregates toward superstructure arrangements. Biomacromolecules 2011; 12:1438-48. [PMID: 21434684 DOI: 10.1021/bm200009h] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Evaluation of structure and morphology of extruded wheat gluten (WG) films showed WG protein assemblies elucidated on a range of length scales from nano (4.4 Å and 9 to 10 Å, up to 70 Å) to micro (10 μm). The presence of NaOH in WG films induced a tetragonal structure with unit cell parameters, a = 51.85 Å and c = 40.65 Å, whereas NH(4)OH resulted in a bidimensional hexagonal close-packed (HCP) structure with a lattice parameter of 70 Å. In the WG films with NH(4)OH, a highly polymerized protein pattern with intimately mixed glutenins and gliadins bounded through SH/SS interchange reactions was found. A large content of β-sheet structures was also found in these films, and the film structure was oriented in the extrusion direction. In conclusion, this study highlights complexities of the supramolecular structures and conformations of wheat gluten polymeric proteins in biofilms not previously reported for biobased materials.
Collapse
Affiliation(s)
- Ramune Kuktaite
- Department of Agriculture-Farming Systems, Technology and Product Quality, The Swedish University of Agricultural Sciences, Alnarp, Sweden.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Yucel T, Cebe P, Kaplan DL. Structural Origins of Silk Piezoelectricity. ADVANCED FUNCTIONAL MATERIALS 2011; 21:779-785. [PMID: 23335872 PMCID: PMC3546528 DOI: 10.1002/adfm.201002077] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Uniaxially oriented, piezoelectric silk films were prepared by a two-step method that involved: (1) air drying aqueous, regenerated silk fibroin solutions into films, and (2) drawing the silk films to a desired draw ratio. The utility of two different drawing techniques, zone drawing and water immersion drawing were investigated for processing the silk for piezoelectric studies. Silk films zone drawn to a ratio of λ= 2.7 displayed relatively high dynamic shear piezoelectric coefficients of d(14) = -1.5 pC/N, corresponding to over two orders of magnitude increase in d(14) due to film drawing. A strong correlation was observed between the increase in the silk II, β-sheet content with increasing draw ratio measured by FTIR spectroscopy (C(β)∝ e(2.5) (λ)), the concomitant increasing degree of orientation of β-sheet crystals detected via WAXD (FWHM = 0.22° for λ= 2.7), and the improvement in silk piezoelectricity (d(14)∝ e(2.4) (λ)). Water immersion drawing led to a predominantly silk I structure with a low degree of orientation (FWHM = 75°) and a much weaker piezoelectric response compared to zone drawing. Similarly, increasing the β-sheet crystallinity without inducing crystal alignment, e.g. by methanol treatment, did not result in a significant enhancement of silk piezoelectricity. Overall, a combination of a high degree of silk II, β-sheet crystallinity and crystalline orientation are prerequisites for a strong piezoelectric effect in silk. Further understanding of the structural origins of silk piezoelectricity will provide important options for future biotechnological and biomedical applications of this protein.
Collapse
Affiliation(s)
- Tuna Yucel
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155 (USA)
| | - Peggy Cebe
- Department of Physics and Astronomy, Tufts University Medford, MA 02155 (USA)
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155 (USA)
| |
Collapse
|
43
|
|
44
|
Hu X, Lu Q, Sun L, Cebe P, Wang X, Zhang X, Kaplan DL. Biomaterials from Ultrasonication-Induced Silk Fibroin−Hyaluronic Acid Hydrogels. Biomacromolecules 2010; 11:3178-88. [DOI: 10.1021/bm1010504] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Xiao Hu
- Departments of Biomedical Engineering, Physics and Astronomy, and Chemical and Biological Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Qiang Lu
- Departments of Biomedical Engineering, Physics and Astronomy, and Chemical and Biological Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Lin Sun
- Departments of Biomedical Engineering, Physics and Astronomy, and Chemical and Biological Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Peggy Cebe
- Departments of Biomedical Engineering, Physics and Astronomy, and Chemical and Biological Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Xiaoqin Wang
- Departments of Biomedical Engineering, Physics and Astronomy, and Chemical and Biological Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Xiaohui Zhang
- Departments of Biomedical Engineering, Physics and Astronomy, and Chemical and Biological Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - David L. Kaplan
- Departments of Biomedical Engineering, Physics and Astronomy, and Chemical and Biological Engineering, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
45
|
Yu L, Hu X, Kaplan D, Cebe P. Dielectric Relaxation Spectroscopy of Hydrated and Dehydrated Silk Fibroin Cast from Aqueous Solution. Biomacromolecules 2010; 11:2766-75. [DOI: 10.1021/bm1008316] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Lei Yu
- Department of Physics and Astronomy and Biomedical Engineering Department, Tufts University, Medford, Massachusetts 02155
| | - Xiao Hu
- Department of Physics and Astronomy and Biomedical Engineering Department, Tufts University, Medford, Massachusetts 02155
| | - David Kaplan
- Department of Physics and Astronomy and Biomedical Engineering Department, Tufts University, Medford, Massachusetts 02155
| | - Peggy Cebe
- Department of Physics and Astronomy and Biomedical Engineering Department, Tufts University, Medford, Massachusetts 02155
| |
Collapse
|
46
|
Hu X, Wang X, Rnjak J, Weiss AS, Kaplan DL. Biomaterials derived from silk-tropoelastin protein systems. Biomaterials 2010; 31:8121-31. [PMID: 20674969 DOI: 10.1016/j.biomaterials.2010.07.044] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Accepted: 07/07/2010] [Indexed: 01/03/2023]
Abstract
A structural protein blend system based on silkworm silk fibroin and recombinant human tropoelastin is described. Silk fibroin, a semicrystalline fibrous protein with beta-sheet crystals provides mechanical strength and controllable biodegradation, while tropoelastin, a noncrystallizable elastic protein provides elasticity. Differential scanning calorimetry (DSC) and temperature modulated DSC (TMDSC) indicated that silk becomes miscible with tropoelastin at different blend ratios, without macrophase separation. Fourier transform infrared spectroscopy (FTIR) revealed secondary structural changes of the blend system (beta-sheet content) before and after methanol treatment. Atomic Force Microscopy (AFM) nano-indentation demonstrated that blending silk and tropoelastin at different ratios resulted in modification of mechanical features, with resilience from approximately 68%- approximately 97%, and elastic modulus between 2 and 9 Mpa, depending on the ratio of the two polymers. Some of these values are close to those of native aortic elastin or elastin-like polypeptides. Significantly, during blending and drying silk-tropoelastin form micro- and nano-scale porous morphologies which promote human mesenchymal stem cell attachment and proliferation. These blends offer a new protein biomaterial system for cell support and tailored biomaterial properties to match mechanical needs.
Collapse
Affiliation(s)
- Xiao Hu
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | | | | | | | | |
Collapse
|