1
|
Mor J, Nelliyil RB, Sharma SK. Interfacial-interaction induced modifications in segmental dynamics and free volume of the poly(ethyleneimine) canopy in nanoparticle-organic hybrid materials: an investigation by temperature dependent broadband dielectric and positron annihilation spectroscopy. Phys Chem Chem Phys 2024; 26:9608-9616. [PMID: 38465859 DOI: 10.1039/d3cp05902b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Broadband dielectric spectroscopy, positron annihilation lifetime spectroscopy and differential scanning calorimetry are used to investigate the molecular dynamics, free volume and thermal behaviour of a poly(ethyleneimine), PEI, canopy in liquid-like nanoparticle-organic hybrid materials (NOHMs) consisting of alumina nanoparticles and nanorods as inorganic nanocores. It is confirmed that the highly branched PEI canopy in liquid-like NOHMs possesses an ordered structure having less entanglements of the side chains as compared to neat PEI. The size of the free volumes associated with the PEI canopy for nanoparticle- and nanorod-based NOHMs is larger and smaller, respectively, as compared to neat PEI. The time scales characterizing the segmental dynamics and side chain relaxations of the canopy in the nanorod-based NOHM are slowed down drastically as compared to the nanoparticle-based NOHM and neat PEI. These results confirm that the shape of the inorganic cores plays a deterministic role toward the structural arrangement (free volume) and segmental dynamics of the canopy polymer in liquid-like NOHMs.
Collapse
Affiliation(s)
- Jaideep Mor
- Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085, India.
| | - Renjith B Nelliyil
- Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085, India.
- Homi Bhabha National Institute, Mumbai 400 094, India
| | - Sandeep Kumar Sharma
- Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085, India.
- Homi Bhabha National Institute, Mumbai 400 094, India
| |
Collapse
|
2
|
Lee JT, Kang M, Bae JY. The Facile Synthesis and Application of Mesoporous Silica Nanoparticles with a Vinyl Functional Group for Plastic Recycling. Int J Mol Sci 2024; 25:2295. [PMID: 38396972 PMCID: PMC10889503 DOI: 10.3390/ijms25042295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Due to growing concerns about environmental pollution from plastic waste, plastic recycling research is gaining momentum. Traditional methods, such as incorporating inorganic particles, increasing cross-linking density with peroxides, and blending with silicone monomers, often improve mechanical properties but reduce flexibility for specific performance requirements. This study focuses on synthesizing silica nanoparticles with vinyl functional groups and evaluating their mechanical performance when used in recycled plastics. Silica precursors, namely sodium silicate and vinyltrimethoxysilane (VTMS), combined with a surfactant, were employed to create pores, increasing silica's surface area. The early-stage introduction of vinyl functional groups prevented the typical post-synthesis reduction in surface area. Porous silica was produced in varying quantities of VTMS, and the synthesized porous silica nanomaterials were incorporated into recycled polyethylene to induce cross-linking. Despite a decrease in surface area with increasing VTMS content, a significant surface area of 883 m2/g was achieved. In conclusion, porous silica with the right amount of vinyl content exhibited improved mechanical performance, including increased tensile strength, compared to conventional porous silica. This study shows that synthesized porous silica with integrated vinyl functional groups effectively enhances the performance of recycled plastics.
Collapse
Affiliation(s)
| | | | - Jae Young Bae
- Department of Chemistry, Keimyung University, Daegu 42601, Republic of Korea; (J.-t.L.); (M.K.)
| |
Collapse
|
3
|
Pongchaikul P, Hajidariyor T, Khetlai N, Yu YS, Arjfuk P, Khemthong P, Wanmolee W, Posoknistakul P, Laosiripojana N, Wu KCW, Sakdaronnarong C. Nanostructured N/S doped carbon dots/mesoporous silica nanoparticles and PVA composite hydrogel fabrication for anti-microbial and anti-biofilm application. Int J Pharm X 2023; 6:100209. [PMID: 37711848 PMCID: PMC10498006 DOI: 10.1016/j.ijpx.2023.100209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/27/2023] [Accepted: 08/29/2023] [Indexed: 09/16/2023] Open
Abstract
Regarding the convergence of the worldwide epidemic, the appearance of bacterial infection has occasioned in a melodramatic upsurge in bacterial pathogens with confrontation against one or numerous antibiotics. The implementation of engineered nanostructured particles as a delivery vehicle for antimicrobial agent is one promising approach that could theoretically battle the setbacks mentioned. Among all nanoparticles, silica nanoparticles have been found to provide functional features that are advantageous for combatting bacterial contagion. Apart from that, carbon dots, a zero-dimension nanomaterial, have recently exhibited their photo-responsive property to generate reactive oxygen species facilitating to enhance microorganism suppression and inactivation ability. In this study, potentials of core/shell mesoporous silica nanostructures (MSN) in conjugation with carbon dots (CDs) toward antimicrobial activity against Staphylococcus aureus, Pseudomonas aeruginosa and Escherichia coli have been investigated. Nitrogen and sulfur doped CDs (NS/CDs) conjugated with MSN which were cost effective nanoparticles exhibited much superior antimicrobial activity for 4 times as much as silver nanoparticles against all bacteria tested. Among all nanoparticles tested, 0.40 M NS/CDs@MSN showed the greatest minimal biofilm inhibitory at very low concentration (< 0.125 mg mL-1), followed by 0.20 M NS/CDs@MSN (0.5 mg mL-1), CD@MSN (25 mg mL-1), and MSN (50 mg mL-1), respectively. Immobilization of NS/CDs@MSN in polyvinyl alcohol (PVA) hydrogel was performed and its effect on antimicrobial activity, biofilm controlling efficiency, and cytotoxicity toward fibroblast (NIH/3 T3 and L-929) cells was additionally studied for further biomedical applications. The results demonstrated that 0.40 M NS/CDs-MSN@PVA hydrogel exhibited the highest inhibitory effect on S. aureus > P. aeruginosa > E. coli. In addition, MTT assay revealed some degree of toxicity of 0.40 M NS/CDs-MSN@PVA hydrogel against L-929 cells by a slight reduction of cell viability from 100% to 81.6% when incubated in the extract from 0.40 M NS/CDs-MSN@PVA hydrogel, while no toxicity of the same hydrogel extract was detected toward NIH/3 T3 cells.
Collapse
Affiliation(s)
- Pisut Pongchaikul
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakarn 10540, Thailand
| | - Tasnim Hajidariyor
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, 25/25 Putthamonthon 4 Road, Salaya, Putthamonthon, Nakhon Pathom 73170, Thailand
| | - Navarat Khetlai
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, 25/25 Putthamonthon 4 Road, Salaya, Putthamonthon, Nakhon Pathom 73170, Thailand
| | - Yu-Sheng Yu
- Department of Chemical Engineering, National Taiwan University, No.1, Sec.4 Roosevelt Road, Taipei 10617, Taiwan
| | - Pariyapat Arjfuk
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakarn 10540, Thailand
| | - Pongtanawat Khemthong
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Wanwitoo Wanmolee
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Pattaraporn Posoknistakul
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, 25/25 Putthamonthon 4 Road, Salaya, Putthamonthon, Nakhon Pathom 73170, Thailand
| | - Navadol Laosiripojana
- The Joint Graduate School of Energy and Environment, King Mongkut's University of Technology Thonburi, 126 Pracha Uthit Road, Bang Mot, Thung Khru, Bangkok 10140, Thailand
| | - Kevin C.-W. Wu
- Department of Chemical Engineering, National Taiwan University, No.1, Sec.4 Roosevelt Road, Taipei 10617, Taiwan
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li, Taoyuan, Taiwan
- International Graduate Program of Molecular Science and Technology, National Taiwan University (NTU-MST), Taipei 10617, Taiwan
- National Health Research Institute, Zhunan: 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan
| | - Chularat Sakdaronnarong
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, 25/25 Putthamonthon 4 Road, Salaya, Putthamonthon, Nakhon Pathom 73170, Thailand
| |
Collapse
|
4
|
Sharma S, Adaval A, Singh S, Maji PK, Subash CK, Shafeeq VH, Bhattacharyya AR. Influence of graphene oxide on rheology, mechanical, dielectric, and triboelectric properties of poly(vinyl alcohol) nanocomposite hydrogels prepared via a facile one step process. SOFT MATTER 2023; 19:2977-2992. [PMID: 37014061 DOI: 10.1039/d2sm01599d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The present investigation aims to develop hydrogels with higher mechanical stability for triboelectric applications by adopting a simple method to fabricate a graphene oxide (GO) incorporated poly(vinyl alcohol) (PVA) nanocomposite hydrogel. Instead of the traditional repeated freeze-thaw method, high-shear solution mixing followed by solvent exchange with deionized water was adopted. Morphological observations showed dense and undulated microstructures in the nanocomposite hydrogel with increased GO concentration. Attenuated Total Reflection Fourier Transform Infrared spectroscopy confirmed a higher degree of intermolecular H-bonding between the hydroxyl group of PVA and oxygenated groups of GO, which leads to a robust gel formation. The formation of a robust PVA/GO nanocomposite hydrogel was examined through rheological investigations at room temperature. Nanoindentation analysis estimated a significant increase in hardness and Young's modulus of the nanocomposite hydrogels. Broadband dielectric spectroscopy showed the variation of the dielectric properties of the PVA/GO nanocomposite hydrogels with increased GO concentration. The PVA/GO nanocomposite hydrogels exhibited a maximum output voltage of 3.65 V at 0.075 wt% GO content during finger tapping experiment suggesting the potential for triboelectric applications. The extensive analysis demonstrates the influence of a very low concentration of GO on the variation of the morphology, rheology, mechanical, dielectric, and triboelectric properties of PVA/GO nanocomposite hydrogels.
Collapse
Affiliation(s)
- Swati Sharma
- Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Mumbai-400076, India.
| | - Akanksha Adaval
- Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Mumbai-400076, India.
| | - Shiva Singh
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Saharanpur Campus, Saharanpur 247001, India
| | - Pradip K Maji
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Saharanpur Campus, Saharanpur 247001, India
| | | | - Valiyaveetil Haneefa Shafeeq
- Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Mumbai-400076, India.
| | - Arup R Bhattacharyya
- Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Mumbai-400076, India.
| |
Collapse
|
5
|
Sakib N, Koh YP, Simon SL. The absolute heat capacity of polymer grafted nanoparticles using fast scanning calorimetry*. POLYM ENG SCI 2022. [DOI: 10.1002/pen.26078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Nazam Sakib
- Department of Chemical Engineering Texas Tech University Lubbock Texas USA
| | - Yung P. Koh
- Department of Chemical Engineering Texas Tech University Lubbock Texas USA
- Department of Chemical and Biomolecular Engineering North Carolina State University Raleigh North Carolina USA
| | - Sindee L. Simon
- Department of Chemical and Biomolecular Engineering North Carolina State University Raleigh North Carolina USA
| |
Collapse
|
6
|
An H, Gu Z, Zhou L, Liu S, Li C, Zhang M, Xu Y, Zhang P, Wen Y. Janus mucosal dressing with a tough and adhesive hydrogel based on synergistic effects of gelatin, polydopamine, and nano-clay. Acta Biomater 2022; 149:126-138. [PMID: 35840105 DOI: 10.1016/j.actbio.2022.07.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/21/2022] [Accepted: 07/06/2022] [Indexed: 12/27/2022]
Abstract
There are many problems and challenges related to the treatment of highly prevalent oral mucosal diseases and oral drug delivery because of a large amount of saliva present in the oral cavity, the accompanying oral movements, and unconscious swallowing in the mouth. Therefore, an ideal oral dressing should possess stable adhesion and superior tough strength in the oral cavity. However, this fundamental requirement greatly limits the use of synthetic adhesive dressings for oral dressings. Here, we developed a mussel-inspired Janus gelatin-polydopamine-nano-clay (GPC) hydrogel with controlled adhesion and toughness through the synergistic physical and chemical interaction of gelatin (Gel), nano-clay, and dopamine (DA). The hydrogel not only exhibits strong wet adhesion force (63 kPa) but also has high toughness (1026 ± 100 J m-3). Interfacial adhesion of hydrogels is achieved by modulating the interaction of catechol groups of the hydrogel with specific functional groups (e.g., NH2, SH, OH, and COOH) on the tissue surface. The matrix dissipation of the hydrogel is regulated by physical crosslinking of gelatin, chemical crosslinking of gelatin with polydopamine (Michael addition and Schiff base formation), and nano-clay-induced constraint of the molecular chain. In addition, the GPC hydrogel shows high cell affinity and favors cell adhesion and proliferation. The hydrogel's instant and strong mucoadhesive properties provide a long-lasting therapeutic effect of the drug, thereby enhancing the healing of oral ulcers. Therefore, mussel-inspired wet-adhesion Janus GPC hydrogels can be used as a platform for mucosal dressing and drug delivery systems. STATEMENT OF SIGNIFICANCE: It is a great challenge to treat oral mucosal diseases due to the large amount of saliva present in the oral cavity, the accompanying oral movements, unconscious swallowing, and flushing of drugs in the mouth. To overcome the significant limitations of clinical bioadhesives, such as weakness, toxicity, and poor usage, in the present study, we developed a simple method through the synergistic effects of gelatin, polydopamine, and nano-clay to prepare an optimal mucosal dressing (Janus GPC) that integrates Janus, adhesion, toughness, and drug release property. It fits effectively in the mouth, resists saliva flushing and oral movements, provides oral drug delivery, and reduces patient discomfort. The Janus GPC adhesive hydrogels have great commercial potential to support further the development of innovative therapies for oral mucosal diseases.
Collapse
Affiliation(s)
- Heng An
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering University of Science and Technology Beijing; Beijing 100083, China
| | - Zhen Gu
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering University of Science and Technology Beijing; Beijing 100083, China.
| | - Liping Zhou
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering University of Science and Technology Beijing; Beijing 100083, China
| | - Songyang Liu
- Department of Orthopaedics and Trauma Peking University People's Hospital; Beijing 100044, China
| | - Ci Li
- Department of Orthopaedics and Trauma Peking University People's Hospital; Beijing 100044, China
| | - Meng Zhang
- Department of Orthopaedics and Trauma Peking University People's Hospital; Beijing 100044, China
| | - Yongxiang Xu
- Department of Dental Materials, Peking University School and Hospital of Stomatology; Beijing, 100081, China
| | - Peixun Zhang
- Department of Orthopaedics and Trauma Peking University People's Hospital; Beijing 100044, China
| | - Yongqiang Wen
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering University of Science and Technology Beijing; Beijing 100083, China.
| |
Collapse
|
7
|
High Performance of PVA Nanocomposite Reinforced by Janus-like Asymmetrically Oxidized Graphene: Synergetic Effect of H-bonding Interaction and Interfacial Crystallization. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2664-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
8
|
khan MZ, Wang F, Waleed A, Huang Z, Hassan MAS, Khan A. Filler concentration effect on breakdown strength and trap level of epoxy resin–Al2O3 nanocomposites. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-020-03411-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
9
|
Miyazaki T, Miyata N, Arima-Osonoi H, Kira H, Ohuchi K, Kasai S, Tsumura Y, Aoki H. Layered Structure in the Crystalline Adsorption Layer and the Leaching Process of Poly(vinyl alcohol) Revealed by Neutron Reflectivity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:9873-9882. [PMID: 34348461 DOI: 10.1021/acs.langmuir.1c01563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We investigated the structure of the crystalline adsorption layer of poly(vinyl alcohol) (PVA) in hot water by neutron reflectivity in two cases: when the adsorption layer is exposed on the substrate by leaching the upper bulk layer and when it is deeply embedded between a relatively thick PVA film and substrate. In both cases, the PVA adsorption layer consists of three layers on the Si substrate. The bottom layer, consisting of amorphous chains that are strongly constrained on the substrate, is not swollen even in hot water at 90 °C. The middle layer, consisting of amorphous chains that are much more mobile compared with those in the bottom layer, has no freedom to assume a crystalline form. Only the molecular chains in the top layer are crystallizable in the adsorption layer, leading to a heterogeneous layered structure in the film thickness direction. This layered structure is attributed to the crystallizable chains of PVA during the formation of the adsorption layer driven by hydrogen bonding. However, the structure and dynamics in the adsorption layer may differ in both cases because the molecular chains in the vicinity of the surface seem to be affected by surface effects even in the adsorption layer.
Collapse
Affiliation(s)
- Tsukasa Miyazaki
- Neutron Science and Technology Center, Comprehensive Research Organization for Science and Society, 162-1 Shirakata, Tokai, Ibaraki 319-1106, Japan
| | - Noboru Miyata
- Neutron Science and Technology Center, Comprehensive Research Organization for Science and Society, 162-1 Shirakata, Tokai, Ibaraki 319-1106, Japan
| | - Hiroshi Arima-Osonoi
- Neutron Science and Technology Center, Comprehensive Research Organization for Science and Society, 162-1 Shirakata, Tokai, Ibaraki 319-1106, Japan
| | - Hiroshi Kira
- Neutron Science and Technology Center, Comprehensive Research Organization for Science and Society, 162-1 Shirakata, Tokai, Ibaraki 319-1106, Japan
| | - Keiichi Ohuchi
- Neutron Science and Technology Center, Comprehensive Research Organization for Science and Society, 162-1 Shirakata, Tokai, Ibaraki 319-1106, Japan
| | - Satoshi Kasai
- Neutron Science and Technology Center, Comprehensive Research Organization for Science and Society, 162-1 Shirakata, Tokai, Ibaraki 319-1106, Japan
| | - Yoshihiro Tsumura
- Kurashiki Research Center, Kuraray Co., Ltd., 2045-1, Sakazu, Kurashiki, Okayama 710-0801, Japan
| | - Hiroyuki Aoki
- Materials and Life Science Division, J-PARC Center, Japan Atomic Energy Agency, 2-4 Shirakata, Tokai, Ibaraki 319-1195, Japan
- Institute of Materials Structure Science, High Energy Accelerator Research Organization, 203-1 Shirakata, Tokai, Ibaraki 319-1106, Japan
| |
Collapse
|
10
|
Preparation and characterization of the SPEEK/PVA/Silica hybrid membrane for direct methanol fuel cell (DMFC). Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-021-03602-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
11
|
Tarnacka M, Geppert-Rybczyńska M, Dulski M, Grelska J, Jurkiewicz K, Grzybowska K, Kamiński K, Paluch M. Local structure and molecular dynamics of highly polar propylene carbonate derivative infiltrated within alumina and silica porous templates. J Chem Phys 2021; 154:064701. [PMID: 33588559 DOI: 10.1063/5.0040150] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Herein, we examined the effect of finite size and wettability on the structural dynamics and the molecular arrangement of the propylene carbonate derivative, (S)-(-)-4-methoxymethyl-1,3-dioxolan-2-one (assigned as s-methoxy-PC), incorporated into alumina and silica porous templates of pore diameters d = 4 nm-10 nm using Raman and broadband dielectric spectroscopy, differential scanning calorimetry, and x-ray diffraction. It was demonstrated that only subtle changes in the molecular organization and short-range order of confined s-methoxy-PC molecules were detected. Yet, a significant deviation of the structural dynamics and depression of the glass transition temperatures, Tg, was found for all confined samples with respect to the bulk material. Interestingly, these changes correlate with neither the finite size effects nor the interfacial energy but seem to vary with wettability, generally. Nevertheless, for s-methoxy-PC infiltrated into native (more hydrophilic) and modified (more hydrophobic) silica templates of the same nanochannel size (d = 4 nm), a change in the dynamics and Tg was negligible despite a significant variation in wettability. These results indicated that although wettability might be a suitable variable to predict alteration of the structural dynamics and depression of the glass transition temperature, other factors, i.e., surface roughness and the density packing, might also have a strong contribution to the observed confinement effects.
Collapse
Affiliation(s)
- Magdalena Tarnacka
- Institute of Physics, University of Silesia in Katowice, 75 Pułku Piechoty 1, 41-500 Chorzow, Poland
| | | | - Mateusz Dulski
- Silesian Center of Education and Interdisciplinary Research, 75 Pułku Piechoty 1A, 41-500 Chorzow, Poland
| | - Joanna Grelska
- Institute of Physics, University of Silesia in Katowice, 75 Pułku Piechoty 1, 41-500 Chorzow, Poland
| | - Karolina Jurkiewicz
- Institute of Physics, University of Silesia in Katowice, 75 Pułku Piechoty 1, 41-500 Chorzow, Poland
| | - Katarzyna Grzybowska
- Institute of Physics, University of Silesia in Katowice, 75 Pułku Piechoty 1, 41-500 Chorzow, Poland
| | - Kamil Kamiński
- Institute of Physics, University of Silesia in Katowice, 75 Pułku Piechoty 1, 41-500 Chorzow, Poland
| | - Marian Paluch
- Institute of Physics, University of Silesia in Katowice, 75 Pułku Piechoty 1, 41-500 Chorzow, Poland
| |
Collapse
|
12
|
|
13
|
Azamian Jazi M, Ramezani S.A. A, Haddadi SA, Ghaderi S, Azamian F. In situ
emulsion polymerization and characterization of PVAc nanocomposites including colloidal silica nanoparticles for wood specimens bonding. J Appl Polym Sci 2020; 137:48570. [DOI: 10.1002/app.48570] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 09/14/2019] [Indexed: 07/27/2023]
Affiliation(s)
- Mehrdad Azamian Jazi
- Chemical and Petroleum Engineering DepartmentSharif University of Technology P.O. Box: 11365‐9465 Tehran Iran
| | - Ahmad Ramezani S.A.
- Chemical and Petroleum Engineering DepartmentSharif University of Technology P.O. Box: 11365‐9465 Tehran Iran
| | - Seyyed Arash Haddadi
- Chemical and Petroleum Engineering DepartmentSharif University of Technology P.O. Box: 11365‐9465 Tehran Iran
- School of Engineering, University of British Columbia Kelowna V1V 1V7 Canada
| | - Saeed Ghaderi
- Chemical and Petroleum Engineering DepartmentSharif University of Technology P.O. Box: 11365‐9465 Tehran Iran
| | - Fariba Azamian
- Department of Materials Science and NanotechnologySharif University of Technology, International Campus‐Kish 794117‐76655 Kish Iran
| |
Collapse
|
14
|
Miyazaki T, Miyata N, Yoshida T, Arima H, Tsumura Y, Torikai N, Aoki H, Yamamoto K, Kanaya T, Kawaguchi D, Tanaka K. Detailed Structural Study on the Poly(vinyl alcohol) Adsorption Layers on a Si Substrate with Solvent Vapor-Induced Swelling. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:3415-3424. [PMID: 32176499 DOI: 10.1021/acs.langmuir.9b03964] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We investigated in detail the structures in the poly(vinyl alcohol) (PVA) adsorption layers on a Si substrate, which remained on the substrate after immersing the relatively thick 30-50 nm films in hot water, by neutron reflectometry under humid conditions. For the PVA with a degree of saponification exceeding 98 mol %, the adsorption layer exhibits a three-layered structure in the thickness direction. The bottom layer is considered to be the so-called inner adsorption layer that is not fully swollen with water vapor. This may be because the polymer chains in the inner adsorption layer are strongly constrained onto the substrate, which inhibits water vapor penetration. The polymer chains in this layer have many contact points to the substrate via the hydrogen bonding between the hydroxyl groups in the polymer chain and the silanol groups on the surface of the Si substrate and consequently exhibit extremely slow dynamics. Therefore, it is inferred that the bottom layer is fully amorphous. Furthermore, we consider the middle layer to be somewhat amorphous because parts of the molecular chains are pinned below the interface between the middle and bottom layers. The molecular chains in the top layer become more mobile and ordered, owing to the large distance from the strongly constrained bottom layer; therefore, they exhibit a much lower degree of swelling compared to the middle amorphous layer. Meanwhile, for the PVA with a much lower degree of saponification, the adsorption layer structure consists of the two-layers. The bottom layer forms the inner adsorption layer that moderately swells with water vapor because the polymer chains have few contact points to the substrate. The molecular chains in the middle layer, therefore, are somewhat crystallizable because of this weak constraint.
Collapse
Affiliation(s)
- Tsukasa Miyazaki
- Neutron Science and Technology Center, Comprehensive Research Organization for Science and Society, 162-1 Shirakata, Tokai, Naka, Ibaraki 319-1106, Japan
| | - Noboru Miyata
- Neutron Science and Technology Center, Comprehensive Research Organization for Science and Society, 162-1 Shirakata, Tokai, Naka, Ibaraki 319-1106, Japan
| | - Tessei Yoshida
- Neutron Science and Technology Center, Comprehensive Research Organization for Science and Society, 162-1 Shirakata, Tokai, Naka, Ibaraki 319-1106, Japan
| | - Hiroshi Arima
- Neutron Science and Technology Center, Comprehensive Research Organization for Science and Society, 162-1 Shirakata, Tokai, Naka, Ibaraki 319-1106, Japan
| | - Yoshihiro Tsumura
- Kurashiki Research Center, Kuraray Co., Ltd., 2045-1, Sakazu, Kurashiki, Okayama 710-0801, Japan
| | - Naoya Torikai
- Department of Chemistry for Materials, Graduate School of Engineering, Mie University, 1577 Kurimamachiya, Tsu, Mie 514-8507, Japan
| | - Hiroyuki Aoki
- Materials and Life Science Division, J-PARC Center, Japan Atomic Energy Agency, 2-4 Shirakata, Tokai, Ibaraki 319-1195, Japan
- Institute of Materials Structure Science, High Energy Accelerator Research Organization, 203-1 Shirakata, Tokai, Ibaraki 319-1106, Japan
| | - Katsuhiro Yamamoto
- Department of Life Science and Applied Chemistry, Gradual School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| | - Toshiji Kanaya
- Institute of Materials Structure Science, High Energy Accelerator Research Organization, 203-1 Shirakata, Tokai, Ibaraki 319-1106, Japan
| | - Daisuke Kawaguchi
- Department of Applied Chemistry, Kyushu University, Fukuoka 819-0395, Japan
| | - Keiji Tanaka
- Department of Applied Chemistry, Kyushu University, Fukuoka 819-0395, Japan
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
15
|
Bakir M, Meyer JL, Pang S, Economy J, Jasiuk I. Merging versatile polymer chemistry with multifunctional nanoparticles: an overview of crosslinkable aromatic polyester matrix nanocomposites. SOFT MATTER 2020; 16:1389-1403. [PMID: 31939988 DOI: 10.1039/c9sm02129a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The current trend in the global advanced material market is expeditiously shifting towards more lightweight, multifunctional configurations, considering very recent developments in electrical aircraft, biomedical devices, and autonomous automobiles. Hence, the development of novel polymer nanocomposite materials is critical to advancing the current state-of-the-art of structural material technologies to address the pressing performance demands. Aiming at expanding the existing material design space, we have investigated crosslinkable aromatic polyester matrix nanocomposites. Aromatic polyesters, in the thermosetting form, are a prospective high-performance/high-temperature polymer technology, which is on a par with conventional epoxy-derivative resins and high-performance engineering thermoplastics in the range of their potential applications. The aromatic matrix-based thermosetting nanocomposites manifest greatly enhanced physical properties enabled by a chemistry-favored robust interfacial covalent coupling mechanism developed during the in situ polymerization reaction with various nanofiller particle configurations. Here, we provide a summary review of our recent efforts in developing this novel polymer nanocomposite material system. We highlight the chemical strategy, fabrication approach, and processing techniques developed to obtain various nanocomposite representations for structural, electrical, optical, biomedical, and tribological applications. The unique characteristic features emerging in the nanocomposite morphologies, along with their physicochemical effects on the multifunctional macroscale properties, are demonstrated. This unique matrix configuration introduces superior performance elements to polymer nanocomposite applications towards designing advanced composite materials.
Collapse
Affiliation(s)
- Mete Bakir
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | | | | | | | | |
Collapse
|
16
|
Zhang Y, Wang B, Zhang L, Zhou H. Dynamic stress‐stiffening of carbon black‐filled vulcanizates. POLYM ENG SCI 2019. [DOI: 10.1002/pen.25174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yuanhong Zhang
- EVE Rubber Institute Co., Ltd. No. 43, Zhengzhou Road, Qingdao City 266045 China
| | - Baojin Wang
- EVE Rubber Institute Co., Ltd. No. 43, Zhengzhou Road, Qingdao City 266045 China
| | - Lin Zhang
- EVE Rubber Institute Co., Ltd. No. 43, Zhengzhou Road, Qingdao City 266045 China
| | - Hongbin Zhou
- EVE Rubber Institute Co., Ltd. No. 43, Zhengzhou Road, Qingdao City 266045 China
| |
Collapse
|
17
|
Robles-Hernández B, Monnier X, Pomposo JA, Gonzalez-Burgos M, Cangialosi D, Alegría A. Glassy Dynamics of an All-Polymer Nanocomposite Based on Polystyrene Single-Chain Nanoparticles. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01257] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Beatriz Robles-Hernández
- Departamento de Física de Materiales, University of the Basque Country (UPV/EHU), Apartado 1072, 20080 San Sebastián, Spain
- Centro de Física de Materiales, Paseo Manuel de Lardizabal 5, 20018 San Sebastián, Spain
| | - Xavier Monnier
- Donostia International Physics Center, Paseo Manuel de Lardizabal 4, 20018 San Sebastián, Spain
| | - Jose A. Pomposo
- Departamento de Física de Materiales, University of the Basque Country (UPV/EHU), Apartado 1072, 20080 San Sebastián, Spain
- Centro de Física de Materiales, Paseo Manuel de Lardizabal 5, 20018 San Sebastián, Spain
- IKERBASQUE-Basque Foundation for Science, María Díaz de Haro 3, E-48013 Bilbao, Spain
| | - Marina Gonzalez-Burgos
- Centro de Física de Materiales, Paseo Manuel de Lardizabal 5, 20018 San Sebastián, Spain
| | - Daniele Cangialosi
- Centro de Física de Materiales, Paseo Manuel de Lardizabal 5, 20018 San Sebastián, Spain
- Donostia International Physics Center, Paseo Manuel de Lardizabal 4, 20018 San Sebastián, Spain
| | - Angel Alegría
- Departamento de Física de Materiales, University of the Basque Country (UPV/EHU), Apartado 1072, 20080 San Sebastián, Spain
- Centro de Física de Materiales, Paseo Manuel de Lardizabal 5, 20018 San Sebastián, Spain
| |
Collapse
|
18
|
Nanoparticle Dispersion and Glass Transition Behavior of Polyimide-grafted Silica Nanocomposites. CHINESE JOURNAL OF POLYMER SCIENCE 2019. [DOI: 10.1007/s10118-019-2300-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
19
|
Miyazaki T, Miyata N, Asada M, Tsumura Y, Torikai N, Aoki H, Yamamoto K, Kanaya T, Kawaguchi D, Tanaka K. Elucidation of a Heterogeneous Layered Structure in the Thickness Direction of Poly(vinyl alcohol) Films with Solvent Vapor-Induced Swelling. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:11099-11107. [PMID: 31365260 DOI: 10.1021/acs.langmuir.9b01665] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We investigated the swelling behaviors of poly(vinyl alcohol) (PVA) films deposited on Si wafers with water vapor, which is a good solvent for PVA for elucidating structural and dynamical heterogeneities in the film thickness direction. Using deuterated water vapor, structural and dynamical differences in the thickness direction can be detected easily as different degrees of swelling in the thickness direction by neutron reflectivity. Consequently, the PVA film with a degree of saponification exceeding 98 mol % exhibits a three-layered structure in the thickness direction. It is considered that an adsorption layer consisting of molecular chains that are strongly adsorbed onto the solid substrate is formed at the interface with the substrate, which is not swollen with water vapor compared with the bulk-like layer above it. The adsorption layer is considered to exhibit significantly slower dynamics than the bulk. Furthermore, a surface layer that swells excessively compared with the underneath bulk-like layer is found. This excess swelling of the surface layer may be related to a higher mobility of the molecular chains or lower crystallinity at the surface region compared to the underneath bulk-like layer. Meanwhile, for the PVA film with a much lower degree of saponification, a thin layer with a slightly lower degree of swelling than the bulk-like layer above it can be detected at the interface between the film and substrate only under a high humidity condition. This layer is considered to be the adsorption layer composed of molecular chains loosely adsorbed onto the Si substrate.
Collapse
Affiliation(s)
- Tsukasa Miyazaki
- Neutron Science and Technology Center , Comprehensive Research Organization for Science and Society , 162-1 Shirakata, Tokai , Naka , Ibaraki 319-1106 , Japan
| | - Noboru Miyata
- Neutron Science and Technology Center , Comprehensive Research Organization for Science and Society , 162-1 Shirakata, Tokai , Naka , Ibaraki 319-1106 , Japan
| | - Mitsunori Asada
- Kurashiki Research Center , Kuraray Company, Limited , 2045-1, Sakazu , Kurashiki , Okayama 710-0801 , Japan
| | - Yoshihiro Tsumura
- Kurashiki Research Center , Kuraray Company, Limited , 2045-1, Sakazu , Kurashiki , Okayama 710-0801 , Japan
| | - Naoya Torikai
- Department of Chemistry for Materials, Graduate School of Engineering , Mie University , 1577 Kurimamachiya , Tsu , Mie 514-8507 , Japan
| | - Hiroyuki Aoki
- Materials and Life Science Division, J-PARC Center , Japan Atomic Energy Agency , 2-4 Shirakata , Tokai , Ibaraki 319-1195 , Japan
- Institute of Materials Structure Science , High Energy Accelerator Research Organization , 203-1 Shirakata , Tokai , Ibaraki 319-1106 , Japan
| | - Katsuhiro Yamamoto
- Department of Life Science and Applied Chemistry, Gradual School of Engineering , Nagoya Institute of Technology , Gokiso-cho , Showa-ku, Nagoya 466-8555 , Japan
| | - Toshiji Kanaya
- Institute of Materials Structure Science , High Energy Accelerator Research Organization , 203-1 Shirakata , Tokai , Ibaraki 319-1106 , Japan
| | | | | |
Collapse
|
20
|
Effects of nano-ZnO and nano-SiO2 particles on properties of PVA/xylan composite films. Int J Biol Macromol 2019; 132:978-986. [DOI: 10.1016/j.ijbiomac.2019.03.088] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 03/12/2019] [Accepted: 03/13/2019] [Indexed: 01/19/2023]
|
21
|
Tarnacka M, Talik A, Kamińska E, Geppert-Rybczyńska M, Kaminski K, Paluch M. The Impact of Molecular Weight on the Behavior of Poly(propylene glycol) Derivatives Confined within Alumina Templates. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00209] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
| | | | - Ewa Kamińska
- Department of Pharmacognosy and Phytochemistry, Medical University of Silesia in Katowice,School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Jagiellonska 4, 41-200 Sosnowiec, Poland
| | | | | | | |
Collapse
|
22
|
Kipnusu WK, Elmahdy MM, Elsayed M, Krause-Rehberg R, Kremer F. Counterbalance between Surface and Confinement Effects As Studied for Amino-Terminated Poly(propylene glycol) Constraint in Silica Nanopores. Macromolecules 2019. [DOI: 10.1021/acs.macromol.8b02687] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Wycliffe K. Kipnusu
- GROC.UJI, Institute of New Imaging Technologies, Universitat Jaume I, Avda. Sos Baynat s/n, 12071 Castellón, Spain
| | - Mahdy M. Elmahdy
- Department of Physics, Faculty of Science, Mansoura University, 35516 Mansoura, Egypt
| | - Mohamed Elsayed
- Department of Physics, Martin Luther University Halle, 06099 Halle, Germany
- Department of Physics, Faculty of Science, Minia University, 61519 Minia, Egypt
| | | | - Friedrich Kremer
- Peter-Debye-Institute, University of Leipzig, Linnéstraße 5, 04103 Leipzig, Germany
| |
Collapse
|
23
|
Luo Y, Liu H, Xiang B, Chen X, Yang W, Luo Z. Temperature dependence of the interfacial bonding characteristics of silica/styrene butadiene rubber composites: a molecular dynamics simulation study. RSC Adv 2019; 9:40062-40071. [PMID: 35541406 PMCID: PMC9076183 DOI: 10.1039/c9ra08325a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 11/13/2019] [Indexed: 11/21/2022] Open
Abstract
Based on our previous studies on the modification of in-chain styrene butadiene rubber (SBR) using 3-mercaptopropionic acid as well as its composites filled with silica, we further constructed two types of models (amorphous and layered) to investigate the temperature dependence of the interfacial bonding characteristics of silica/SBR composites via molecular dynamics (MD) simulation. The competing effects of rubber–rubber interactions and filler–rubber interactions were identified, and the relationship between the competing effects and the temperature was determined. Besides this, the effect of temperature on the mobility and distribution of SBR chains on the surface of silica was investigated. It was found that the stronger the interfacial interactions, the less sensitive the motion of SBR chains to temperature. Finally, the number and length of hydrogen bonds as a function of temperature were analyzed. These simulated results deepened the understanding of interface temperature dependence of the silica/SBR composites and gave a molecular level explanation for the existence of an optimum modifier content (14.2 wt%) that is temperature independent. Temperature dependence of the interface between silica and styrene butadiene rubber modified by 3-mercaptopropionic acid was investigated by molecular dynamics simulation.![]()
Collapse
Affiliation(s)
- Yanlong Luo
- College of Science
- Nanjing Forestry University
- Nanjing 210037
- China
- Institute of Polymer Materials
| | - Haobei Liu
- College of Materials Science and Engineering
- Nanjing Tech University
- Nanjing 21009
- China
| | - Bo Xiang
- College of Science
- Nanjing Forestry University
- Nanjing 210037
- China
- Institute of Polymer Materials
| | - Xianling Chen
- College of Science
- Nanjing Forestry University
- Nanjing 210037
- China
| | - Wei Yang
- State Key Laboratory of Advanced Power Transmission Technology
- State Grid Global Energy Interconnection Research Institute
- Beijing 102211
- China
| | - Zhenyang Luo
- College of Science
- Nanjing Forestry University
- Nanjing 210037
- China
- Institute of Polymer Materials
| |
Collapse
|
24
|
Chen L, Guo X, Luo Y, Jia Z, Chen Y, Jia D. Inorganic and Organic Hybrid Nanoparticles as Multifunctional Crosslinkers for Rubber Vulcanization with High-Filler Rubber Interaction. Polymers (Basel) 2018; 10:polym10101138. [PMID: 30961063 PMCID: PMC6403541 DOI: 10.3390/polym10101138] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/06/2018] [Accepted: 10/09/2018] [Indexed: 11/16/2022] Open
Abstract
Improving the interfacial interaction between rubber and silica nanoparticles, and simultaneously reducing free sulfur and preventing migration and volatilization of a rubber vulcanizing agent, commercial sulfur compound aliphatic ether polysulfide (VA-7) was chemically attached to the silica surface to obtain a functionalized nanoparticle (silica-s-VA7). Functional nanoparticles can not only effectively crosslink rubber without sulfur as a novel vulcanizator, but are also evenly dispersed in the rubber matrix and improve the dispersion of the remaining pristine silica as an interfacial compatibilizer. In addition, the thicker immobilized polymer layer and prominent crosslinking density of SBR nanocomposites simultaneously demonstrate that the novel vulcanizing agent silica-s-VA7 gives rise to significant improvement on the rubber–filler interfacial adhesion on account of the covalent linkages of organic and inorganic interfaces between elastomer and nanofillers. We envisage that this strategy may provide a new avenue to implement high-efficiency design for a multifunctional rubber-vulcanizing agent through an organic and inorganic hybridization mechanism.
Collapse
Affiliation(s)
- Lijuan Chen
- Key Lab of Guangdong High Property and Functional Macromolecular Materials, Department of Polymer Materials and Engineering, South China University of Technology, Guangzhou 510640, China.
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Department of Polymeric Material and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China.
| | - Xiaohui Guo
- Key Lab of Guangdong High Property and Functional Macromolecular Materials, Department of Polymer Materials and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Yuanfang Luo
- Key Lab of Guangdong High Property and Functional Macromolecular Materials, Department of Polymer Materials and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Zhixin Jia
- Key Lab of Guangdong High Property and Functional Macromolecular Materials, Department of Polymer Materials and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Yongjun Chen
- Key Lab of Guangdong High Property and Functional Macromolecular Materials, Department of Polymer Materials and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Demin Jia
- Key Lab of Guangdong High Property and Functional Macromolecular Materials, Department of Polymer Materials and Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
25
|
Bakir M, Meyer JL, Sutrisno A, Economy J, Jasiuk I. Aromatic thermosetting copolyester bionanocomposites as reconfigurable bone substitute materials: Interfacial interactions between reinforcement particles and polymer network. Sci Rep 2018; 8:14869. [PMID: 30291259 PMCID: PMC6173751 DOI: 10.1038/s41598-018-33131-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 08/30/2018] [Indexed: 02/08/2023] Open
Abstract
Development of porous materials consisting of polymer host matrix enriched with bioactive ceramic particles that can initiate the reproduction of cellular organisms while maintaining in vivo mechanical reliability is a long-standing challenge for synthetic bone substitutes. We present hydroxyapatite (HA) reinforced aromatic thermosetting copolyester (ATSP) matrix bionanocomposite as a potential reconfigurable bone replacement material. The nanocomposite is fabricated by solid-state mixing a matching set of precursor oligomers with biocompatible pristine HA particles. During endothermic condensation polymerization reaction, the constituent oligomers form a mechanochemically robust crosslinked aromatic backbone while incorporating the HAs into a self-generated cellular structure. The morphological analysis demonstrates near-homogenous distributions of the pristine HAs within the matrix. The HAs behave as a crack-arrester which promotes a more deformation-tolerant formation with relatively enhanced material toughness. Chain relaxation dynamics of the nanocomposite matrix during glass transition is modified via HA-induced segmental immobilization. Chemical characterization of the polymer backbone composition reveals the presence of a hydrogen-advanced covalent interfacial coupling mechanism between the HAs and ATSP matrix. This report lays the groundwork for further studies on aromatic thermosetting copolyester matrix bionanocomposites which may find applications in various artificial bone needs.
Collapse
Affiliation(s)
- Mete Bakir
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Jacob L Meyer
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.,ATSP Innovations, Champaign, IL, 61820, USA
| | - Andre Sutrisno
- NMR/EPR Laboratory, School of Chemical Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - James Economy
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.,ATSP Innovations, Champaign, IL, 61820, USA
| | - Iwona Jasiuk
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
26
|
Liu X, Chen X, Ren J, Zhang C. TiO₂-KH550 Nanoparticle-Reinforced PVA/xylan Composite Films with Multifunctional Properties. MATERIALS 2018; 11:ma11091589. [PMID: 30200524 PMCID: PMC6164990 DOI: 10.3390/ma11091589] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 08/20/2018] [Accepted: 08/23/2018] [Indexed: 11/16/2022]
Abstract
In order to improve the strength of polyvinyl alcohol (PVA)/xylan composite films and endow them with ultraviolet (UV) shielding ability, TiO2-KH550 nanoparticles was synthesized and added into the PVA/xylan matrix. The TiO2-KH550 nanoparticle dispersed well in the 0.04% sodium hexametaphosphate (SHMP) solution under ultrasonic and stirring treatments. Investigations on the properties of the films showed that TiO2-KH550 had the positive impact on improving the strength, moisture, and oxygen barrier properties of the composite films. The maximum tensile strength (27.3 MPa), the minimum water vapor permeability (2.75 × 10−11 g·m−1·s−1·Pa−1), and oxygen permeability (4.013 cm3·m−2·24 h−1·0.1MPa−1) were obtained under the addition of 1.5% TiO2-KH550. The tensile strength of TiO2-KH550 reinforced composite film was increased by 70% than that of the pure PVA/xylan composite film, and the water vapor and oxygen permeability were decreased by 31% and 41%, respectively. Moreover, the UV transmittance of the film at the wavelength of 400 nm was almost zero when adding ≈1.5~2.5% (weight ratio, based on the total weight of PVA and xylan) of TiO2-KH550, which indicated the PVA/xylan composite films were endowed with an excellent UV light shielding ability.
Collapse
Affiliation(s)
- Xinxin Liu
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Xiaofeng Chen
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Junli Ren
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Chunhui Zhang
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
27
|
Song Q, Ji Y, Li S, Wang X, He L. Adsorption Behavior of Polymer Chain with Different Topology Structure at the Polymer-Nanoparticle Interface. Polymers (Basel) 2018; 10:polym10060590. [PMID: 30966624 PMCID: PMC6404055 DOI: 10.3390/polym10060590] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 05/21/2018] [Accepted: 05/25/2018] [Indexed: 12/01/2022] Open
Abstract
The effect of the polymer chain topology structure on the adsorption behavior in the polymer-nanoparticle (NP) interface is investigated by employing coarse-grained molecular dynamics simulations in various polymer-NP interaction and chain stiffness. At a weak polymer-NP interaction, ring chain with a closed topology structure has a slight priority to occupy the interfacial region than linear chain. At a strong polymer-NP interaction, the “middle” adsorption mechanism dominates the polymer local packing in the interface. As the increase of chain stiffness, an interesting transition from ring to linear chain preferential adsorption behavior occurs. The semiflexible linear chain squeezes ring chain out of the interfacial region by forming a helical structure and wrapping tightly the surface of NP. In particular, this selective adsorption behavior becomes more dramatic for the case of rigid-like chain, in which 3D tangent conformation of linear chain is absolutely prior to the 2D plane orbital structure of ring chain. The local packing and competitive adsorption behavior of bidisperse matrix in polymer-NP interface can be explained based on the adsorption mechanism of monodisperse (pure ring or linear) case. These investigations may provide some insights into polymer-NP interfacial adsorption behavior and guide the design of high-performance nanocomposites.
Collapse
Affiliation(s)
- Qingliang Song
- Department of Physics, Wenzhou University, Wenzhou 325035, China.
| | - Yongyun Ji
- Department of Physics, Wenzhou University, Wenzhou 325035, China.
| | - Shiben Li
- Department of Physics, Wenzhou University, Wenzhou 325035, China.
| | - Xianghong Wang
- Department of Physics, Wenzhou University, Wenzhou 325035, China.
| | - Linli He
- Department of Physics, Wenzhou University, Wenzhou 325035, China.
| |
Collapse
|
28
|
Hazarika D, Gupta K, Mandal M, Karak N. High-Performing Biodegradable Waterborne Polyester/Functionalized Graphene Oxide Nanocomposites as an Eco-Friendly Material. ACS OMEGA 2018; 3:2292-2303. [PMID: 30023829 PMCID: PMC6044861 DOI: 10.1021/acsomega.7b01551] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 02/13/2018] [Indexed: 05/29/2023]
Abstract
The development of high-performing nanocomposites of homogeneously dispersed graphene oxide in a waterborne polyester matrix with controlled interfacial interactions is a daunting challenge owing to the presence of strong cohesive energy in both. Thus, in this study, graphene oxide was functionalized with toluene diisocyanate and butane diol through a simple method and incorporated into the waterborne polyester matrix through a facile in situ bulk polymerization technique without using any compatibilizing agent or organic solvent for the first time. The thermoset of the nanocomposite was formed by curing it with hyperbranched epoxy of glycerol and poly(amido amine). The resultant thermosetting nanocomposites with 0.1-1 wt % functionalized graphene oxide exhibited significant enhancement in mechanical properties such as elongation at break (245-360%), tensile strength (7.8-39.4 MPa), scratch hardness (4 to >10 kg), toughness (17.18-86.35 MJ/m3), Young's modulus (243-358 MPa), impact resistance (8.3 to >9.3 kJ/m), and thermostability. Further, the Halpin-Tsai model was used to predict the alignment of graphene oxide. The nanocomposite was also biodegradable against the Pseudomonas aeruginosa bacterial strain. Furthermore, this nanocomposite exhibited strong catalytic activity for the aza-Michael addition reaction. Thus, the nanocomposite can be utilized as a high-performing sustainable material in different potential applications including as heterogeneous catalysts.
Collapse
Affiliation(s)
- Deepshikha Hazarika
- Advanced
Polymer and Nanomaterial Laboratory, Center for Polymer
Science and Technology, Department of Chemical Sciences, and Department of
Molecular Biology and Biotechnology, Tezpur
University, Napaam, Tezpur, 784028 Assam, India
| | - Kuldeep Gupta
- Advanced
Polymer and Nanomaterial Laboratory, Center for Polymer
Science and Technology, Department of Chemical Sciences, and Department of
Molecular Biology and Biotechnology, Tezpur
University, Napaam, Tezpur, 784028 Assam, India
| | - Manabendra Mandal
- Advanced
Polymer and Nanomaterial Laboratory, Center for Polymer
Science and Technology, Department of Chemical Sciences, and Department of
Molecular Biology and Biotechnology, Tezpur
University, Napaam, Tezpur, 784028 Assam, India
| | - Niranjan Karak
- Advanced
Polymer and Nanomaterial Laboratory, Center for Polymer
Science and Technology, Department of Chemical Sciences, and Department of
Molecular Biology and Biotechnology, Tezpur
University, Napaam, Tezpur, 784028 Assam, India
| |
Collapse
|
29
|
Promoting permeability-selectivity anti-trade-off behavior in polyvinyl alcohol (PVA) nanocomposite membranes. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2017.09.035] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
30
|
Zhong B, Dong H, Lin J, Jia Z, Luo Y, Jia D, Liu F. Preparation of Halloysite Nanotubes–Silica Hybrid Supported Vulcanization Accelerator for Enhancing Interfacial and Mechanical Strength of Rubber Composites. Ind Eng Chem Res 2017. [DOI: 10.1021/acs.iecr.7b02250] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Bangchao Zhong
- School of Materials Science
and Technology, South China University of Technology, 381 Wushan
Road, Guangzhou 510640, China
| | - Huanhuan Dong
- School of Materials Science
and Technology, South China University of Technology, 381 Wushan
Road, Guangzhou 510640, China
| | - Jing Lin
- School of Materials Science
and Technology, South China University of Technology, 381 Wushan
Road, Guangzhou 510640, China
| | - Zhixin Jia
- School of Materials Science
and Technology, South China University of Technology, 381 Wushan
Road, Guangzhou 510640, China
| | - Yuanfang Luo
- School of Materials Science
and Technology, South China University of Technology, 381 Wushan
Road, Guangzhou 510640, China
| | - Demin Jia
- School of Materials Science
and Technology, South China University of Technology, 381 Wushan
Road, Guangzhou 510640, China
| | - Fang Liu
- School of Materials Science
and Technology, South China University of Technology, 381 Wushan
Road, Guangzhou 510640, China
| |
Collapse
|
31
|
Hao T, Zhou Z, Wang Y, Liu Y, Zhang D, Nie Y, Wei Y, Li S. Segmental dynamics in interfacial region of composite materials. MONATSHEFTE FUR CHEMIE 2017. [DOI: 10.1007/s00706-017-1917-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
32
|
Helal E, Amurin L, Carastan D, de Sousa R, David E, Fréchette M, Demarquette N. Interfacial molecular dynamics of styrenic block copolymer-based nanocomposites with controlled spatial distribution. POLYMER 2017. [DOI: 10.1016/j.polymer.2017.02.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
33
|
Zhang C, Li L, Wang X, Xue G. Stabilization of Poly(methyl methacrylate) Nanofibers with Core–Shell Structures Confined in AAO Templates by the Balance between Geometric Curvature, Interfacial Interactions, and Cooling Rate. Macromolecules 2017. [DOI: 10.1021/acs.macromol.6b02469] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Chen Zhang
- Key Laboratory of High Performance
Polymer Materials and Technology of Ministry of Education, Department
of Polymer Science and Engineering, School of Chemistry and Chemical
Engineering, State Key Laboratory of Coordination Chemistry, Nanjing
National Laboratory of Microstructures, Nanjing University, Nanjing 210093, P. R. China
| | - Linling Li
- Key Laboratory of High Performance
Polymer Materials and Technology of Ministry of Education, Department
of Polymer Science and Engineering, School of Chemistry and Chemical
Engineering, State Key Laboratory of Coordination Chemistry, Nanjing
National Laboratory of Microstructures, Nanjing University, Nanjing 210093, P. R. China
| | - Xiaoliang Wang
- Key Laboratory of High Performance
Polymer Materials and Technology of Ministry of Education, Department
of Polymer Science and Engineering, School of Chemistry and Chemical
Engineering, State Key Laboratory of Coordination Chemistry, Nanjing
National Laboratory of Microstructures, Nanjing University, Nanjing 210093, P. R. China
| | - Gi Xue
- Key Laboratory of High Performance
Polymer Materials and Technology of Ministry of Education, Department
of Polymer Science and Engineering, School of Chemistry and Chemical
Engineering, State Key Laboratory of Coordination Chemistry, Nanjing
National Laboratory of Microstructures, Nanjing University, Nanjing 210093, P. R. China
| |
Collapse
|
34
|
Pingan H, Mengjun J, Yanyan Z, Ling H. A silica/PVA adhesive hybrid material with high transparency, thermostability and mechanical strength. RSC Adv 2017. [DOI: 10.1039/c6ra25579e] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Silica/PVA hybrids containing over 50 wt% silica were prepared, exhibiting high transmittance, Young's modulus, thermostability, adhesive strength and hygrothermal resistance.
Collapse
Affiliation(s)
- Hu Pingan
- Department of Chemistry
- School of Science
- Xi'an Jiaotong University
- Xi'an 710049
- China
| | - Jia Mengjun
- Department of Chemistry
- School of Science
- Xi'an Jiaotong University
- Xi'an 710049
- China
| | - Zuo Yanyan
- Department of Chemistry
- School of Science
- Xi'an Jiaotong University
- Xi'an 710049
- China
| | - He Ling
- Department of Chemistry
- School of Science
- Xi'an Jiaotong University
- Xi'an 710049
- China
| |
Collapse
|
35
|
Lin Y, Liu L, Zhang D, Liu Y, Guan A, Wu G. Unexpected segmental dynamics in polystyrene-grafted silica nanocomposites. SOFT MATTER 2016; 12:8542-8553. [PMID: 27722506 DOI: 10.1039/c6sm01321j] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Establishing the relationship between interfacial layer chain packing and dynamics remains a continuing challenge in polymer nanocomposites (PNCs). This issue is expected to be significant in our understanding of the mechanism of the dynamic response of such materials and the manner in which these parameters affect the macroscopic properties of PNCs. In this study, we report the dynamics of free polystyrene (PS) and poly(methyl methacrylate) (PMMA) matrix chains, as well as those of polymer chains surrounding the spherical silica nanoparticles (NPs) where silica NPs are either bare or PS grafted, to discriminate the role of grafted chains and interfacial interactions between grafted NPs and the matrix. The α-relaxation dynamics of the PS matrix is unaffected by silica NP loadings, it slows down in PMMA nanocomposites because of polymer-NP interfacial interactions and steric hindrance. More interestingly, we probe the enhanced mobility of the interfacial layer (α'-relaxation) in PNCs filled with grafted NPs, and this phenomenon is further corroborated by the accelerated Maxwell-Wagner-Sillars polarization process in the presence of grafted silica NPs. Moreover, the α'-relaxation time in the vicinity of glass transition temperature of the polymer matrix unexpectedly increases with increasing temperature. Such an anomalous temperature-dependent behavior can be attributed to the influence exerted by slow α-relaxation dynamics. Considering these phenomena and the mechanical properties, we propose a three-layer model to explain the observed behavior of grafted silica NP-filled nanocomposites. These findings provide new insight into the mechanisms responsible for mechanical reinforcement and therefore provide guidance in designing PNCs with tunable macroscopic properties.
Collapse
Affiliation(s)
- Yu Lin
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Langping Liu
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Dongge Zhang
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Yuanbiao Liu
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Aiguo Guan
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Guozhang Wu
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
36
|
Tarnacka M, Kaminski K, Mapesa EU, Kaminska E, Paluch M. Studies on the Temperature and Time Induced Variation in the Segmental and Chain Dynamics in Poly(propylene glycol) Confined at the Nanoscale. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b01237] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Magdalena Tarnacka
- Institute
of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice, Poland
- Silesian
Center for Education and Interdisciplinary Research, University of Silesia, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
| | - Kamil Kaminski
- Institute
of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice, Poland
| | - Emmanuel U. Mapesa
- Institute
of Experimental Physics I, University of Leipzig, Linnéstraße
5, 04103 Leipzig, Germany
| | - Ewa Kaminska
- Department
of Pharmacognosy and Phytochemistry, Medical University of Silesia in Katowice, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Jagiellonska 4, 41-200 Sosnowiec, Poland
| | - Marian Paluch
- Institute
of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice, Poland
- Silesian
Center for Education and Interdisciplinary Research, University of Silesia, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
| |
Collapse
|
37
|
Halder S, Goyat MS, Ghosh PK. Morphological, structural, and thermophysical properties of zirconium dioxide–epoxy nanocomposites. HIGH PERFORM POLYM 2016. [DOI: 10.1177/0954008315595275] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Critical examinations were made to understand the thermophysical behavior of zirconium dioxide (ZrO2)–epoxy nanocomposite using differential thermal analysis/thermogravimetric analysis studies. ZrO2 nanoparticles in the size range of 20–30 nm were used as fillers. Ultrasonic dual mode mixing (UDMM) at two different amplitudes of 40% and 55% was employed to produce ZrO2-epoxy nanocomposites. Dispersion of less clustered ZrO2 nanoparticles in epoxy matrix demonstrates the importance of high amplitude of UDMM. Thermal degradation reaction kinetics of the nanocomposite was determined using Coats–Redfern and integral method of Horowitz and Metzger. Processing by the UDMM route at high amplitude not only significantly increases the glass transition temperature but also noticeably enhances the thermal stability of the nanocomposite. Improvement in thermal stability is attributed to the good dispersion of nanoparticles in epoxy matrix and formation of a large interface between epoxy matrix and nanoparticles. Fourier transform infrared spectroscopy was used to understand the molecular structure of base matrix as well as nanocomposite.
Collapse
Affiliation(s)
- Sudipta Halder
- Department of Mechanical Engineering, National Institute of Technology Silchar, Silchar, Assam, India
| | - MS Goyat
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - PK Ghosh
- Department of Physics, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
| |
Collapse
|
38
|
Structural characteristics and interfacial relaxation of nanocomposites based on polystyrene and modified layered double hydroxides. Colloid Polym Sci 2016. [DOI: 10.1007/s00396-016-3834-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
39
|
Wang Z, Lv Q, Chen S, Li C, Sun S, Hu S. Effect of Interfacial Bonding on Interphase Properties in SiO2/Epoxy Nanocomposite: A Molecular Dynamics Simulation Study. ACS APPLIED MATERIALS & INTERFACES 2016; 8:7499-508. [PMID: 26927032 DOI: 10.1021/acsami.5b11810] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Atomistic molecular dynamics simulations have been performed to explore the effect of interfacial bonding on the interphase properties of a nanocomposite system that consists of a silica nanoparticle and the highly cross-linked epoxy matrix. For the structural properties, results show that interfacial covalent bonding can broaden the interphase region by increasing the radial effect range of fluctuated mass density and oriented chains, as well as strengthen the interphase region by improving the thermal stability of interfacial van der Waals excluded volume and reducing the proportion of cis conformers of epoxy segments. The improved thermal stability of the interphase region in the covalently bonded model results in an increase of ∼21 K in the glass transition temperature (Tg) compared to that of the pure epoxy. It is also found that interfacial covalent bonding mainly restricts the volume thermal expansion of the model at temperatures near or larger than Tg. Furthermore, investigations from mean-square displacement and fraction of immobile atoms point out that interfacial covalent and noncovalent bonding induces lower and higher mobility of interphase atoms than that of the pure epoxy, respectively. The obtained critical interfacial bonding ratio when the interphase and matrix atoms have the same mobility is 5.8%. These results demonstrate that the glass transitions of the interphase and matrix will be asynchronous when the interfacial bonding ratio is not 5.8%. Specifically, the interphase region will trigger the glass transition of the matrix when the ratio is larger than 5.8%, whereas it restrains the glass transition of the matrix when the ratio is smaller than 5.8%.
Collapse
Affiliation(s)
- Zhikun Wang
- College of Science, China University of Petroleum , Qingdao 266580 Shandong Province, P. R. China
| | - Qiang Lv
- College of Science, China University of Petroleum , Qingdao 266580 Shandong Province, P. R. China
| | - Shenghui Chen
- College of Science, China University of Petroleum , Qingdao 266580 Shandong Province, P. R. China
| | - Chunling Li
- College of Science, China University of Petroleum , Qingdao 266580 Shandong Province, P. R. China
- Key Laboratory of New Energy Physics & Materials Science in Universities of Shandong (China University of Petroleum) , Qingdao 266580 Shandong Province, P. R. China
| | - Shuangqing Sun
- College of Science, China University of Petroleum , Qingdao 266580 Shandong Province, P. R. China
- Key Laboratory of New Energy Physics & Materials Science in Universities of Shandong (China University of Petroleum) , Qingdao 266580 Shandong Province, P. R. China
| | - Songqing Hu
- College of Science, China University of Petroleum , Qingdao 266580 Shandong Province, P. R. China
- Key Laboratory of New Energy Physics & Materials Science in Universities of Shandong (China University of Petroleum) , Qingdao 266580 Shandong Province, P. R. China
| |
Collapse
|
40
|
Nie Y, Zhou Z, Hao T, Ye X, Yang W. The Distribution of Glass Transition Temperatures in Ultrathin Polymer Films Controlled by Segment Density or Interfacial Interaction. MACROMOL THEOR SIMUL 2016. [DOI: 10.1002/mats.201500062] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yijing Nie
- Institute of Polymer Materials; School of Materials Science and Engineering; Jiangsu University; 301 Xuefu Road Zhenjiang 212013 China
| | - Zhiping Zhou
- Institute of Polymer Materials; School of Materials Science and Engineering; Jiangsu University; 301 Xuefu Road Zhenjiang 212013 China
| | - Tongfan Hao
- Institute of Polymer Materials; School of Materials Science and Engineering; Jiangsu University; 301 Xuefu Road Zhenjiang 212013 China
| | - Xubo Ye
- Institute of Polymer Materials; School of Materials Science and Engineering; Jiangsu University; 301 Xuefu Road Zhenjiang 212013 China
| | - Wenming Yang
- Institute of Polymer Materials; School of Materials Science and Engineering; Jiangsu University; 301 Xuefu Road Zhenjiang 212013 China
| |
Collapse
|
41
|
Sharma SK, Sudarshan K, Sahu M, Pujari PK. Investigation of free volume characteristics of the interfacial layer in poly(methyl methacrylate)–alumina nanocomposite and its role in thermal behaviour. RSC Adv 2016. [DOI: 10.1039/c6ra07051e] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
A denser interfacial layer with smaller size nanoholes and narrower size distribution around alumina particles in PMMA–alumina composites.
Collapse
Affiliation(s)
- S. K. Sharma
- Radiochemistry Division
- Bhabha Atomic Research Centre
- Mumbai 400085
- India
| | - K. Sudarshan
- Radiochemistry Division
- Bhabha Atomic Research Centre
- Mumbai 400085
- India
| | - M. Sahu
- Radioanalytical Chemistry Division
- Bhabha Atomic Research Centre
- Mumbai 400085
- India
| | - P. K. Pujari
- Radiochemistry Division
- Bhabha Atomic Research Centre
- Mumbai 400085
- India
| |
Collapse
|
42
|
Li X, Chen L, Li Q, Zhang J, Su Z, Zhang X, Zheng K, Tian X. Double glass transitions in exfoliated poly(methyl methacrylate)/organically modified MgAl layered double hydroxide nanocomposites. RSC Adv 2016. [DOI: 10.1039/c6ra15172h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
PMMA chains were confined at a layered material (organically modified MgAl layered double hydroxides) surface, which formed the interfacial layer between nanoparticles and the polymer matrix.
Collapse
Affiliation(s)
- Xiaohai Li
- Institute of Applied Technology
- Hefei Institutes of Physical Science
- Chinese Academy of Sciences
- Hefei 230031
- P. R. China
| | - Lin Chen
- Institute of Applied Technology
- Hefei Institutes of Physical Science
- Chinese Academy of Sciences
- Hefei 230031
- P. R. China
| | - Qiulong Li
- Institute of Applied Technology
- Hefei Institutes of Physical Science
- Chinese Academy of Sciences
- Hefei 230031
- P. R. China
| | - Jinjin Zhang
- Institute of Applied Technology
- Hefei Institutes of Physical Science
- Chinese Academy of Sciences
- Hefei 230031
- P. R. China
| | - Zheng Su
- Institute of Applied Technology
- Hefei Institutes of Physical Science
- Chinese Academy of Sciences
- Hefei 230031
- P. R. China
| | - Xian Zhang
- Institute of Applied Technology
- Hefei Institutes of Physical Science
- Chinese Academy of Sciences
- Hefei 230031
- P. R. China
| | - Kang Zheng
- Institute of Applied Technology
- Hefei Institutes of Physical Science
- Chinese Academy of Sciences
- Hefei 230031
- P. R. China
| | - Xingyou Tian
- Institute of Applied Technology
- Hefei Institutes of Physical Science
- Chinese Academy of Sciences
- Hefei 230031
- P. R. China
| |
Collapse
|
43
|
Morphology and molecular dynamics investigation of PDMS adsorbed on titania nanoparticles: Effects of polymer molecular weight. Eur Polym J 2016. [DOI: 10.1016/j.eurpolymj.2015.11.010] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
44
|
Zhao W, Su Y, Gao X, Xu J, Wang D. Interfacial effect on confined crystallization of poly(ethylene oxide)/silica composites. ACTA ACUST UNITED AC 2015. [DOI: 10.1002/polb.23915] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Weiwei Zhao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Engineering Plastics; Institute of Chemistry, Chinese Academy of Sciences; Beijing 100190 China
| | - Yunlan Su
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Engineering Plastics; Institute of Chemistry, Chinese Academy of Sciences; Beijing 100190 China
| | - Xia Gao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Engineering Plastics; Institute of Chemistry, Chinese Academy of Sciences; Beijing 100190 China
| | - Jianjun Xu
- DSM Resolve; P.O. Box 18 6160 MD Gleen The Netherlands
| | - Dujin Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Engineering Plastics; Institute of Chemistry, Chinese Academy of Sciences; Beijing 100190 China
| |
Collapse
|
45
|
Li C, Hou T, She X, Wei X, She F, Gao W, Kong L. Decomposition properties of PVA/graphene composites during melting-crystallization. Polym Degrad Stab 2015. [DOI: 10.1016/j.polymdegradstab.2015.05.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
46
|
Gorelov B, Gorb A, Korotchenkov O, Nadtochiy A, Polovina O, Sigareva N. Impact of titanium and silica/titanium fumed oxide nanofillers on the elastic properties and thermal decomposition of a polyester resin. J Appl Polym Sci 2015. [DOI: 10.1002/app.42010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Borys Gorelov
- Chuiko Institute of Surface Chemistry of the National Academy of Sciences of Ukraine; Kyiv 03164 Ukraine
| | - Alla Gorb
- Taras Shevchenko Kyiv National University; Kyiv 03127 Ukraine
| | | | | | | | - Nadia Sigareva
- Chuiko Institute of Surface Chemistry of the National Academy of Sciences of Ukraine; Kyiv 03164 Ukraine
| |
Collapse
|
47
|
Poly(vinyl alcohol)/silica nanoparticles based anion-conducting nanocomposite membrane for fuel-cell applications. Macromol Res 2015. [DOI: 10.1007/s13233-015-3033-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
48
|
Improving water selectivity of poly (vinyl alcohol) (PVA) – Fumed silica (FS) nanocomposite membranes by grafting of poly (2-hydroxyethyl methacrylate) (PHEMA) on fumed silica particles. Chem Eng Sci 2015. [DOI: 10.1016/j.ces.2014.09.049] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
49
|
Karatasos K. Graphene/Hyperbranched Polymer Nanocomposites: Insight from Molecular Dynamics Simulations. Macromolecules 2014. [DOI: 10.1021/ma502123a] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Kostas Karatasos
- Laboratory of Physical Chemistry, Department of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
50
|
Peng M, Xiao G, Tang X, Zhou Y. Hydrogen-Bonding Assembly of Rigid-Rod Poly(p-sulfophenylene terephthalamide) and Flexible-Chain Poly(vinyl alcohol) for Transparent, Strong, and Tough Molecular Composites. Macromolecules 2014. [DOI: 10.1021/ma501590x] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mao Peng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization,
Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Guohua Xiao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization,
Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xinglei Tang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization,
Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yang Zhou
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization,
Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|