1
|
Saulais M, Salem S, Sillard C, Choisy P, Dufresne A. Green synthesis of sacrificial UV-sensitive core and biobased shell for obtaining optically hollow nanoparticles. J Colloid Interface Sci 2025; 678:971-983. [PMID: 39270397 DOI: 10.1016/j.jcis.2024.08.260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/30/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024]
Abstract
Hollow nanoparticles have been extensively studied in recent years. Obtaining such structures with biobased materials, following greener synthetic routes, is still challenging, especially if accurate particle dimensions are required. This work reports the use of an innovative hybrid silica core (Si@azo) containing UV-sensitive molecule, wrapped in biobased multilayer shell composed of polysaccharides. It is a promising strategy for obtaining optically hollow nanoparticles. Indeed, Si@azo cores have the ability to be partially degraded when irradiated with UV light. Combined with a well-controlled and monodisperse diameter, they provide a good basis for layer-by-layer assembly, leading to a multilayer shell with controlled composition and thickness. Finally, UV irradiation of such a core-shell structure is harmless to the polysaccharide shell, but does impact the hybrid silica core, as revealed by turbidity measurements, among other. Each step, i.e. core synthesis, shell addition, and core-shell irradiation, has been carefully characterized at the macro (Fourier-transform infrared spectroscopy - FTIR, Dynamic Light Scattering - DLS, Zeta-potential measurement, Surface Plasmon Resonance - SPR, turbidity) and microscale (Transmission and Scanning Electron Microscopies). Emphasis is put on how turbidity measurements can be related to the core refractive index (ncore), giving information on the state of core degradation and whether the core-shell particle is optically hollow.
Collapse
Affiliation(s)
- Marlène Saulais
- Univ. Grenoble Alpes, CNRS, Grenoble-INP, LGP2, F-38000 Grenoble, France
| | - Sara Salem
- Univ. Grenoble Alpes, CNRS, Grenoble-INP, LGP2, F-38000 Grenoble, France
| | - Cécile Sillard
- Univ. Grenoble Alpes, CNRS, Grenoble-INP, LGP2, F-38000 Grenoble, France.
| | | | - Alain Dufresne
- Univ. Grenoble Alpes, CNRS, Grenoble-INP, LGP2, F-38000 Grenoble, France.
| |
Collapse
|
2
|
Kumar L, Horechyy A, Paturej J, Nandan B, Kłos JS, Sommer JU, Fery A. Encapsulation of Nanoparticles into Preformed Block Copolymer Micelles Driven by Competitive Solvation: Experimental Studies and Molecular Dynamic Simulations. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Labeesh Kumar
- Leibniz-Institut für Polymerforschung Dresden e. V., Hohe Straße 6, 01069Dresden, Germany
| | - Andriy Horechyy
- Leibniz-Institut für Polymerforschung Dresden e. V., Hohe Straße 6, 01069Dresden, Germany
| | - Jarosław Paturej
- Leibniz-Institut für Polymerforschung Dresden e. V., Hohe Straße 6, 01069Dresden, Germany
- Institute of Physics, University of Silesia, Chorzów, 41-500, Poland
| | - Bhanu Nandan
- Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi110016, India
| | - Jarosław S. Kłos
- Leibniz-Institut für Polymerforschung Dresden e. V., Hohe Straße 6, 01069Dresden, Germany
- Faculty of Physics, A. Mickiewicz University, Uniwersytetu Poznańskiego 2, 61-614Poznań, Poland
| | - Jens-Uwe Sommer
- Leibniz-Institut für Polymerforschung Dresden e. V., Hohe Straße 6, 01069Dresden, Germany
- Institute for Theoretical Physics, Technische Universität Dresden, Dresden01062, Germany
| | - Andreas Fery
- Leibniz-Institut für Polymerforschung Dresden e. V., Hohe Straße 6, 01069Dresden, Germany
- Physical Chemistry of Polymer Materials, Technische Universität Dresden, Dresden01062, Germany
| |
Collapse
|
3
|
Farh MK, Gruschwitz FV, Ziegenbalg N, Abul-Futouh H, Görls H, Weigand W, Brendel JC. Dual Function of β-hydroxy Dithiocinnamic Esters: RAFT Agent and Ligand for Metal Complexation. Macromol Rapid Commun 2022; 43:e2200428. [PMID: 35751415 DOI: 10.1002/marc.202200428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/12/2022] [Indexed: 11/06/2022]
Abstract
The reversible addition-fragmentation chain-transfer (RAFT) process has become a versatile tool for the preparation of defined polymers tolerating a large variety of functional groups. Several dithioesters, trithiocarbonates, xanthates, or dithiocarbamates have been developed as effective chain transfer agents (CTA), but only few examples have been reported, where the resulting end groups are directly considered for a secondary use besides controlling the polymerization. We here demonstrate that β-hydroxy dithiocinnamic esters represent a hitherto overlooked class of materials, which were originally designed for the complexation of transition metals but might as well act as reversible CTA. Modified with a suitable leaving group (R-group), these vinyl conjugated dithioesters indeed provide reasonable control over the polymerization of acrylates, acrylamides, or styrene via the RAFT process. Kinetic studies revealed linear evolutions of molar mass with conversion, while different substituents on the aromatic unit had only a minor influence. Block extensions prove the livingness of the polymer chains, although extended polymerization times may lead to side reactions. The resulting dithiocinnamic ester end groups are still able to form complexes with platinum, which verifies that the structural integrity of the end group is maintained. These findings open a versatile new route to tailor-made polymer bound metal complexes. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Micheal K Farh
- Department of Inorganic and Analytical Chemistry (IAAC), Friedrich Schiller University Jena, Humboldtstraße 8, 07743, Jena, Germany.,Department of Chemistry, Faculty of Science, Assiut University, Assiut, 71515, Egypt.,Department of Chemistry, Faculty of Science, The Hashemite University, P.O. Box 330127, Zarqa, 13133, Jordan
| | - Franka V Gruschwitz
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743, Jena, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Nicole Ziegenbalg
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743, Jena, Germany
| | - Hassan Abul-Futouh
- Department of Chemistry, Faculty of Science, The Hashemite University, P.O. Box 330127, Zarqa, 13133, Jordan
| | - Helmar Görls
- Department of Inorganic and Analytical Chemistry (IAAC), Friedrich Schiller University Jena, Humboldtstraße 8, 07743, Jena, Germany
| | - Wolfgang Weigand
- Department of Inorganic and Analytical Chemistry (IAAC), Friedrich Schiller University Jena, Humboldtstraße 8, 07743, Jena, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Johannes C Brendel
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743, Jena, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| |
Collapse
|
4
|
Natarajan P, Tomich JM. Understanding the influence of experimental factors on bio-interactions of nanoparticles: Towards improving correlation between in vitro and in vivo studies. Arch Biochem Biophys 2020; 694:108592. [PMID: 32971033 PMCID: PMC7503072 DOI: 10.1016/j.abb.2020.108592] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/16/2020] [Accepted: 09/18/2020] [Indexed: 12/17/2022]
Abstract
Bionanotechnology has developed rapidly over the past two decades, owing to the extensive and versatile, functionalities and applicability of nanoparticles (NPs). Fifty-one nanomedicines have been approved by FDA since 1995, out of the many NPs based formulations developed to date. The general conformation of NPs consists of a core with ligands coating their surface, that stabilizes them and provides them with added functionalities. The physicochemical properties, especially the surface composition of NPs influence their bio-interactions to a large extent. This review discusses recent studies that help understand the nano-bio interactions of iron oxide and gold NPs with different surface compositions. We discuss the influence of the experimental factors on the outcome of the studies and, thus, the importance of standardization in the field of nanotechnology. Recent studies suggest that with careful selection of experimental parameters, it is possible to improve the positive correlation between in vitro and in vivo studies. This provides a fundamental understanding of the NPs which helps in assessing their potential toxic side effects and may aid in manipulating them further to improve their biocompatibility and biosafety.
Collapse
|
5
|
TEMPO-Functionalized Nanoporous Au Nanocomposite for the Electrochemical Detection of H 2O 2. Int J Anal Chem 2018; 2018:1710438. [PMID: 29983712 PMCID: PMC6015671 DOI: 10.1155/2018/1710438] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 04/26/2018] [Indexed: 11/30/2022] Open
Abstract
A novel nanocomposite of nanoporous gold nanoparticles (np-AuNPs) functionalized with 2,2,6,6-tetramethyl-1-piperidinyloxy radical (TEMPO) was prepared; assembled carboxyl groups on gold nanoporous nanoparticles surface were combined with TEMPO by the “bridge” of carboxylate-zirconium-carboxylate chemistry. SEM images and UV-Vis spectroscopies of np-AuNPs indicated that a safe, sustainable, and simplified one-step dealloying synthesis approach is successful. The TEMPO-np-AuNPs exhibited a good performance for the electrochemical detection of H2O2 due to its higher number of electrochemical activity sites and surface area of 7.49 m2g−1 for load bigger amount of TEMPO radicals. The TEMPO-functionalized np-AuNPs have a broad pH range and shorter response time for H2O2 catalysis verified by the response of amperometric signal under different pH and time interval. A wide linear range with a detection limit of 7.8 × 10−7 M and a higher sensitivity of 110.403 μA mM−1cm−2 were obtained for detecting H2O2 at optimal conditions.
Collapse
|
6
|
Pereira SO, Barros-Timmons A, Trindade T. Polymer@gold Nanoparticles Prepared via RAFT Polymerization for Opto-Biodetection. Polymers (Basel) 2018; 10:E189. [PMID: 30966225 PMCID: PMC6415202 DOI: 10.3390/polym10020189] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 02/09/2018] [Accepted: 02/11/2018] [Indexed: 11/17/2022] Open
Abstract
Colloidal gold nanoparticles (Au NPs) have been used in several biological applications, which include the exploitation of size- and shape-dependent Localized Surface Plasmon Resonance (LSPR) in biosensing devices. In order to obtain functional and stable Au NPs in a physiological medium, surface modification and functionalization are crucial steps in these endeavors. Reversible addition-fragmentation chain transfer (RAFT) polymerization meets this need offering the possibility of control over the composition and architecture of polymeric shells coating Au NPs. Furthermore, playing with a careful choice of monomers, RAFT polymerization allows the possibility to design a polymer shell with the desired functional groups aiming at Au based nanocomposites suitable for biorecognition and biotargeting. This review provides important aspects concerning the synthesis and optical properties of Au NPs as well as concepts of RAFT polymerization. Understanding these concepts is crucial to appreciate the chemical strategies available towards RAFT-polymer coated Au core-shell nanostructures, which are here reviewed. Finally, examples of applications in opto-biodetection devices are provided and the potential of responsive "smart" nanomaterials based on such structures can be applied to other biological applications.
Collapse
Affiliation(s)
- Sónia O Pereira
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Ana Barros-Timmons
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Tito Trindade
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
7
|
Ishizuka F, Stenzel MH, Zetterlund PB. Microcapsule synthesis via RAFT photopolymerization in vegetable Oil as a green solvent. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/pola.28958] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Fumi Ishizuka
- School of Chemical Engineering, Centre for Advanced Macromolecular Design, The University of New South Wales; Sydney New South Wales 2052 Australia
| | - Martina H. Stenzel
- School of Chemistry, Centre for Advanced Macromolecular Design; The University of New South Wales; Sydney New South Wales 2052 Australia
| | - Per B. Zetterlund
- School of Chemical Engineering, Centre for Advanced Macromolecular Design, The University of New South Wales; Sydney New South Wales 2052 Australia
| |
Collapse
|
8
|
Huang J, Turner SR. Recent advances in alternating copolymers: The synthesis, modification, and applications of precision polymers. POLYMER 2017. [DOI: 10.1016/j.polymer.2017.01.020] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
9
|
Yan X, Ramos R, Hoibian E, Soulage C, Alcouffe P, Ganachaud F, Bernard J. Nanoprecipitation of PHPMA (Co)Polymers into Nanocapsules Displaying Tunable Compositions, Dimensions, and Surface Properties. ACS Macro Lett 2017; 6:447-451. [PMID: 35610850 DOI: 10.1021/acsmacrolett.7b00094] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A series of PHPMA homopolymers and of mannose- and dimethylamino-functionalized copolymers, were prepared by RAFT polymerization and engaged in the preparation of oil-loaded nanocapsules using the "Shift'N'Go" process. Playing with the phase diagrams of both oil and homo- or copolymers afforded the preparation of functional camptothecin-loaded nanocapsules displaying tunable dimensions (90-350 nm), compositions and surface properties.
Collapse
Affiliation(s)
- Xibo Yan
- Université de Lyon, Lyon, F-69003, France
- INSA-Lyon, IMP, Villeurbanne, F-69621, France
- CNRS,
UMR 5223, Ingénierie des Matériaux Polymères, Villeurbanne, F-69621, France
| | - Ricardo Ramos
- Université de Lyon, Lyon, F-69003, France
- INSA-Lyon, IMP, Villeurbanne, F-69621, France
- CNRS,
UMR 5223, Ingénierie des Matériaux Polymères, Villeurbanne, F-69621, France
| | - Elsa Hoibian
- Univ-Lyon,
CarMeN laboratory, INSERM U1060, INSA Lyon, INRA U1397, Université Claude Bernard Lyon 1, F-69621 Villeurbanne, France
| | - Christophe Soulage
- Univ-Lyon,
CarMeN laboratory, INSERM U1060, INSA Lyon, INRA U1397, Université Claude Bernard Lyon 1, F-69621 Villeurbanne, France
| | - Pierre Alcouffe
- Université de Lyon, Lyon, F-69003, France
- INSA-Lyon, IMP, Villeurbanne, F-69621, France
- CNRS,
UMR 5223, Ingénierie des Matériaux Polymères, Villeurbanne, F-69621, France
| | - François Ganachaud
- Université de Lyon, Lyon, F-69003, France
- INSA-Lyon, IMP, Villeurbanne, F-69621, France
- CNRS,
UMR 5223, Ingénierie des Matériaux Polymères, Villeurbanne, F-69621, France
| | - Julien Bernard
- Université de Lyon, Lyon, F-69003, France
- INSA-Lyon, IMP, Villeurbanne, F-69621, France
- CNRS,
UMR 5223, Ingénierie des Matériaux Polymères, Villeurbanne, F-69621, France
| |
Collapse
|
10
|
Zhao ZW, Wen T, Liang K, Jiang YF, Zhou X, Shen CC, Xu AW. Carbon-Coated Fe 3O 4/VO x Hollow Microboxes Derived from Metal-Organic Frameworks as a High-Performance Anode Material for Lithium-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2017; 9:3757-3765. [PMID: 28071884 DOI: 10.1021/acsami.6b15110] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
As the ever-growing demand for high-performance power sources, lithium-ion batteries with high storage capacities and outstanding rate performance have been widely considered as a promising storage device. In this work, starting with metal-organic frameworks, we have developed a facile approach to the synthesis of hybrid Fe3O4/VOx hollow microboxes via the process of hydrolysis and ion exchange and subsequent calcination. In the constructed architecture, the hollow structure provides an efficient lithium ion diffusion pathway and extra space to accommodate the volume expansion during the insertion and extraction of Li+. With the assistance of carbon coating, the obtained Fe3O4/VOx@C microboxes exhibit excellent cyclability and enhanced rate performance when employed as an anode material for lithium-ion batteries. As a result, the obtained Fe3O4/VOx@C delivers a high Coulombic efficiency (near 100%) and outstanding reversible specific capacity of 742 mAh g-1 after 400 cycles at a current density of 0.5 A g-1. Moreover, a remarkable reversible capacity of 556 mAh g-1 could be retained even at a current density of 2 A g-1. This study provides a fundamental understanding for the rational design of other composite oxides as high-performance electrode materials for lithium-ion batteries.
Collapse
Affiliation(s)
- Zhi-Wei Zhao
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China , Hefei, 230026, China
| | - Tao Wen
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China , Hefei, 230026, China
| | - Kuang Liang
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China , Hefei, 230026, China
| | - Yi-Fan Jiang
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China , Hefei, 230026, China
| | - Xiao Zhou
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China , Hefei, 230026, China
| | - Cong-Cong Shen
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China , Hefei, 230026, China
| | - An-Wu Xu
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China , Hefei, 230026, China
| |
Collapse
|
11
|
Abstract
Herein, the basic principles, such as the definitions, classifications, and properties, of hollow polymer particles (HPPs) are critically investigated.
Collapse
Affiliation(s)
- Ros Azlinawati Ramli
- Material Technology Program
- Faculty of Industrial Sciences & Technology
- Universiti Malaysia Pahang (UMP)
- Kuantan
- Malaysia
| |
Collapse
|
12
|
Wang H, Zhang S, Tian X, Liu C, Zhang L, Hu W, Shao Y, Li L. High sensitivity of gold nanoparticles co-doped with Gd 2O 3 mesoporous silica nanocomposite to nasopharyngeal carcinoma cells. Sci Rep 2016; 6:34367. [PMID: 27694966 PMCID: PMC5046069 DOI: 10.1038/srep34367] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 09/12/2016] [Indexed: 12/19/2022] Open
Abstract
Nanoprobes for combined optical and magnetic resonance imaging have tremendous potential in early cancer diagnosis. Gold nanoparticles (AuNPs) co-doped with Gd2O3 mesoporous silica nanocomposite (Au/Gd@MCM-41) can produce pronounced contrast enhancement for T1 weighted image in magnetic resonance imaging (MRI). Here, we show the remarkably high sensitivity of Au/Gd@MCM-41 to the human poorly differentiated nasopharyngeal carcinoma (NPC) cell line (CNE-2) using fluorescence lifetime imaging (FLIM). The upconversion luminescences from CNE-2 and the normal nasopharyngeal (NP) cells (NP69) after uptake of Au/Gd@MCM-41 show the characteristic of two-photon-induced-radiative recombination of the AuNPs. The presence of the Gd3+ ion induces a much shorter luminescence lifetime in CNE-2 cells. The interaction between AuNPs and Gd3+ ion clearly enhances the optical sensitivity of Au/Gd@MCM-41 to CNE-2. Furthermore, the difference in the autofluorescence between CNE-2 and NP69 cells can be efficiently demonstrated by the emission lifetimes of Au/Gd@MCM-41 through the Forster energy transfers from the endogenous fluorophores to AuNPs. The results suggest that Au/Gd@MCM-41 may impart high optical resolution for the FLIM imaging that differentiates normal and high-grade precancers.
Collapse
Affiliation(s)
- Hui Wang
- State Key Laboratory of Optoelectronics Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China
| | - Songjin Zhang
- State Key Laboratory of Optoelectronics Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China
| | - Xiumei Tian
- State Key Laboratory of Oncology in South China, Sun Yat-sen University CancerCentre, Guangzhou 510060, China.,Department of Biomedical Engineering, Guangzhou Medical College, Guangzhou 510182, China
| | - Chufeng Liu
- State Key Laboratory of Optoelectronics Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China
| | - Lei Zhang
- State Key Laboratory of Optoelectronics Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China
| | - Wenyong Hu
- State Key Laboratory of Optoelectronics Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China
| | - Yuanzhi Shao
- State Key Laboratory of Optoelectronics Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China
| | - Li Li
- State Key Laboratory of Oncology in South China, Sun Yat-sen University CancerCentre, Guangzhou 510060, China
| |
Collapse
|
13
|
|
14
|
Wu L, Pang T, Guan YB. Miniemulsion cross-linking: A convenient route to hollow polymeric nanocapsule with a liquid core. CHINESE JOURNAL OF POLYMER SCIENCE 2016. [DOI: 10.1007/s10118-016-1784-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
15
|
Ishizuka F, Kuchel RP, Lu H, Stenzel MH, Zetterlund PB. Synthesis of microcapsules using inverse emulsion periphery RAFT polymerization via SPG membrane emulsification. Polym Chem 2016. [DOI: 10.1039/c6py01584k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Synthesis of polymeric capsules with good control over the particle size and size distribution is demonstratedviaa novel approach involving SPG membrane emulsification.
Collapse
Affiliation(s)
- Fumi Ishizuka
- Centre for Advanced Macromolecular Design
- School of Chemical Engineering
- The University of New South Wales
- Sydney
- Australia
| | - Rhiannon P. Kuchel
- Electron Microscope Unit
- The University of New South Wales
- Sydney
- Australia
| | - Hongxu Lu
- Centre for Advanced Macromolecular Design
- School of Chemistry
- The University of New South Wales
- Sydney
- Australia
| | - Martina H. Stenzel
- Centre for Advanced Macromolecular Design
- School of Chemistry
- The University of New South Wales
- Sydney
- Australia
| | - Per B. Zetterlund
- Centre for Advanced Macromolecular Design
- School of Chemical Engineering
- The University of New South Wales
- Sydney
- Australia
| |
Collapse
|
16
|
Ishizuka F, Utama RH, Kim S, Stenzel MH, Zetterlund PB. RAFT inverse miniemulsion periphery polymerization in binary solvent mixtures for synthesis of nanocapsules. Eur Polym J 2015. [DOI: 10.1016/j.eurpolymj.2015.10.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
17
|
Fan Z, Chen X, Köhn Serrano M, Schmalz H, Rosenfeldt S, Förster S, Agarwal S, Greiner A. Polymerkäfige als universelles Hilfsmittel für die präzise Bottom-up-Synthese metallischer Nanopartikel. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201506415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
18
|
Fan Z, Chen X, Köhn Serrano M, Schmalz H, Rosenfeldt S, Förster S, Agarwal S, Greiner A. Polymer Cages as Universal Tools for the Precise Bottom-Up Synthesis of Metal Nanoparticles. Angew Chem Int Ed Engl 2015; 54:14539-44. [PMID: 26439774 PMCID: PMC4678510 DOI: 10.1002/anie.201506415] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Indexed: 01/19/2023]
Abstract
A template synthesis allows the preparation of monodisperse nanoparticles with high reproducibility and independent from self-assembly requirements. Tailor-made polymer cages were used for the preparation of nanoparticles, which were made of cross-linked macromolecules with pendant thiol groups. Gold nanoparticles (AuNPs) were prepared in the polymer cages in situ, by using different amounts of cages versus gold. The polymer cages exhibited a certain capacity, below which the AuNPs could be grown with excellent control over the size and shape. Control experiments with a linear diblock copolymer showed a continuous increase in the AuNP size as the gold feed increased. This completely different behavior regarding the AuNP size evolution was attributed to the flexibility of the polymer chain depending on cross-linking. Moreover, the polymer cages were suitable for the encapsulation of AgNPs, PdNPs, and PtNPs by the in situ method.
Collapse
Affiliation(s)
- Ziyin Fan
- Chair of Macromolecular Chemistry II and Bayreuth Centre for Colloids and Interfaces, University of Bayreuth, Universitätsstrasse 30, 95440 Bayreuth (Germany) http://www.mcii.uni-bayreuth.de/en/ag-greiner/index.html
| | - Xuelian Chen
- Chair of Physical Chemistry I, University of Bayreuth (Germany)
| | - Melissa Köhn Serrano
- Chair of Macromolecular Chemistry II and Bayreuth Centre for Colloids and Interfaces, University of Bayreuth, Universitätsstrasse 30, 95440 Bayreuth (Germany) http://www.mcii.uni-bayreuth.de/en/ag-greiner/index.html
| | - Holger Schmalz
- Chair of Macromolecular Chemistry II and Bayreuth Centre for Colloids and Interfaces, University of Bayreuth, Universitätsstrasse 30, 95440 Bayreuth (Germany) http://www.mcii.uni-bayreuth.de/en/ag-greiner/index.html
| | | | - Stephan Förster
- Chair of Physical Chemistry I, University of Bayreuth (Germany)
| | - Seema Agarwal
- Chair of Macromolecular Chemistry II and Bayreuth Centre for Colloids and Interfaces, University of Bayreuth, Universitätsstrasse 30, 95440 Bayreuth (Germany) http://www.mcii.uni-bayreuth.de/en/ag-greiner/index.html
| | - Andreas Greiner
- Chair of Macromolecular Chemistry II and Bayreuth Centre for Colloids and Interfaces, University of Bayreuth, Universitätsstrasse 30, 95440 Bayreuth (Germany) http://www.mcii.uni-bayreuth.de/en/ag-greiner/index.html.
| |
Collapse
|
19
|
Wang L, Liu G, Wang X, Hu J, Zhang G, Liu S. Acid-Disintegratable Polymersomes of pH-Responsive Amphiphilic Diblock Copolymers for Intracellular Drug Delivery. Macromolecules 2015. [DOI: 10.1021/acs.macromol.5b01709] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lei Wang
- CAS Key Laboratory of Soft
Matter Chemistry, Hefei National Laboratory for Physical Sciences
at the Microscale, iChem (Collaborative Innovation Center of Chemistry
for Energy Materials), Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Guhuan Liu
- CAS Key Laboratory of Soft
Matter Chemistry, Hefei National Laboratory for Physical Sciences
at the Microscale, iChem (Collaborative Innovation Center of Chemistry
for Energy Materials), Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiaorui Wang
- CAS Key Laboratory of Soft
Matter Chemistry, Hefei National Laboratory for Physical Sciences
at the Microscale, iChem (Collaborative Innovation Center of Chemistry
for Energy Materials), Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jinming Hu
- CAS Key Laboratory of Soft
Matter Chemistry, Hefei National Laboratory for Physical Sciences
at the Microscale, iChem (Collaborative Innovation Center of Chemistry
for Energy Materials), Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Guoying Zhang
- CAS Key Laboratory of Soft
Matter Chemistry, Hefei National Laboratory for Physical Sciences
at the Microscale, iChem (Collaborative Innovation Center of Chemistry
for Energy Materials), Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Shiyong Liu
- CAS Key Laboratory of Soft
Matter Chemistry, Hefei National Laboratory for Physical Sciences
at the Microscale, iChem (Collaborative Innovation Center of Chemistry
for Energy Materials), Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
20
|
Kukkar D, Kaur I, Singh J, Bharadwaj LM. Plasticizers Induced Formation of Microcapsules From Freeze Dried Polystyrene Microreactors. INT J POLYM MATER PO 2015. [DOI: 10.1080/00914037.2014.958825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
21
|
Gaitzsch J, Huang X, Voit B. Engineering Functional Polymer Capsules toward Smart Nanoreactors. Chem Rev 2015; 116:1053-93. [DOI: 10.1021/acs.chemrev.5b00241] [Citation(s) in RCA: 300] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jens Gaitzsch
- Department
of Chemistry, University College London, London WC1H 0AJ, United Kingdom
- Department
of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel, Basel-Stadt, Switzerland
| | - Xin Huang
- School
of Chemical Engineering and Technology, Harbin Institute of Technology, 150001 Harbin, Heilongjiang, China
| | - Brigitte Voit
- Leibniz-Institut fuer Polymerforschung Dresden e.V., Hohe Strasse 6, 01069 Dresden, Saxony, Germany
| |
Collapse
|
22
|
Tailoring Confinement: Nano-Carrier Synthesis via Z-RAFT Star Polymerization. Polymers (Basel) 2015. [DOI: 10.3390/polym7040695] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
23
|
Qie F, Astolfo A, Wickramaratna M, Behe M, Evans MDM, Hughes TC, Hao X, Tan T. Self-assembled gold coating enhances X-ray imaging of alginate microcapsules. NANOSCALE 2015; 7:2480-2488. [PMID: 25567482 DOI: 10.1039/c4nr06692h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Therapeutic biomolecules produced from cells encapsulated within alginate microcapsules (MCs) offer a potential treatment for a number of diseases. However the fate of such MCs once implanted into the body is difficult to establish. Labelling the MCs with medical imaging contrast agents may aid their detection and give researchers the ability to track them over time thus aiding the development of such cellular therapies. Here we report the preparation of MCs with a self-assembled gold nanoparticle (AuNPs) coating which results in distinctive contrast and enables them to be readily identified using a conventional small animal X-ray micro-CT scanner. Cationic Reversible Addition-Fragmentation chain Transfer (RAFT) homopolymer modified AuNPs (PAuNPs) were coated onto the surface of negatively charged alginate MCs resulting in hybrids which possessed low cytotoxicity and high mechanical stability in vitro. As a result of their high localized Au concentration, the hybrid MCs exhibited a distinctive bright circular ring even with a low X-ray dose and rapid scanning in post-mortem imaging experiments facilitating their positive identification and potentially enabling them to be used for in vivo tracking experiments over multiple time-points.
Collapse
Affiliation(s)
- Fengxiang Qie
- Beijing Key Lab of Bioprocess, Beijing University of Chemical Technology, Beijing, PR China.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Moraes J, Ohno K, Maschmeyer T, Perrier S. Selective patterning of gold surfaces by core/shell, semisoft hybrid nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:482-488. [PMID: 25223214 DOI: 10.1002/smll.201400345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Revised: 07/17/2014] [Indexed: 06/03/2023]
Abstract
The generation of patterned surfaces with well-defined nano- and microdomains is demonstrated by attaching core/shell, semisoft nanoparticles with narrow size distribution to microdomains of a gold-coated silicon wafer. Near monodisperse nanoparticles are prepared using reversible addition-fragmentation chain transfer (RAFT) polymerization, initiated from a silica surface, to prepare a polystyrene shell around a silica core. The particles are then used as-prepared, or after aminolysis of the terminal thiocarbonyl group of the polystyrene shell, to give thiol-terminated nanoparticles. When gold-coated silicon wafers are immersed into very dilute suspensions of these particles (as low as 0.004 wt%), both types of particles are shown to adhere to the gold domains. The thiolated particles adhere selectively to the gold microdomains, allowing for microdomain patterning, while particles that contain the trithiocarbonate functionality lead to a much more even coverage of the gold surface with fewer particle aggregations.
Collapse
Affiliation(s)
- John Moraes
- Key Centre for Polymers & Colloids, School of Chemistry, The University of Sydney, NSW, 2006, Australia
| | | | | | | |
Collapse
|
25
|
Reversible Addition-Fragmentation Chain Transfer Polymerization from Surfaces. CONTROLLED RADICAL POLYMERIZATION AT AND FROM SOLID SURFACES 2015. [DOI: 10.1007/12_2015_316] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
26
|
Krishnakumar S, Gopidas KR. Organic nanoparticles composed of Fréchet-type dendrons: synthesis, characterization, self-assembly and reversible guest encapsulation. J Mater Chem B 2014; 2:5576-5584. [PMID: 32262191 DOI: 10.1039/c4tb00769g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Novel organic nanoparticles composed of Fréchet-type dendrons have been synthesized by a simple one-pot reaction, which involved etching off the gold core in a first generation gold nanoparticle-cored dendrimer (AuG1). Dissolution of the Au core leads to the generation of numerous dendron radicals in a small volume, which underwent very fast coupling and addition reactions to form the Fréchet-type dendron nanoparticles (FDNs). The FDNs were found to be nearly monodispersed with an average size of 3 nm. NMR, TEM and MALDI-TOF analysis suggested that the FDNs are extremely dense organic structures made up of Fréchet-type dendrons. Although the FDNs do not contain any self-assembling motifs, such as hydrogen bonding moieties, they exhibited time and concentration dependent morphological transformations, leading to the formation of larger spherical aggregates and fibrous networks. Morphological transformations were probed using TEM, AFM and DLS studies. The self-assembly was found to be reversible. The morphological transformation of FDNs was exploited for the encapsulation and on-demand release of guest molecules.
Collapse
Affiliation(s)
- Sreedevi Krishnakumar
- Photosciences and Photonics Section, Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Council of Scientific and Industrial Research (CSIR), Trivandrum-695019, India.
| | | |
Collapse
|
27
|
Encapsulation of inorganic nanoparticles into block copolymer micellar aggregates: Strategies and precise localization of nanoparticles. POLYMER 2014. [DOI: 10.1016/j.polymer.2014.01.027] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
28
|
Tucker BS, Sumerlin BS. Poly(N-(2-hydroxypropyl) methacrylamide)-based nanotherapeutics. Polym Chem 2014. [DOI: 10.1039/c3py01279d] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
29
|
Banerjee R, Gupta S, Dey D, Maiti S, Dhara D. Synthesis of PEG containing cationic block copolymers and their interaction with human serum albumin. REACT FUNCT POLYM 2014. [DOI: 10.1016/j.reactfunctpolym.2013.11.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
30
|
Rossner C, Ebeling B, Vana P. Spherical Gold-Nanoparticle Assemblies with Tunable Interparticle Distances Mediated by Multifunctional RAFT Polymers. ACS Macro Lett 2013; 2:1073-1076. [PMID: 35606970 DOI: 10.1021/mz400556q] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A strategy for the controlled assembly of gold nanocrystals into dispersed three-dimensional superstructures is presented. A multifunctional RAFT agent was used to prepare multiblock polystyrene (4.4-17.8 kDa) with trithiocarbonate groups as junctions between the individual blocks. Addition of these polymers to two-phase Brust-Schiffrin gold nanoparticles (4.1 nm) resulted in the formation of stable gold-nanoparticle assemblies dispersed in toluene. TEM analysis revealed that the interparticle distances in these superstructures can be tuned over an unprecedented wide range by employing multiblock polymers with an adjusted degree of polymerization and thus tailored trithiocarbonate distances. Cross-linking of the gold nanoparticles in the assemblies by multifunctional trithiocarbonates was proven by AFM showing partly preserved globular shape after deposition on a solid substrate. The reported strategy is expected to prove useful when interparticle distances in nanoparticle assemblies need to be tuned in a liquid phase or on surfaces.
Collapse
Affiliation(s)
- Christian Rossner
- Institut
für Physikalische Chemie, Georg-August-Universität Göttingen, Tammannstraße
6, D-37077 Göttingen, Germany
| | - Bastian Ebeling
- Institut
für Physikalische Chemie, Georg-August-Universität Göttingen, Tammannstraße
6, D-37077 Göttingen, Germany
| | - Philipp Vana
- Institut
für Physikalische Chemie, Georg-August-Universität Göttingen, Tammannstraße
6, D-37077 Göttingen, Germany
| |
Collapse
|
31
|
Leiva A, Méndez M, Pino M, Radić D. In situ synthesis of gold nanoparticles at the air–water interface. Spontaneous reduction of Au(III) by poly(N-vinyl-2-pyrrolidone) monolayers. Eur Polym J 2013. [DOI: 10.1016/j.eurpolymj.2013.04.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
32
|
Ebeling B, Vana P. RAFT-Polymers with Single and Multiple Trithiocarbonate Groups as Uniform Gold-Nanoparticle Coatings. Macromolecules 2013. [DOI: 10.1021/ma4008626] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Bastian Ebeling
- Institut für Physikalische
Chemie, Georg-August-Universität, Tammannstr. 6, D-37077,
Göttingen, Germany
| | - Philipp Vana
- Institut für Physikalische
Chemie, Georg-August-Universität, Tammannstr. 6, D-37077,
Göttingen, Germany
| |
Collapse
|
33
|
Ian W, Guojun L. Self-assembly and chemical processing of block copolymers: a roadmap towards a diverse array of block copolymer nanostructures. SCIENCE CHINA. LIFE SCIENCES 2013. [PMID: 23740360 DOI: 10.1007/s11427-013-4499-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 05/27/2013] [Indexed: 11/28/2022]
Abstract
Block copolymers can yield a diverse array of nanostructures. Their assembly structures are influenced by their inherent structures, and the wide variety of structures that can be prepared especially becomes apparent when one considers the number of routes available to prepare block copolymer assemblies. Some examples include self-assembly, directed assembly, coupling, as well as hierarchical assembly, which can yield assemblies having even higher structural order. These assembly routes can also be complemented by processing techniques such as selective crosslinking and etching, the former technique leading to permanent structures, the latter towards sculpted and the combination of the two towards permanent sculpted structures. The combination of these pathways provides extremely versatile routes towards an exciting variety of architectures. This review will attempt to highlight destinations reached by LIU Guojun and coworkers following these pathways.
Collapse
Affiliation(s)
- Wyman Ian
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, Ontario, K7L 3N6, Canada
| | | |
Collapse
|
34
|
Wyman I, Liu G. Self-assembly and chemical processing of block copolymers: A roadmap towards a diverse array of block copolymer nanostructures. Sci China Chem 2013. [DOI: 10.1007/s11426-013-4951-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
35
|
Banerjee R, Dutta S, Pal S, Dhara D. Spontaneous Formation of Vesicles by Self-Assembly of Cationic Block Copolymer in the Presence of Anionic Surfactants and Their Application in Formation of Polymer Embedded Gold Nanoparticles. J Phys Chem B 2013; 117:3624-33. [PMID: 23470131 DOI: 10.1021/jp309808q] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Rakesh Banerjee
- Department
of Chemistry, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Sujan Dutta
- Department
of Chemistry, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Souvik Pal
- Department
of Chemistry, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Dibakar Dhara
- Department
of Chemistry, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| |
Collapse
|
36
|
Utama RH, Stenzel MH, Zetterlund PB. Inverse Miniemulsion Periphery RAFT Polymerization: A Convenient Route to Hollow Polymeric Nanoparticles with an Aqueous Core. Macromolecules 2013. [DOI: 10.1021/ma4002148] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Robert H. Utama
- Centre for Advanced Macromolecular Design (CAMD), The University of New South Wales, Sydney NSW 2052,
Australia
| | - Martina H. Stenzel
- Centre for Advanced Macromolecular Design (CAMD), The University of New South Wales, Sydney NSW 2052,
Australia
| | - Per B. Zetterlund
- Centre for Advanced Macromolecular Design (CAMD), The University of New South Wales, Sydney NSW 2052,
Australia
| |
Collapse
|
37
|
Bapat AP, Ray JG, Savin DA, Sumerlin BS. Redox-Responsive Dynamic-Covalent Assemblies: Stars and Miktoarm Stars. Macromolecules 2013. [DOI: 10.1021/ma400169m] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Abhijeet P. Bapat
- Department
of Chemistry, Southern Methodist University, 3215 Daniel Avenue,
Dallas, Texas 75275-0314, United States
| | - Jacob G. Ray
- School of Polymers and High
Performance Materials, The University of Southern Mississippi, Hattiesburg, Mississippi 39406, United States
| | - Daniel A. Savin
- School of Polymers and High
Performance Materials, The University of Southern Mississippi, Hattiesburg, Mississippi 39406, United States
| | - Brent S. Sumerlin
- Department
of Chemistry, Southern Methodist University, 3215 Daniel Avenue,
Dallas, Texas 75275-0314, United States
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science and Engineering, Department of Chemistry, University of Florida, PO Box 117200, Gainesville, Florida 32611-7200, United States
| |
Collapse
|
38
|
Kong XZ, Jiang W, Jiang X, Zhu X. Preparation of core–shell and hollow polyurea microspheres via precipitation polymerization using polyamine as crosslinker monomer. Polym Chem 2013. [DOI: 10.1039/c3py00809f] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
39
|
|
40
|
Zhang J, Qiu S, Zhu Y, Huang Z, Yang B, Yang W, Wu M, Wu Q, Yang J. Facile fabrication of Janus magnetic microcapsules via double in situ miniemulsion polymerization. Polym Chem 2013. [DOI: 10.1039/c2py20863f] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
41
|
Huang X, Appelhans D, Formanek P, Simon F, Voit B. Tailored synthesis of intelligent polymer nanocapsules: an investigation of controlled permeability and pH-dependent degradability. ACS NANO 2012; 6:9718-9726. [PMID: 23102500 DOI: 10.1021/nn3031723] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
In this study, we present a new route to synthesize an intelligent polymer nanocapsule with an ultrathin membrane based on surface-initiated reversible addition-fragmentation chain-transfer polymerization. The key concept of our report is to use pH-responsive polydiethylaminoethylmethacrylate as a main membrane-generating component and a degradable disulfide bond to cross-link the membrane. The permeability of membrane, tuned by adjusting pH and using different lengths of the cross-linkers, was proven by showing a dramatic swelling behavior of the nanocapsules with the longest cross-linker from 560 nm at pH 8.0 to 780 nm at pH 4.0. Also, due to the disulfide cross-linker, degradation of the capsules using GSH as reducing agent was achieved which is further significantly promoted at pH 4.0. Using a rather long-chain dithiol cross-linker, the synthesized nanocapsules demonstrated a good permeability allowing that an enzyme myoglobin can be postencapsulated, where the pH controlled enzyme activity by switching membrane permeability was also shown.
Collapse
Affiliation(s)
- Xin Huang
- Leibniz Institute of Polymer Research Dresden, Hohe Strasse 6, 01069 Dresden, Germany.
| | | | | | | | | |
Collapse
|
42
|
Ho HT, Leroux F, Pascual S, Montembault V, Fontaine L. Amine-Reactive Polymers Synthesized by RAFT Polymerization Using an Azlactone Functional Trithiocarbonate RAFT Agent. Macromol Rapid Commun 2012; 33:1753-8. [DOI: 10.1002/marc.201200367] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 06/16/2012] [Indexed: 12/30/2022]
|
43
|
Biradar SC, Shinde DB, Pillai VK, Kulkarni MG. Polydentate disulfides for enhanced stability of AuNPs and facile nanocavity formation. ACTA ACUST UNITED AC 2012. [DOI: 10.1039/c2jm30680h] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
44
|
Gregory A, Stenzel MH. Complex polymer architectures via RAFT polymerization: From fundamental process to extending the scope using click chemistry and nature's building blocks. Prog Polym Sci 2012. [DOI: 10.1016/j.progpolymsci.2011.08.004] [Citation(s) in RCA: 377] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
45
|
Beija M, Li Y, Duong HT, Laurent S, Elst LV, Muller RN, Lowe AB, Davis TP, Boyer C. Polymer–gold nanohybrids with potential use in bimodal MRI/CT: enhancing the relaxometric properties of Gd(iii) complexes. ACTA ACUST UNITED AC 2012. [DOI: 10.1039/c2jm34999j] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
46
|
Liu J, Li A, Tang J, Wang R, Kong N, Davis TP. Thermoresponsive silver/polymer nanohybrids with switchable metal enhanced fluorescence. Chem Commun (Camb) 2012; 48:4680-2. [DOI: 10.1039/c2cc18069c] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
47
|
Möller J, Cebi M, Schroer MA, Paulus M, Degen P, Sahle CJ, Wieland DCF, Leick S, Nyrow A, Rehage H, Tolan M. Dissolution of iron oxide nanoparticles inside polymer nanocapsules. Phys Chem Chem Phys 2011; 13:20354-60. [PMID: 21993837 DOI: 10.1039/c1cp22161b] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The structure of poly(organosiloxane) nanocapsules partially filled with iron oxide cores of different sizes was revealed by small angle X-ray scattering and X-ray diffraction. The nanocapsules are synthesized by the formation of a poly(organosiloxane) shell around iron oxide nanoparticles and the simultaneous partial dissolution of these cores. Due to the high scattering contrast of the iron oxide cores compared to the polymer shell, the particle size distribution of the cores inside the capsules can be measured by small angle X-ray scattering. Additional information can be revealed by X-ray diffraction, which gives insights into the formation of the polymer network and the structure of the iron oxide cores. The study shows how the crystallinity and size of the nanoparticles as well as the shape and width of the size distribution can be altered by the synthesis parameters.
Collapse
Affiliation(s)
- Johannes Möller
- Fakultät Physik/DELTA, Technische Universität Dortmund, Otto-Hahn-Str. 4, D-44227 Dortmund, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Huang X, Appelhans D, Formanek P, Simon F, Voit B. Synthesis of Well-Defined Photo-Cross-Linked Polymeric Nanocapsules by Surface-Initiated RAFT Polymerization. Macromolecules 2011. [DOI: 10.1021/ma201982f] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Xin Huang
- Leibniz Institute of Polymer Research Dresden, Hohe Strasse 6, 01069 Dresden, Germany
| | - Dietmar Appelhans
- Leibniz Institute of Polymer Research Dresden, Hohe Strasse 6, 01069 Dresden, Germany
| | - Petr Formanek
- Leibniz Institute of Polymer Research Dresden, Hohe Strasse 6, 01069 Dresden, Germany
| | - Frank Simon
- Leibniz Institute of Polymer Research Dresden, Hohe Strasse 6, 01069 Dresden, Germany
| | - Brigitte Voit
- Leibniz Institute of Polymer Research Dresden, Hohe Strasse 6, 01069 Dresden, Germany
| |
Collapse
|
49
|
|
50
|
Cao X, Lin W, Ding Y. Ratio-Au: A FRET-based Fluorescent Probe for Ratiometric Determination of Gold Ions and Nanoparticles. Chemistry 2011; 17:9066-9. [DOI: 10.1002/chem.201003586] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Revised: 04/18/2011] [Indexed: 11/05/2022]
|