1
|
Jayaram A, Seenivasan VT, Govindan K, Liu YM, Chen NQ, Yeh TW, Venkatachalam G, Li CH, Leung TF, Lin WY. Base-promoted triple cleavage of CCl 2Br: a direct one-pot synthesis of unsymmetrical oxalamide derivatives. Chem Commun (Camb) 2024; 60:3079-3082. [PMID: 38406884 DOI: 10.1039/d4cc00354c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
We present a novel, eco-friendly and one-pot approach for synthesizing unsymmetrical oxalamides with the aid of dichloroacetamide and amine/amides in the presence of CBr4 in a basic medium. The use of water as a potent supplement for the oxygen atom source and the detailed mechanism have been disclosed. Moreover, the protocol involves triple cleavage of CCl2Br and the formation of new C-O/C-N bonds, with the advantage of achieving selective bromination using CBr4 with good to excellent yield under mild conditions. The method also demonstrates promise for industrial use, as proven by its effective implementation in gram-scale synthesis conducted in a batch process, along with its utilization in a continuous-flow system.
Collapse
Affiliation(s)
- Alageswaran Jayaram
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, Republic of China.
| | | | - Karthick Govindan
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, Republic of China.
| | - Yu-Ming Liu
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, Republic of China.
| | - Nian-Qi Chen
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, Republic of China.
| | - Ting-Wei Yeh
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, Republic of China.
| | - Gokulakannan Venkatachalam
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, Republic of China.
| | - Chien-Hung Li
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, Republic of China.
| | - Tsz-Fai Leung
- Department of Chemistry, National Sun Yat-sen University, Taiwan, Republic of China
| | - Wei-Yu Lin
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, Republic of China.
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan, Republic of China
- Drug Development and Value Creation Research Centre, Kaohsiung Medical University, Taiwan, Republic of China
| |
Collapse
|
2
|
Jiang S, Tuzikov A, Andrianov A. Small-molecule HIV-1 entry inhibitors targeting the epitopes of broadly neutralizing antibodies. Cell Chem Biol 2022; 29:757-773. [PMID: 35353988 DOI: 10.1016/j.chembiol.2022.03.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/27/2022] [Accepted: 03/10/2022] [Indexed: 11/20/2022]
Abstract
Highly active antiretroviral therapy currently used for HIV/AIDS has significantly increased the life expectancy of HIV-infected individuals. It has also improved the quality of life, reduced mortality, and decreased the incidence of AIDS and HIV-related conditions. Currently, however, affected individuals are typically on a lifetime course of several therapeutic drugs, all with the potential for associated toxicity and emergence of resistance. This calls for development of novel, potent, and broad anti-HIV agents able to stop the spread of HIV/AIDS. Significant progress has been made toward identification of anti-HIV-1 broadly neutralizing antibodies (bNAbs). However, antibody-based drugs are costly to produce and store. Administration (by injection only) and other obstacles limit clinical use. In recent years, several highly promising small-molecule HIV-1 entry inhibitors targeting the epitopes of bNAbs have been developed. These newly developed compounds are the focus of the present article.
Collapse
Affiliation(s)
- Shibo Jiang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai 200032, China.
| | - Alexander Tuzikov
- United Institute of Informatics Problems, National Academy of Sciences of Belarus, 220012 Minsk, Republic of Belarus
| | - Alexander Andrianov
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, 220141 Minsk, Republic of Belarus.
| |
Collapse
|
3
|
Zhuang X, Ling L, Wang Y, Li B, Sun B, Su W, Jin C. Photoinduced Cascade C-N/C═O Bond Formation from Bromodifluoroalkyl Reagents, Amines, and H 2O via a Triple-Cleavage Process. Org Lett 2022; 24:1668-1672. [PMID: 35191309 DOI: 10.1021/acs.orglett.2c00233] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A green, sustainable, and straightforward method for the synthesis of unsymmetrical oxalamides via photoinduced C-N/C═O bond formation of bromodifluoroacetamide, amine, and H2O through a triple-cleavage process has been developed. In addition, this approach also provides access to the known bioactive compounds, and a feasible reaction mechanism is proposed. Moreover, the advantages of this transformation, including mild reaction conditions, a broad substrate scope, and operational simplicity, make this protocol attractive for further applications.
Collapse
Affiliation(s)
- Xiaohui Zhuang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Lan Ling
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Yingying Wang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Bingqian Li
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Bin Sun
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Weike Su
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Can Jin
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. China.,College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| |
Collapse
|
4
|
Recent research results have converted gp120 binders to a therapeutic option for the treatment of HIV-1 infection. A medicinal chemistry point of view. Eur J Med Chem 2021; 229:114078. [PMID: 34992041 DOI: 10.1016/j.ejmech.2021.114078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/16/2021] [Accepted: 12/22/2021] [Indexed: 11/21/2022]
Abstract
Current therapeutic armamentarium for treatment of HIV-1 infection is based on the use of highly active antiretroviral therapy that, unfortunately, does not act as a curative remedy. Moreover, duration of the therapy often results in lack of compliance with the consequent emergence of multidrug resistance. Finally, drug toxicity issues also arise during treatments. In the attempt to achieve a curative effect, in addition to invest substantial resources in finding new anti-HIV-1 agents and in optimizing antiviral lead compounds and drugs currently available, additional efforts should be done to deplete viral reservoir located within host CD4+ T cells. Gp120 binders represent a class of compounds able to affect the interactions between viral envelope proteins and host CD4, thus avoiding virus-to-cell attachment and fusion, and the consequent viral entry into host cells. This review summarizes the efforts done in the last five years to design new gp120 binders, that finally culminated in the approval of fostemsavir as an anti-HIV-1 drug.
Collapse
|
5
|
Lai YT. Small Molecule HIV-1 Attachment Inhibitors: Discovery, Mode of Action and Structural Basis of Inhibition. Viruses 2021; 13:v13050843. [PMID: 34066522 PMCID: PMC8148533 DOI: 10.3390/v13050843] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/03/2021] [Accepted: 05/03/2021] [Indexed: 12/14/2022] Open
Abstract
Viral entry into host cells is a critical step in the viral life cycle. HIV-1 entry is mediated by the sole surface envelope glycoprotein Env and is initiated by the interaction between Env and the host receptor CD4. This interaction, referred to as the attachment step, has long been considered an attractive target for inhibitor discovery and development. Fostemsavir, recently approved by the FDA, represents the first-in-class drug in the attachment inhibitor class. This review focuses on the discovery of temsavir (the active compound of fostemsavir) and analogs, mechanistic studies that elucidated the mode of action, and structural studies that revealed atomic details of the interaction between HIV-1 Env and attachment inhibitors. Challenges associated with emerging resistance mutations to the attachment inhibitors and the development of next-generation attachment inhibitors are also highlighted.
Collapse
Affiliation(s)
- Yen-Ting Lai
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
6
|
Ding Y, Kong D, Li D, Zhang Y, Hong K, Liang H, Ma L. Characterization of antibody-dependent cellular cytotoxicity induced by the plasma from persons living with HIV-1 based on target cells with or without CD4 molecules. Microbes Infect 2021; 23:104805. [PMID: 33711449 DOI: 10.1016/j.micinf.2021.104805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/13/2021] [Accepted: 03/01/2021] [Indexed: 11/30/2022]
Abstract
Antibody-dependent cellular cytotoxicity (ADCC) is essential for reducing the reservoir of latent virus in persons living with HIV-1 (PLWH). This study evaluated the plasma's ADCC activity from treatment-naïve PLWH based on target cells with or without CD4 molecules. We found that the distribution of plasma activities to mediate ADCC is different between 8E5 cells (CD4-) and NL4-3-infected CEM.NKR.CCR5 cells (CD4+). There was no correlation between the IgG-binding ability and ADCC activity. The binding ability of the 8E5 cells (2.2%) to A32 antibody was significantly lower than that of CEM.NKR.CCR5 cells (69.3%). After incubating the 8E5 cells with CD4-mimetic compound, it did not increase the binding ability with the A32 antibody. After incubation with CD4+ T cells, the binding ability of the 8E5 cells for the A32 antibody increased significantly, which implies that the conformation of the Env protein open and expose the CD4-induced epitopes. The effect of the ADCC in plasma directly applied to 8E5 cells was positively correlated with that of the NL4-3-infected CEM.NKR.CCR5 cells. In conclusion, ADCC induction in plasma was general in the treatment-naïve PLWH. The ADCC activity levels differed when target cells with or without CD4 molecules were evaluated; When designing experiments on ADCC, full consideration should be given to this immune phenomenon.
Collapse
Affiliation(s)
- Yibo Ding
- State Key Laboratory of Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Desheng Kong
- State Key Laboratory of Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing 102206, China; Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing 100176, China
| | - Dan Li
- State Key Laboratory of Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Yuanyuan Zhang
- State Key Laboratory of Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Kunxue Hong
- State Key Laboratory of Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Hua Liang
- State Key Laboratory of Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing 102206, China.
| | - Liying Ma
- State Key Laboratory of Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing 102206, China.
| |
Collapse
|
7
|
Curreli F, Ahmed S, Benedict Victor SM, Iusupov IR, Spiridonov EA, Belov DS, Altieri A, Kurkin AV, Debnath AK. Design, synthesis, and antiviral activity of a series of CD4-mimetic small-molecule HIV-1 entry inhibitors. Bioorg Med Chem 2021; 32:116000. [PMID: 33461144 DOI: 10.1016/j.bmc.2021.116000] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 12/31/2020] [Indexed: 11/28/2022]
Abstract
We presented our continuing stride to optimize the second-generation NBD entry antagonist targeted to the Phe43 cavity of HIV-1 gp120. We have synthesized thirty-eight new and novel analogs of NBD-14136, earlier designed based on a CH2OH "positional switch" hypothesis, and derived a comprehensive SAR. The antiviral data confirmed that the linear alcohol towards the "N" (C4) of the thiazole ring yielded more active inhibitors than those towards the "S" (C5) of the thiazole ring. The best inhibitor, NBD-14273 (compound 13), showed both improved antiviral activity and selectivity index (SI) against HIV-1HXB2 compared to NBD-14136. We also tested NBD-14273 against a large panel of 50 HIV-1 Env-pseudotyped viruses representing clinical isolates of diverse subtypes. The overall mean data indicate that antiviral potency against these isolates improved by ~3-fold, and SI also improved ~3-fold compared to NBD-14136. This new and novel inhibitor is expected to pave the way for further optimization to a more potent and clinically relevant inhibitor against HIV-1.
Collapse
Affiliation(s)
- Francesca Curreli
- Laboratory of Molecular Modeling & Drug Design, Lindsley F. Kimball Research Institute, New York Blood Center, 310 E 67th Street, New York, NY 10065, USA
| | - Shahad Ahmed
- Laboratory of Molecular Modeling & Drug Design, Lindsley F. Kimball Research Institute, New York Blood Center, 310 E 67th Street, New York, NY 10065, USA
| | - Sofia M Benedict Victor
- Laboratory of Molecular Modeling & Drug Design, Lindsley F. Kimball Research Institute, New York Blood Center, 310 E 67th Street, New York, NY 10065, USA
| | - Ildar R Iusupov
- EDASA Scientific, Scientific Park, Moscow State University, Leninskie Gory Bld. 75, 77-101b, 119992 Moscow, Russia
| | - Evgeny A Spiridonov
- EDASA Scientific, Scientific Park, Moscow State University, Leninskie Gory Bld. 75, 77-101b, 119992 Moscow, Russia
| | - Dmitry S Belov
- EDASA Scientific, Scientific Park, Moscow State University, Leninskie Gory Bld. 75, 77-101b, 119992 Moscow, Russia
| | - Andrea Altieri
- EDASA Scientific, Scientific Park, Moscow State University, Leninskie Gory Bld. 75, 77-101b, 119992 Moscow, Russia
| | - Alexander V Kurkin
- EDASA Scientific, Scientific Park, Moscow State University, Leninskie Gory Bld. 75, 77-101b, 119992 Moscow, Russia
| | - Asim K Debnath
- Laboratory of Molecular Modeling & Drug Design, Lindsley F. Kimball Research Institute, New York Blood Center, 310 E 67th Street, New York, NY 10065, USA.
| |
Collapse
|
8
|
Opening the HIV envelope: potential of CD4 mimics as multifunctional HIV entry inhibitors. Curr Opin HIV AIDS 2020; 15:300-308. [PMID: 32769632 DOI: 10.1097/coh.0000000000000637] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW Close to 2 million individuals globally become infected with HIV-1 each year and just over two-thirds will have access to life-prolonging antivirals. However, the rapid development of drug resistance creates challenges, such that generation of more effective therapies is not only warranted but a necessary endeavour. This review discusses a group of HIV-1 entry inhibitors known as CD4 mimics which exploit the highly conserved relationship between the HIV-1 envelope glycoprotein and the receptor, CD4. RECENT FINDINGS We review the structure/function guided evolution of these inhibitors, vital mechanistic insights that underpin broad and potent functional antagonism, recent evidence of utility demonstrated in animal and physiologically relevant in-vitro models, and current progress towards effective new-generation inhibitors. SUMMARY The current review highlights the promising potential of CD4 mimetics as multifunctional therapeutics.
Collapse
|
9
|
Abstract
Many proteins are intrinsically disordered or contain one or more disordered domains. These domains can participate in binding interactions with other proteins or small ligands. Binding to intrinsically disordered protein domains requires the folding or structuring of those regions such that they can establish well-defined stoichiometric interactions. Since, in such a situation binding is coupled to folding, the energetics of those two events is reflected in the measured binding thermodynamics. In this protocol, we illustrate the thermodynamic differences between binding coupled to folding and binding independent of folding for the same protein. As an example, we use the HIV-1 envelope glycoprotein gp120 that contains structured as well as disordered domains. In the experiments presented, the binding of gp120 to molecules that bind to disordered regions and trigger structuring (CD4 or MAb 17b) and to molecules that bind to structured regions and do not induce conformational structuring (MAb b12) is discussed.
Collapse
|
10
|
Mei H, Han J, White S, Graham DJ, Izawa K, Sato T, Fustero S, Meanwell NA, Soloshonok VA. Tailor-Made Amino Acids and Fluorinated Motifs as Prominent Traits in Modern Pharmaceuticals. Chemistry 2020; 26:11349-11390. [PMID: 32359086 DOI: 10.1002/chem.202000617] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/23/2020] [Indexed: 12/11/2022]
Abstract
Structural analysis of modern pharmaceutical practices allows for the identification of two rapidly growing trends: the introduction of tailor-made amino acids and the exploitation of fluorinated motifs. Curiously, the former represents one of the most ubiquitous classes of naturally occurring compounds, whereas the latter is the most xenobiotic and comprised virtually entirely of man-made derivatives. Herein, 39 selected compounds, featuring both of these traits in the same molecule, are profiled. The total synthesis, source of the corresponding amino acids and fluorinated residues, and medicinal chemistry aspects and biological properties of the molecules are discussed.
Collapse
Affiliation(s)
- Haibo Mei
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, P.R. China
| | - Jianlin Han
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, P.R. China
| | - Sarah White
- Oakwood Chemical, Inc., 730 Columbia Hwy. N, Estill, SC, 29918, USA
| | - Daniel J Graham
- Oakwood Chemical, Inc., 730 Columbia Hwy. N, Estill, SC, 29918, USA
| | - Kunisuke Izawa
- Hamari Chemicals Ltd., 1-4-29 Kunijima, Higashi-Yodogawa-ku, Osaka, 533-0024, Japan
| | - Tatsunori Sato
- Hamari Chemicals Ltd., 1-4-29 Kunijima, Higashi-Yodogawa-ku, Osaka, 533-0024, Japan
| | - Santos Fustero
- Departamento de Química Orgánica, Universidad de Valencia, 46100, Burjassot, Valencia, Spain
| | - Nicholas A Meanwell
- Department of Small Molecule Drug Discovery, Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, NJ, 08543-4000, USA
| | - Vadim A Soloshonok
- Department of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel Lardizábal 3, 20018, San Sebastián, Spain.,IKERBASQUE, Basque Foundation for Science, María Díaz de Haro 3, Plaza Bizkaia, 48013, Bilbao, Spain
| |
Collapse
|
11
|
Tikhonova TA, Ilment NV, Lyssenko KA, Zavarzin IV, Volkova YA. Sulfur-mediated synthesis of unsymmetrically substituted N-aryl oxalamides by the cascade thioamidation/cyclocondensation and hydrolysis reaction. Org Biomol Chem 2020; 18:5050-5060. [PMID: 32578650 DOI: 10.1039/d0ob00811g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A facile and straightforward synthesis of unsymmetrically substituted N-aryl oxalamides from 2,2'-biphenyldiamines, 2-chloroacetic acid derivatives, elemental sulfur, and water has been developed. This protocol is distinguished by efficiency in water under metal-free conditions for N-aryl oxalamides bearing a side-chain NH2-group; it can be adapted for scale-up synthesis. The scope and limitations of this transformation have been investigated.
Collapse
Affiliation(s)
- Tatyana A Tikhonova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991, Moscow, Russian Federation.
| | - Nikita V Ilment
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991, Moscow, Russian Federation.
| | - Konstantin A Lyssenko
- G.V. Plekhanov Russian University of Economics, 36 Stremyanny Per., Moscow 117997, Russian Federation and Department of Chemistry, M.V. Lomonosov Moscow State University, 119991 Moscow, Russian Federation
| | - Igor V Zavarzin
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991, Moscow, Russian Federation.
| | - Yulia A Volkova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991, Moscow, Russian Federation.
| |
Collapse
|
12
|
Prévost J, Tolbert WD, Medjahed H, Sherburn RT, Madani N, Zoubchenok D, Gendron-Lepage G, Gaffney AE, Grenier MC, Kirk S, Vergara N, Han C, Mann BT, Chénine AL, Ahmed A, Chaiken I, Kirchhoff F, Hahn BH, Haim H, Abrams CF, Smith AB, Sodroski J, Pazgier M, Finzi A. The HIV-1 Env gp120 Inner Domain Shapes the Phe43 Cavity and the CD4 Binding Site. mBio 2020; 11:e00280-20. [PMID: 32457241 PMCID: PMC7251204 DOI: 10.1128/mbio.00280-20] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 04/24/2020] [Indexed: 12/22/2022] Open
Abstract
The HIV-1 envelope glycoproteins (Env) undergo conformational changes upon interaction of the gp120 exterior glycoprotein with the CD4 receptor. The gp120 inner domain topological layers facilitate the transition of Env to the CD4-bound conformation. CD4 engages gp120 by introducing its phenylalanine 43 (Phe43) in a cavity ("the Phe43 cavity") located at the interface between the inner and outer gp120 domains. Small CD4-mimetic compounds (CD4mc) can bind within the Phe43 cavity and trigger conformational changes similar to those induced by CD4. Crystal structures of CD4mc in complex with a modified CRF01_AE gp120 core revealed the importance of these gp120 inner domain layers in stabilizing the Phe43 cavity and shaping the CD4 binding site. Our studies reveal a complex interplay between the gp120 inner domain and the Phe43 cavity and generate useful information for the development of more-potent CD4mc.IMPORTANCE The Phe43 cavity of HIV-1 envelope glycoproteins (Env) is an attractive druggable target. New promising compounds, including small CD4 mimetics (CD4mc), were shown to insert deeply into this cavity. Here, we identify a new network of residues that helps to shape this highly conserved CD4 binding pocket and characterize the structural determinants responsible for Env sensitivity to small CD4 mimetics.
Collapse
Affiliation(s)
- Jérémie Prévost
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
| | - William D Tolbert
- Infectious Diseases Division, Department of Medicine of Uniformed Services, University of the Health Sciences, Bethesda, Maryland, USA
| | | | - Rebekah T Sherburn
- Infectious Diseases Division, Department of Medicine of Uniformed Services, University of the Health Sciences, Bethesda, Maryland, USA
| | - Navid Madani
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Daria Zoubchenok
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
| | | | - Althea E Gaffney
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Melissa C Grenier
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sharon Kirk
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Natasha Vergara
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Changze Han
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Brendan T Mann
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of the Military Medicine, Bethesda, Maryland, USA
| | - Agnès L Chénine
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of the Military Medicine, Bethesda, Maryland, USA
| | - Adel Ahmed
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Irwin Chaiken
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Beatrice H Hahn
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Hillel Haim
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Cameron F Abrams
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Amos B Smith
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Joseph Sodroski
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Marzena Pazgier
- Infectious Diseases Division, Department of Medicine of Uniformed Services, University of the Health Sciences, Bethesda, Maryland, USA
| | - Andrés Finzi
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
13
|
Beaudoin-Bussières G, Prévost J, Gendron-Lepage G, Melillo B, Chen J, Smith Iii AB, Pazgier M, Finzi A. Elicitation of Cluster A and Co-Receptor Binding Site Antibodies are Required to Eliminate HIV-1 Infected Cells. Microorganisms 2020; 8:E710. [PMID: 32403312 PMCID: PMC7285120 DOI: 10.3390/microorganisms8050710] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/30/2020] [Accepted: 05/09/2020] [Indexed: 01/01/2023] Open
Abstract
HIV-1-infected individuals raise a polyclonal antibody response targeting multiple envelope glycoprotein (Env) epitopes. Interestingly, two classes of non-neutralizing CD4-induced (CD4i) antibodies, present in the majority of HIV-1-infected individuals have been described to mediate antibody-dependent cellular cytotoxicity (ADCC) in the presence of small CD4 mimetic compounds (CD4mc). These antibodies recognize the coreceptor binding site (CoRBS) and the constant region one and two (C1C2 or inner domain cluster A) of the gp120. In combination with CD4mc they have been shown to stabilize an antibody-vulnerable Env conformation, known as State 2A. Here we evaluated the importance of these two families of Abs in ADCC responses by immunizing guinea pigs with gp120 immunogens that have been modified to elicit or not these types of antibodies. Underlying the importance of anti-CoRBS and anti-cluster A Abs in stabilizing State 2A, ADCC responses were only observed in the presence of these two types of CD4i antibodies. Altogether, our results suggest that these two families of CD4i antibodies must be taken into account when considering future strategies relying on the use of CD4mc to eliminate HIV-1-infected cells in vivo.
Collapse
Affiliation(s)
- Guillaume Beaudoin-Bussières
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Jérémie Prévost
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | | | - Bruno Melillo
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Junhua Chen
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Amos B Smith Iii
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Marzena Pazgier
- Infectious Diseases Division, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Andrés Finzi
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H3T 1J4, Canada
| |
Collapse
|
14
|
Curreli F, Ahmed S, Benedict Victor SM, Iusupov IR, Belov DS, Markov PO, Kurkin AV, Altieri A, Debnath AK. Preclinical Optimization of gp120 Entry Antagonists as anti-HIV-1 Agents with Improved Cytotoxicity and ADME Properties through Rational Design, Synthesis, and Antiviral Evaluation. J Med Chem 2020; 63:1724-1749. [PMID: 32031803 DOI: 10.1021/acs.jmedchem.9b02149] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We previously reported a milestone in the optimization of NBD-11021, an HIV-1 gp120 antagonist, by developing a new and novel analogue, NBD-14189 (Ref1), which showed antiviral activity against HIV-1HXB2, with a half maximal inhibitory concentration of 89 nM. However, cytotoxicity remained high, and the absorption, distribution, metabolism, and excretion (ADME) data showed relatively poor aqueous solubility. To optimize these properties, we replaced the phenyl ring in the compound with a pyridine ring and synthesized a set of 48 novel compounds. One of the new analogues, NBD-14270 (8), showed a marked improvement in cytotoxicity, with 3-fold and 58-fold improvements in selectivity index value compared with that of Ref1 and NBD-11021, respectively. Furthermore, the in vitro ADME data clearly showed improvements in aqueous solubility and other properties compared with those for Ref1. The data for 8 indicated that the pyridine scaffold is a good bioisostere for phenyl, allowing the further optimization of this molecule.
Collapse
Affiliation(s)
- Francesca Curreli
- Laboratory of Molecular Modeling & Drug Design, Lindsley F. Kimball Research Institute , New York Blood Center , 310 E 67th Street , New York 10065 , New York , United States
| | - Shahad Ahmed
- Laboratory of Molecular Modeling & Drug Design, Lindsley F. Kimball Research Institute , New York Blood Center , 310 E 67th Street , New York 10065 , New York , United States
| | - Sofia M Benedict Victor
- Laboratory of Molecular Modeling & Drug Design, Lindsley F. Kimball Research Institute , New York Blood Center , 310 E 67th Street , New York 10065 , New York , United States
| | - Ildar R Iusupov
- EDASA Scientific, Scientific Park , Moscow State University , Leninskie Gory Bld. 75, 77-101b , Moscow 119992 , Russia
| | - Dmitry S Belov
- EDASA Scientific, Scientific Park , Moscow State University , Leninskie Gory Bld. 75, 77-101b , Moscow 119992 , Russia
| | - Pavel O Markov
- EDASA Scientific, Scientific Park , Moscow State University , Leninskie Gory Bld. 75, 77-101b , Moscow 119992 , Russia
| | - Alexander V Kurkin
- EDASA Scientific, Scientific Park , Moscow State University , Leninskie Gory Bld. 75, 77-101b , Moscow 119992 , Russia
| | - Andrea Altieri
- EDASA Scientific, Scientific Park , Moscow State University , Leninskie Gory Bld. 75, 77-101b , Moscow 119992 , Russia
| | - Asim K Debnath
- Laboratory of Molecular Modeling & Drug Design, Lindsley F. Kimball Research Institute , New York Blood Center , 310 E 67th Street , New York 10065 , New York , United States
| |
Collapse
|
15
|
D’yachenko VS, Burmistrov VV, Butov GM. Synthesis and Properties of Ethyl [(Adamantan-1-yl)alkylene(phenylene)amino]oxoacetates and N1,N2-Bis[(adamantan-1-yl)alkylene(phenylene)]oxamides. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2020. [DOI: 10.1134/s107042801911006x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Motati DR, Uredi D, Watkins EB. The Discovery and Development of Oxalamide and Pyrrole Small Molecule Inhibitors of gp120 and HIV Entry - A Review. Curr Top Med Chem 2019; 19:1650-1675. [PMID: 31424369 DOI: 10.2174/1568026619666190717163959] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 06/14/2019] [Accepted: 06/25/2019] [Indexed: 02/07/2023]
Abstract
Human immunodeficiency virus type-1 (HIV-1) is the causative agent responsible for the acquired immunodeficiency syndrome (AIDS) pandemic. More than 60 million infections and 25 million deaths have occurred since AIDS was first identified in the early 1980s. Advances in available therapeutics, in particular combination antiretroviral therapy, have significantly improved the treatment of HIV infection and have facilitated the shift from high mortality and morbidity to that of a manageable chronic disease. Unfortunately, none of the currently available drugs are curative of HIV. To deal with the rapid emergence of drug resistance, off-target effects, and the overall difficulty of eradicating the virus, an urgent need exists to develop new drugs, especially against targets critically important for the HIV-1 life cycle. Viral entry, which involves the interaction of the surface envelope glycoprotein, gp120, with the cellular receptor, CD4, is the first step of HIV-1 infection. Gp120 has been validated as an attractive target for anti-HIV-1 drug design or novel HIV detection tools. Several small molecule gp120 antagonists are currently under investigation as potential entry inhibitors. Pyrrole, piperazine, triazole, pyrazolinone, oxalamide, and piperidine derivatives, among others, have been investigated as gp120 antagonist candidates. Herein, we discuss the current state of research with respect to the design, synthesis and biological evaluation of oxalamide derivatives and five-membered heterocycles, namely, the pyrrole-containing small molecule as inhibitors of gp120 and HIV entry.
Collapse
Affiliation(s)
- Damoder Reddy Motati
- Department of Pharmaceutical Sciences, Center for Pharmacometrics and Molecular Discovery, College of Pharmacy, Union University, Jackson, Tennessee 38305, United States
| | - Dilipkumar Uredi
- Department of Pharmaceutical Sciences, Center for Pharmacometrics and Molecular Discovery, College of Pharmacy, Union University, Jackson, Tennessee 38305, United States
| | - E Blake Watkins
- Department of Pharmaceutical Sciences, Center for Pharmacometrics and Molecular Discovery, College of Pharmacy, Union University, Jackson, Tennessee 38305, United States
| |
Collapse
|
17
|
Zhao C, Princiotto AM, Nguyen HT, Zou S, Zhao ML, Zhang S, Herschhorn A, Farrell M, Pahil K, Melillo B, Sambasivarao SV, Abrams C, Smith AB, Madani N, Sodroski J. Strain-Dependent Activation and Inhibition of Human Immunodeficiency Virus Entry by a Specific PF-68742 Stereoisomer. J Virol 2019; 93:e01197-19. [PMID: 31391272 PMCID: PMC6803283 DOI: 10.1128/jvi.01197-19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 08/03/2019] [Indexed: 12/27/2022] Open
Abstract
Human immunodeficiency virus (HIV-1) entry into cells is mediated by the viral envelope glycoprotein (Env) trimer, which consists of three gp120 exterior glycoproteins and three gp41 transmembrane glycoproteins. When gp120 binds sequentially to the receptors CD4 and CCR5 on the target cell, the metastable Env trimer is triggered to undergo entry-related conformational changes. PF-68742 is a small molecule that inhibits the infection of a subset of HIV-1 strains by interfering with an Env function other than receptor binding. Determinants of HIV-1 resistance to PF-68742 map to the disulfide loop and fusion peptide of gp41. Of the four possible PF-68742 stereoisomers, only one, MF275, inhibited the infection of CD4-positive CCR5-positive cells by some HIV-1 strains. MF275 inhibition of these HIV-1 strains occurred after CD4 binding but before the formation of the gp41 six-helix bundle. Unexpectedly, MF275 activated the infection of CD4-negative CCR5-positive cells by several HIV-1 strains resistant to the inhibitory effects of the compound in CD4-positive target cells. In contrast to CD4 complementation by CD4-mimetic compounds, activation of CD4-independent infection by MF275 did not depend upon the availability of the gp120 Phe 43 cavity. Sensitivity to inhibitors indicates that MF275-activated virus entry requires formation/exposure of the gp41 heptad repeat (HR1) as well as CCR5 binding. MF275 apparently activates a virus entry pathway parallel to that triggered by CD4 and CD4-mimetic compounds. Strain-dependent divergence in Env conformational transitions allows different outcomes, inhibition or activation, in response to MF275. Understanding the mechanisms of MF275 activity should assist efforts to optimize its utility.IMPORTANCE Envelope glycoprotein (Env) spikes on the surface of human immunodeficiency virus (HIV-1) bind target cell receptors, triggering changes in the shape of Env. We studied a small molecule, MF275, that also induced shape changes in Env. The consequences of MF275 interaction with Env depended on the HIV-1 strain, with infection by some viruses inhibited and infection by other viruses enhanced. These studies reveal the strain-dependent diversity of HIV-1 Envs as they undergo shape changes in proceeding down the entry pathway. Appreciation of this diversity will assist attempts to develop broadly active inhibitors of HIV-1 entry.
Collapse
Affiliation(s)
- Connie Zhao
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Amy M Princiotto
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Hanh T Nguyen
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Shitao Zou
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Meiqing Lily Zhao
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Shijian Zhang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Alon Herschhorn
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Mark Farrell
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Karanbir Pahil
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Bruno Melillo
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Somisetti V Sambasivarao
- Department of Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania, USA
| | - Cameron Abrams
- Department of Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania, USA
| | - Amos B Smith
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Navid Madani
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Joseph Sodroski
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
18
|
Suttisintong K, Kaewchangwat N, Thanayupong E, Nerungsi C, Srikun O, Pungpo P. Recent Progress in the Development of HIV-1 Entry Inhibitors: From Small Molecules to Potent Anti-HIV Agents. Curr Top Med Chem 2019; 19:1599-1620. [DOI: 10.2174/1568026619666190712204050] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 06/07/2019] [Accepted: 06/21/2019] [Indexed: 01/21/2023]
Abstract
Viral entry, the first process in the reproduction of viruses, primarily involves attachment of the viral envelope proteins to membranes of the host cell. The crucial components that play an important role in viral entry include viral surface glycoprotein gp120, viral transmembrane glycoprotein gp41, host cell glycoprotein (CD4), and host cell chemokine receptors (CCR5 and CXCR4). Inhibition of the multiple molecular interactions of these components can restrain viruses, such as HIV-1, from fusion with the host cell, blocking them from reproducing. This review article specifically focuses on the recent progress in the development of small-molecule HIV-1 entry inhibitors and incorporates important aspects of their structural modification that lead to the discovery of new molecular scaffolds with more potency.
Collapse
Affiliation(s)
- Khomson Suttisintong
- National Nanotechnology Center (NANOTEC), National Science and Technology, Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Narongpol Kaewchangwat
- National Nanotechnology Center (NANOTEC), National Science and Technology, Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Eknarin Thanayupong
- National Nanotechnology Center (NANOTEC), National Science and Technology, Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Chakkrapan Nerungsi
- The Government Pharmaceutical Organization, 75/1 Rama VI Road, Ratchathewi, Bangkok 10400, Thailand
| | - Onsiri Srikun
- The Government Pharmaceutical Organization, 75/1 Rama VI Road, Ratchathewi, Bangkok 10400, Thailand
| | - Pornpan Pungpo
- Department of Chemistry, Faculty of Science, Ubon Ratchathani University, 85 Sathonlamark Road, Warinchamrap, Ubon Ratchathani 34190, Thailand
| |
Collapse
|
19
|
Andrianov AM, Nikolaev GI, Kornoushenko YV, Xu W, Jiang S, Tuzikov AV. In Silico Identification of Novel Aromatic Compounds as Potential HIV-1 Entry Inhibitors Mimicking Cellular Receptor CD4. Viruses 2019; 11:v11080746. [PMID: 31412617 PMCID: PMC6723994 DOI: 10.3390/v11080746] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 07/31/2019] [Accepted: 08/01/2019] [Indexed: 12/13/2022] Open
Abstract
Despite recent progress in the development of novel potent HIV-1 entry/fusion inhibitors, there are currently no licensed antiviral drugs based on inhibiting the critical interactions of the HIV-1 envelope gp120 protein with cellular receptor CD4. In this connection, studies on the design of new small-molecule compounds able to block the gp120-CD4 binding are still of great value. In this work, in silico design of drug-like compounds containing the moieties that make the ligand active towards gp120 was performed within the concept of click chemistry. Complexes of the designed molecules bound to gp120 were then generated by molecular docking and optimized using semiempirical quantum chemical method PM7. Finally, the binding affinity analysis of these ligand/gp120 complexes was performed by molecular dynamic simulations and binding free energy calculations. As a result, five top-ranking compounds that mimic the key interactions of CD4 with gp120 and show the high binding affinity were identified as the most promising CD4-mimemic candidates. Taken together, the data obtained suggest that these compounds may serve as promising scaffolds for the development of novel, highly potent and broad anti-HIV-1 therapeutics.
Collapse
Affiliation(s)
- Alexander M Andrianov
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, 220141 Minsk, Belarus.
| | - Grigory I Nikolaev
- United Institute of Informatics Problems, National Academy of Sciences of Belarus, 220012 Minsk, Belarus
| | - Yuri V Kornoushenko
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, 220141 Minsk, Belarus
| | - Wei Xu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan University, 131 Dong An Road, Fuxing Building, Shanghai 200032, China
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan University, 131 Dong An Road, Fuxing Building, Shanghai 200032, China.
| | - Alexander V Tuzikov
- United Institute of Informatics Problems, National Academy of Sciences of Belarus, 220012 Minsk, Belarus.
| |
Collapse
|
20
|
Kobayakawa T, Konno K, Ohashi N, Takahashi K, Masuda A, Yoshimura K, Harada S, Tamamura H. Soluble-type small-molecule CD4 mimics as HIV entry inhibitors. Bioorg Med Chem Lett 2019; 29:719-723. [PMID: 30665681 DOI: 10.1016/j.bmcl.2019.01.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 12/28/2018] [Accepted: 01/10/2019] [Indexed: 10/27/2022]
Abstract
Several small molecule CD4 mimics have been reported previously as HIV-1 entry inhibitors, which block the interaction between the Phe43 cavity of HIV-1 gp120 and the host CD4. Known CD4 mimics such as NBD-556 possess significant anti-HIV activity but are less soluble in water, perhaps due to their hydrophobic aromatic ring-containing structures. Compounds with a pyridinyl group in place of the phenyl group in these molecules have been designed and synthesized in an attempt to increase the hydrophilicity. Some of these new CD4 mimics, containing a tetramethylpiperidine ring show significantly higher water solubility than NBD-556 and have high anti-HIV activity and synergistic anti-HIV activity with a neutralizing antibody. The CD4 mimic that has a cyclohexylpiperidine ring and a 6-fluoropyridin-3-yl ring has high anti-HIV activity and no significant cytotoxicity. The present results will be useful in the future design and development of novel soluble-type molecule CD4 mimics.
Collapse
Affiliation(s)
- Takuya Kobayakawa
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Kiju Konno
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Nami Ohashi
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Kohei Takahashi
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Ami Masuda
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Kazuhisa Yoshimura
- AIDS Research Center, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Shigeyoshi Harada
- AIDS Research Center, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo 162-8640, Japan.
| | - Hirokazu Tamamura
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Chiyoda-ku, Tokyo 101-0062, Japan.
| |
Collapse
|
21
|
Kobayakawa T, Ohashi N, Hirota Y, Takahashi K, Yamada Y, Narumi T, Yoshimura K, Matsushita S, Harada S, Tamamura H. Flexibility of small molecular CD4 mimics as HIV entry inhibitors. Bioorg Med Chem 2018; 26:5664-5671. [PMID: 30366786 DOI: 10.1016/j.bmc.2018.10.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 10/16/2018] [Indexed: 11/30/2022]
Abstract
CD4 mimics such as YIR-821 and its derivatives are small molecules which inhibit the interaction between the Phe43 cavity of HIV-1 gp120 with host CD4, an interaction that is involved in the entry of HIV to cells. Known CD4 mimics generally possess three structural features, an aromatic ring, an oxalamide linker and a piperidine moiety. We have shown previously that introduction of a cyclohexyl group and a guanidine group into the piperidine moiety and a fluorine atom at the meta-position of the aromatic ring leads to a significant increase in the anti-HIV activity. In the current study, the effects of conformational flexibility were investigated by introduction of an indole-type group in the junction between the oxalamide linker and the aromatic moiety or by replacement of the oxalamide linker with a glycine linker. This led to the development of compounds with high anti-HIV activity, showing the importance of the junction region for the expression of high anti-HIV activity. The present data are expected to be useful in the future design of novel CD4 mimic molecules.
Collapse
Affiliation(s)
- Takuya Kobayakawa
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Nami Ohashi
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Yuki Hirota
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Kohei Takahashi
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Yuko Yamada
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Tetsuo Narumi
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Kazuhisa Yoshimura
- AIDS Research Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan; Center for AIDS Research, Kumamoto University, Kumamoto 860-0811, Japan
| | - Shuzo Matsushita
- Center for AIDS Research, Kumamoto University, Kumamoto 860-0811, Japan
| | - Shigeyoshi Harada
- AIDS Research Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan.
| | - Hirokazu Tamamura
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| |
Collapse
|
22
|
Curreli F, Belov DS, Kwon YD, Ramesh R, Furimsky AM, O'Loughlin K, Byrge PC, Iyer LV, Mirsalis JC, Kurkin AV, Altieri A, Debnath AK. Structure-based lead optimization to improve antiviral potency and ADMET properties of phenyl-1H-pyrrole-carboxamide entry inhibitors targeted to HIV-1 gp120. Eur J Med Chem 2018; 154:367-391. [PMID: 29860061 PMCID: PMC5993640 DOI: 10.1016/j.ejmech.2018.04.062] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 04/24/2018] [Accepted: 04/29/2018] [Indexed: 11/20/2022]
Abstract
We are continuing our concerted effort to optimize our first lead entry antagonist, NBD-11021, which targets the Phe43 cavity of the HIV-1 envelope glycoprotein gp120, to improve antiviral potency and ADMET properties. In this report, we present a structure-based approach that helped us to generate working hypotheses to modify further a recently reported advanced lead entry antagonist, NBD-14107, which showed significant improvement in antiviral potency when tested in a single-cycle assay against a large panel of Env-pseudotyped viruses. We report here the synthesis of twenty-nine new compounds and evaluation of their antiviral activity in a single-cycle and multi-cycle assay to derive a comprehensive structure-activity relationship (SAR). We have selected three inhibitors with the high selectivity index for testing against a large panel of 55 Env-pseudotyped viruses representing a diverse set of clinical isolates of different subtypes. The antiviral activity of one of these potent inhibitors, 55 (NBD-14189), against some clinical isolates was as low as 63 nM. We determined the sensitivity of CD4-binding site mutated-pseudoviruses to these inhibitors to confirm that they target HIV-1 gp120. Furthermore, we assessed their ADMET properties and compared them to the clinical candidate attachment inhibitor, BMS-626529. The ADMET data indicate that some of these new inhibitors have comparable ADMET properties to BMS-626529 and can be optimized further to potential clinical candidates.
Collapse
Affiliation(s)
- Francesca Curreli
- Laboratory of Molecular Modeling & Drug Design, Lindsley F. Kimball Research Institute, New York Blood Center, 310 E 67th Street, New York, NY 10065, USA
| | - Dmitry S Belov
- EDASA Scientific, Scientific Park, Moscow State University, Leninskie Gory Bld. 75, 77-101b, 119992 Moscow, Russia
| | - Young Do Kwon
- Structural Biology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ranjith Ramesh
- Laboratory of Molecular Modeling & Drug Design, Lindsley F. Kimball Research Institute, New York Blood Center, 310 E 67th Street, New York, NY 10065, USA
| | - Anna M Furimsky
- SRI International, Biosciences Division, 333 Ravenswood Avenue, Menlo Park, CA 94025, USA
| | - Kathleen O'Loughlin
- SRI International, Biosciences Division, 333 Ravenswood Avenue, Menlo Park, CA 94025, USA
| | - Patricia C Byrge
- SRI International, Biosciences Division, 333 Ravenswood Avenue, Menlo Park, CA 94025, USA
| | - Lalitha V Iyer
- SRI International, Biosciences Division, 333 Ravenswood Avenue, Menlo Park, CA 94025, USA
| | - Jon C Mirsalis
- SRI International, Biosciences Division, 333 Ravenswood Avenue, Menlo Park, CA 94025, USA
| | - Alexander V Kurkin
- EDASA Scientific, Scientific Park, Moscow State University, Leninskie Gory Bld. 75, 77-101b, 119992 Moscow, Russia
| | - Andrea Altieri
- EDASA Scientific, Scientific Park, Moscow State University, Leninskie Gory Bld. 75, 77-101b, 119992 Moscow, Russia
| | - Asim K Debnath
- Laboratory of Molecular Modeling & Drug Design, Lindsley F. Kimball Research Institute, New York Blood Center, 310 E 67th Street, New York, NY 10065, USA.
| |
Collapse
|
23
|
Moraca F, Rinaldo D, Smith AB, Abrams CF. Specific Noncovalent Interactions Determine Optimal Structure of a Buried Ligand Moiety: QM/MM and Pure QM Modeling of Complexes of the Small-Molecule CD4 Mimetics and HIV-1 gp120. ChemMedChem 2018; 13:627-633. [PMID: 29337418 DOI: 10.1002/cmdc.201700728] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/06/2018] [Indexed: 01/25/2023]
Abstract
The small-molecule CD4 mimetics (smCD4mcs) are a class of highly potent HIV-1 entry inhibitors characterized by a unique structure-activity relationship (SAR). They share a halogenated phenyl ring (region 1) that deeply inserts into an otherwise water-filled cavity at the CD4 binding site on the gp120 surface, the so-called F43 cavity. Conservative modifications to region 1 away from this halogenated phenyl motif have all led to loss of activity, despite the fact that they are predicted by standard empirical computational approaches to bind equally well, making it difficult to further optimize this region of the compounds to increase binding to gp120. In this study we used quantum mechanical methods to understand the roots of the interactions between region 1 and the F43 cavity. We clearly demonstrate the presence of halogen bond/σ-hole and dispersion interactions between region 1 and the F43 cavity residues F376-N377, which are not captured by standard molecular mechanics approaches and the role played by the smCD4mc in the F43 cavity desolvation. These findings rationalize why the halogenated region 1 has proven so difficult to move beyond in smCD4mc optimization, in agreement with experimental evidence.
Collapse
Affiliation(s)
| | - David Rinaldo
- Schrödinger GmbH, Dynamostrasse 13, Mannheim, 68165, Germany
| | - Amos B Smith
- Department of Chemistry, University of Pennsylvania, 231 S. 34th Street, Philadelphia, PA, 19104-6323, USA
| | - Cameron F Abrams
- Department of Chemical and Biological Engineering, Drexel University, 3141 Chestnut Street, Philadelphia, PA, 19104-2875, USA
| |
Collapse
|
24
|
Hollingsworth LR, Brown AM, Gandour RD, Bevan DR. Computational study of HIV gp120 as a target for polyanionic entry inhibitors: Exploiting the V3 loop region. PLoS One 2018; 13:e0190658. [PMID: 29346393 PMCID: PMC5773097 DOI: 10.1371/journal.pone.0190658] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 12/18/2017] [Indexed: 01/09/2023] Open
Abstract
Multiple approaches are being utilized to develop therapeutics to treat HIV infection. One approach is designed to inhibit entry of HIV into host cells, with a target being the viral envelope glycoprotein, gp120. Polyanionic compounds have been shown to be effective in inhibiting HIV entry, with a mechanism involving electrostatic interactions with the V3 loop of gp120 being proposed. In this study, we applied computational methods to elucidate molecular interactions between the repeat unit of the precisely alternating polyanion, Poly(4,4′-stilbenedicarboxylate-alt–maleic acid) (DCSti-alt-MA) and the V3 loop of gp120 from strains of HIV against which these polyanions were previously tested (IIIb, BaL, 92UG037, JR-CSF) as well as two strains for which gp120 crystal structures are available (YU2, 2B4C). Homology modeling was used to create models of the gp120 proteins. Using monomers of the gp120 protein, we applied extensive molecular dynamics simulations to obtain dominant morphologies that represent a variety of open-closed states of the V3 loop to examine the interaction of 112 ligands of the repeating units of DCSti-alt-MA docked to the V3 loop and surrounding residues. Using the distance between the V1/V2 and V3 loops of gp120 as a metric, we revealed through MD simulations that gp120 from the lab-adapted strains (BaL and IIIb), which are more susceptible to inhibition by DCSti-alt-MA, clearly transitioned to the closed state in one replicate of each simulation set, whereas none of the replicates from the Tier II strains (92UG037 and JR-CSF) did so. Docking repeat unit microspecies to the gp120 protein before and after MD simulation enabled identification of residues that were key for binding. Notably, only a few residues were found to be important for docking both before and after MD simulation as a result of the conformational heterogeneity provided by the simulations. Consideration of the residues that were consistently involved in interactions with the ligand revealed the importance of both hydrophilic and hydrophobic moieties of the ligand for effective binding. The results also suggest that polymers of DCSti-alt-MA with repeating units of different configurations may have advantages for therapeutic efficacy.
Collapse
Affiliation(s)
- Louis R. Hollingsworth
- Department of Chemical Engineering, Virginia Tech, Blacksburg, Virginia, United States of America
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia, United States of America
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Anne M. Brown
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia, United States of America
- Research and Informatics, University Libraries, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Richard D. Gandour
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia, United States of America
- Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia, United States of America
| | - David R. Bevan
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia, United States of America
- Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia, United States of America
- * E-mail:
| |
Collapse
|
25
|
Harada S, Yoshimura K. Driving HIV-1 into a Vulnerable Corner by Taking Advantage of Viral Adaptation and Evolution. Front Microbiol 2017; 8:390. [PMID: 28360890 PMCID: PMC5352695 DOI: 10.3389/fmicb.2017.00390] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 02/24/2017] [Indexed: 12/12/2022] Open
Abstract
Anti-retroviral therapy (ART) is crucial for controlling human immunodeficiency virus type-1 (HIV-1) infection. Recently, progress in identifying and characterizing highly potent broadly neutralizing antibodies has provided valuable templates for HIV-1 therapy and vaccine design. Nevertheless, HIV-1, like many RNA viruses, exhibits genetically diverse populations known as quasispecies. Evolution of quasispecies can occur rapidly in response to selective pressures, such as that exerted by ART and the immune system. Hence, rapid viral evolution leading to drug resistance and/or immune evasion is a significant barrier to the development of effective HIV-1 treatments and vaccines. Here, we describe our recent investigations into evolutionary pressure exerted by anti-retroviral drugs and monoclonal neutralizing antibodies (NAbs) on HIV-1 envelope sequences. We also discuss sensitivities of HIV-1 escape mutants to maraviroc, a CCR5 inhibitor, and HIV-1 sensitized to NAbs by small-molecule CD4-mimetic compounds. These studies help to develop an understanding of viral evolution and escape from both anti-retroviral drugs and the immune system, and also provide fundamental insights into the combined use of NAbs and entry inhibitors. These findings of the adaptation and evolution of HIV in response to drug and immune pressure will inform the development of more effective antiviral therapeutic strategies.
Collapse
Affiliation(s)
- Shigeyoshi Harada
- AIDS Research Center, National Institute of Infectious Diseases Tokyo, Japan
| | - Kazuhisa Yoshimura
- AIDS Research Center, National Institute of Infectious Diseases Tokyo, Japan
| |
Collapse
|
26
|
Curreli F, Kwon YD, Belov DS, Ramesh RR, Kurkin AV, Altieri A, Kwong PD, Debnath AK. Synthesis, Antiviral Potency, in Vitro ADMET, and X-ray Structure of Potent CD4 Mimics as Entry Inhibitors That Target the Phe43 Cavity of HIV-1 gp120. J Med Chem 2017; 60:3124-3153. [PMID: 28266845 DOI: 10.1021/acs.jmedchem.7b00179] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In our attempt to optimize the lead HIV-1 entry antagonist, NBD-11021, we present in this study the rational design and synthesis of 60 new analogues and determination of their antiviral activity in a single-cycle and a multicycle infection assay to derive a comprehensive structure-activity relationship (SAR). Two of these compounds, NBD-14088 and NBD-14107, showed significant improvement in antiviral activity compared to the lead entry antagonist in a single-cycle assay against a large panel of Env-pseudotyped viruses. The X-ray structure of a similar compound, NBD-14010, confirmed the binding mode of the newly designed compounds. The in vitro ADMET profiles of these compounds are comparable to that of the most potent attachment inhibitor BMS-626529, a prodrug of which is currently undergoing phase III clinical trials. The systematic study presented here is expected to pave the way for improving the potency, toxicity, and ADMET profile of this series of compounds with the potential to be moved to the early preclinical development.
Collapse
Affiliation(s)
- Francesca Curreli
- Laboratory of Molecular Modeling and Drug Design, Lindsey F. Kimball Research Institute, New York Blood Center , 310 E 67th Street, New York, New York 10065, United States
| | - Young Do Kwon
- Structural Biology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Dmitry S Belov
- EDASA Scientific, Scientific Park, Moscow State University , Leninskie Gory, Bld. 75, 77-101b; 119992 Moscow, Russia
| | - Ranjith R Ramesh
- Laboratory of Molecular Modeling and Drug Design, Lindsey F. Kimball Research Institute, New York Blood Center , 310 E 67th Street, New York, New York 10065, United States
| | - Alexander V Kurkin
- EDASA Scientific, Scientific Park, Moscow State University , Leninskie Gory, Bld. 75, 77-101b; 119992 Moscow, Russia
| | - Andrea Altieri
- EDASA Scientific, Scientific Park, Moscow State University , Leninskie Gory, Bld. 75, 77-101b; 119992 Moscow, Russia
| | - Peter D Kwong
- Structural Biology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Asim K Debnath
- Laboratory of Molecular Modeling and Drug Design, Lindsey F. Kimball Research Institute, New York Blood Center , 310 E 67th Street, New York, New York 10065, United States
| |
Collapse
|
27
|
Residues in the gp41 Ectodomain Regulate HIV-1 Envelope Glycoprotein Conformational Transitions Induced by gp120-Directed Inhibitors. J Virol 2017; 91:JVI.02219-16. [PMID: 28003492 DOI: 10.1128/jvi.02219-16] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 12/15/2016] [Indexed: 01/08/2023] Open
Abstract
Interactions between the gp120 and gp41 subunits of the human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein (Env) trimer maintain the metastable unliganded form of the viral spike. Binding of gp120 to the receptor, CD4, changes the Env conformation to promote gp120 interaction with the second receptor, CCR5 or CXCR4. CD4 binding also induces the transformation of Env into the prehairpin intermediate, in which the gp41 heptad repeat 1 (HR1) coiled coil is assembled at the trimer axis. In nature, HIV-1 Envs must balance the requirements to maintain the noncovalent association of gp120 with gp41 and to evade the host antibody response with the need to respond to CD4 binding. Here we show that the gp41 HR1 region contributes to gp120 association with the unliganded Env trimer. Changes in particular amino acid residues in the gp41 HR1 region decreased the efficiency with which Env moved from the unliganded state. Thus, these gp41 changes decreased the sensitivity of HIV-1 to cold inactivation and ligands that require Env conformational changes to bind efficiently. Conversely, these gp41 changes increased HIV-1 sensitivity to small-molecule entry inhibitors that block Env conformational changes induced by CD4. Changes in particular gp41 HR1 amino acid residues can apparently affect the relative stability of the unliganded state and CD4-induced conformations. Thus, the gp41 HR1 region contributes to the association with gp120 and regulates Env transitions from the unliganded state to downstream conformations.IMPORTANCE The development of an efficient vaccine able to prevent HIV infection is a worldwide priority. Knowledge of the envelope glycoprotein structure and the conformational changes that occur after receptor engagement will help researchers to develop an immunogen able to elicit antibodies that block HIV-1 transmission. Here we identify residues in the HIV-1 transmembrane envelope glycoprotein that stabilize the unliganded state by modulating the transitions from the unliganded state to the CD4-bound state.
Collapse
|
28
|
Activation and Inactivation of Primary Human Immunodeficiency Virus Envelope Glycoprotein Trimers by CD4-Mimetic Compounds. J Virol 2017; 91:JVI.01880-16. [PMID: 27881646 DOI: 10.1128/jvi.01880-16] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 11/15/2016] [Indexed: 12/22/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) entry into cells is mediated by the viral envelope glycoproteins (Env), a trimer of three gp120 exterior glycoproteins, and three gp41 transmembrane glycoproteins. The metastable Env is triggered to undergo entry-related conformational changes when gp120 binds sequentially to the receptors, CD4 and CCR5, on the target cell. Small-molecule CD4-mimetic compounds (CD4mc) bind gp120 and act as competitive inhibitors of gp120-CD4 engagement. Some CD4mc have been shown to trigger Env prematurely, initially activating Env function, followed by rapid and irreversible inactivation. Here, we study CD4mc with a wide range of anti-HIV-1 potencies and demonstrate that all tested CD4mc are capable of activating as well as inactivating Env function. Biphasic dose-response curves indicated that the occupancy of the protomers in the Env trimer governs viral activation versus inactivation. One CD4mc bound per Env trimer activated HIV-1 infection. Envs with two CD4mc bound were activated for infection of CD4-negative, CCR5-positive cells, but the infection of CD4-positive, CCR5-positive cells was inhibited. Virus was inactivated when all three Env protomers were occupied by the CD4mc, and gp120 shedding from the Env trimer was increased in the presence of some CD4mc. Env reactivity and the on rates of CD4mc binding to the Env trimer were found to be important determinants of the potency of activation and entry inhibition. Cross-sensitization of Env protomers that do not bind the CD4mc to neutralization by an anti-V3 antibody was not evident. These insights into the mechanism of antiviral activity of CD4mc should assist efforts to optimize their potency and utility. IMPORTANCE The trimeric envelope glycoproteins of human immunodeficiency virus type 1 (HIV-1) mediate virus entry into host cells. Binding to the host cell receptors, CD4 and CCR5, triggers changes in the conformation of the HIV-1 envelope glycoprotein trimer important for virus entry. Small-molecule CD4-mimetic compounds inhibit HIV-1 infection by multiple mechanisms: (i) direct blockade of the interaction between the gp120 exterior envelope glycoprotein and CD4; (ii) premature triggering of conformational changes in the envelope glycoproteins, leading to irreversible inactivation; and (iii) exposure of cryptic epitopes to antibodies, allowing virus neutralization. The consequences of the binding of the CD4-mimetic compound to the HIV-1 envelope glycoproteins depends upon how many of the three subunits of the trimer are bound and upon the propensity of the envelope glycoproteins to undergo conformational changes. Understanding the mechanistic factors that influence the activity of CD4-mimetic compounds can help to improve their potency and coverage of diverse HIV-1 strains.
Collapse
|
29
|
Andrianov AM, Kashyn IA, Tuzikov AV. Computational identification of novel entry inhibitor scaffolds mimicking primary receptor CD4 of HIV-1 gp120. J Mol Model 2017; 23:18. [DOI: 10.1007/s00894-016-3189-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 12/15/2016] [Indexed: 11/24/2022]
|
30
|
Moraca F, Acharya K, Melillo B, Smith AB, Chaiken I, Abrams CF. Computational Evaluation of HIV-1 gp120 Conformations of Soluble Trimeric gp140 Structures as Targets for de Novo Docking of First- and Second-Generation Small-Molecule CD4 Mimics. J Chem Inf Model 2016; 56:2069-2079. [PMID: 27602436 DOI: 10.1021/acs.jcim.6b00393] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Small-molecule CD4 mimics (SMCM's) bind to the gp120 subunit of the HIV-1 envelope glycoprotein (Env) and have been optimized to block cell infection in vitro. The lack of the V1/2 and V3 loops and the presence of the β2/3 and β20/21 strands (bridging sheet) in the available structures of the monomeric gp120 core may limit its applicability as a target for further synthetic optimization of SMCM potency and/or breadth. Here, we employ a combination of binding-site search, docking, estimation of protein-ligand interaction energy, all-atom molecular dynamics, and ELISA-based CD4-binding competition assays to create, characterize, and rationalize models of first- and second-generation of SMCM's bound to the distinct, trimeric BG505 SOSIP.664 structures 4NCO and 4TVP containing V1/2 and V3 loops with no bridging sheet. We demonstrate that the in silico neutralization of the highly conserved D368 is necessary to obtain the correct orientation of SMCM in their binding site when docking against the monomeric gp120 core. The computational results correlate with IC50's measured in CD4 binding competition ELISA and with KD's measured on gp120 core monomer. This supports the hypothesis that the 4NCO trimeric structure represents a viable target for further SMCM's optimization with advantages over both the 4TVP trimer and gp120 core monomer. Finally, the docking protocol has been optimized to screen compounds that can clearly interact with the highly conserved residue D368, increasing the likelihood of future optimizations to arrive at SMCM's with a broader spectrum of activity.
Collapse
Affiliation(s)
| | | | - Bruno Melillo
- Department of Chemistry, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| | - Amos B Smith
- Department of Chemistry, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| | | | | |
Collapse
|
31
|
Curreli F, Belov DS, Ramesh RR, Patel N, Altieri A, Kurkin AV, Debnath AK. Design, synthesis and evaluation of small molecule CD4-mimics as entry inhibitors possessing broad spectrum anti-HIV-1 activity. Bioorg Med Chem 2016; 24:5988-6003. [PMID: 27707628 DOI: 10.1016/j.bmc.2016.09.057] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 09/20/2016] [Accepted: 09/23/2016] [Indexed: 11/18/2022]
Abstract
Since our first discovery of a CD4-mimic, NBD-556, which targets the Phe43 cavity of HIV-1 gp120, we and other groups made considerable progress in designing new CD4-mimics with viral entry-antagonist property. In our continued effort to make further progress we have synthesized twenty five new analogs based on our earlier reported viral entry antagonist, NBD-11021. These compounds were tested first in HIV-1 Env-pseudovirus based single-cycle infection assay as well as in a multi-cycle infection assay. Four of these new compounds showed much improved antiviral potency as well as cytotoxicity. We selected two of the best compounds 45A (NBD-14009) and 46A (NBD-14010) to test against a panel of 51 Env-pseudotyped HIV-1 representing diverse subtypes of clinical isolates. These compounds showed noticeable breadth of antiviral potency with IC50 of as low as 150nM. These compounds also inhibited cell-to-cell fusion and cell-to-cell HIV-1 transmission. The study is expected to pave the way of designing more potent and selective HIV-1 entry inhibitors targeted to the Phe43 cavity of HIV-1 gp120.
Collapse
Affiliation(s)
- Francesca Curreli
- Laboratory of Molecular Modeling and Drug Design, Lindsey F. Kimball Research Institute, New York Blood Center, New York, NY 10065, USA
| | - Dmitry S Belov
- EDASA Scientific, Scientific Park, Moscow State University, Leninskie Gory, Bld. 75, 77-101b, 119992 Moscow, Russia
| | - Ranjith R Ramesh
- Laboratory of Molecular Modeling and Drug Design, Lindsey F. Kimball Research Institute, New York Blood Center, New York, NY 10065, USA
| | - Naisargi Patel
- Laboratory of Molecular Modeling and Drug Design, Lindsey F. Kimball Research Institute, New York Blood Center, New York, NY 10065, USA
| | - Andrea Altieri
- EDASA Scientific, Scientific Park, Moscow State University, Leninskie Gory, Bld. 75, 77-101b, 119992 Moscow, Russia
| | - Alexander V Kurkin
- EDASA Scientific, Scientific Park, Moscow State University, Leninskie Gory, Bld. 75, 77-101b, 119992 Moscow, Russia
| | - Asim K Debnath
- Laboratory of Molecular Modeling and Drug Design, Lindsey F. Kimball Research Institute, New York Blood Center, New York, NY 10065, USA
| |
Collapse
|
32
|
Antibodies Elicited by Multiple Envelope Glycoprotein Immunogens in Primates Neutralize Primary Human Immunodeficiency Viruses (HIV-1) Sensitized by CD4-Mimetic Compounds. J Virol 2016; 90:5031-5046. [PMID: 26962221 DOI: 10.1128/jvi.03211-15] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 02/26/2016] [Indexed: 12/16/2022] Open
Abstract
UNLABELLED The human immunodeficiency virus (HIV-1) envelope glycoproteins (Env) mediate virus entry through a series of complex conformational changes triggered by binding to the receptors CD4 and CCR5/CXCR4. Broadly neutralizing antibodies that recognize conserved Env epitopes are thought to be an important component of a protective immune response. However, to date, HIV-1 Env immunogens that elicit broadly neutralizing antibodies have not been identified, creating hurdles for vaccine development. Small-molecule CD4-mimetic compounds engage the CD4-binding pocket on the gp120 exterior Env and induce Env conformations that are highly sensitive to neutralization by antibodies, including antibodies directed against the conserved Env region that interacts with CCR5/CXCR4. Here, we show that CD4-mimetic compounds sensitize primary HIV-1 to neutralization by antibodies that can be elicited in monkeys and humans within 6 months by several Env vaccine candidates, including gp120 monomers. Monoclonal antibodies directed against the gp120 V2 and V3 variable regions were isolated from the immunized monkeys and humans; these monoclonal antibodies neutralized a primary HIV-1 only when the virus was sensitized by a CD4-mimetic compound. Thus, in addition to their direct antiviral effect, CD4-mimetic compounds dramatically enhance the HIV-1-neutralizing activity of antibodies that can be elicited with currently available immunogens. Used as components of microbicides, the CD4-mimetic compounds might increase the protective efficacy of HIV-1 vaccines. IMPORTANCE Preventing HIV-1 transmission is a high priority for global health. Eliciting antibodies that can neutralize transmitted strains of HIV-1 is difficult, creating problems for the development of an effective vaccine. We found that small-molecule CD4-mimetic compounds sensitize HIV-1 to antibodies that can be elicited in vaccinated humans and monkeys. These results suggest an approach to prevent HIV-1 sexual transmission in which a virus-sensitizing microbicide is combined with a vaccine.
Collapse
|
33
|
Melillo B, Liang S, Park J, Schön A, Courter JR, LaLonde JM, Wendler DJ, Princiotto AM, Seaman MS, Freire E, Sodroski J, Madani N, Hendrickson WA, Smith AB. Small-Molecule CD4-Mimics: Structure-Based Optimization of HIV-1 Entry Inhibition. ACS Med Chem Lett 2016; 7:330-4. [PMID: 26985324 DOI: 10.1021/acsmedchemlett.5b00471] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 01/13/2016] [Indexed: 11/29/2022] Open
Abstract
The optimization, based on computational, thermodynamic, and crystallographic data, of a series of small-molecule ligands of the Phe43 cavity of the envelope glycoprotein gp120 of human immunodeficiency virus (HIV) has been achieved. Importantly, biological evaluation revealed that the small-molecule CD4 mimics (4-7) inhibit HIV-1 entry into target cells with both significantly higher potency and neutralization breadth than previous congeners, while maintaining high selectivity for the target virus. Their binding mode was characterized via thermodynamic and crystallographic studies.
Collapse
Affiliation(s)
- Bruno Melillo
- Department
of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | | | - Jongwoo Park
- Department
of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Arne Schön
- Department
of Biology, The Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Joel R. Courter
- Department
of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Judith M. LaLonde
- Department
of Chemistry, Bryn Mawr College, Bryn Mawr, Pennsylvania 19010, United States
| | - Daniel J. Wendler
- Department
of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | | | | | - Ernesto Freire
- Department
of Biology, The Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Joseph Sodroski
- Department
of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts 02115, United States
| | | | | | - Amos B. Smith
- Department
of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
34
|
Ohashi N, Harada S, Mizuguchi T, Irahara Y, Yamada Y, Kotani M, Nomura W, Matsushita S, Yoshimura K, Tamamura H. Small-Molecule CD4 Mimics Containing Mono-cyclohexyl Moieties as HIV Entry Inhibitors. ChemMedChem 2016; 11:940-6. [PMID: 26891461 DOI: 10.1002/cmdc.201500590] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Indexed: 12/25/2022]
Abstract
CD4 mimics are small molecules that inhibit the protein-protein interaction between gp120 and CD4, which is a key interaction for the entry of human immunodeficiency virus (HIV) into host immune cells. In the present study, mono-cyclohexyl-type CD4 mimics were designed to form hydrophobic and electrostatic interactions with Val430 and Asp368 located in the entrance of the Phe43 cavity of gp120, the interaction site of CD4. YIR-329, a novel 1-azaspiro[5.5]undecane derivative with a cyclohexyl ring attached to the piperidine ring, exhibited only slightly weaker anti-HIV activity than a previously described lead HAR-171, and modeling results indicated the formation of advantageous interactions by the para-chlorophenyl moiety of YIR-329. To introduce an electrostatic interaction with Asp368, derivatives with a guanidino group on the piperidine nitrogen atom were synthesized. Mono-cyclohexyl-type CD4 mimics with a guanidino group, such as YIR-819 (N(1) -(4-chlorophenyl)-N(2) -(1-(2-(N-(amidino)glycinamide)ethyl)-2-cyclohexylpiperidin-4-yl)oxalamide) and YIR-821 (1-(2-(5-guanidinovaleramide)ethyl derivative of YIR-819), were identified that exhibit approximately fivefold more potent anti-HIV activity than YIR-329. In combination with a neutralizing antibody, their anti-HIV activities were augmenting. Modeling results suggest that these compounds interact effectively with Val430 and either Asp368 or Asp474 in the gp120 Phe43 cavity. YIR-819 and YIR-821 represent useful lead compounds for the further development of HIV-1 entry inhibitors and could potentially be useful for co-administration with neutralizing antibodies for the treatment of HIV infection and AIDS.
Collapse
Affiliation(s)
- Nami Ohashi
- Institute of Biomaterials & Bioengineering, Tokyo Medical & Dental University, 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo, 101-0062, Japan
| | - Shigeyoshi Harada
- AIDS Research Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Takaaki Mizuguchi
- Institute of Biomaterials & Bioengineering, Tokyo Medical & Dental University, 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo, 101-0062, Japan
| | - Yu Irahara
- Institute of Biomaterials & Bioengineering, Tokyo Medical & Dental University, 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo, 101-0062, Japan
| | - Yuko Yamada
- Institute of Biomaterials & Bioengineering, Tokyo Medical & Dental University, 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo, 101-0062, Japan.,Pharmaceutical Department, Keio University Hospital, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Misato Kotani
- Institute of Biomaterials & Bioengineering, Tokyo Medical & Dental University, 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo, 101-0062, Japan
| | - Wataru Nomura
- Institute of Biomaterials & Bioengineering, Tokyo Medical & Dental University, 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo, 101-0062, Japan
| | - Shuzo Matsushita
- Center for AIDS Research, Kumamoto University, Kumamoto, 860-0811, Japan
| | - Kazuhisa Yoshimura
- AIDS Research Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan.
| | - Hirokazu Tamamura
- Institute of Biomaterials & Bioengineering, Tokyo Medical & Dental University, 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo, 101-0062, Japan.
| |
Collapse
|
35
|
Lu L, Yu F, Cai L, Debnath AK, Jiang S. Development of Small-molecule HIV Entry Inhibitors Specifically Targeting gp120 or gp41. Curr Top Med Chem 2016; 16:1074-90. [PMID: 26324044 PMCID: PMC4775441 DOI: 10.2174/1568026615666150901114527] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Revised: 05/17/2015] [Accepted: 05/27/2015] [Indexed: 12/31/2022]
Abstract
Human immunodeficiency virus type 1 (HIV-1) envelope (Env) glycoprotein surface subunit gp120 and transmembrane subunit gp41 play important roles in HIV-1 entry, thus serving as key targets for the development of HIV-1 entry inhibitors. T20 peptide (enfuvirtide) is the first U.S. FDA-approved HIV entry inhibitor; however, its clinical application is limited by the lack of oral availability. Here, we have described the structure and function of the HIV-1 gp120 and gp41 subunits and reviewed advancements in the development of small-molecule HIV entry inhibitors specifically targeting these two Env glycoproteins. We then compared the advantages and disadvantages of different categories of HIV entry inhibitor candidates and further predicted the future trend of HIV entry inhibitor development.
Collapse
Affiliation(s)
| | | | | | | | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology of MOE/MOH, Shanghai Medical College, Fudan University, 130 Dong An Road, Building #13, Shanghai 200032, China.
| |
Collapse
|
36
|
Antibody-Dependent Cellular Cytotoxicity against Reactivated HIV-1-Infected Cells. J Virol 2015; 90:2021-30. [PMID: 26656700 DOI: 10.1128/jvi.02717-15] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 11/30/2015] [Indexed: 01/02/2023] Open
Abstract
UNLABELLED Lifelong antiretroviral therapy (ART) for HIV-1 does not diminish the established latent reservoir. A possible cure approach is to reactivate the quiescent genome from latency and utilize immune responses to eliminate cells harboring reactivated HIV-1. It is not known whether antibodies within HIV-1-infected individuals can recognize and eliminate cells reactivated from latency through antibody-dependent cellular cytotoxicity (ADCC). We found that reactivation of HIV-1 expression in the latently infected ACH-2 cell line elicited antibody-mediated NK cell activation but did not result in antibody-mediated killing. The lack of CD4 expression on these HIV-1 envelope (Env)-expressing cells likely resulted in poor recognition of CD4-induced antibody epitopes on Env. To examine this further, cultured primary CD4(+) T cells from HIV-1(+) subjects were used as targets for ADCC. These ex vivo-expanded primary cells were modestly susceptible to ADCC mediated by autologous or heterologous HIV-1(+) serum antibodies. Importantly, ADCC mediated against these primary cells could be enhanced following incubation with a CD4-mimetic compound (JP-III-48) that exposes CD4-induced antibody epitopes on Env. Our studies suggest that with sufficient reactivation and expression of appropriate Env epitopes, primary HIV-1-infected cells can be targets for ADCC mediated by autologous serum antibodies and innate effector cells. The results of this study suggest that further investigation into the potential of ADCC to eliminate reactivated latently infected cells is warranted. IMPORTANCE An HIV-1 cure remains elusive due to the persistence of long-lived latently infected cells. An HIV-1 cure strategy, termed "shock and kill," aims to reactivate HIV-1 expression in latently infected cells and subsequently eliminate the reactivated cells through immune-mediated killing. While recent research efforts have focused on reversing HIV-1 latency, it remains unclear whether preexisting immune responses within HIV-1(+) individuals can efficiently eliminate the reactivated cells. HIV-1-specific antibodies can potentially eliminate cells reactivated from latency via Fc effector functions by recruiting innate immune cells. Our study highlights the potential role that antibody-dependent cellular cytotoxicity might play in antilatency cure approaches.
Collapse
|
37
|
Core chemotype diversification in the HIV-1 entry inhibitor class using field-based bioisosteric replacement. Bioorg Med Chem Lett 2015; 26:228-34. [PMID: 26531151 DOI: 10.1016/j.bmcl.2015.10.080] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 10/23/2015] [Accepted: 10/26/2015] [Indexed: 11/20/2022]
Abstract
Demand remains for new inhibitors of HIV-1 replication and the inhibition of HIV-1 entry is an extremely attractive therapeutic approach. Using field-based bioisosteric replacements, we have further extended the chemotypes available for development in the HIV-1 entry inhibitor class. Moreover, using field-based disparity analysis of the compounds, 3D structure-activity relationships were derived that will be useful in the further development of these inhibitors towards clinical utility.
Collapse
|
38
|
Bogolubsky AV, Moroz YS, Mykhailiuk PK, Pipko SE, Zhemera AV, Konovets AI, Stepaniuk OO, Myronchuk IS, Dmytriv YV, Doroschuk RA, Zaporozhets OA, Tolmachev A. 2,2,2-Trifluoroethyl Chlorooxoacetate--Universal Reagent for One-Pot Parallel Synthesis of N(1)-Aryl-N(2)-alkyl-Substituted Oxamides. ACS COMBINATORIAL SCIENCE 2015; 17:615-22. [PMID: 26325360 DOI: 10.1021/acscombsci.5b00091] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A one-pot parallel synthesis of N(1)-aryl-N(2)-alkyl-substituted oxamides with 2,2,2-trifluoroethyl chlorooxoacetate was developed. The synthesis of a library of 45 oxamides revealed higher efficiency of this reagent over the known ethyl chlorooxoacetate. The reagent was successfully used to prepare the known oxamide-containing HIV entry inhibitors.
Collapse
Affiliation(s)
| | - Yurii S. Moroz
- Enamine, Ltd., 78 Chervonotkatska
Street, Kyiv, 02094, Ukraine
- ChemBioCenter, Kyiv National Taras Shevchenko University, 61 Chervonotkatska Street, Kyiv, 02094, Ukraine
| | - Pavel K. Mykhailiuk
- Enamine, Ltd., 78 Chervonotkatska
Street, Kyiv, 02094, Ukraine
- Department
of Chemistry, Kyiv National Taras Shevchenko University, 64 Volodymyrska
Street, Kyiv, 01601, Ukraine
| | - Sergey E. Pipko
- ChemBioCenter, Kyiv National Taras Shevchenko University, 61 Chervonotkatska Street, Kyiv, 02094, Ukraine
| | | | - Anzhelika I. Konovets
- Enamine, Ltd., 78 Chervonotkatska
Street, Kyiv, 02094, Ukraine
- The
Institute of High Technologies, Kyiv National Taras Shevchenko University, 4 Glushkov Street, Building 5, Kyiv, 03187, Ukraine
| | - Olena O. Stepaniuk
- Enamine, Ltd., 78 Chervonotkatska
Street, Kyiv, 02094, Ukraine
- National Technical University of Ukraine “Kyiv Politechnic Institute”, 37 Peremohy Avenue, Kyiv, 03056, Ukraine
| | - Inna S. Myronchuk
- Enamine, Ltd., 78 Chervonotkatska
Street, Kyiv, 02094, Ukraine
- National Technical University of Ukraine “Kyiv Politechnic Institute”, 37 Peremohy Avenue, Kyiv, 03056, Ukraine
| | | | - Roman A. Doroschuk
- Department
of Chemistry, Kyiv National Taras Shevchenko University, 64 Volodymyrska
Street, Kyiv, 01601, Ukraine
| | - Olga A. Zaporozhets
- Department
of Chemistry, Kyiv National Taras Shevchenko University, 64 Volodymyrska
Street, Kyiv, 01601, Ukraine
| | - Andrey Tolmachev
- Enamine, Ltd., 78 Chervonotkatska
Street, Kyiv, 02094, Ukraine
- ChemBioCenter, Kyiv National Taras Shevchenko University, 61 Chervonotkatska Street, Kyiv, 02094, Ukraine
| |
Collapse
|
39
|
Conformational Masking and Receptor-Dependent Unmasking of Highly Conserved Env Epitopes Recognized by Non-Neutralizing Antibodies That Mediate Potent ADCC against HIV-1. Viruses 2015; 7:5115-32. [PMID: 26393642 PMCID: PMC4584300 DOI: 10.3390/v7092856] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 08/12/2015] [Accepted: 08/18/2015] [Indexed: 01/11/2023] Open
Abstract
The mechanism of antibody-mediated protection is a major focus of HIV-1 vaccine development and a significant issue in the control of viremia. Virus neutralization, Fc-mediated effector function, or both, are major mechanisms of antibody-mediated protection against HIV-1, although other mechanisms, such as virus aggregation, are known. The interplay between virus neutralization and Fc-mediated effector function in protection against HIV-1 is complex and only partially understood. Passive immunization studies using potent broadly neutralizing antibodies (bnAbs) show that both neutralization and Fc-mediated effector function provides the widest dynamic range of protection; however, a vaccine to elicit these responses remains elusive. By contrast, active immunization studies in both humans and non-human primates using HIV-1 vaccine candidates suggest that weakly neutralizing or non-neutralizing antibodies can protect by Fc-mediated effector function, albeit with a much lower dynamic range seen for passive immunization with bnAbs. HIV-1 has evolved mechanisms to evade each type of antibody-mediated protection that must be countered by a successful AIDS vaccine. Overcoming the hurdles required to elicit bnAbs has become a major focus of HIV-1 vaccine development. Here, we discuss a less studied problem, the structural basis of protection (and its evasion) by antibodies that protect only by potent Fc-mediated effector function.
Collapse
|
40
|
Curreli F, Kwon YD, Zhang H, Scacalossi D, Belov DS, Tikhonov AA, Andreev IA, Altieri A, Kurkin AV, Kwong PD, Debnath AK. Structure-Based Design of a Small Molecule CD4-Antagonist with Broad Spectrum Anti-HIV-1 Activity. J Med Chem 2015; 58:6909-6927. [PMID: 26301736 PMCID: PMC4676410 DOI: 10.1021/acs.jmedchem.5b00709] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Earlier we reported the discovery and design of NBD-556 and their analogs which demonstrated their potential as HIV-1 entry inhibitors. However, progress in developing these inhibitors has been stymied by their CD4-agonist properties, an unfavorable trait for use as drug. Here, we demonstrate the successful conversion of a full CD4-agonist (NBD-556) through a partial CD4-agonist (NBD-09027), to a full CD4-antagonist (NBD-11021) by structure-based modification of the critical oxalamide midregion, previously thought to be intolerant of modification. NBD-11021 showed unprecedented neutralization breath for this class of inhibitors, with pan-neutralization against a panel of 56 Env-pseudotyped HIV-1 representing diverse subtypes of clinical isolates (IC50 as low as 270 nM). The cocrystal structure of NBD-11021 complexed to a monomeric HIV-1 gp120 core revealed its detail binding characteristics. The study is expected to provide a framework for further development of NBD series as HIV-1 entry inhibitors for clinical application against AIDS.
Collapse
Affiliation(s)
- Francesca Curreli
- Laboratory of Molecular Modeling and Drug Design, Lindsey F. Kimball Research Institute, New York Blood Center, New York, New York 10065, United States
| | - Young Do Kwon
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Hongtao Zhang
- Laboratory of Molecular Modeling and Drug Design, Lindsey F. Kimball Research Institute, New York Blood Center, New York, New York 10065, United States
| | - Daniel Scacalossi
- Laboratory of Molecular Modeling and Drug Design, Lindsey F. Kimball Research Institute, New York Blood Center, New York, New York 10065, United States
| | - Dmitry S. Belov
- EDASA Scientific, Scientific Park, Moscow State University, Leninskie Gory, Bld.75, 77–101b, 119992 Moscow, Russia
| | - Artur A. Tikhonov
- EDASA Scientific, Scientific Park, Moscow State University, Leninskie Gory, Bld.75, 77–101b, 119992 Moscow, Russia
| | - Ivan A. Andreev
- EDASA Scientific, Scientific Park, Moscow State University, Leninskie Gory, Bld.75, 77–101b, 119992 Moscow, Russia
| | - Andrea Altieri
- EDASA Scientific, Scientific Park, Moscow State University, Leninskie Gory, Bld.75, 77–101b, 119992 Moscow, Russia
| | - Alexander V. Kurkin
- EDASA Scientific, Scientific Park, Moscow State University, Leninskie Gory, Bld.75, 77–101b, 119992 Moscow, Russia
| | - Peter D. Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Asim K. Debnath
- Laboratory of Molecular Modeling and Drug Design, Lindsey F. Kimball Research Institute, New York Blood Center, New York, New York 10065, United States
| |
Collapse
|
41
|
Abstract
HIV-1-infected cells presenting envelope glycoproteins (Env) in the CD4-bound conformation on their surface are preferentially targeted by antibody-dependent cell-mediated cytotoxicity (ADCC). HIV-1 has evolved a sophisticated mechanism to avoid exposure of ADCC-mediating Env epitopes by down-regulating CD4 and by limiting the overall amount of Env at the cell surface. Here we report that small-molecule CD4-mimetic compounds induce the CD4-bound conformation of Env, and thereby sensitize cells infected with primary HIV-1 isolates to ADCC mediated by antibodies present in sera, cervicovaginal lavages, and breast milk from HIV-1-infected individuals. Importantly, we identified one CD4 mimetic with the capacity to sensitize endogenously infected ex vivo-amplified primary CD4 T cells to ADCC killing mediated by autologous sera and effector cells. Thus, CD4 mimetics hold the promise of therapeutic utility in preventing and controlling HIV-1 infection.
Collapse
|
42
|
Binding mode characterization of NBD series CD4-mimetic HIV-1 entry inhibitors by X-ray structure and resistance study. Antimicrob Agents Chemother 2014; 58:5478-91. [PMID: 25001301 DOI: 10.1128/aac.03339-14] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
We previously identified two small-molecule CD4 mimetics--NBD-556 and NBD-557--and synthesized a series of NBD compounds that resulted in improved neutralization activity in a single-cycle HIV-1 infectivity assay. For the current investigation, we selected several of the most active compounds and assessed their antiviral activity on a panel of 53 reference HIV-1 Env pseudoviruses representing diverse clades of clinical isolates. The selected compounds inhibited tested clades with low-micromolar potencies. Mechanism studies indicated that they act as CD4 agonists, a potentially unfavorable therapeutic trait, in that they can bind to the gp120 envelope glycoprotein and initiate a similar physiological response as CD4. However, one of the compounds, NBD-09027, exhibited reduced agonist properties, in both functional and biophysical studies. To understand the binding mode of these inhibitors, we first generated HIV-1-resistant mutants, assessed their behavior with NBD compounds, and determined the X-ray structures of two inhibitors, NBD-09027 and NBD-10007, in complex with the HIV-1 gp120 core at ∼2-Å resolution. Both studies confirmed that the NBD compounds bind similarly to NBD-556 and NBD-557 by inserting their hydrophobic groups into the Phe43 cavity of gp120. The basic nitrogen of the piperidine ring is located in close proximity to D368 of gp120 but it does not form any H-bond or salt bridge, a likely explanation for their nonoptimal antagonist properties. The results reveal the structural and biological character of the NBD series of CD4 mimetics and identify ways to reduce their agonist properties and convert them to antagonists.
Collapse
|
43
|
Protein-protein interactions and human cellular cofactors as new targets for HIV therapy. Curr Opin Pharmacol 2014; 18:1-8. [PMID: 24993074 DOI: 10.1016/j.coph.2014.06.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 06/04/2014] [Accepted: 06/05/2014] [Indexed: 01/24/2023]
Abstract
Two novel approaches for the development of new drugs against AIDS are summarized each leading to the achievement of important discoveries in anti-HIV therapy. Despite the success of HAART in reducing mortality, resistant strains continue to emerge in the clinic, underscoring the importance of developing next-generation drugs. Protein-protein interactions and human cellular cofactors represent the new targets of tomorrow in HIV research. The most relevant results obtained in the last few years by the two new strategies are described herein.
Collapse
|
44
|
Courter JR, Madani N, Sodroski J, Schön A, Freire E, Kwong PD, Hendrickson WA, Chaiken IM, LaLonde JM, Smith AB. Structure-based design, synthesis and validation of CD4-mimetic small molecule inhibitors of HIV-1 entry: conversion of a viral entry agonist to an antagonist. Acc Chem Res 2014; 47:1228-37. [PMID: 24502450 PMCID: PMC3993944 DOI: 10.1021/ar4002735] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
This
Account provides an overview of a multidisciplinary consortium focused
on structure-based strategies to devise small molecule antagonists
of HIV-1 entry into human T-cells, which if successful would hold
considerable promise for the development of prophylactic modalities
to prevent HIV transmission and thereby alter the course of the AIDS
pandemic. Entry of the human immunodeficiency virus (HIV) into
target T-cells entails an interaction between CD4 on the host T-cell
and gp120, a component of the trimeric envelope glycoprotein spike
on the virion surface. The resultant interaction initiates a series
of conformational changes within the envelope spike that permits binding
to a chemokine receptor, formation of the gp41 fusion complex, and
cell entry. A hydrophobic cavity at the CD4–gp120 interface,
defined by X-ray crystallography, provided an initial site for small
molecule antagonist design. This site however has evolved to facilitate
viral entry. As such, the binding of prospective small molecule inhibitors
within this gp120 cavity can inadvertently trigger an allosteric entry
signal. Structural characterization of the CD4–gp120
interface, which provided the foundation for small molecule structure-based
inhibitor design, will be presented first. An integrated approach
combining biochemical, virological, structural, computational, and
synthetic studies, along with a detailed analysis of ligand binding
energetics, revealed that modestly active small molecule inhibitors
of HIV entry can also promote viral entry into cells lacking the CD4
receptor protein; these competitive inhibitors were termed small molecule
CD4 mimetics. Related congeners were subsequently identified with
both improved binding affinity and more potent viral entry inhibition.
Further assessment of the affinity-enhanced small molecule CD4 mimetics
demonstrated
that premature initiation of conformational change within the viral envelope spike, prior to cell encounter, can lead to irreversible
deactivation of viral entry machinery. Related congeners, which bind the same gp120 site, possess different propensities to elicit the
allosteric response that underlies the undesired enhancement of CD4-independent viral entry. Subsequently, key hotspots in the CD4–gp120 interface were categorized using mutagenesis and isothermal titration calorimetry according to the capacity to increase binding affinity without triggering the allosteric signal. This analysis, combined with cocrystal structures of small molecule viral entry agonists with gp120, led to the development of fully functional antagonists of HIV-1 entry. Additional structure-based design exploiting two hotspots followed by synthesis has now yielded low micromolar inhibitors of viral entry.
Collapse
Affiliation(s)
- Joel R. Courter
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Navid Madani
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Avenue, Boston, Massachusetts 02115, United States
| | - Joseph Sodroski
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Avenue, Boston, Massachusetts 02115, United States
- Department
of Microbiology and Immunology, Harvard Medical School, Department of Immunology and Infectious Diseases, Harvard School of Public Health, Ragon Institute of MGH, MIT and Harvard, Boston, Massachusetts 02115, United States
| | - Arne Schön
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Ernesto Freire
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Peter D. Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Wayne A. Hendrickson
- Department of Biochemistry and Molecular Biophysics and Department of Physiology and Cellular Biophysics, Columbia University, New York, New York 10032, United States
| | - Irwin M. Chaiken
- Department of Biochemistry and Molecular
Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States
| | - Judith M. LaLonde
- Department of Chemistry, Bryn Mawr College, Bryn Mawr, Pennsylvania 19010, United States
| | - Amos B. Smith
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
45
|
CD4-mimetic small molecules sensitize human immunodeficiency virus to vaccine-elicited antibodies. J Virol 2014; 88:6542-55. [PMID: 24696475 DOI: 10.1128/jvi.00540-14] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Approaches to prevent human immunodeficiency virus (HIV-1) transmission are urgently needed. Difficulties in eliciting antibodies that bind conserved epitopes exposed on the unliganded conformation of the HIV-1 envelope glycoprotein (Env) trimer represent barriers to vaccine development. During HIV-1 entry, binding of the gp120 Env to the initial receptor, CD4, triggers conformational changes in Env that result in the formation and exposure of the highly conserved gp120 site for interaction with the coreceptors, CCR5 and CXCR4. The DMJ compounds (+)-DMJ-I-228 and (+)-DMJ-II-121 bind gp120 within the conserved Phe 43 cavity near the CD4-binding site, block CD4 binding, and inhibit HIV-1 infection. Here we show that the DMJ compounds sensitize primary HIV-1, including transmitted/founder viruses, to neutralization by monoclonal antibodies directed against CD4-induced (CD4i) epitopes and the V3 region, two gp120 elements involved in coreceptor binding. Importantly, the DMJ compounds rendered primary HIV-1 sensitive to neutralization by antisera elicited by immunization of rabbits with HIV-1 gp120 cores engineered to assume the CD4-bound state. Thus, small molecules like the DMJ compounds may be useful as microbicides to inhibit HIV-1 infection directly and to sensitize primary HIV-1 to neutralization by readily elicited antibodies. IMPORTANCE Preventing HIV-1 transmission is a priority for global health. Eliciting antibodies that can neutralize many different strains of HIV-1 is difficult, creating problems for the development of a vaccine. We found that certain small-molecule compounds can sensitize HIV-1 to particular antibodies. These antibodies can be elicited in rabbits. These results suggest an approach to prevent HIV-1 sexual transmission in which a virus-sensitizing microbicide is combined with a vaccine.
Collapse
|
46
|
Priede M, Kazak M, Kalnins T, Shubin K, Suna E. Diastereoselective Hydroxymethylation of Cyclic N-tert-Butanesulfinylketimines Using Methoxymethanol as Formaldehyde Source. J Org Chem 2014; 79:3715-24. [DOI: 10.1021/jo500506u] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Martins Priede
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006, Riga, Latvia
| | - Mihail Kazak
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006, Riga, Latvia
| | - Toms Kalnins
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006, Riga, Latvia
| | - Kirill Shubin
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006, Riga, Latvia
| | - Edgars Suna
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006, Riga, Latvia
| |
Collapse
|
47
|
Mándity IM, Monsignori A, Fülöp L, Forró E, Fülöp F. Exploiting aromatic interactions for β-peptide foldamer helix stabilization: a significant design element. Chemistry 2014; 20:4591-7. [PMID: 24664416 DOI: 10.1002/chem.201304448] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Indexed: 11/09/2022]
Abstract
Tetrameric H10/12 helix stabilization was achieved by the application of aromatic side-chains in β-peptide oligomers by intramolecular backbone-side chain CH-π interactions. Because of the enlarged hydrophobic surface of the oligomers, a further aim was the investigation of the self-assembly in a polar medium for the β-peptide H10/12 helices. NMR, ECD, and molecular modeling results indicated that the oligomers formed by cis-[1S,2S]- or cis-[1R,2R]-1-amino-1,2,3,4-tetrahydronaphthalene-2-carboxylic acid (ATENAC) and cis-[1R,2S]- or cis-[1S,2R]-2-aminocyclohex-3-enecarboxylic acid (ACHEC) residues promote stable H10/12 helix formation with an alternating backbone configuration even at the tetrameric chain length. These results support the view that aromatic side-chains can be applied for helical structure stabilization. Importantly, this is the first observation of a stable H10/12 helix with tetrameric chain-length. The hydrophobically driven self-assembly was achieved for the helix-forming oligomers, seen as vesicles in transmission electron microscopy images. The self-association phenomenon, which supports the helical secondary structure of these oligomers, depends on the hydrophobic surface area, because a higher number of aromatic side-chains yielded larger vesicles. These results serve as an essential element for the design of helices relating to the H10/12 helix. Moreover, they open up a novel area for bioactive foldamer construction, while the hydrophobic area gained through the aromatic side-chains may yield important receptor-ligand interaction surfaces, which can provide amplified binding strength.
Collapse
Affiliation(s)
- István M Mándity
- Institute of Pharmaceutical Chemistry, University of Szeged, Eötvös u. 6, 6720 Szeged (Hungary), Fax: (+36) 62-545705
| | | | | | | | | |
Collapse
|
48
|
2-Aminothiazolones as anti-HIV agents that act as gp120-CD4 inhibitors. Antimicrob Agents Chemother 2014; 58:3043-52. [PMID: 24614386 DOI: 10.1128/aac.02739-13] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
We report here the synthesis of 2-aminothiazolones along with their biological properties as novel anti-HIV agents. Such compounds have proven to act through the inhibition of the gp120-CD4 protein-protein interaction that occurs at the very early stage of the HIV-1 entry process. No cytotoxicity was found for these compounds, and broad antiviral activities against laboratory strains and pseudotyped viruses were documented. Docking simulations have also been applied to predict the mechanism, at the molecular level, by which the inhibitors were able to interact within the Phe43 cavity of HIV-1 gp120. Furthermore, a preliminary absorption, distribution, metabolism, and excretion (ADME) evaluation was performed. Overall, this study led the basis for the development of more potent HIV entry inhibitors.
Collapse
|
49
|
Kwon YD, LaLonde JM, Yang Y, Elban MA, Sugawara A, Courter JR, Jones DM, Smith AB, Debnath AK, Kwong PD. Crystal structures of HIV-1 gp120 envelope glycoprotein in complex with NBD analogues that target the CD4-binding site. PLoS One 2014; 9:e85940. [PMID: 24489681 PMCID: PMC3904841 DOI: 10.1371/journal.pone.0085940] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 12/05/2013] [Indexed: 11/19/2022] Open
Abstract
Efforts to develop therapeutic agents that inhibit HIV-1 entry have led to the identification of several small molecule leads. One of the most promising is the NBD series, which binds within a conserved gp120 cavity and possesses para-halogen substituted aromatic rings, a central oxalamide linker, and a tetramethylpiperidine moiety. In this study, we characterized structurally the interactions of four NBD analogues containing meta-fluoro substitution on the aromatic ring and various heterocyclic ring replacements of the tetramethylpiperidine group. The addition of a meta-fluorine to the aromatic ring improved surface complementarity and did not alter the position of the analogue relative to gp120. By contrast, heterocyclic ring replacements of the tetramethylpiperidine moiety exhibited diverse positioning and interactions with the vestibule of the gp120 cavity. Overall, the biological profile of NBD-congeners was modulated by ligand interactions with the gp120-cavity vestibule. Herein, six co-crystal structures of NBD-analogues with gp120 provide a structural framework for continued small molecule-entry inhibitor optimization.
Collapse
Affiliation(s)
- Young Do Kwon
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Judith M. LaLonde
- Department of Chemistry, Bryn Mawr College, Bryn Mawr, Pennsylvania, United States of America
| | - Yongping Yang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Mark A. Elban
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Akihiro Sugawara
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Joel R. Courter
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - David M. Jones
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Amos B. Smith
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Asim K. Debnath
- Laboratory of Molecular Modeling and Drug Design, Lindsey F. Kimball Research Institute of the New York Blood Center, New York, New York, United States of America
| | - Peter D. Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
50
|
Bastian AR, Contarino M, Bailey LD, Aneja R, Moreira DRM, Freedman K, McFadden K, Duffy C, Emileh A, Leslie G, Jacobson JM, Hoxie JA, Chaiken I. Interactions of peptide triazole thiols with Env gp120 induce irreversible breakdown and inactivation of HIV-1 virions. Retrovirology 2013; 10:153. [PMID: 24330857 PMCID: PMC3878761 DOI: 10.1186/1742-4690-10-153] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 12/02/2013] [Indexed: 11/10/2022] Open
Abstract
Background We examined the underlying mechanism of action of the peptide triazole thiol, KR13 that has been shown previously to specifically bind gp120, block cell receptor site interactions and potently inhibit HIV-1 infectivity. Results KR13, the sulfhydryl blocked KR13b and its parent non-sulfhydryl peptide triazole, HNG156, induced gp120 shedding but only KR13 induced p24 capsid protein release. The resulting virion post virolysis had an altered morphology, contained no gp120, but retained gp41 that bound to neutralizing gp41 antibodies. Remarkably, HIV-1 p24 release by KR13 was inhibited by enfuvirtide, which blocks formation of the gp41 6-helix bundle during membrane fusion, while no inhibition of p24 release occurred for enfuvirtide-resistant virus. KR13 thus appears to induce structural changes in gp41 normally associated with membrane fusion and cell entry. The HIV-1 p24 release induced by KR13 was observed in several clades of HIV-1 as well as in fully infectious HIV-1 virions. Conclusions The antiviral activity of KR13 and its ability to inactivate virions prior to target cell engagement suggest that peptide triazole thiols could be highly effective in inhibiting HIV transmission across mucosal barriers and provide a novel probe to understand biochemical signals within envelope that are involved in membrane fusion.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Irwin Chaiken
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, 245N 15th Street, New College Building, Room No, 11102, Philadelphia, PA 19102, USA.
| |
Collapse
|