1
|
Sun YS, Jian YQ, Yang ST, Wang HF, Junisu BA, Chen CY, Lin JM. Epitaxial Growth of Surface Perforations on Parallel Cylinders in Terraced Films of Block Copolymer/Homopolymer Blends. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:7680-7691. [PMID: 38551605 PMCID: PMC11008238 DOI: 10.1021/acs.langmuir.4c00385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/05/2024] [Accepted: 03/12/2024] [Indexed: 04/10/2024]
Abstract
Due to incommensurability between initial thickness and interdomain distance, thermal annealing inevitably produces relief surface terraces (islands and holes) of various morphologies in thin films of block copolymers. We have demonstrated three kinds of surface terraces in blend films: polygrain terraces with diffuse edges, polygrain terraces with step edges, and pseudo-monograin terraces with island coarsening. The three morphologies were obtained by three different thermal histories, respectively. The thermal histories were imposed on blend films, which were prepared by mixing a homopolystyrene (hPS, 6.1 kg/mol) with a weakly segregated, symmetry polystyrene-block poly(methyl methacrylate) (PS-b-PMMA, 42 kg/mol) followed by spin coating. At a given weight-fraction ratio of PS-b-PMMA/hPS = 75/25, the interior of the blend films forms parallel cylinders. Nevertheless, the surface of the blend films is always dominated by a skin layer of perforations, which epitaxially grow on top of parallel cylinders. By oxygen plasma etching at various time intervals to probe interior nanodomains, the epitaxial relationship between surface perforations and parallel cylinders has been identified by a scanning electron microscope.
Collapse
Affiliation(s)
- Ya-Sen Sun
- Department
of Chemical Engineering, National Cheng
Kung University, Tainan 701, Taiwan
| | - Yi-Qing Jian
- Department
of Chemical and Materials Engineering, National
Central University, Taoyuan 32001, Taiwan
| | - Shin-Tung Yang
- Department
of Chemical and Materials Engineering, National
Central University, Taoyuan 32001, Taiwan
| | - Hsiao-Fang Wang
- Department
of Chemical and Materials Engineering, National
Central University, Taoyuan 32001, Taiwan
| | - Belda Amelia Junisu
- Department
of Chemical Engineering, National Cheng
Kung University, Tainan 701, Taiwan
| | - Chun-Yu Chen
- National
Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Jhih-Min Lin
- National
Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| |
Collapse
|
2
|
Jin T, Coley CW, Alexander-Katz A. Adsorption of Biomimetic Amphiphilic Heteropolymers onto Graphene and Its Derivatives. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Affiliation(s)
- Tianyi Jin
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Connor W. Coley
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Alfredo Alexander-Katz
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
3
|
Kang M, Kim KH, Bang J, Kim J. Nanostructured doping of WSe 2via block copolymer patterns and its self-powered photodetector application. NANOSCALE 2023; 15:2595-2601. [PMID: 36632796 DOI: 10.1039/d2nr06742k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Transition metal dichalcogenides (TMDs), e.g., MoS2, MoSe2, ReS2, and WSe2, are effective materials for advanced optoelectronics owing to their intriguing optical, structural, and electrical properties. Various approaches for manipulating the surface of the TMDs have been suggested to unleash the optoelectronic potential of the TMDs. Herein, we employed the self-assembly of the poly(styrene-b-methyl methacrylate) (PS-b-PMMA) block copolymer (BCP) to prepare a nanoporous pattern and generate nanostructured charge-transfer p-doping on the WSe2 surface, maximizing the depletion region in the absorber layer. After the spin coating and thermal annealing of PS-b-PMMA, followed by the selective etching of PMMA cylindrical microdomains using oxygen reactive-ion plasma, nanopatterned WOx with high electron affinity was grown on the WSe2 surface, forming a three-dimensional homojunction. The nanopatterned WOx significantly expanded the depletion region in the WSe2 layer, thus enhancing optoelectronic performance and self-powered photodetection. The proposed approach based on the nanostructured doping of the TMDs via BCP nanolithography can help create a promising platform for highly functional optoelectrical devices.
Collapse
Affiliation(s)
- Miae Kang
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea.
| | - Ki Hyun Kim
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea.
| | - Joona Bang
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea.
| | - Jihyun Kim
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
4
|
Thedford RP, Yu F, Tait WRT, Shastri K, Monticone F, Wiesner U. The Promise of Soft-Matter-Enabled Quantum Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2203908. [PMID: 35863756 DOI: 10.1002/adma.202203908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/14/2022] [Indexed: 06/15/2023]
Abstract
The field of quantum materials has experienced rapid growth over the past decade, driven by exciting new discoveries with immense transformative potential. Traditional synthetic methods to quantum materials have, however, limited the exploration of architectural control beyond the atomic scale. By contrast, soft matter self-assembly can be used to tailor material structure over a large range of length scales, with a vast array of possible form factors, promising emerging quantum material properties at the mesoscale. This review explores opportunities for soft matter science to impact the synthesis of quantum materials with advanced properties. Existing work at the interface of these two fields is highlighted, and perspectives are provided on possible future directions by discussing the potential benefits and challenges which can arise from their bridging.
Collapse
Affiliation(s)
- R Paxton Thedford
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York, 14853, USA
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, 14853, USA
| | - Fei Yu
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York, 14853, USA
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, 14853, USA
| | - William R T Tait
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York, 14853, USA
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, 14853, USA
| | - Kunal Shastri
- Department of Electrical and Computer Engineering, Cornell University, Ithaca, New York, 14853, USA
| | - Francesco Monticone
- Department of Electrical and Computer Engineering, Cornell University, Ithaca, New York, 14853, USA
| | - Ulrich Wiesner
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York, 14853, USA
| |
Collapse
|
5
|
Demazy N, Argudo PG, Fleury G. Competitive Registration Fields for The Development of Complex Block Copolymer Structures by A Layer-by-Layer Approach. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205254. [PMID: 36504447 DOI: 10.1002/smll.202205254] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/09/2022] [Indexed: 06/17/2023]
Abstract
Block copolymer (BCP) self-assembly in thin films is an elegant method to generate nanometric features with tunable geometrical configurations. By combining directed assembly and hybridization methods, advances in nano-manufacturing have been attested over the past decades with flagship applications in lithography and optics. Nevertheless, the range of geometrical configurations is limited by the accessible morphologies inherent to the energy minimization process involved in BCP self-assembly. Layering of nanostructured BCP thin films has been recently proposed in order to enrich the span of nanostructures derived from BCP self-assembly with the formation of non-native heterostructures such as double-layered arrays of nanowires or dots-on-line and dots-in-hole hierarchical structures. In this work, the layer-by-layer method is further exploited for the generation of nano-mesh arrays using nanostructured BCP thin films. In particular, a subtle combination of chemical and topographical fields is leveraged in order to demonstrate design rules for the controlled registration of a BCP layer on top of an underneath immobilized one by the precise tuning of the interfacial chemical field between the two BCP layers.
Collapse
Affiliation(s)
- Nils Demazy
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, Pessac, F-33600, France
| | - Pablo G Argudo
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, Pessac, F-33600, France
| | - Guillaume Fleury
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, Pessac, F-33600, France
| |
Collapse
|
6
|
Hong JW, Chang JH, Hung HH, Liao YP, Jian YQ, Chang ICY, Huang TY, Nelson A, Lin IM, Chiang YW, Sun YS. Chain Length Effects of Added Homopolymers on the Phase Behavior in Blend Films of a Symmetric, Weakly Segregated Polystyrene- block-poly(methyl methacrylate). Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jia-Wen Hong
- Department of Chemical and Materials Engineering, National Central University, Taoyuan 32001, Taiwan
| | - Jung-Hong Chang
- Department of Chemical and Materials Engineering, National Central University, Taoyuan 32001, Taiwan
| | - Hsiang-Ho Hung
- Department of Chemical and Materials Engineering, National Central University, Taoyuan 32001, Taiwan
| | - Yin-Ping Liao
- Department of Chemical and Materials Engineering, National Central University, Taoyuan 32001, Taiwan
| | - Yi-Qing Jian
- Department of Chemical and Materials Engineering, National Central University, Taoyuan 32001, Taiwan
| | - Iris Ching-Ya Chang
- Department of Chemical and Materials Engineering, National Central University, Taoyuan 32001, Taiwan
| | - Tzu-Yen Huang
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Andrew Nelson
- Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, NSW 2232, Australia
| | - I-Ming Lin
- Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| | - Yeo-Wan Chiang
- Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| | - Ya-Sen Sun
- Department of Chemical and Materials Engineering, National Central University, Taoyuan 32001, Taiwan
| |
Collapse
|
7
|
Hong JW, Chang JH, Chang ICY, Sun YS. Phase behavior in thin films of weakly segregated block copolymer/homopolymer blends. SOFT MATTER 2021; 17:9189-9197. [PMID: 34586138 DOI: 10.1039/d1sm01005k] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We have demonstrated the phase behavior of substrate-supported films of a symmetric weakly segregated polystyrene-block-poly (methyl methacrylate), P(S-b-MMA), block copolymer and its blends with homopolymer polystyrene (PS) at different compositions. Upon increasing the content of added PS in the blends, lamellae (L), perforated layers (PL), double gyroid (DG) and cylinders (C) are obtained in sequence for films. Among these nanodomains, PL and DG only exist in a narrow ϕPS region (ϕPS denotes the volume fraction of PS). At ϕPS = 64%, tuning film thickness and annealing temperature can produce parallel PL or DG with {121}DG lattice planes being parallel to the substrate surface. The effects of annealing temperature and film thickness on the formation of PL and DG are examined. In thin films with n ≈ 3 (n denotes the ratio of initial film thickness to inter-domain spacing), the PL phase solely exists regardless of temperature. However, for thick films with n ≈ 6 and 10, thermal annealing at the most accessible temperature produces films containing both PL and DG of various fractions, but a low temperature tends to favor a greater fraction of PL. The PL phase becomes the only discernible phase if thick films are shortly annealed at 230 °C.
Collapse
Affiliation(s)
- Jia-Wen Hong
- Department of Chemical and Materials Engineering, National Central University, Taoyuan 32001, Taiwan.
| | - Jung-Hong Chang
- Department of Chemical and Materials Engineering, National Central University, Taoyuan 32001, Taiwan.
| | - Iris Ching-Ya Chang
- Department of Chemical and Materials Engineering, National Central University, Taoyuan 32001, Taiwan.
| | - Ya-Sen Sun
- Department of Chemical and Materials Engineering, National Central University, Taoyuan 32001, Taiwan.
| |
Collapse
|
8
|
Masud A, Wu W, Singh M, Tonny W, Ammar A, Sharma K, Strzalka JW, Terlier T, Douglas JF, Karim A. Solvent Processing and Ionic Liquid-Enabled Long-Range Vertical Ordering in Block Copolymer Films with Enhanced Film Stability. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01305] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Ali Masud
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
| | - Wenjie Wu
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
| | - Maninderjeet Singh
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
| | - Wafa Tonny
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
| | - Ali Ammar
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
| | - Kshitij Sharma
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
| | - Joseph W. Strzalka
- X-Ray Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Tanguy Terlier
- Shared Equipment Authority, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Jack F. Douglas
- Materials Engineering Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Alamgir Karim
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
| |
Collapse
|
9
|
Chen YF, Hong JW, Chang JH, Junisu BA, Sun YS. Influence of Osmotic Pressure on Nanostructures in Thin Films of a Weakly-Segregated Block Copolymer and Its Blends with a Homopolymer. Polymers (Basel) 2021; 13:polym13152480. [PMID: 34372083 PMCID: PMC8348333 DOI: 10.3390/polym13152480] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/17/2021] [Accepted: 07/21/2021] [Indexed: 11/16/2022] Open
Abstract
We studied the influence of osmotic pressure on nanostructures in thin films of a symmetric weakly-segregated polystyrene-block-poly (methyl methacrylate), P(S-b-MMA), block copolymer and its mixtures with a polystyrene (PS) homopolymer of various compositions. Thin films were deposited on substrates through surface neutralization. The surface neutralization results from the PS mats, which were oxidized and cross-linked by UV-light exposure. Thus, thermal annealing produced perpendicularly oriented lamellae and perforated layers, depending on the content of added PS chains. Nevertheless, a mixed orientation was obtained from cylinders in thin films, where a high content of PS was blended with the P(S-b-MMA). A combination of UV-light exposure and acetic acid rinsing was used to remove the PMMA block. Interestingly, the treatment of PMMA removal inevitably produced osmotic pressure and consequently resulted in surface wrinkling of perpendicular lamellae. As a result, a hierarchical structure with two periodicities was obtained for wrinkled films with perpendicular lamellae. The formation of surface wrinkling is due to the interplay between UV-light exposure and acetic acid rinsing. UV-light exposure resulted in different mechanical properties between the skin and the inner region of a film. Acetic acid rinsing produced osmotic pressure. It was found that surface wrinkling could be suppressed by reducing film thickness, increasing PS content and using high-molecular-weight P(S-b-MMA) BCPs.
Collapse
|
10
|
Chevalier X, Gomes Correia C, Pound-Lana G, Bézard P, Sérégé M, Petit-Etienne C, Gay G, Cunge G, Cabannes-Boué B, Nicolet C, Navarro C, Cayrefourcq I, Müller M, Hadziioannou G, Iliopoulos I, Fleury G, Zelsmann M. Lithographically Defined Cross-Linkable Top Coats for Nanomanufacturing with High-χ Block Copolymers. ACS APPLIED MATERIALS & INTERFACES 2021; 13:11224-11236. [PMID: 33621463 DOI: 10.1021/acsami.1c00694] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The directed self-assembly (DSA) of block copolymers (BCPs) is a powerful method for the manufacture of high-resolution features. Critical issues remain to be addressed for successful implementation of DSA, such as dewetting and controlled orientation of BCP domains through physicochemical manipulations at the BCP interfaces, and the spatial positioning and registration of the BCP features. Here, we introduce novel top-coat (TC) materials designed to undergo cross-linking reactions triggered by thermal or photoactivation processes. The cross-linked TC layer with adjusted composition induces a mechanical confinement of the BCP layer, suppressing its dewetting while promoting perpendicular orientation of BCP domains. The selection of areas of interest with perpendicular features is performed directly on the patternable TC layer via a lithography step and leverages attractive integration pathways for the generation of locally controlled BCP patterns and nanostructured BCP multilayers.
Collapse
Affiliation(s)
- Xavier Chevalier
- ARKEMA FRANCE, GRL, Route Nationale 117, BP34 64170 Lacq, France
| | - Cindy Gomes Correia
- University of Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600 Pessac, France
| | - Gwenaelle Pound-Lana
- University of Grenoble Alpes, CNRS, CEA/LETI Minatec, Grenoble INP, LTM, 38000 Grenoble, France
| | - Philippe Bézard
- University of Grenoble Alpes, CNRS, CEA/LETI Minatec, Grenoble INP, LTM, 38000 Grenoble, France
| | - Matthieu Sérégé
- University of Grenoble Alpes, CNRS, CEA/LETI Minatec, Grenoble INP, LTM, 38000 Grenoble, France
| | - Camille Petit-Etienne
- University of Grenoble Alpes, CNRS, CEA/LETI Minatec, Grenoble INP, LTM, 38000 Grenoble, France
| | - Guillaume Gay
- University of Grenoble Alpes, CNRS, CEA/LETI Minatec, Grenoble INP, LTM, 38000 Grenoble, France
| | - Gilles Cunge
- University of Grenoble Alpes, CNRS, CEA/LETI Minatec, Grenoble INP, LTM, 38000 Grenoble, France
| | | | - Célia Nicolet
- ARKEMA FRANCE, GRL, Route Nationale 117, BP34 64170 Lacq, France
| | | | - Ian Cayrefourcq
- ARKEMA FRANCE, GRL, Route Nationale 117, BP34 64170 Lacq, France
| | - Marcus Müller
- Georg-August Universität Göttingen, Institute for Theoretical Physics, 37077 Göttingen, Germany
| | - Georges Hadziioannou
- University of Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600 Pessac, France
| | - Ilias Iliopoulos
- Laboratoire PIMM, Arts et Métiers Institute of Technology, CNRS, Cnam, HESAM Université, 151 Boulevard de l'Hôpital, 75013 Paris, France
| | - Guillaume Fleury
- University of Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600 Pessac, France
| | - Marc Zelsmann
- University of Grenoble Alpes, CNRS, CEA/LETI Minatec, Grenoble INP, LTM, 38000 Grenoble, France
| |
Collapse
|
11
|
Dispersity effects on phase behavior and structural evolution in ultrathin films of a deuterated polystyrene-block-poly(methyl methacrylate) diblock copolymer. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.123027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
12
|
Shi LY, Lan J, Lee S, Cheng LC, Yager KG, Ross CA. Vertical Lamellae Formed by Two-Step Annealing of a Rod-Coil Liquid Crystalline Block Copolymer Thin Film. ACS NANO 2020; 14:4289-4297. [PMID: 32182037 PMCID: PMC7309319 DOI: 10.1021/acsnano.9b09702] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 03/17/2020] [Indexed: 05/05/2023]
Abstract
Silicon-containing block copolymer thin films with high interaction parameter and etch contrast are ideal candidates to generate robust nanotemplates for advanced nanofabrication, but they typically form in-plane oriented microdomains as a result of the dissimilar surface energies of the blocks. Here, we describe a two-step annealing method to produce vertically aligned lamellar structures in thin film of a silicon-containing rod-coil thermotropic liquid crystalline block copolymer. The rod-coil block copolymer with the volume fraction of the Si-containing block of 0.22 presents an asymmetrical lamellar structure in which the rod block forms a hexatic columnar nematic liquid crystalline phase. A solvent vapor annealing step first produces well-ordered in-plane cylinders of the Si-containing block, then a subsequent thermal annealing promotes the phase transition from in-plane cylinders to vertical lamellae. The pathways of the order-order transition were examined by microscopy and in situ using grazing incidence small-angle X-ray scattering and wide-angle X-ray scattering.
Collapse
Affiliation(s)
- Ling-Ying Shi
- College
of Polymer Science and Engineering, State Key Laboratory of Polymer
Materials Engineering, Sichuan University, Chengdu 610065, China
- Department
of Materials Science and Engineering, Massachusetts
Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Ji Lan
- College
of Polymer Science and Engineering, State Key Laboratory of Polymer
Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Sangho Lee
- Department
of Materials Science and Engineering, Massachusetts
Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Li-Chen Cheng
- Department
of Materials Science and Engineering, Massachusetts
Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Kevin G. Yager
- Center
for Functional Nanomaterials, Brookhaven
National Laboratory, Upton, New York 11973, United States
| | - Caroline A. Ross
- Department
of Materials Science and Engineering, Massachusetts
Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
13
|
Zuo J, Wen G, You K. Dewetting behavior of self-assembled films of polystyrene-b-poly(methyl methacrylate) induced by solvent vapor annealing. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.121977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
14
|
Yang WC, Wu SH, Chen YF, Nelson A, Wu CM, Sun YS. Effects of the Density of Chemical Cross-links and Physical Entanglements of Ultraviolet-Irradiated Polystyrene Chains on Domain Orientation and Spatial Order of Polystyrene- block-Poly(methyl methacrylate) Nano-Domains. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:14017-14030. [PMID: 31577149 DOI: 10.1021/acs.langmuir.9b02054] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Ultraviolet irradiation (UVI) of varied duration caused cross-linking and neutralization of polystyrene (PS) homopolymers of molar mass (Mn) from 6 to 290 kg mol-1 on a silicon-oxide surface. An optimal neutral skin layer on the surface of the PS was obtained via brief UVI in air (UVIA), by which the PS had no preferential interaction with either block in the copolymer. UVI in an inert environment (gaseous dinitrogen) (UVIN) stabilized the PS layers via cross-linking and enabled the PS networks to have an effective adhesive contact with the underlying substrate. Thorough examination of domain orientations and spatial orders of a series of block copolymer, polystyrene-block-poly(methyl methacrylate) (PS-b-PMMA), thin films deposited on these UVI-treated PS support layers yielded clear evidence that a dense layer of neutralized PS chains was required for the perpendicular orientation of PS-b-PMMA nanodomains. In particular, in addition to neutralization, two factors-the densities of physical entanglements and of chemical crosslinks-both in UVI-treated PS should be considered for the perpendicular orientation of nanolamellae and nanocylinders in symmetric and asymmetric PS-b-PMMA thin films. The density of physical entanglement in PS depends intrinsically on Mn of the PS, whereas the density of chemical cross-links was controlled with a varied duration of UVIN. Sufficiently large densities of physical entanglements and chemical cross-links can prevent PS-b-PMMA chains from penetrating through the neutral skin layer. The total density of physical entanglements and chemical cross-links required for the perpendicular orientation is correlated with the dimensions of the PS-b-PMMA chains.
Collapse
Affiliation(s)
- Wei-Chen Yang
- Department of Chemical and Materials Engineering , National Central University , No. 300, Zhongda Rd. , Zhongli District, Taoyuan City 32001 , Taiwan
| | - Song-Hao Wu
- Department of Chemical and Materials Engineering , National Central University , No. 300, Zhongda Rd. , Zhongli District, Taoyuan City 32001 , Taiwan
| | - Yi-Fang Chen
- Department of Chemical and Materials Engineering , National Central University , No. 300, Zhongda Rd. , Zhongli District, Taoyuan City 32001 , Taiwan
| | - Andrew Nelson
- Australian Nuclear Science and Technology Organisation , Locked Bag 2001 , Kirrawee DC , New South Wales 2232 , Australia
| | - Chun-Ming Wu
- National Synchrotron Radiation Research Center , 101 Hsin-Ann Road, Hsinchu Science Park , Hsinchu 30076 , Taiwan
| | - Ya-Sen Sun
- Department of Chemical and Materials Engineering , National Central University , No. 300, Zhongda Rd. , Zhongli District, Taoyuan City 32001 , Taiwan
| |
Collapse
|
15
|
Yu DM, Smith DM, Kim H, Mapas JKD, Rzayev J, Russell TP. Morphological Evolution of Poly(solketal methacrylate)-block-polystyrene Copolymers in Thin Films. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00488] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Duk Man Yu
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, 120 Governors Drive, Amherst, Massachusetts 01003, United States
| | - Darren M. Smith
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260-3000, United States
| | - Hyeyoung Kim
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, 120 Governors Drive, Amherst, Massachusetts 01003, United States
| | - Jose Kenneth D. Mapas
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260-3000, United States
| | - Javid Rzayev
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260-3000, United States
| | - Thomas P. Russell
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, 120 Governors Drive, Amherst, Massachusetts 01003, United States
- Materials Science Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
16
|
Wen T, Wang HF, Georgopanos P, Avgeropoulos A, Ho RM. Three-dimensional visualization of phase transition in polystyrene-block-polydimethylsiloxane thin film. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.01.047] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
17
|
Jiang N, Di X, Salatto D, Nam CY, Fukuto M, Endoh MK, Koga T. Self-Organization of Triblock Copolymer Melt Chains Physisorbed on Non-neutral Surfaces. ACS OMEGA 2018; 3:17805-17813. [PMID: 31458377 PMCID: PMC6644122 DOI: 10.1021/acsomega.8b02912] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 12/06/2018] [Indexed: 06/10/2023]
Abstract
We here report the self-organization process of poly(styrene-b-ethylene/butadiene-b-styrene) (SEBS) triblock copolymer chains physically adsorbed on a non-neutral surface. Spin-cast SEBS thin films were prepared on silicon (Si) substrates and then annealed at a high temperature far above the bulk glass transition temperatures of the two constituent blocks. To reveal the buried interfacial structure, we utilized solvent rinsing processes and a suite of surface-sensitive techniques including ellipsometry, X-ray reflectivity, atomic force microscopy, and grazing incidence small angle X-ray scattering. We revealed that the SEBS chains form two different chain structures on the substrate simultaneously: (i) "flattened chains" with the average height of 2.5 nm but without forming microdomain structures; (ii) "loosely adsorbed chains" with the average height of 11.0 nm and the formation of perpendicularly oriented cylindrical microdomains to the substrate surface. In addition, the kinetics to form the perpendicular-oriented cylinder was sluggish (∼200 h) and proceeded via multistep processes toward the equilibrium state. We also found that the lateral microdomain structures were distorted, and the characteristic lengths of the microdomains were slightly different from the bulk even after reaching "quasiequilibrium" state within the observed time window. Furthermore, we highlight the vital role of the adsorbed chains in the self-assembling process of the entire SEBS thin film: a long-range perturbation associated with the adsorbed chains propagates into the film interior, overwhelming the free surface effect associated with surface segregation of the lower surface tension of polystyrene blocks.
Collapse
Affiliation(s)
- Naisheng Jiang
- Department
of Materials Science and Chemical Engineering, Stony Brook University, Stony
Brook, New York 11794-2275, United States
| | - Xiaoyu Di
- Department
of Materials Science and Chemical Engineering, Stony Brook University, Stony
Brook, New York 11794-2275, United States
| | - Daniel Salatto
- Department
of Materials Science and Chemical Engineering, Stony Brook University, Stony
Brook, New York 11794-2275, United States
| | - Chang-Yong Nam
- Center
for Functional Nanomaterials, Brookhaven
National Laboratory, Upton, New York 11973-5000, United States
| | - Masafumi Fukuto
- National
Synchrotron Light Source II, Brookhaven
National Laboratory, Upton, New York 11973, United States
| | - Maya K. Endoh
- Department
of Materials Science and Chemical Engineering, Stony Brook University, Stony
Brook, New York 11794-2275, United States
| | - Tadanori Koga
- Department
of Materials Science and Chemical Engineering, Stony Brook University, Stony
Brook, New York 11794-2275, United States
- Department
of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| |
Collapse
|
18
|
Jo S, Jeon S, Jun T, Park C, Ryu DY. Fluorine-Containing Styrenic Block Copolymers toward High χ and Perpendicular Lamellae in Thin Films. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01325] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
19
|
|
20
|
Terlier T, Lee J, Lee K, Lee Y. Improvement of the Correlative AFM and ToF-SIMS Approach Using an Empirical Sputter Model for 3D Chemical Characterization. Anal Chem 2018; 90:1701-1709. [DOI: 10.1021/acs.analchem.7b03431] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- T. Terlier
- Advanced Analysis Center and ‡Green City Technology Institute, Korea Institute of Science & Technology, Seoul 02792, Korea
| | - J. Lee
- Advanced Analysis Center and ‡Green City Technology Institute, Korea Institute of Science & Technology, Seoul 02792, Korea
| | - K. Lee
- Advanced Analysis Center and ‡Green City Technology Institute, Korea Institute of Science & Technology, Seoul 02792, Korea
| | - Y. Lee
- Advanced Analysis Center and ‡Green City Technology Institute, Korea Institute of Science & Technology, Seoul 02792, Korea
| |
Collapse
|
21
|
Giammaria TJ, Ferrarese Lupi F, Seguini G, Sparnacci K, Antonioli D, Gianotti V, Laus M, Perego M. Effect of Entrapped Solvent on the Evolution of Lateral Order in Self-Assembled P(S-r-MMA)/PS-b-PMMA Systems with Different Thicknesses. ACS APPLIED MATERIALS & INTERFACES 2017; 9:31215-31223. [PMID: 28195457 DOI: 10.1021/acsami.6b14332] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Block copolymers (BCPs) are emerging as a cost-effective nanofabrication tool to complement conventional optical lithography because they self-assemble in highly ordered polymeric templates with well-defined sub-20-nm periodic features. In this context, cylinder-forming polystyrene-block-poly(methyl methacrylate) BCPs are revealed as an interesting material of choice because the orientation of the nanostructures with respect to the underlying substrate can be effectively controlled by a poly(styrene-random-methyl methacrylate) random copolymer (RCP) brush layer grafted to the substrate prior to BCP deposition. In this work, we investigate the self-assembly process and lateral order evolution in RCP + BCP systems consisting of cylinder-forming PS-b-PMMA (67 kg mol-1, PS fraction of ∼70%) films with thicknesses of 30, 70, 100, and 130 nm deposited on RCP brush layers having thicknesses ranging from 2 to 20 nm. The self-assembly process is promoted by a rapid thermal processing machine operating at 250 °C for 300 s. The level of lateral order is determined by measuring the correlation length (ξ) in the self-assembled BCP films. Moreover, the amount of solvent (Φ) retained in the RCP + BCP systems is measured as a function of the thicknesses of the RCP and BCP layers, respectively. In the 30-nm-thick BCP films, an increase in Φ as a function of the thickness of the RCP brush layer significantly affects the self-assembly kinetics and the final extent of the lateral order in the BCP films. Conversely, no significant variations of ξ are observed in the 70-, 100-, and 130-nm-thick BCP films with increasing Φ.
Collapse
Affiliation(s)
- Tommaso Jacopo Giammaria
- Laboratorio MDM, IMM-CNR , Via C. Olivetti 2, 20864 Agrate Brianza, Italy
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte orientale ''A. Avogadro'' , Viale T. Michel 11, 15121 Alessandria, Italy
| | | | - Gabriele Seguini
- Laboratorio MDM, IMM-CNR , Via C. Olivetti 2, 20864 Agrate Brianza, Italy
| | - Katia Sparnacci
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte orientale ''A. Avogadro'' , Viale T. Michel 11, 15121 Alessandria, Italy
| | - Diego Antonioli
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte orientale ''A. Avogadro'' , Viale T. Michel 11, 15121 Alessandria, Italy
| | - Valentina Gianotti
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte orientale ''A. Avogadro'' , Viale T. Michel 11, 15121 Alessandria, Italy
| | - Michele Laus
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte orientale ''A. Avogadro'' , Viale T. Michel 11, 15121 Alessandria, Italy
| | - Michele Perego
- Laboratorio MDM, IMM-CNR , Via C. Olivetti 2, 20864 Agrate Brianza, Italy
| |
Collapse
|
22
|
|
23
|
Sunday DF, Maher MJ, Tein S, Carlson MC, Ellison CJ, Willson CG, Kline RJ. Quantifying the Interface Energy of Block Copolymer Top Coats. ACS Macro Lett 2016; 5:1306-1311. [PMID: 35651202 DOI: 10.1021/acsmacrolett.6b00684] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Block copolymers (BCPs) have the potential to play a key role in templating materials for nanoscale synthesis. BCP lithography likely will be one of the first examples of BCP-based nanomanufacturing implemented in a production setting. One of the challenges in implementing BCP lithography is that the lamella need to be oriented perpendicular to the substrate. For many systems, this requires control over interfacial energies for both components at the substrate and interface. Top coats can be designed to provide a neutral interface for both blocks on the BCP surface. The preferentiality of the top coat as a function of composition has been determined qualitatively by examining the orientation of a BCP after annealing with a top coat. Measurements of the interfacial width between the top coat and homopolymers allows the interface energy to be quantitatively determined. Resonant soft X-ray reflectivity measurements on top coat/homopolymer pairs were used to extract the Flory-Huggins parameter (χ) and interface energy (γ) as a function of top coat composition. The difference between χ and γ for each top coat/homopolymer pair was minimized at compositions that resulted in the top coat promoting perpendicular orientation. As the composition moved away from the neutral point the difference between χ and γ for each pair grew larger.
Collapse
Affiliation(s)
- Daniel F. Sunday
- Materials
Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | | | | | | | | | | | - R. Joseph Kline
- Materials
Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| |
Collapse
|
24
|
Maher MJ, Self JL, Stasiak P, Blachut G, Ellison CJ, Matsen MW, Bates CM, Willson CG. Structure, Stability, and Reorganization of 0.5 L 0 Topography in Block Copolymer Thin Films. ACS NANO 2016; 10:10152-10160. [PMID: 27787994 DOI: 10.1021/acsnano.6b05390] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The structure, stability, and reorganization of lamella-forming block copolymer thin film surface topography ("islands" and "holes") were studied under boundary conditions driving the formation of 0.5 L0 thick structures at short thermal annealing times. Self-consistent field theory predicts that the presence of one perfectly neutral surface renders 0.5 L0 topography thermodynamically stable relative to 1 L0 thick features, in agreement with previous experimental observations. The calculated through-film structures match cross-sectional scanning electron micrographs, collectively demonstrating the pinning of edge dislocations at the neutral surface. Remarkably, near-neutral surface compositions exhibit 0.5 L0 topography metastability upon extended thermal treatment, slowly transitioning to 1 L0 islands or holes as evidenced by optical and atomic force microscopy. Surface restructuring is rationalized by invoking commensurability effects imposed by slightly preferential surfaces. The results described herein clarify the impact of interfacial interactions on block copolymer self-assembly and solidify an understanding of 0.5 L0 topography, which is frequently used to determine neutral surface compositions of considerable importance to contemporary technological applications.
Collapse
Affiliation(s)
- Michael J Maher
- Department of Chemical Engineering and Materials Science, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | | | - Pawel Stasiak
- Department of Mathematics & Statistics, University of Reading , Reading RG6 6AX, United Kingdom
| | | | - Christopher J Ellison
- Department of Chemical Engineering and Materials Science, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Mark W Matsen
- Department of Chemical Engineering, Department of Physics & Astronomy, Waterloo Institute for Nanotechnology, University of Waterloo , Waterloo, Ontario N2L 3G1, Canada
| | | | | |
Collapse
|
25
|
Ren J, Ocola LE, Divan R, Czaplewski DA, Segal-Peretz T, Xiong S, Kline RJ, Arges CG, Nealey PF. Post-directed-self-assembly membrane fabrication for in situ analysis of block copolymer structures. NANOTECHNOLOGY 2016; 27:435303. [PMID: 27659775 DOI: 10.1088/0957-4484/27/43/435303] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Full characterization of the three-dimensional structures resulting from the directed self-assembly (DSA) of block copolymers (BCP) remains a difficult challenge. Transmission electron microscope (TEM) tomography and resonant soft x-ray scattering have emerged as powerful and complementary methods for through-film characterization; both techniques require samples to be prepared on specialized membrane substrates. Here we report a generalizable process to implement BCP DSA with density multiplication on silicon nitride membranes. A key feature of the process developed here is that it does not introduce any artefacts or damage to the polymer assemblies as DSA is performed prior to back-etched membrane formation. Because most research and applications of BCP lithography are based on silicon substrates, process variations introduced by implementing DSA on a silicon nitride/silicon stack versus silicon were identified and mitigated. Using full-wafers, membranes were fabricated with different sizes and layouts to enable both TEM and x-ray characterization. Finally, both techniques were used to characterize structures resulting from the DSA of lamella-forming BCP with density multiplication.
Collapse
Affiliation(s)
- J Ren
- University of Chicago, Institute for Molecular Engineering, 5640 S Ellis Ave ERC 229, Chicago, IL 60637, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Zhou SX, Janes DW, Kim CB, Willson CG, Ellison CJ. Designing Intrablock Attractions To Increase the χ Parameter of a Symmetric Diblock Copolymer. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b01382] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Sunshine X. Zhou
- McKetta Department of Chemical Engineering and ‡Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Dustin W. Janes
- McKetta Department of Chemical Engineering and ‡Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Chae Bin Kim
- McKetta Department of Chemical Engineering and ‡Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - C. Grant Willson
- McKetta Department of Chemical Engineering and ‡Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Christopher J. Ellison
- McKetta Department of Chemical Engineering and ‡Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
27
|
Michman E, Shenhar R. Directed self-assembly of block copolymer-based nanocomposites in thin films. POLYM ADVAN TECHNOL 2016. [DOI: 10.1002/pat.3850] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- E. Michman
- Institute of Chemistry and the Center for Nanoscience and Nanotechnology; The Hebrew University of Jerusalem; Jerusalem 9190401 Israel
| | - R. Shenhar
- Institute of Chemistry and the Center for Nanoscience and Nanotechnology; The Hebrew University of Jerusalem; Jerusalem 9190401 Israel
| |
Collapse
|
28
|
Jin XS, Pang YY, Ji SX. From self-assembled monolayers to chemically patterned brushes: Controlling the orientation of block copolymer domains in films by substrate modification. CHINESE JOURNAL OF POLYMER SCIENCE 2016. [DOI: 10.1007/s10118-016-1800-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
29
|
Sun YS, Wang CT, Liou JY. Tuning polymer-surface chemistries and interfacial interactions with UV irradiated polystyrene chains to control domain orientations in thin films of PS-b-PMMA. SOFT MATTER 2016; 12:2923-2931. [PMID: 26890311 DOI: 10.1039/c5sm02605a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We demonstrate a simple, rapid, cost-effective and robust approach to modify the surface of a solid substrate, based on a UV-irradiated film of a general plastic polymer. Thin films of homopolymer polystyrene (PS) of controlled thickness were spin-coated on diverse metal, semiconductor and polymeric surfaces. Specific surface chemistry was tuned with UV irradiation in air (UVIA); interactions at the PS/substrate interface were enhanced with UV irradiation in nitrogen (UVIN). Oxidized and cross-linked PS served as a neutral surface on various metal, quartz, semiconductor and polymeric substrates to induce perpendicularly oriented cylinders or lamellae in a self-assembled block copolymer.
Collapse
Affiliation(s)
- Ya-Sen Sun
- Department of Chemical and Materials Engineering, National Central University, Taoyuan 32001, Taiwan.
| | - Ching-Tun Wang
- Department of Chemical and Materials Engineering, National Central University, Taoyuan 32001, Taiwan.
| | - Jiun-You Liou
- Material and Chemical Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan
| |
Collapse
|
30
|
Kim S, Wang HS, Choe Y, Choi SH, Bang J. Controlling the microdomain orientation in block copolymer thin films via cross-linkable random copolymer neutral layer. Polym J 2016. [DOI: 10.1038/pj.2016.9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
31
|
Getting to the bottom morphology of block copolymer thin films. CHINESE JOURNAL OF POLYMER SCIENCE 2015. [DOI: 10.1007/s10118-016-1731-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
32
|
|
33
|
From Self-Assembled Monolayers to Coatings: Advances in the Synthesis and Nanobio Applications of Polymer Brushes. Polymers (Basel) 2015. [DOI: 10.3390/polym7071346] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
34
|
Klinger D, Wang C, Connal LA, Audus DJ, Jang SG, Kraemer S, Killops KL, Fredrickson GH, Kramer EJ, Hawker CJ. A facile synthesis of dynamic, shape-changing polymer particles. Angew Chem Int Ed Engl 2014; 53:7018-22. [PMID: 24700705 PMCID: PMC4074252 DOI: 10.1002/anie.201400183] [Citation(s) in RCA: 163] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Indexed: 11/08/2022]
Abstract
We herein report a new facile strategy to ellipsoidal block copolymer nanoparticles that exhibit a pH-triggered anistropic swelling profile. In a first step, elongated particles with an axially stacked lamellae structure are selectively prepared by utilizing functional surfactants to control the phase separation of symmetric polystyrene-b-poly(2-vinylpyridine) (PS-b-P2VP) in dispersed droplets. In a second step, the dynamic shape change is realized by cross-linking the P2VP domains, thereby connecting glassy PS discs with pH-sensitive hydrogel actuators.
Collapse
Affiliation(s)
- Daniel Klinger
- Materials Research Laboratory, University of California, Santa Barbara, CA, 93106, USA
| | - Cynthia Wang
- Materials Research Laboratory, University of California, Santa Barbara, CA, 93106, USA
| | - Luke A. Connal
- Department of Chemical and Biomolecular Engineering University of Melbourne, Victoria 3010, Australia
| | - Debra J. Audus
- Materials Research Laboratory, University of California, Santa Barbara, CA, 93106, USA
| | - Se Gyu Jang
- Materials Research Laboratory, University of California, Santa Barbara, CA, 93106, USA
| | - Stephan Kraemer
- Materials Research Laboratory, University of California, Santa Barbara, CA, 93106, USA
| | - Kato L. Killops
- U.S. Army Edgewood Chemical Biological Center Aberdeen Proving Ground, MD, 21010, USA
| | - Glenn H. Fredrickson
- Materials Research Laboratory, University of California, Santa Barbara, CA, 93106, USA
| | - Edward J. Kramer
- Materials Research Laboratory, University of California, Santa Barbara, CA, 93106, USA
| | - Craig J. Hawker
- Materials Research Laboratory, University of California, Santa Barbara, CA, 93106, USA
| |
Collapse
|
35
|
Hu H, Gopinadhan M, Osuji CO. Directed self-assembly of block copolymers: a tutorial review of strategies for enabling nanotechnology with soft matter. SOFT MATTER 2014; 10:3867-89. [PMID: 24740355 DOI: 10.1039/c3sm52607k] [Citation(s) in RCA: 241] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Self-assembly of soft materials is broadly considered an attractive means of generating nanoscale structures and patterns over large areas. However, the spontaneous formation of equilibrium nanostructures in response to temperature and concentration changes, for example, must be guided to yield the long-range order and orientation required for utility in a given scenario. In this review we examine directed self-assembly (DSA) of block copolymers (BCPs) as canonical examples of nanostructured soft matter systems which are additionally compelling for creating functional materials and devices. We survey well established and newly emerging DSA methods from a tutorial perspective. Special emphasis is given to exploring underlying physical phenomena, identifying prototypical BCPs that are compatible with different DSA techniques, describing experimental methods and highlighting the attractive functional properties of block copolymers overall. Finally we offer a brief perspective on some unresolved issues and future opportunities in this field.
Collapse
Affiliation(s)
- Hanqiong Hu
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06511, USA.
| | | | | |
Collapse
|
36
|
Zhang X, Yager KG, Douglas JF, Karim A. Suppression of target patterns in domain aligned cold-zone annealed block copolymer films with immobilized film-spanning nanoparticles. SOFT MATTER 2014; 10:3656-3666. [PMID: 24676041 DOI: 10.1039/c4sm00238e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We examine the effect of a moving in-plane temperature gradient on the ordering of cylinder-forming block-copolymers (BCP) in films containing immobilized nanoparticles that span the film thickness. In a previous paper, we reported the effect of static step oven-annealing of these films above the glass transition temperature Tg for a long period before ordering the BCP film at a much higher temperature. In the dynamic film annealing method of the present work, termed cold zone annealing (CZA), the material is continuously raised to a temperature somewhat above the glass transition temperature and then well above it, with a control of the heating time and thermal gradient. Oven annealing before ordering has been found to relieve residual stresses in the film associated with large thermal expansion of the film upon heating, eliminating the large scale target patterns induced by stresses effects associated with residual solvent and thermal expansion. By comparison, CZA naturally suppresses undesirable target patterning with enhanced ordering kinetics created through this thermal history.
Collapse
Affiliation(s)
- Xiaohua Zhang
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou 215006, China.
| | | | | | | |
Collapse
|
37
|
Bai P, Kao J, Chen JH, Mickelson W, Zettl A, Xu T. Nanostructures on graphene using supramolecule and supramolecular nanocomposites. NANOSCALE 2014; 6:4503-4507. [PMID: 24647721 DOI: 10.1039/c4nr00420e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Nanopatterning and functionalizing of graphene is often required to tune or enhance its unique physical properties. However, complex processes are needed to overcome the chemical incompatibilities between the patterning template, the functional small molecules or nanoparticles, and the underlying graphene. We present a block copolymer (BCP)-based supramolecular thin film as a versatile platform for the generation of periodic patterns of small molecules and ordered assemblies of nanoparticles on top of a graphene substrate without chemical modification of any components. The present approach opens opportunities to readily pattern and functionalize graphene, and to investigate the structure-property correlations of graphene/nanoparticle and graphene/small molecule composite materials.
Collapse
Affiliation(s)
- Peter Bai
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA, USA.
| | | | | | | | | | | |
Collapse
|
38
|
Klinger D, Wang CX, Connal LA, Audus DJ, Jang SG, Kraemer S, Killops KL, Fredrickson GH, Kramer EJ, Hawker CJ. A Facile Synthesis of Dynamic, Shape-Changing Polymer Particles. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201400183] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
39
|
Sweat DP, Kim M, Yu X, Schmitt SK, Han E, Choi JW, Gopalan P. A dual functional layer for block copolymer self-assembly and the growth of nanopatterned polymer brushes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:12858-12865. [PMID: 24053350 DOI: 10.1021/la403474k] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
We present a versatile method for fabricating nanopatterned polymer brushes using a cross-linked thin film made from a random copolymer consisting of an inimer (p-(2-bromoisobutyloylmethyl)styrene), styrene, and glycidyl methacrylate (GMA). The amount of inimer was held constant at 20 or 30% while the relative amount of styrene to GMA was varied to induce perpendicular domain orientation in an overlying P(S-b-MMA) block copolymer (BCP) film for lamellar and cylindrical morphologies. A cylinder forming BCP blend with PMMA homopolymer was assembled to create a perpendicular hexagonal array of cylinders, which allowed access to a nanoporous template without the loss of initiator functionality. Surface-initiated ATRP of 2-hydroxyethyl methacrylate was conducted through the pores to generate a dense array of nanopatterned brushes. Alternatively, gold was deposited into the nanopores, and brushes were grown around the dots after removal of the template. This is the first example of combining the chemistry of nonpreferential surfaces with surface-initiated growth of polymer chains.
Collapse
Affiliation(s)
- Daniel P Sweat
- Department of Chemistry, University of Wisconsin , Madison, Wisconsin 53706, United States
| | | | | | | | | | | | | |
Collapse
|
40
|
Gianotti V, Antonioli D, Sparnacci K, Laus M, Giammaria TJ, Ferrarese Lupi F, Seguini G, Perego M. On the Thermal Stability of PS-b-PMMA Block and P(S-r-MMA) Random Copolymers for Nanopatterning Applications. Macromolecules 2013. [DOI: 10.1021/ma401023y] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Valentina Gianotti
- Dipartimento
di Scienze e Innovazione Tecnologica (DISIT), Università del Piemonte Orientale ‘‘A. Avogadro’’, INSTM, UdR Alessandria, Viale T. Michel 11, Alessandria 15121, Italy
| | - Diego Antonioli
- Dipartimento
di Scienze e Innovazione Tecnologica (DISIT), Università del Piemonte Orientale ‘‘A. Avogadro’’, INSTM, UdR Alessandria, Viale T. Michel 11, Alessandria 15121, Italy
| | - Katia Sparnacci
- Dipartimento
di Scienze e Innovazione Tecnologica (DISIT), Università del Piemonte Orientale ‘‘A. Avogadro’’, INSTM, UdR Alessandria, Viale T. Michel 11, Alessandria 15121, Italy
| | - Michele Laus
- Dipartimento
di Scienze e Innovazione Tecnologica (DISIT), Università del Piemonte Orientale ‘‘A. Avogadro’’, INSTM, UdR Alessandria, Viale T. Michel 11, Alessandria 15121, Italy
| | | | | | - Gabriele Seguini
- Laboratorio MDM, IMM-CNR, Via C.
Olivetti 2, 20864 Agrate Brianza (MB), Italy
| | - Michele Perego
- Laboratorio MDM, IMM-CNR, Via C.
Olivetti 2, 20864 Agrate Brianza (MB), Italy
| |
Collapse
|
41
|
Mohamad S, Noël O, Buraud JL, Brotons G, Fedala Y, Ausserré D. Mechanism of lipid nanodrop spreading in a case of asymmetric wetting. PHYSICAL REVIEW LETTERS 2012; 109:248108. [PMID: 23368391 DOI: 10.1103/physrevlett.109.248108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Indexed: 06/01/2023]
Abstract
Using the surface enhanced ellipsometric contrast microscopy, we follow the last stage of the spreading of egg phosphatidylcholine nanodroplets on a hydrophilic substrate in a humid atmosphere, focusing on the vanishing trilayer in terraced droplets reduced to coexisting monolayer and trilayer. We find that the line interface between them exhibits two coexisting states, one mobile and one fixed. From there, it is possible to elucidate the internal structure and the spreading mechanism of the stratified liquid in a case of asymmetric wetting, i.e., where the lipid film is made of an odd number of leaflets.
Collapse
Affiliation(s)
- Sawsan Mohamad
- UMR CNRS 6283, Molecular Landscapes, Biophotonic Horizons Group, Université du Maine, Le Mans, France
| | | | | | | | | | | |
Collapse
|
42
|
Hardy CG, Tang C. Advances in square arrays through self-assembly and directed self-assembly of block copolymers. ACTA ACUST UNITED AC 2012. [DOI: 10.1002/polb.23174] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
43
|
Ahn DU, Wang Z, Campbell IP, Stoykovich MP, Ding Y. Morphological evolution of thin PS/PMMA films: Effects of surface energy and blend composition. POLYMER 2012. [DOI: 10.1016/j.polymer.2012.07.037] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
44
|
Price AD, Hur SM, Fredrickson GH, Frischknecht AL, Huber DL. Exploring Lateral Microphase Separation in Mixed Polymer Brushes by Experiment and Self-Consistent Field Theory Simulations. Macromolecules 2011. [DOI: 10.1021/ma202542u] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Andrew D. Price
- Center for
Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, New Mexico
87185, United States
| | | | | | - Amalie L. Frischknecht
- Center for
Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, New Mexico
87185, United States
| | - Dale L. Huber
- Center for
Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, New Mexico
87185, United States
| |
Collapse
|
45
|
Jung HJ, Kim TJ, Bang JA. The Vertical and Lateral Ordering of PDMA-b-PS Block Copolymer Thin film via Control of Relative Humidity. KOREAN CHEMICAL ENGINEERING RESEARCH 2011. [DOI: 10.9713/kcer.2011.49.3.352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
46
|
Wei X, Li L, Kalish JP, Chen W, Russell TP. A Study on the Kinetics of a Disorder-to-Order Transition Induced by Alkyne/Azide Click Reaction. Macromolecules 2011. [DOI: 10.1021/ma200294g] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xinyu Wei
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Le Li
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Jeffrey P. Kalish
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Wei Chen
- Center for Nanoscale Materials, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Thomas P. Russell
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
47
|
|
48
|
Trombly DM, Pryamitsyn V, Ganesan V. Interfacial properties of statistical copolymer brushes in contact with homopolymer melts. J Chem Phys 2011; 134:154903. [DOI: 10.1063/1.3575182] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
49
|
Formation mechanism, chain folding, and growth behavior of the intriguing fiber-like crystal of poly (ethylene oxide-b-ε-caprolactone) block copolymer in ultrathin films. POLYMER 2011. [DOI: 10.1016/j.polymer.2011.02.044] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
50
|
Liu CC, Han E, Onses MS, Thode CJ, Ji S, Gopalan P, Nealey PF. Fabrication of Lithographically Defined Chemically Patterned Polymer Brushes and Mats. Macromolecules 2011. [DOI: 10.1021/ma102856t] [Citation(s) in RCA: 165] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Chi-Chun Liu
- Department of Chemical and Biological Engineering and ‡Department of Material Science and Engineering, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Eungnak Han
- Department of Chemical and Biological Engineering and ‡Department of Material Science and Engineering, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - M. Serdar Onses
- Department of Chemical and Biological Engineering and ‡Department of Material Science and Engineering, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Christopher J. Thode
- Department of Chemical and Biological Engineering and ‡Department of Material Science and Engineering, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Shengxiang Ji
- Department of Chemical and Biological Engineering and ‡Department of Material Science and Engineering, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Padma Gopalan
- Department of Chemical and Biological Engineering and ‡Department of Material Science and Engineering, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Paul F. Nealey
- Department of Chemical and Biological Engineering and ‡Department of Material Science and Engineering, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|