1
|
Mizukami Y, Kakehi Y, Li F, Yamamoto T, Tajima K, Isono T, Satoh T. Chemically Recyclable Unnatural (1→6)-Polysaccharides from Cellulose-Derived Levoglucosenone and Dihydrolevoglucosenone. ACS Macro Lett 2024:252-259. [PMID: 38334272 DOI: 10.1021/acsmacrolett.3c00720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Unnatural polysaccharide analogs and their biological activities and material properties have attracted considerable research interest. However, these efforts often encounter challenges, especially those related to synthetic complexity and scalability. Here, we report the chemical synthesis of unnatural (1→6)-polysaccharides using levoglucosenone (LGO) and dihydrolevoglucosenone (Cyrene), which are derived from cellulose. Using a versatile monomer synthesis from LGO and Cyrene and cationic ring-opening polymerization, (1→6)-polysaccharides with various tailored substituent patterns are obtained. Additionally, environmentally benign and easy-to-handle organic Brønsted acid catalysts are investigated. This study demonstrates well-controlled first-order polymerization kinetics for the reactive (1S,5R)-6,8-dioxabicyclo[3,2,1]octane (DBO) monomer. The synthesized (1→6)-polysaccharides exhibit high thermal stability and form amorphous solids under ambient conditions, which could be processed into highly transparent self-standing films. Additionally, these polymers exhibit excellent closed-loop chemical recyclability. This study provides an important approach to explore the chemical spaces of unnatural polysaccharides and contributes to the development of sustainable polymer materials from abundant biomass resources.
Collapse
Affiliation(s)
- Yuta Mizukami
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Yuto Kakehi
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Feng Li
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Takuya Yamamoto
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Kenji Tajima
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Takuya Isono
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Toshifumi Satoh
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
- List Sustainable Digital Transformation Catalyst Collaboration Research Platform (List-PF), Institute for Chemical Reaction Design and Discovery (ICReDD), Hokkaido University, Sapporo 001-0021, Japan
| |
Collapse
|
2
|
Leelayuwapan H, Ruchirawat S, Boonyarattanakalin S. Rapid synthesis and immunogenicity of mycobacterial (1→5)-α-d-arabinofuranan. Carbohydr Polym 2018; 206:262-272. [PMID: 30553321 DOI: 10.1016/j.carbpol.2018.10.048] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 10/15/2018] [Accepted: 10/15/2018] [Indexed: 11/18/2022]
Abstract
A rapid synthesis of the α(1→5) arabinofuranan polysaccharides, found on the outer surface of Mycobacterium tuberculosis (Mtb), is achieved by a regio- and stereocontrolled ring opening polymerization of β-d-arabinofuranose-1,2,5-orthobenzoate. The robust polymerization reaction allows the incorporation of an amine linker, which was used to conjugate with protein tetanus toxoid (TT) to further investigate its adjuvant activities. The synthetic arabinan, which is the glycan on the non-reducing end of Mtb lipoarabinomannan (LAM), was evaluated for its immunological properties in vitro and in vivo. Systemic inflammation and the promotion of innate immune response were observed in macrophages treated with the synthetic arabinan as an adjuvant through an increase in the production of TNF-α and IL-12. In vivo evaluation of IFN-γ, IL-2, and TNF-α productions in mice pre-immunized with the synthetic arabinan conjugated TT indicated great enhancements of the immunological responses when compared to that of TT alone.
Collapse
Affiliation(s)
- Haris Leelayuwapan
- Program in Chemical Biology, Chulabhorn Graduate Institute, Center of Excellence on Environmental Health and Toxicology (EHT), PERDO, Bangkok, 10210, Thailand
| | - Somsak Ruchirawat
- Program in Chemical Biology, Chulabhorn Graduate Institute, Center of Excellence on Environmental Health and Toxicology (EHT), PERDO, Bangkok, 10210, Thailand; Laboratory of Medicinal Chemistry, Chulabhorn Research Institute (CRI), 54 Kamphaeng Phet 6, Laksi, Bangkok, 10210, Thailand
| | - Siwarutt Boonyarattanakalin
- School of Bio-Chemical Engineering and Technology, Sirindhorn International Institute of Technology, Thammasat University, Pathum Thani, 12121, Thailand.
| |
Collapse
|
3
|
|
4
|
Xiao R, Dane EL, Zeng J, McKnight CJ, Grinstaff MW. Synthesis of Altrose Poly-amido-saccharides with β-N-(1→2)-d-amide Linkages: A Right-Handed Helical Conformation Engineered in at the Monomer Level. J Am Chem Soc 2017; 139:14217-14223. [DOI: 10.1021/jacs.7b07405] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Ruiqing Xiao
- Department
of Chemistry and ‡Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States
- Department of Physiology and Biophysics and ∥Department of
Medicine, Boston University School of Medicine, Boston, Massachusetts 02118, United States
| | - Eric L. Dane
- Department
of Chemistry and ‡Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States
- Department of Physiology and Biophysics and ∥Department of
Medicine, Boston University School of Medicine, Boston, Massachusetts 02118, United States
| | - Jialiu Zeng
- Department
of Chemistry and ‡Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States
- Department of Physiology and Biophysics and ∥Department of
Medicine, Boston University School of Medicine, Boston, Massachusetts 02118, United States
| | - Christopher J. McKnight
- Department
of Chemistry and ‡Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States
- Department of Physiology and Biophysics and ∥Department of
Medicine, Boston University School of Medicine, Boston, Massachusetts 02118, United States
| | - Mark W. Grinstaff
- Department
of Chemistry and ‡Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States
- Department of Physiology and Biophysics and ∥Department of
Medicine, Boston University School of Medicine, Boston, Massachusetts 02118, United States
| |
Collapse
|
5
|
Fu L, Li L, Wang J, Knickelbein K, Zhang L, Milligan I, Xu Y, O'Hara K, Bitterman L, Du W. Synthesis of clickable amphiphilic polysaccharides as nanoscopic assemblies. Chem Commun (Camb) 2014; 50:12742-5. [PMID: 25204678 DOI: 10.1039/c4cc06343k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The synthesis of clickable polysaccharides was achieved by using alkynylated 1,6-anhydro glucopyranose as a monomer and BF3·OEt2 as an effective catalyst. Subsequent click conjugation with polyethylene glycol (PEG) afforded PEG-grafted polysaccharides in nearly quantitative efficiency.
Collapse
Affiliation(s)
- Liye Fu
- Department of Chemistry, Science of Advanced Materials, Central Michigan University, Mount Pleasant, MI 48858, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Ko YC, Tsai CF, Wang CC, Dhurandhare VM, Hu PL, Su TY, Lico LS, Zulueta MML, Hung SC. Microwave-assisted one-pot synthesis of 1,6-anhydrosugars and orthogonally protected thioglycosides. J Am Chem Soc 2014; 136:14425-31. [PMID: 25291402 DOI: 10.1021/ja504804v] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Living organisms employ glycans as recognition elements because of their large structural information density. Well-defined sugar structures are needed to fully understand and take advantage of glycan functions, but sufficient quantities of these compounds cannot be readily obtained from natural sources and have to be synthesized. Among the bottlenecks in the chemical synthesis of complex glycans is the preparation of suitably protected monosaccharide building blocks. Thus, easy, rapid, and efficient methods for building-block acquisition are desirable. Herein, we describe routes directly starting from the free sugars toward notable monosaccharide derivatives through microwave-assisted one-pot synthesis. The procedure followed the in situ generation of per-O-trimethylsilylated monosaccharide intermediates, which provided 1,6-anhydrosugars or thioglycosides upon treatment with either trimethylsilyl trifluoromethanesulfonate or trimethyl(4-methylphenylthio)silane and ZnI2, respectively, under microwave irradiation. We successfully extended the methodology to regioselective protecting group installation and manipulation toward a number of thioglucosides and the glycosylation of persilylated derivatives, all of which were conducted in a single vessel. These developed approaches open the possibility for generating arrays of suitably protected building blocks for oligosaccharide assembly in a short period with minimal number of purification stages.
Collapse
Affiliation(s)
- Yen-Chun Ko
- Genomics Research Center, ‡Institute of Chemistry, and §Chemical Biology and Molecular Biophysics, Taiwan International Graduate Program, Academia Sinica , 128, Section 2, Academia Road, Taipei 115, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Li L, Franckowiak EA, Xu Y, McClain E, Du W. Efficient synthesis of β-(1,6)-linked oligosaccharides through microwave-assisted glycosylation. ACTA ACUST UNITED AC 2013. [DOI: 10.1002/pola.26771] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Lingyao Li
- Department of Chemistry, Science of Advanced Materials, Central Michigan University; Mount Pleasant Michigan 48859
| | - Emily A. Franckowiak
- Department of Chemistry, Science of Advanced Materials, Central Michigan University; Mount Pleasant Michigan 48859
| | - Yi Xu
- Department of Chemistry, Science of Advanced Materials, Central Michigan University; Mount Pleasant Michigan 48859
| | - Evan McClain
- Department of Chemistry, Science of Advanced Materials, Central Michigan University; Mount Pleasant Michigan 48859
| | - Wenjun Du
- Department of Chemistry, Science of Advanced Materials, Central Michigan University; Mount Pleasant Michigan 48859
| |
Collapse
|
8
|
Hattori K, Yoshida T. Synthesis of a new 2-amino-glycan, poly-(1→6)-α-D
-mannosamine, by ring-opening polymerization of 1,6-anhydro-mannosamine derivatives. ACTA ACUST UNITED AC 2012. [DOI: 10.1002/pola.26262] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
9
|
Muschin T, Han S, Ishimura H, Yoshida T. Sulfated Polysaccharides as Specific Biologically Active Materials. TRENDS GLYCOSCI GLYC 2011. [DOI: 10.4052/tigg.23.292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
|