1
|
Pang PP, Sun H, Yu PX, Yang WM, Zheng YT, Li X, Zheng CB. The hydroxamic acid derivative YPX-C-05 alleviates hypertension and vascular dysfunction through the PI3K/Akt/eNOS pathway. Vascul Pharmacol 2024; 154:107251. [PMID: 38052330 DOI: 10.1016/j.vph.2023.107251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/13/2023] [Accepted: 11/29/2023] [Indexed: 12/07/2023]
Abstract
BACKGROUND Hypertension is a prevalent cardiovascular disease characterized by elevated blood pressure and increased vascular resistance. HDAC inhibitors have emerged as potential therapeutic agents due to their ability to modulate gene expression and cellular processes. YPX-C-05, a novel hydroxamic acid-based HDAC inhibitor, shows promise in its vasodilatory effects and potential targets for hypertension treatment. In this study, we aimed to elucidate the mechanisms underlying YPX-C-05's vasodilatory effects and explore its therapeutic potential in hypertension. METHODS To determine the ex vivo vasodilatory effects of YPX-C-05, isolated aortic rings precontracted with phenylephrine were used. We assessed YPX-C-05's inhibitory effects on HDACs and its impact on histone H4 deacetylation levels in endothelial cells. Network pharmacology analysis was employed to predict putative targets of YPX-C-05 for hypertension treatment. To investigate the involvement of the PI3K/Akt/eNOS pathway, we employed enzyme-linked immunosorbent assay and to assess the levels of NO, ET-1, BH2, and BH4 in human umbilical vein endothelial cells. And we also analyzed the mRNA expression of eNOS and ET-1. Furthermore, Western blotting was conducted to quantify the phosphorylated and total Akt and eNOS levels in human umbilical vein endothelial cell lysates following treatment with YPX-C-05. In order to elucidate the vasodilatory mechanism of YPX-C-05, we employed pharmacological inhibitors for evaluation purposes. Furthermore, we evaluated the chronic antihypertensive effects of YPX-C-05 on N-omega-nitro-L-arginine-induced hypertensive mice in an in vivo model. Vascular remodeling was assessed through histological analysis. RESULTS Our findings demonstrated that YPX-C-05 exerts significant vasodilatory effects in isolated aortic rings precontracted with phenylephrine. Furthermore, YPX-C-05 exhibited inhibitory effects on HDACs and increased histone H4 acetylation in endothelial cells. Network pharmacology analysis predicted YPX-C-05 might activate endothelial eNOS via PI3K/Akt signaling pathway. Inhibition of the PI3K/Akt/eNOS pathway attenuated the vasodilatory effects of YPX-C-05, as evidenced by reduced levels of phosphorylated Akt and eNOS in human umbilical vein endothelial cell lysates. The chronic administration of YPX-C-05 in N-omega-nitro-L-arginine-induced hypertensive mice resulted in significant antihypertensive effects. Histological analysis demonstrated a reduction in vascular remodeling, further supporting the therapeutic potential of YPX-C-05 in hypertension. CONCLUSION This study demonstrates for the first time that the novel hydroxamic acid-based HDAC inhibitor YPX-C-05 produces significant antihypertensive and vasodilatory effects through the PI3K/Akt/eNOS pathway. Our findings support the developing prospect of YPX-C-05 as a novel antihypertensive drug.
Collapse
Affiliation(s)
- Pan-Pan Pang
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China
| | - Hao Sun
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, National Key Laboratory of Advanced Drug Delivery System, Key Laboratory for Biotechnology Drugs of National Health Commission (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan 250117, Shandong, China
| | - Pei-Xia Yu
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, National Key Laboratory of Advanced Drug Delivery System, Key Laboratory for Biotechnology Drugs of National Health Commission (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan 250117, Shandong, China
| | - Wei-Min Yang
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China
| | - Yong-Tang Zheng
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Xun Li
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, National Key Laboratory of Advanced Drug Delivery System, Key Laboratory for Biotechnology Drugs of National Health Commission (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan 250117, Shandong, China.
| | - Chang-Bo Zheng
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China; Guangxi Key Laboratory for Pharmaceutical Molecular Discovery and Druggability Optimization, School of Pharmacy, Guilin Medicinal University, Guilin 541199, China.
| |
Collapse
|
2
|
Helmi YY, Papenkordt N, Rennar G, Gbahou F, El-Hady AK, Labani N, Schmidtkunz K, Boettcher S, Jockers R, Abdel-Halim M, Jung M, Zlotos DP. Melatonin-vorinostat hybrid ligands show higher histone deacetylase and cancer cell growth inhibition than vorinostat. Arch Pharm (Weinheim) 2023; 356:e2300149. [PMID: 37339785 DOI: 10.1002/ardp.202300149] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/22/2023]
Abstract
Anticancer drug conjugates are an emerging approach for future cancer treatment. Here, we report a series of hybrid ligands merging the neurohormone melatonin with the approved histone deacetylase (HDAC) inhibitor vorinostat, using melatonin's amide side chain (3a-e), its indolic nitrogen (5a-d), and its ether oxygen (7a-d) as attachment points. Several hybrid ligands showed higher potency thanvorinostat in both HDAC inhibition and cellular assays on different cultured cancer cell lines. In the most potent HDAC1 and HDAC6 inhibitors, 3e, 5c, and 7c, the hydroxamic acid moiety of vorinostat is linked to melatonin through a hexamethylene spacer. Hybrid ligands 5c and 7c were also found to be potent growth inhibitors of MCF-7, PC-3M-Luc, and HL-60 cancer cell lines. As these compounds showed only weak agonist activity at melatonin MT1 receptors, the findings indicate that their anticancer actions are driven by HDAC inhibition.
Collapse
Affiliation(s)
- Youssef Y Helmi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, The German University in Cairo, New Cairo City, Cairo, Egypt
| | - Niklas Papenkordt
- Institute of Pharmaceutical Sciences, University of Freiburg, Freiburg, Germany
| | - Georg Rennar
- Institute of Pharmaceutical Sciences, University of Freiburg, Freiburg, Germany
| | - Florence Gbahou
- Université Paris Cité, Institut Cochin, INSERM, CNRS, Paris, France
| | - Ahmed K El-Hady
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, The German University in Cairo, New Cairo City, Cairo, Egypt
- Department of Organic and Pharmaceutical Chemistry, School of Life and Medical Sciences, University of Hertfordshire hosted by Global Academic Foundation, New Administrative Capitol, Cairo, Egypt
| | - Nedjma Labani
- Université Paris Cité, Institut Cochin, INSERM, CNRS, Paris, France
| | - Karin Schmidtkunz
- Institute of Pharmaceutical Sciences, University of Freiburg, Freiburg, Germany
| | - Stefan Boettcher
- Pharmaceutical and Medicinal Chemistry, Saarland University, Saarbruecken, Germany
| | - Ralf Jockers
- Université Paris Cité, Institut Cochin, INSERM, CNRS, Paris, France
| | - Mohammad Abdel-Halim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, The German University in Cairo, New Cairo City, Cairo, Egypt
| | - Manfred Jung
- Institute of Pharmaceutical Sciences, University of Freiburg, Freiburg, Germany
| | - Darius P Zlotos
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, The German University in Cairo, New Cairo City, Cairo, Egypt
| |
Collapse
|
3
|
Roy R, Ria T, RoyMahaPatra D, Sk UH. Single Inhibitors versus Dual Inhibitors: Role of HDAC in Cancer. ACS OMEGA 2023; 8:16532-16544. [PMID: 37214715 PMCID: PMC10193415 DOI: 10.1021/acsomega.3c00222] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Due to the multimodal character of cancer, inhibition of two targets simultaneously by a single molecule is a beneficial and effective approach against cancer. Histone deacetylase (HDAC) was widely investigated as a novel category of anticancer drug targets due to its crucial role in various biological processes like cell-proliferation, metastasis, and apoptosis. Numerous HDAC inhibitors such as vorinostat and panobinostat are clinically approved but have limited usage due to their low efficacy, nonselectivity, drug resistance, and toxicity. Therefore, HDACs with a dual targeting ability have attracted great attention. The strategy of combining a HDAC inhibitor with other antitumor agents has been proved advantageous for combating the nonselectivity and drug resistivity problems associated with single-target drugs. Henceforth, we have highlighted dual-targeting inhibitors to target HDAC along with topoisomerase, receptor tyrosine kinase inhibitors, and the zeste homolog 2 enzyme. Our Review mainly focuses on the impact of the substituent effect along with the linker variation of well-known HDAC-inhibitor-conjugated anticancer drugs.
Collapse
|
4
|
Targeting histone deacetylases for cancer therapy: Trends and challenges. Acta Pharm Sin B 2023. [DOI: 10.1016/j.apsb.2023.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023] Open
|
5
|
Zhao Q, Xiong SS, Chen C, Zhu HP, Xie X, Peng C, He G, Han B. Discovery of spirooxindole-derived small-molecule compounds as novel HDAC/MDM2 dual inhibitors and investigation of their anticancer activity. Front Oncol 2022; 12:972372. [PMID: 35992773 PMCID: PMC9386376 DOI: 10.3389/fonc.2022.972372] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Simultaneous inhibition of more than one target is considered to be a novel strategy in cancer therapy. Owing to the importance of histone deacetylases (HDACs) and p53-murine double minute 2 (MDM2) interaction in tumor development and their synergistic effects, a series of MDM2/HDAC bifunctional small-molecule inhibitors were rationally designed and synthesized by incorporating an HDAC pharmacophore into spirooxindole skeletons. These compounds exhibited good inhibitory activities against both targets. In particular, compound 11b was demonstrated to be most potent for MDM2 and HDAC, reaching the enzyme inhibition of 68% and 79%, respectively. Compound 11b also showed efficient antiproliferative activity towards MCF-7 cells with better potency than the reference drug SAHA and Nutlin-3. Furthermore, western blot analysis revealed that compound 11b increased the expression of p53 and Ac-H4 in MCF-7 cells in a dose-dependent manner. Our results indicate that dual inhibition of HDAC and MDM2 may provide a novel and efficient strategy for the discovery of antitumor drug in the future.
Collapse
Affiliation(s)
- Qian Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shan-Shan Xiong
- Department of Dermatology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Can Chen
- School of Pharmacy, Chengdu Medical College, Chengdu, China
- The First Affiliated Hospital, Chengdu Medical College, Chengdu, China
| | - Hong-Ping Zhu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China
| | - Xin Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Gu He
- Department of Dermatology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
6
|
New kinase and HDAC hybrid inhibitors: recent advances and perspectives. Future Med Chem 2022; 14:745-766. [PMID: 35543381 DOI: 10.4155/fmc-2021-0276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Cancer is the second most common cause of death worldwide. It can easily acquire resistance to treatments, demanding new therapeutic strategies, such as simultaneous inhibition of kinase and HDAC enzymes with hybrid inhibitors. Different approaches to this have varied according to their targets, with a few common trends, such as the usage of heterocycle scaffolds for kinase interaction, especially pyrimidine and quinazolines, and hydroxamic acids and benzamides for HDAC inhibition. Besides the hybrid compounds developed focusing on the inhibition tyrosine kinase and receptor tyrosine kinase, many advances have occurred in the development of serine-threonine kinase/HDAC and lipid kinase/HDAC novel compounds. Here, the latest strategies employed in this research area will be reviewed, alongside trends in inhibitor design, and observed gaps will be punctuated.
Collapse
|
7
|
Chen X, Huang Y, Xu W, Cai Y, Yang Y. 4-Aminopyrazolopyrimidine scaffold and its deformation in the design of tyrosine and serine/threonine kinase inhibitors in medicinal chemistry. RSC Med Chem 2022; 13:1008-1028. [DOI: 10.1039/d2md00139j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/08/2022] [Indexed: 11/21/2022] Open
Abstract
Deformation of the 4-aminopyrazolopyrimidine scaffold in designing small-molecule inhibitors.
Collapse
Affiliation(s)
- Xiaolu Chen
- Department of Pharmacy, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, Hubei 434020, China
| | - Yajiao Huang
- Department of Pharmacy, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, Hubei 434020, China
| | - Wanghan Xu
- Affiliated Xiaoshan Hospital, Hangzhou Normal University, Hangzhou 311202, Zhejiang, P. R. China
| | - Yuepiao Cai
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yuanrong Yang
- Department of Pharmacy, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, Hubei 434020, China
| |
Collapse
|
8
|
Li X, Li X, Liu F, Li S, Shi D. Rational Multitargeted Drug Design Strategy from the Perspective of a Medicinal Chemist. J Med Chem 2021; 64:10581-10605. [PMID: 34313432 DOI: 10.1021/acs.jmedchem.1c00683] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The development of multitarget-directed ligands (MTDLs) has become a widely focused research topic, but rational design remains as an enormous challenge. This paper reviews and discusses the design strategy of incorporating the second activity into an existing single-active ligand. If the binding sites of both targets share similar endogenous substrates, MTDLs can be designed by merging two lead compounds with similar functional groups. If the binding sites are large or adjacent to the solution, two key pharmacophores can be fused directly. If the binding regions are small and deep inside the proteins, the linked-pharmacophore strategy might be the only way. The added pharmacophores of second targets should not affect the binding mode of the original ones. Moreover, the inhibitory activities of the two targets need to be adjusted to achieve an optimal ratio.
Collapse
Affiliation(s)
- Xiangqian Li
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, Shandong, P. R. China
| | - Xiaowei Li
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, Shandong, P. R. China
| | - Fang Liu
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, Shandong, P. R. China
| | - Shuo Li
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, Shandong, P. R. China
| | - Dayong Shi
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, Shandong, P. R. China
| |
Collapse
|
9
|
Filho EV, Pinheiro EM, Pinheiro S, Greco SJ. Aminopyrimidines: Recent synthetic procedures and anticancer activities. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132256] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
10
|
Elmezayen AD, Al-Obaidi A, Yelekçi K. Discovery of novel isoform-selective histone deacetylases 5 and 9 inhibitors through combined ligand-based pharmacophore modeling, molecular mocking, and molecular dynamics simulations for cancer treatment. J Mol Graph Model 2021; 106:107937. [PMID: 34049193 DOI: 10.1016/j.jmgm.2021.107937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 04/13/2021] [Accepted: 04/26/2021] [Indexed: 11/17/2022]
Abstract
Class IIa histone deacetylases (HDACs) 5 and 9 play crucial roles in several human disorders such as cancer, making them important targets for drug design. Continuous research is pursed to overcome the cytotoxicity side effect that comes with the currently available broad-spectrum HDACs inhibitors. Herein, common features of active HDACs inhibitors in clinical trials and use have been calculated to generate the best pharmacophore hypothesis. Guner-Henry scoring system was used to validate the generated hypotheses. Hypo1 of HDAC5 and Hypo2 of HDAC9 exhibited the most statistically significance hypotheses. Compounds with fit value of 3 and more were examined by QuickVina 2 docking tool to calculate their binding affinity toward all class IIa HDACs. A total of 6 potential selective compounds were subjected to 100 molecular dynamics (MD) simulation to examine their binding modes. The free binding energy calculations were computed according to the MM-PBSA method. Proposed selective compounds displayed good stability with their targets and thus they may offer potent leads for the designing of HDAC5 and HDAC9 isoform selective inhibitors.
Collapse
Affiliation(s)
- Ammar D Elmezayen
- Department of Bioinformatics and Genetics, Faculty of Engineering and Natural Sciences, Kadir Has University, 34083, Istanbul, Turkey.
| | - Anas Al-Obaidi
- Department of Bioinformatics and Genetics, Faculty of Engineering and Natural Sciences, Kadir Has University, 34083, Istanbul, Turkey.
| | - Kemal Yelekçi
- Department of Bioinformatics and Genetics, Faculty of Engineering and Natural Sciences, Kadir Has University, 34083, Istanbul, Turkey.
| |
Collapse
|
11
|
Liang X, Tang S, Liu X, Liu Y, Xu Q, Wang X, Saidahmatov A, Li C, Wang J, Zhou Y, Zhang Y, Geng M, Huang M, Liu H. Discovery of Novel Pyrrolo[2,3- d]pyrimidine-based Derivatives as Potent JAK/HDAC Dual Inhibitors for the Treatment of Refractory Solid Tumors. J Med Chem 2021; 65:1243-1264. [PMID: 33586434 DOI: 10.1021/acs.jmedchem.0c02111] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
It remains a big challenge to develop HDAC inhibitors effective for solid tumors. Previous studies have suggested that the feedback activation of JAK-STAT3 pathway represents a key mechanism leading to resistance to HDAC inhibitors in breast cancer, suggesting the therapeutic promise of JAK/HDAC dual inhibitors. In this work, we discovered a series of pyrrolo[2,3-d]pyrimidine-based derivatives as potent JAK and HDAC dual inhibitors. Especially, compounds 15d and 15h potently inhibited JAK1/2/3 and HDAC1/6 and displayed antiproliferative and proapoptotic activities in triple-negative breast cancer cell lines. Besides, compounds 15d and 15h also diminished the activation of LIFR-JAK-STAT signaling triggered by tumor-associated fibroblasts, which suggests that these compounds could potentially overcome the drug resistance caused by the tumor microenvironment. More importantly, compound 15d effectively inhibited the tumor growth in MDA-MB-231 xenograft tumor model. Overall, this work provides valuable leads and novel antitumor mechanisms for the treatment of the SAHA-resistant triple-negative breast cancers.
Collapse
Affiliation(s)
- Xuewu Liang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Shuai Tang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Xuyi Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Yingluo Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Qifu Xu
- Department of Medicinal Chemistry, School of Pharmacy, Shandong University, Ji'nan, Shandong 250012, P. R. China
| | - Xiaomin Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Abdusaid Saidahmatov
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Chunpu Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Jiang Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Yu Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Yingjie Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Shandong University, Ji'nan, Shandong 250012, P. R. China
| | - Meiyu Geng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Min Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Hong Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| |
Collapse
|
12
|
Ling Y, Liu J, Qian J, Meng C, Guo J, Gao W, Xiong B, Ling C, Zhang Y. Recent Advances in Multi-target Drugs Targeting Protein Kinases and Histone Deacetylases in Cancer Therapy. Curr Med Chem 2021; 27:7264-7288. [PMID: 31894740 DOI: 10.2174/0929867327666200102115720] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 08/12/2019] [Accepted: 10/12/2019] [Indexed: 02/06/2023]
Abstract
Protein Kinase Inhibitors (PKIs) and Histone Deacetylase Inhibitors (HDACIs) are two important classes of anticancer agents and have provided a variety of small molecule drugs for the treatment of various types of human cancers. However, malignant tumors are of a multifactorial nature that can hardly be "cured" by targeting a single target, and treatment of cancers hence requires modulation of multiple biological targets to restore the physiological balance and generate sufficient therapeutic efficacy. Multi-target drugs have attracted great interest because of their advantages in the treatment of complex cancers by simultaneously targeting multiple signaling pathways and possibly leading to synergistic effects. Synergistic effects have been observed in the combination of kinase inhibitors, such as imatinib, dasatinib, or sorafenib, with an array of HDACIs including vorinostat, romidepsin, or panobinostat. A considerable number of multi-target agents based on PKIs and HDACIs have been developed. In this review, we summarize the recent literature on the development of multi-target kinase-HDAC inhibitors and provide our view on the challenges and future directions on this topic.
Collapse
Affiliation(s)
- Yong Ling
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, China
| | - Ji Liu
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, China
| | - Jianqiang Qian
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, China
| | - Chi Meng
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, China
| | - Jing Guo
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, China
| | - Weijie Gao
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, China
| | - Biao Xiong
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, China
| | - Changchun Ling
- The Affiliated Hospital of Nantong University, Nantong University, Nantong 226001, China
| | - Yanan Zhang
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, China
| |
Collapse
|
13
|
Upadhyay N, Tilekar K, Loiodice F, Anisimova NY, Spirina TS, Sokolova DV, Smirnova GB, Choe JY, Meyer-Almes FJ, Pokrovsky VS, Lavecchia A, Ramaa CS. Pharmacophore hybridization approach to discover novel pyrazoline-based hydantoin analogs with anti-tumor efficacy. Bioorg Chem 2021; 107:104527. [PMID: 33317839 DOI: 10.1016/j.bioorg.2020.104527] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 11/20/2020] [Accepted: 12/01/2020] [Indexed: 02/06/2023]
Abstract
In search for new and safer anti-cancer agents, a structurally guided pharmacophore hybridization strategy of two privileged scaffolds, namely diaryl pyrazolines and imidazolidine-2,4-dione (hydantoin), was adopted resulting in a newfangled series of compounds (H1-H22). Herein, a bio-isosteric replacement of "pyrrolidine-2,5-dione" moiety of our recently reported antitumor hybrid incorporating diaryl pyrazoline and pyrrolidine-2,5-dione scaffolds with "imidazoline-2,4-dione" moiety has been incorporated. Complete biological studies revealed the most potent analog among all i.e. compound H13, which was at-least 10-fold more potent compared to the corresponding pyrrolidine-2,5-dione, in colon and breast cancer cells. In-vitro studies showed activation of caspases, arrest of G0/G1 phase of cell cycle, decrease in the expression of anti-apoptotic protein (Bcl-2) and increased DNA damage. In-vivo assay on HT-29 (human colorectal adenocarcinoma) animal xenograft model unveiled the significant anti-tumor efficacy along with oral bioavailability with maximum TGI 36% (i.p.) and 44% (per os) at 50 mg/kg dose. These findings confirm the suitability of hybridized pyrazoline and imidazolidine-2,4-dione analog H13 for its anti-cancer potential and starting-point for the development of more efficacious analogs.
Collapse
Affiliation(s)
- Neha Upadhyay
- Department of Pharmaceutical Chemistry, Bharati Vidyapeeth's College of Pharmacy, Navi Mumbai, India
| | - Kalpana Tilekar
- Department of Pharmaceutical Chemistry, Bharati Vidyapeeth's College of Pharmacy, Navi Mumbai, India
| | - Fulvio Loiodice
- Department of Pharmacy-Drug Science, University of Bari "Aldo Moro", Via E. Orabona, 4, 70126 Bari, Italy
| | - Natalia Yu Anisimova
- Laboratory of Combined Therapy, N.N. Blokhin Cancer Research Center, Moscow, Russia
| | - Tatiana S Spirina
- Laboratory of Combined Therapy, N.N. Blokhin Cancer Research Center, Moscow, Russia
| | - Darina V Sokolova
- Laboratory of Combined Therapy, N.N. Blokhin Cancer Research Center, Moscow, Russia
| | - Galina B Smirnova
- Laboratory of Combined Therapy, N.N. Blokhin Cancer Research Center, Moscow, Russia
| | - Jun-Yong Choe
- East Carolina Diabetes and Obesity Institute, Department of Chemistry, East Carolina University, Greenville, NC, USA
| | - Franz-Josef Meyer-Almes
- Department of Chemical Engineering and Biotechnology, University of Applied Science, Darmstadt, Germany
| | - Vadim S Pokrovsky
- Laboratory of Combined Therapy, N.N. Blokhin Cancer Research Center, Moscow, Russia; Department of Biochemistry, People's Friendship University, Moscow, Russia.
| | - Antonio Lavecchia
- Department of Pharmacy, "Drug Discovery" Laboratory, University of Napoli "Federico II", Via D. Montesano, 49, 80131 Napoli, Italy.
| | - C S Ramaa
- Department of Pharmaceutical Chemistry, Bharati Vidyapeeth's College of Pharmacy, Navi Mumbai, India.
| |
Collapse
|
14
|
Anticancer properties of chimeric HDAC and kinase inhibitors. Semin Cancer Biol 2020; 83:472-486. [PMID: 33189849 DOI: 10.1016/j.semcancer.2020.11.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/04/2020] [Accepted: 11/04/2020] [Indexed: 12/11/2022]
Abstract
Histone deacetylases (HDACs) are epigenetic regulators of chromatin condensation and decondensation and exert effects on the proliferation and spread of cancer. Thus, HDAC enzymes are promising drug targets for the treatment of cancer. Some HDAC inhibitors such as the hydroxamic acid derivatives vorinostat or panobinostat were already approved for the treatment of hematologic cancer diseases, and are under intensive investigation for their use in solid tumors. But there are also drawbacks of the clinical application of HDAC inhibitors like intrinsic or acquired drug resistance and, thus, new HDAC inhibitors with improved activities are sought for. Kinase inhibitors are very promising anticancer drugs and often showed synergistic anticancer effects in combination with HDAC inhibitors. Several hybrid molecules with HDAC and kinase inhibitory structural motifs were disclosed with even improved anticancer activities when compared with co-application of HDAC and receptor tyrosine kinase inhibitors. Chimeric inhibitors with HDAC inhibitory activities exert a rapidly growing field of research and only in this year several new dual HDAC/kinase inhibitors were disclosed. This review briefly summarizes the status and future perspective of the most advanced and promising dual HDAC/kinase inhibitors and their potential as anticancer drug candidates.
Collapse
|
15
|
Bass AKA, El-Zoghbi MS, Nageeb ESM, Mohamed MFA, Badr M, Abuo-Rahma GEDA. Comprehensive review for anticancer hybridized multitargeting HDAC inhibitors. Eur J Med Chem 2020; 209:112904. [PMID: 33077264 DOI: 10.1016/j.ejmech.2020.112904] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/18/2020] [Accepted: 09/30/2020] [Indexed: 02/08/2023]
Abstract
Despite the encouraging clinical progress of chemotherapeutic agents in cancer treatment, innovation and development of new effective anticancer candidates still represents a challenging endeavor. With 15 million death every year in 2030 according to the estimates, cancer has increased rising of an alarm as a real crisis for public health and health systems worldwide. Therefore, scientist began to introduce innovative solutions to control the cancer global health problem. One of the promising strategies in this issue is the multitarget or smart hybrids having two or more pharmacophores targeting cancer. These rationalized hybrid molecules have gained great interests in cancer treatment as they are capable to simultaneously inhibit more than cancer pathway or target without drug-drug interactions and with less side effects. A prime important example of these hybrids, the HDAC hybrid inhibitors or referred as multitargeting HDAC inhibitors. The ability of HDAC inhibitors to synergistically improve the efficacy of other anti-cancer drugs and moreover, the ease of HDAC inhibitors cap group modification prompt many medicinal chemists to innovate and develop new generation of HDAC hybrid inhibitors. Notably, and during this short period, there are four HDAC inhibitor hybrids have entered different phases of clinical trials for treatment of different types of blood and solid tumors, namely; CUDC-101, CUDC-907, Tinostamustine, and Domatinostat. This review shed light on the most recent hybrids of HDACIs with one or more other cancer target pharmacophore. The designed multitarget hybrids include topoisomerase inhibitors, kinase inhibitors, nitric oxide releasers, antiandrogens, FLT3 and JAC-2 inhibitors, PDE5-inhibitors, NAMPT-inhibitors, Protease inhibitors, BRD4-inhibitors and other targets. This review may help researchers in development and discovery of new horizons in cancer treatment.
Collapse
Affiliation(s)
- Amr K A Bass
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Menoufia University, Menoufia, Egypt
| | - Mona S El-Zoghbi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Menoufia University, Menoufia, Egypt
| | - El-Shimaa M Nageeb
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt
| | - Mamdouh F A Mohamed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sohag University, 82524 Sohag, Egypt
| | - Mohamed Badr
- Department of Biochemistry, Faculty of Pharmacy, Menoufia University, Menoufia, Egypt
| | - Gamal El-Din A Abuo-Rahma
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Deraya University, New Minia, Minia, Egypt.
| |
Collapse
|
16
|
Vaidya GN, Rana P, Venkatesh A, Chatterjee DR, Contractor D, Satpute DP, Nagpure M, Jain A, Kumar D. Paradigm shift of "classical" HDAC inhibitors to "hybrid" HDAC inhibitors in therapeutic interventions. Eur J Med Chem 2020; 209:112844. [PMID: 33143937 DOI: 10.1016/j.ejmech.2020.112844] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/10/2020] [Accepted: 09/10/2020] [Indexed: 02/07/2023]
Abstract
'Epigenetic' regulation of genes via post-translational modulation of proteins is the current mainstay approach for the disease therapies, particularly explored in the Histone Deacetylase (HDAC) class of enzymes. Mainly sight saw in cancer chemotherapeutics, HDAC inhibitors have also found a promising role in other diseases (neurodegenerative disorders, cardiovascular diseases, and viral infections) and successfully entered in various combination therapies (pre-clinical/clinical stages). The prevalent flexibility in the structural design of HDAC inhibitors makes them easily tuneable to merge with other pharmacophore modules for generating multi-targeted single hybrids as a novel tactic to overcome drawbacks of polypharmacy. Herein, we reviewed the putative role of prevalent HDAC hybrids inhibitors in the current and prospective stage as a translational approach to overcome the limitations of the existing conventional drug candidates (parent molecule) when used either alone (drug resistance, solubility issues, adverse side effects, selectivity profile) or in combination (pharmacokinetic interactions, patient compliance) for treating various diseases.
Collapse
Affiliation(s)
- Gargi Nikhil Vaidya
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, Palaj, Gandhinagar, 382355, Gujarat, India
| | - Pooja Rana
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, Palaj, Gandhinagar, 382355, Gujarat, India
| | - Ashwini Venkatesh
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, Palaj, Gandhinagar, 382355, Gujarat, India
| | - Deep Rohan Chatterjee
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, Palaj, Gandhinagar, 382355, Gujarat, India
| | - Darshan Contractor
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, Palaj, Gandhinagar, 382355, Gujarat, India
| | - Dinesh Parshuram Satpute
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, Palaj, Gandhinagar, 382355, Gujarat, India
| | - Mithilesh Nagpure
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, Palaj, Gandhinagar, 382355, Gujarat, India
| | - Alok Jain
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, Palaj, Gandhinagar, 382355, Gujarat, India; Department of Bio-Engineering, Birla Institute of Technology, Mesra, Ranchi, India.
| | - Dinesh Kumar
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, Palaj, Gandhinagar, 382355, Gujarat, India.
| |
Collapse
|
17
|
The Development Process: from SAHA to Hydroxamate HDAC Inhibitors with Branched CAP Region and Linear Linker. Chem Biodivers 2019; 17:e1900427. [DOI: 10.1002/cbdv.201900427] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 12/02/2019] [Indexed: 12/31/2022]
|
18
|
Jiang X, Yu J, Zhou Z, Kongsted J, Song Y, Pannecouque C, De Clercq E, Kang D, Poongavanam V, Liu X, Zhan P. Molecular design opportunities presented by solvent‐exposed regions of target proteins. Med Res Rev 2019; 39:2194-2238. [DOI: 10.1002/med.21581] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 03/09/2019] [Accepted: 03/16/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Xiangyi Jiang
- Department of Medicinal ChemistryKey Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University Jinan Shandong People's Republic of China
| | - Ji Yu
- Department of Medicinal ChemistryKey Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University Jinan Shandong People's Republic of China
| | - Zhongxia Zhou
- Department of Medicinal ChemistryKey Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University Jinan Shandong People's Republic of China
| | - Jacob Kongsted
- Department of Physics, Chemistry and PharmacyUniversity of Southern Denmark Odense Denmark
| | - Yuning Song
- Department of Clinical PharmacyQilu Hospital of Shandong University Jinan China
| | - Christophe Pannecouque
- Rega Institute for Medical ResearchLaboratory of Virology and Chemotherapy Leuven Belgium
| | - Erik De Clercq
- Rega Institute for Medical ResearchLaboratory of Virology and Chemotherapy Leuven Belgium
| | - Dongwei Kang
- Department of Medicinal ChemistryKey Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University Jinan Shandong People's Republic of China
| | | | - Xinyong Liu
- Department of Medicinal ChemistryKey Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University Jinan Shandong People's Republic of China
| | - Peng Zhan
- Department of Medicinal ChemistryKey Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University Jinan Shandong People's Republic of China
| |
Collapse
|
19
|
Ruzic D, Petkovic M, Agbaba D, Ganesan A, Nikolic K. Combined Ligand and Fragment‐based Drug Design of Selective Histone Deacetylase – 6 Inhibitors. Mol Inform 2019; 38:e1800083. [DOI: 10.1002/minf.201800083] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 12/08/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Dusan Ruzic
- Department of Pharmaceutical Chemistry, Faculty of PharmacyUniversity of Belgrade Vojvode Stepe 450 11000 Belgrade Serbia
| | - Milos Petkovic
- Department of Organic Chemistry, Faculty of PharmacyUniversity of Belgrade Vojvode Stepe 450 11000 Belgrade Serbia
| | - Danica Agbaba
- Department of Pharmaceutical Chemistry, Faculty of PharmacyUniversity of Belgrade Vojvode Stepe 450 11000 Belgrade Serbia
| | - A. Ganesan
- School of PharmacyUniversity of East Anglia Norwich Research Park NR4 7TJ Norwich United Kingdom
| | - Katarina Nikolic
- Department of Pharmaceutical Chemistry, Faculty of PharmacyUniversity of Belgrade Vojvode Stepe 450 11000 Belgrade Serbia
- Department of Pharmaceutical Chemistry, Faculty of PharmacyUniversity of Belgrade Vojvode Stepe 450 11000 Belgrade Serbia
| |
Collapse
|
20
|
Luan Y, Li J, Bernatchez JA, Li R. Kinase and Histone Deacetylase Hybrid Inhibitors for Cancer Therapy. J Med Chem 2018; 62:3171-3183. [PMID: 30418766 DOI: 10.1021/acs.jmedchem.8b00189] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Histone deacetylases (HDACs), encompassing at least 18 members, are promising targets for anticancer drug discovery and development. To date, five histone deacetylase inhibitors (HDACis) have been approved for cancer treatment, and numerous others are undergoing clinical trials. It has been well validated that an agent that can simultaneously and effectively inhibit two or more targets may offer greater therapeutic benefits over single-acting agents in preventing resistance to treatment and in potentiating synergistic effects. A prime example of a bifunctional agent is the hybrid HDAC inhibitor. In this perspective, the authors review the majority of reported kinase/HDAC hybrid inhibitors.
Collapse
Affiliation(s)
- Yepeng Luan
- Department of Medicinal Chemistry, School of Pharmacy , Qingdao University , Qingdao 266071 , Shandong Province , China
| | | | | | - Rongshi Li
- Department of Medicinal Chemistry, School of Pharmacy , Qingdao University , Qingdao 266071 , Shandong Province , China.,UNMC Center for Drug Discovery, Department of Pharmaceutical Sciences, College of Pharmacy, Fred and Pamela Buffett Cancer Center, and Center for Staphylococcal Research , University of Nebraska Medical Center , Omaha , Nebraska 68198 , United States
| |
Collapse
|
21
|
Hasan M, Leak RK, Stratford RE, Zlotos DP, Witt‐Enderby PA. Drug conjugates-an emerging approach to treat breast cancer. Pharmacol Res Perspect 2018; 6:e00417. [PMID: 29983986 PMCID: PMC6032357 DOI: 10.1002/prp2.417] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 05/25/2018] [Accepted: 06/05/2018] [Indexed: 12/28/2022] Open
Abstract
Breast cancer treatment using a single drug is associated with a high failure rate due, in part, to the heterogeneity of drug response within individuals, nonspecific target action, drug toxicity, and/or development of resistance. Use of dual-drug therapies, including drug conjugates, may help overcome some of these roadblocks by more selective targeting of the cancer cell and by acting at multiple drug targets rather than one. Drug-conjugate approaches include linking drugs to antibodies (antibody-drug conjugates), radionuclides (radioimmunoconjugates), nanoparticles (nanoparticle-drug conjugates), or to other drugs (drug-drug conjugates). Although all of these conjugates might be designed as effective treatments against breast cancer, the focus of this review will be on drug-drug conjugates because of the increase in versatility of these types of drugs with respect to mode of action at the level of the cancer cell either by creating a novel pharmacophore or by increasing the potency and/or efficacy of the drugs' effects at their respective molecular targets. The development, synthesis, and pharmacological characteristics of drug-drug conjugates will be discussed in the context of breast cancer with the hope of enhancing drug efficacy and reducing toxicities to improve patient quality of life.
Collapse
Affiliation(s)
- Mahmud Hasan
- Division of Pharmaceutical, Administrative, and Social SciencesDuquesne UniversityPittsburghPAUSA
| | - Rehana K. Leak
- Division of Pharmaceutical, Administrative, and Social SciencesDuquesne UniversityPittsburghPAUSA
| | | | - Darius P. Zlotos
- Department of Pharmaceutical ChemistryThe German University in CairoNew Cairo CityCairoEgypt
| | - Paula A. Witt‐Enderby
- Division of Pharmaceutical, Administrative, and Social SciencesDuquesne UniversityPittsburghPAUSA
- University of Pittsburgh Cancer InstituteUniversity of PittsburghPittsburghPAUSA
| |
Collapse
|
22
|
Wang MY, Cheng XC, Chen XB, Li Y, Zang LL, Duan YQ, Chen MZ, Yu P, Sun H, Wang RL. Synthesis and biological evaluation of novelN-aryl-ω-(benzoazol-2-yl)-sulfanylalkanamides as dual inhibitors of α-glucosidase and protein tyrosine phosphatase 1B. Chem Biol Drug Des 2018; 92:1647-1656. [DOI: 10.1111/cbdd.13331] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 03/20/2018] [Accepted: 04/16/2018] [Indexed: 01/22/2023]
Affiliation(s)
- Mei-Yan Wang
- Tianjin Key Laboratory of Food and Biotechnology; School of Biotechnology and Food Science; Tianjin University of Commerce; Tianjin China
| | - Xian-Chao Cheng
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics); School of Pharmacy; Tianjin Medical University; Tianjin China
| | - Xiu-Bo Chen
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics); School of Pharmacy; Tianjin Medical University; Tianjin China
- Tianjin Medical University Eye Hospital; Tianjin China
| | - Yu Li
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics); School of Pharmacy; Tianjin Medical University; Tianjin China
| | - Lan-Lan Zang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics); School of Pharmacy; Tianjin Medical University; Tianjin China
| | - Yu-Qing Duan
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics); School of Pharmacy; Tianjin Medical University; Tianjin China
| | - Ming-Zhu Chen
- College of Biotechnology; Tianjin University of Science and Technology; Tianjin China
| | - Peng Yu
- College of Biotechnology; Tianjin University of Science and Technology; Tianjin China
| | - Hua Sun
- College of Biotechnology; Tianjin University of Science and Technology; Tianjin China
| | - Run-Ling Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics); School of Pharmacy; Tianjin Medical University; Tianjin China
| |
Collapse
|
23
|
Hesham HM, Lasheen DS, Abouzid KA. Chimeric HDAC inhibitors: Comprehensive review on the HDAC-based strategies developed to combat cancer. Med Res Rev 2018; 38:2058-2109. [DOI: 10.1002/med.21505] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 03/29/2018] [Accepted: 04/11/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Heba M. Hesham
- Faculty of Pharmacy, Pharmaceutical Chemistry Department; Ain Shams University; Abbassia Cairo Egypt
| | - Deena S. Lasheen
- Faculty of Pharmacy, Pharmaceutical Chemistry Department; Ain Shams University; Abbassia Cairo Egypt
| | - Khaled A.M. Abouzid
- Faculty of Pharmacy, Pharmaceutical Chemistry Department; Ain Shams University; Abbassia Cairo Egypt
| |
Collapse
|
24
|
Li Y, Luo X, Guo Q, Nie Y, Wang T, Zhang C, Huang Z, Wang X, Liu Y, Chen Y, Zheng J, Yang S, Fan Y, Xiang R. Discovery of N1-(4-((7-Cyclopentyl-6-(dimethylcarbamoyl)-7H-pyrrolo[2,3-d]pyrimidin-2-yl)amino)phenyl)-N8-hydroxyoctanediamide as a Novel Inhibitor Targeting Cyclin-dependent Kinase 4/9 (CDK4/9) and Histone Deacetlyase1 (HDAC1) against Malignant Cancer. J Med Chem 2018. [PMID: 29518312 DOI: 10.1021/acs.jmedchem.8b00209] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Yongtao Li
- Department of Medicinal Chemistry, School of Medicine, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Xiaohe Luo
- Department of Medicinal Chemistry, School of Medicine, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Qingxiang Guo
- Department of Medicinal Chemistry, School of Medicine, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Yongwei Nie
- Department of Medicinal Chemistry, School of Medicine, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Tianqi Wang
- Department of Medicinal Chemistry, School of Medicine, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Chao Zhang
- Department of Medicinal Chemistry, School of Medicine, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Zhi Huang
- Department of Medicinal Chemistry, School of Medicine, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Xin Wang
- Department of Medicinal Chemistry, School of Medicine, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Yanhua Liu
- Department of Medicinal Chemistry, School of Medicine, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Yanan Chen
- Department of Medicinal Chemistry, School of Medicine, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Jianyu Zheng
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China
| | - Shengyong Yang
- Medical Oncology, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yan Fan
- Department of Medicinal Chemistry, School of Medicine, Nankai University, 94 Weijin Road, Tianjin 300071, China
- State Key Laboratory of Medicinal Chemical Biology, 94 Weijin Road, Tianjin 300071, China
- 2011 Project Collaborative Innovation Center for Biotherapy of Ministry of Education, 94 Weijin Road, Tianjin 300071, China
| | - Rong Xiang
- Department of Medicinal Chemistry, School of Medicine, Nankai University, 94 Weijin Road, Tianjin 300071, China
- State Key Laboratory of Medicinal Chemical Biology, 94 Weijin Road, Tianjin 300071, China
- 2011 Project Collaborative Innovation Center for Biotherapy of Ministry of Education, 94 Weijin Road, Tianjin 300071, China
| |
Collapse
|
25
|
Zheng C, Zhong M, Qi Z, Shen F, Zhao Q, Wu L, Huang Y, Tsang SY, Yao X. Histone Deacetylase Inhibitors Relax Mouse Aorta Partly through Their Inhibitory Action on L-Type Ca 2+ Channels. J Pharmacol Exp Ther 2017; 363:211-220. [PMID: 28860353 DOI: 10.1124/jpet.117.242685] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 08/21/2017] [Indexed: 12/21/2022] Open
Abstract
Histone deacetylase (HDAC) inhibitors modulate acetylation/deacetylation of histone and nonhistone proteins. They have been widely used for cancer treatment. However, there have been only a few studies investigating the effect of HDAC inhibitors on vascular tone regulation, most of which employed chronic treatment with HDAC inhibitors. In the present study, we found that two hydroxamate-based pan-HDAC inhibitors, suberoylanilide hydroxamic acid (SAHA) and trichostatin A (TSA), could partially but acutely relax high extracellular K+-contracted mouse aortas. SAHA and TSA also attenuated the high extracellular K+-induced cytosolic Ca2+ rise and inhibited L-type Ca2+ channel current in whole-cell patch-clamp. These data demonstrate that SAHA could inhibit L-type Ca2+ channels to cause vascular relaxation. In addition, SAHA and TSA dose dependently relaxed the arteries precontracted with phenylephrine. The relaxant effect of SAHA and TSA was greater in phenylephrine-precontracted arteries than in high K+-contracted arteries. Although part of the relaxant effect of SAHA and TSA on phenylephrine-precontracted arteries was related to L-type Ca2+ channels, both agents could also induce relaxation via a mechanism independent of L-type Ca2+ channels. Taken together, HDAC inhibitors SAHA and TSA can acutely relax blood vessels via their inhibitory action on L-type Ca2+ channels and via another L-type Ca2+ channel-independent mechanism.
Collapse
Affiliation(s)
- Changbo Zheng
- Department of Physiology, Anhui Medical University, Hefei, China (M.Z., F.S.); School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan, China (C.Z.); and School of Biomedical Sciences and Li Ka Shing Institute of Health Science (C.Z., Q.Z., L.W., Y.H., X.Y.), School of Life Sciences (S.-Y.T, Z.Q.), Shenzhen Research Institute (C.Z., Q.Z., L.W., X.Y.), The Chinese University of Hong Kong, Shenzhen, China
| | - Mingkui Zhong
- Department of Physiology, Anhui Medical University, Hefei, China (M.Z., F.S.); School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan, China (C.Z.); and School of Biomedical Sciences and Li Ka Shing Institute of Health Science (C.Z., Q.Z., L.W., Y.H., X.Y.), School of Life Sciences (S.-Y.T, Z.Q.), Shenzhen Research Institute (C.Z., Q.Z., L.W., X.Y.), The Chinese University of Hong Kong, Shenzhen, China.
| | - Zenghua Qi
- Department of Physiology, Anhui Medical University, Hefei, China (M.Z., F.S.); School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan, China (C.Z.); and School of Biomedical Sciences and Li Ka Shing Institute of Health Science (C.Z., Q.Z., L.W., Y.H., X.Y.), School of Life Sciences (S.-Y.T, Z.Q.), Shenzhen Research Institute (C.Z., Q.Z., L.W., X.Y.), The Chinese University of Hong Kong, Shenzhen, China
| | - Fan Shen
- Department of Physiology, Anhui Medical University, Hefei, China (M.Z., F.S.); School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan, China (C.Z.); and School of Biomedical Sciences and Li Ka Shing Institute of Health Science (C.Z., Q.Z., L.W., Y.H., X.Y.), School of Life Sciences (S.-Y.T, Z.Q.), Shenzhen Research Institute (C.Z., Q.Z., L.W., X.Y.), The Chinese University of Hong Kong, Shenzhen, China
| | - Qiannan Zhao
- Department of Physiology, Anhui Medical University, Hefei, China (M.Z., F.S.); School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan, China (C.Z.); and School of Biomedical Sciences and Li Ka Shing Institute of Health Science (C.Z., Q.Z., L.W., Y.H., X.Y.), School of Life Sciences (S.-Y.T, Z.Q.), Shenzhen Research Institute (C.Z., Q.Z., L.W., X.Y.), The Chinese University of Hong Kong, Shenzhen, China
| | - Lulu Wu
- Department of Physiology, Anhui Medical University, Hefei, China (M.Z., F.S.); School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan, China (C.Z.); and School of Biomedical Sciences and Li Ka Shing Institute of Health Science (C.Z., Q.Z., L.W., Y.H., X.Y.), School of Life Sciences (S.-Y.T, Z.Q.), Shenzhen Research Institute (C.Z., Q.Z., L.W., X.Y.), The Chinese University of Hong Kong, Shenzhen, China
| | - Yu Huang
- Department of Physiology, Anhui Medical University, Hefei, China (M.Z., F.S.); School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan, China (C.Z.); and School of Biomedical Sciences and Li Ka Shing Institute of Health Science (C.Z., Q.Z., L.W., Y.H., X.Y.), School of Life Sciences (S.-Y.T, Z.Q.), Shenzhen Research Institute (C.Z., Q.Z., L.W., X.Y.), The Chinese University of Hong Kong, Shenzhen, China
| | - Suk-Ying Tsang
- Department of Physiology, Anhui Medical University, Hefei, China (M.Z., F.S.); School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan, China (C.Z.); and School of Biomedical Sciences and Li Ka Shing Institute of Health Science (C.Z., Q.Z., L.W., Y.H., X.Y.), School of Life Sciences (S.-Y.T, Z.Q.), Shenzhen Research Institute (C.Z., Q.Z., L.W., X.Y.), The Chinese University of Hong Kong, Shenzhen, China
| | - Xiaoqiang Yao
- Department of Physiology, Anhui Medical University, Hefei, China (M.Z., F.S.); School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan, China (C.Z.); and School of Biomedical Sciences and Li Ka Shing Institute of Health Science (C.Z., Q.Z., L.W., Y.H., X.Y.), School of Life Sciences (S.-Y.T, Z.Q.), Shenzhen Research Institute (C.Z., Q.Z., L.W., X.Y.), The Chinese University of Hong Kong, Shenzhen, China.
| |
Collapse
|
26
|
Lu D, Yan J, Wang L, Liu H, Zeng L, Zhang M, Duan W, Ji Y, Cao J, Geng M, Shen A, Hu Y. Design, Synthesis, and Biological Evaluation of the First c-Met/HDAC Inhibitors Based on Pyridazinone Derivatives. ACS Med Chem Lett 2017; 8:830-834. [PMID: 28835797 DOI: 10.1021/acsmedchemlett.7b00172] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Accepted: 07/18/2017] [Indexed: 12/29/2022] Open
Abstract
Simultaneous blockade of more than one pathway is considered to be a promising approach to overcome the low efficacy and acquired resistance of cancer therapies. Thus, a novel series of c-Met/HDAC bifunctional inhibitors was designed and synthesized by merging pharmacophores of c-Met and HDAC inhibitors. The most potent compound, 2m, inhibited c-Met kinase and HDAC1, with IC50 values of 0.71 and 38 nM, respectively, and showed efficient antiproliferative activities against both EBC-1 and HCT-116 cells with greater potency than the reference drug Chidamide. Western blot analysis revealed that compound 2m inhibited phosphorylation of c-Met and c-Met downstream signaling proteins and increased expression of Ac-H3 and p21 in EBC-1 cells in a dose-dependent manner. Our study presents novel compounds for the further exploration of dual c-Met/HDAC pathway inhibition achieved with a single molecule.
Collapse
Affiliation(s)
- Dong Lu
- State Key Laboratory
of Drug Research, Department of Medicinal Chemistry, Shanghai Institute
of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Juan Yan
- Division of Anti-tumor Pharmacology, State Key Laboratory
of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Lang Wang
- State Key Laboratory
of Drug Research, Department of Medicinal Chemistry, Shanghai Institute
of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Hongchun Liu
- Division of Anti-tumor Pharmacology, State Key Laboratory
of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Limin Zeng
- State Key Laboratory
of Drug Research, Department of Medicinal Chemistry, Shanghai Institute
of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Minmin Zhang
- Division of Anti-tumor Pharmacology, State Key Laboratory
of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Wenwen Duan
- State Key Laboratory
of Drug Research, Department of Medicinal Chemistry, Shanghai Institute
of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Yinchun Ji
- Division of Anti-tumor Pharmacology, State Key Laboratory
of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Jingchen Cao
- Division of Anti-tumor Pharmacology, State Key Laboratory
of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Meiyu Geng
- Division of Anti-tumor Pharmacology, State Key Laboratory
of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Aijun Shen
- Division of Anti-tumor Pharmacology, State Key Laboratory
of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Youhong Hu
- State Key Laboratory
of Drug Research, Department of Medicinal Chemistry, Shanghai Institute
of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| |
Collapse
|
27
|
Structure based design, synthesis and activity studies of small hybrid molecules as HDAC and G9a dual inhibitors. Oncotarget 2017; 8:63187-63207. [PMID: 28968981 PMCID: PMC5609913 DOI: 10.18632/oncotarget.18730] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 05/23/2017] [Indexed: 12/18/2022] Open
Abstract
Aberrant enzymatic activities or expression profiles of epigenetic regulations are therapeutic targets for cancers. Among these, histone 3 lysine 9 methylation (H3K9Me2) and global de-acetylation on histone proteins are associated with multiple cancer phenotypes including leukemia, prostatic carcinoma, hepatocellular carcinoma and pulmonary carcinoma. Here, we report the discovery of the first small molecule capable of acting as a dual inhibitor targeting both G9a and HDAC. Our structure based design, synthesis, and screening for the dual activity of the small molecules led to the discovery of compound 14 which displays promising inhibition of both G9a and HDAC in low micro-molar range in cell based assays.
Collapse
|
28
|
Zagni C, Floresta G, Monciino G, Rescifina A. The Search for Potent, Small-Molecule HDACIs in Cancer Treatment: A Decade After Vorinostat. Med Res Rev 2017; 37:1373-1428. [PMID: 28181261 DOI: 10.1002/med.21437] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 12/05/2016] [Accepted: 12/12/2016] [Indexed: 12/12/2022]
Abstract
Histone deacetylases (HDACs) play a crucial role in the remodeling of chromatin, and are involved in the epigenetic regulation of gene expression. In the last decade, inhibition of HDACs came out as a target for specific epigenetic changes associated with cancer and other diseases. Until now, more than 20 HDAC inhibitors (HDACIs) have entered clinical studies, and some of them (e.g., vorinostat, romidepsin) have been approved for the treatment of cutaneous T-cell lymphoma. This review provides an overview of current knowledge, progress, and molecular mechanisms of HDACIs, covering a period from 2011 until 2015.
Collapse
Affiliation(s)
- Chiara Zagni
- Dipartimento di Scienze del Farmaco, Università degli Studi di Catania, Viale Andrea Doria 6, 95125, Catania, Italy
| | - Giuseppe Floresta
- Dipartimento di Scienze del Farmaco, Università degli Studi di Catania, Viale Andrea Doria 6, 95125, Catania, Italy.,Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale Andrea Doria 6, 95125, Catania, Italy
| | - Giulia Monciino
- Dipartimento di Scienze del Farmaco, Università degli Studi di Catania, Viale Andrea Doria 6, 95125, Catania, Italy
| | - Antonio Rescifina
- Dipartimento di Scienze del Farmaco, Università degli Studi di Catania, Viale Andrea Doria 6, 95125, Catania, Italy
| |
Collapse
|
29
|
Abbot V, Sharma P, Dhiman S, Noolvi MN, Patel HM, Bhardwaj V. Small hybrid heteroaromatics: resourceful biological tools in cancer research. RSC Adv 2017. [DOI: 10.1039/c6ra24662a] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Nowadays, hybrid drugs containing two or more covalently linked known potential pharmacophores are designed to simultaneously modulate multiple targets of multifactorial diseases to overcome the side effects associated with a single drug.
Collapse
Affiliation(s)
- Vikrant Abbot
- Department of Biotechnology
- Bioinformatics and Pharmacy
- Jaypee University of Information Technology
- Solan
- India
| | - Poonam Sharma
- Department of Biotechnology
- Bioinformatics and Pharmacy
- Jaypee University of Information Technology
- Solan
- India
| | - Saurabh Dhiman
- Department of Biotechnology
- Bioinformatics and Pharmacy
- Jaypee University of Information Technology
- Solan
- India
| | | | - Harun M. Patel
- Department of Pharmaceutical Chemistry
- R.C. Patel Institute of Pharmaceutical Education and Research
- Dhule
- India
| | - Varun Bhardwaj
- Department of Biotechnology
- Bioinformatics and Pharmacy
- Jaypee University of Information Technology
- Solan
- India
| |
Collapse
|
30
|
Johansson JR, Beke-Somfai T, Said Stålsmeden A, Kann N. Ruthenium-Catalyzed Azide Alkyne Cycloaddition Reaction: Scope, Mechanism, and Applications. Chem Rev 2016; 116:14726-14768. [DOI: 10.1021/acs.chemrev.6b00466] [Citation(s) in RCA: 223] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Johan R. Johansson
- Cardiovascular
and Metabolic Diseases, Innovative Medicines and Early Development
Biotech Unit, AstraZeneca, Pepparedsleden 1, SE-43183 Mölndal, Sweden
| | - Tamás Beke-Somfai
- Research
Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok
krt. 2, H-1117 Budapest, Hungary
| | - Anna Said Stålsmeden
- Chemistry
and Biochemistry, Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-41296 Göteborg, Sweden
| | - Nina Kann
- Chemistry
and Biochemistry, Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-41296 Göteborg, Sweden
| |
Collapse
|
31
|
Yang F, Peng S, Li Y, Su L, Peng Y, Wu J, Chen H, Liu M, Yi Z, Chen Y. A hybrid of thiazolidinone with the hydroxamate scaffold for developing novel histone deacetylase inhibitors with antitumor activities. Org Biomol Chem 2016; 14:1727-35. [PMID: 26732459 DOI: 10.1039/c5ob02250a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A series of novel histone deacetylase (HDAC) inhibitors were designed, synthesized and evaluated based on the strategies of a hybrid of the classic pharmacophore of HDAC inhibitors with the thiazolidinone scaffold. Some of the compounds 12i showed potent HDAC1 inhibition with nM IC50 values, more importantly, compound displayed much better anti-metastatic effects than vorinostat (SAHA) against migration of the A549 cell line. Further mechanism exploration implied that compound 12i may inhibit tumor metastasis via modulating the epithelial-mesenchymal transition (EMT) and upregulating the acetylation of α-tubulin.
Collapse
Affiliation(s)
- Feifei Yang
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China. and School of biological science and technology, University of Jinan, Jinan, Shandong Province 250022, China
| | - Shihong Peng
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Yunqi Li
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Liqiang Su
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Yangrui Peng
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Jing Wu
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Huang Chen
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Mingyao Liu
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Zhengfang Yi
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Yihua Chen
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
32
|
Ganesan A. Multitarget Drugs: an Epigenetic Epiphany. ChemMedChem 2016; 11:1227-41. [PMID: 26891251 DOI: 10.1002/cmdc.201500394] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 01/28/2016] [Indexed: 12/22/2022]
Abstract
Epigenetics refers to changes in a biological phenotype that are not due to an underlying change in genotype. In eukaryotes, epigenetics involves a set of chemical modifications of the DNA and the histone proteins in nucleosomes. These dynamic changes are carried out by enzymes and modulate protein-protein and protein-nucleic acid interactions to determine whether specific genes are expressed or silenced. Both the epigenetic enzymes and recognition domains are currently important drug discovery targets, particularly for the treatment of cancer. This review summarizes the progress of epigenetic targets that have reached a clinical stage: DNA methyltransferases, histone deacetylases, lysine methyltransferases, lysine demethylases, and bromodomains; this is followed by a comprehensive survey of multitarget drugs that have included an epigenetic target as one of their mechanisms of action.
Collapse
Affiliation(s)
- A Ganesan
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.
| |
Collapse
|
33
|
Wu H, Shi Y, Deng X, Su Y, Du C, Wei J, Ren Y, Wu M, Hou Y, Duan H. Inhibition of c-Src/p38 MAPK pathway ameliorates renal tubular epithelial cells apoptosis in db/db mice. Mol Cell Endocrinol 2015; 417:27-35. [PMID: 26363223 DOI: 10.1016/j.mce.2015.09.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 08/05/2015] [Accepted: 09/08/2015] [Indexed: 01/08/2023]
Abstract
Renal tubular epithelial cells (RTEC) apoptosis, which plays a key role in the pathogenesis and progression of diabetic nephropathy (DN), is believed to be contributive to the hyperglycemia-induced kidney failure, though the exact mechanisms remain elusive. In this study, we investigated how inhibition of c-Src/p38 MAPK pathway would affect RTEC apoptosis. The c-Src inhibitor PP2 i.p. administered every other day for 8 weeks to diabetic db/db mice significantly reduced their kidney weights, daily urinary volumes, blood glucose, blood urea nitrogen, serum creatinine, triglyceride and urine albumin excretion, whereas deactivation of c-Src and p38 MAPK were also observed, along with decreases in both Bax/Bcl-2 ratio and cleaved caspase-3 level in the kidneys. In vitro, exposure of HK-2 cells (a human RTEC line), to high glucose (HG) promoted phosphorylation of c-Src and p38 MAPK, and subsequently, as revealed by western blotting, TUNEL assay and flow cytometry, increased cell death, which can be inhibited by PP2. Especially, a specific p38 MAPK inhibitor, SB203580, that both attenuated HG-induced c-Src activation and abrogated the expression of PPARγ and CHOP, also reduced apoptosis. Taken together, PP2 inhibits c-Src and therefore reduces apoptosis in RTEC, which at least in part, is due to suppressed p38 MAPK activation in diabetic kidney.
Collapse
Affiliation(s)
- Haijiang Wu
- Department of Pathology, Hebei Medical University, Shijiazhuang, China; Key Laboratory of Kidney Diseases of Hebei Province, Shijiazhufang, China
| | - Yonghong Shi
- Department of Pathology, Hebei Medical University, Shijiazhuang, China; Key Laboratory of Kidney Diseases of Hebei Province, Shijiazhufang, China
| | - Xinna Deng
- Department of Oncology & Immunotherapy, Hebei General Hospital, Shijiazhuang, China
| | - Ye Su
- Mathew Mailing Centre for Translational Transplantation Studies, Lawson Health Research Institute, London Health Sciences Centre, Department of Medicine, and Pathology, University of Western Ontario, London, Ontario, Canada
| | - Chunyang Du
- Department of Pathology, Hebei Medical University, Shijiazhuang, China; Key Laboratory of Kidney Diseases of Hebei Province, Shijiazhufang, China
| | - Jinying Wei
- Department of Pathology, Hebei Medical University, Shijiazhuang, China; Key Laboratory of Kidney Diseases of Hebei Province, Shijiazhufang, China
| | - Yunzhuo Ren
- Department of Pathology, Hebei Medical University, Shijiazhuang, China; Key Laboratory of Kidney Diseases of Hebei Province, Shijiazhufang, China
| | - Ming Wu
- Department of Pathology, Hebei Medical University, Shijiazhuang, China; Key Laboratory of Kidney Diseases of Hebei Province, Shijiazhufang, China
| | - Yanjuan Hou
- Department of Pathology, Hebei Medical University, Shijiazhuang, China; Key Laboratory of Kidney Diseases of Hebei Province, Shijiazhufang, China
| | - Huijun Duan
- Department of Pathology, Hebei Medical University, Shijiazhuang, China; Key Laboratory of Kidney Diseases of Hebei Province, Shijiazhufang, China.
| |
Collapse
|
34
|
Mendoza-Sanchez R, Cotnoir-White D, Kulpa J, Jutras I, Pottel J, Moitessier N, Mader S, Gleason JL. Design, synthesis and evaluation of antiestrogen and histone deacetylase inhibitor molecular hybrids. Bioorg Med Chem 2015; 23:7597-606. [DOI: 10.1016/j.bmc.2015.11.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 10/28/2015] [Accepted: 11/05/2015] [Indexed: 01/28/2023]
|
35
|
Musso L, Dallavalle S, Zunino F. Perspectives in the development of hybrid bifunctional antitumour agents. Biochem Pharmacol 2015; 96:297-305. [DOI: 10.1016/j.bcp.2015.06.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 06/05/2015] [Indexed: 01/04/2023]
|
36
|
Seo YH. Dual Inhibitors Against Topoisomerases and Histone Deacetylases. J Cancer Prev 2015; 20:85-91. [PMID: 26151040 PMCID: PMC4492363 DOI: 10.15430/jcp.2015.20.2.85] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 06/01/2015] [Accepted: 06/01/2015] [Indexed: 12/13/2022] Open
Abstract
Topoisomerases and histone deacetylases (HDACs) are considered as important therapeutic targets for a wide range of cancers, due to their association with the initiation, proliferation and survival of cancer cells. Topoisomerases are involved in the cleavage and religation processes of DNA, while HDACs regulate a dynamic epigenetic modification of the lysine amino acid on various proteins. Extensive studies have been undertaken to discover small molecule inhibitor of each protein and thereby, several drugs have been transpired from this effort and successfully approved for clinical use. However, the inherent heterogeneity and multiple genetic abnormalities of cancers challenge the clinical application of these single targeted drugs. In order to overcome the limitations of a single target approach, a novel approach, simultaneously targeting topoisomerases and HDACs with a single molecule has been recently employed and attracted much attention of medicinal chemists in drug discovery. This review highlights the current studies on the discovery of dual inhibitors against topoisomerases and HDACs, provides their pharmacological aspects and advantages, and discusses the challenges and promise of the dual inhibitors.
Collapse
Affiliation(s)
- Young Ho Seo
- College of Pharmacy, Keimyung University, Daegu, Korea
| |
Collapse
|
37
|
Histone deacetylases and their inhibitors in cancer, neurological diseases and immune disorders. Nat Rev Drug Discov 2014; 13:673-91. [PMID: 25131830 DOI: 10.1038/nrd4360] [Citation(s) in RCA: 1174] [Impact Index Per Article: 117.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Epigenetic aberrations, which are recognized as key drivers of several human diseases, are often caused by genetic defects that result in functional deregulation of epigenetic proteins, their altered expression and/or their atypical recruitment to certain gene promoters. Importantly, epigenetic changes are reversible, and epigenetic enzymes and regulatory proteins can be targeted using small molecules. This Review discusses the role of altered expression and/or function of one class of epigenetic regulators--histone deacetylases (HDACs)--and their role in cancer, neurological diseases and immune disorders. We highlight the development of small-molecule HDAC inhibitors and their use in the laboratory, in preclinical models and in the clinic.
Collapse
|
38
|
Rana A, Alex JM, Chauhan M, Joshi G, Kumar R. A review on pharmacophoric designs of antiproliferative agents. Med Chem Res 2014. [DOI: 10.1007/s00044-014-1196-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
39
|
Patel H, Chuckowree I, Coxhead P, Guille M, Wang M, Zuckermann A, Williams RSB, Librizzi M, Paranal RM, Bradner JE, Spencer J. Synthesis of hybrid anticancer agents based on kinase and histone deacetylase inhibitors. MEDCHEMCOMM 2014. [DOI: 10.1039/c4md00211c] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A HDAC, kinase inhibitor hybrid, (Z)-N1-(3-((1H-pyrrol-2-yl)methylene)-2-oxoindolin-5-yl)-N8-hydroxyoctanediamide, 6, showed impressive anticancer action in a number of biochemical and cell-based assays.
Collapse
Affiliation(s)
- Hiren Patel
- School of Science at Medway
- University of Greenwich
- Chatham
- UK
| | - Irina Chuckowree
- School of Science at Medway
- University of Greenwich
- Chatham
- UK
- Department of Chemistry
| | - Peter Coxhead
- School of Biological Sciences
- University of Portsmouth
- Portsmouth
- UK
| | - Matthew Guille
- School of Biological Sciences
- University of Portsmouth
- Portsmouth
- UK
| | - Minghua Wang
- Terrence Donnelly Center for Cellular and Biomolecular Research
- University of Toronto
- Toronto
- Canada
| | - Alexandra Zuckermann
- Centre for Biomedical Sciences
- School of Biological Sciences
- Royal Holloway University of London
- Egham
- UK
| | - Robin S. B. Williams
- Centre for Biomedical Sciences
- School of Biological Sciences
- Royal Holloway University of London
- Egham
- UK
| | | | | | | | - John Spencer
- School of Science at Medway
- University of Greenwich
- Chatham
- UK
- Department of Chemistry
| |
Collapse
|
40
|
Wang J, Sun F, Han L, Hou X, Pan X, Liu R, Tang W, Fang H. Design, synthesis, and preliminary bioactivity studies of substituted purine hydroxamic acid derivatives as novel histone deacetylase (HDAC) inhibitors. MEDCHEMCOMM 2014. [DOI: 10.1039/c4md00203b] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Histone deacetylase (HDAC) is a clinically validated target for anti-tumor therapy. In order to increase HDAC inhibition and efficiency, we developed a series of novel substituted purine hydroxamic acids as potent HDAC inhibitors.
Collapse
Affiliation(s)
- Junhua Wang
- Department of Medicinal Chemistry
- Key Laboratory of Chemical Biology (Ministry of Education)
- School of Pharmacy
- Shandong University
- Jinan 250012
| | - Feng'e Sun
- Department of Medicinal Chemistry
- Key Laboratory of Chemical Biology (Ministry of Education)
- School of Pharmacy
- Shandong University
- Jinan 250012
| | - Leiqiang Han
- Department of Medicinal Chemistry
- Key Laboratory of Chemical Biology (Ministry of Education)
- School of Pharmacy
- Shandong University
- Jinan 250012
| | - Xuben Hou
- Department of Medicinal Chemistry
- Key Laboratory of Chemical Biology (Ministry of Education)
- School of Pharmacy
- Shandong University
- Jinan 250012
| | - Xiaole Pan
- Department of Medicinal Chemistry
- Key Laboratory of Chemical Biology (Ministry of Education)
- School of Pharmacy
- Shandong University
- Jinan 250012
| | - Renshuai Liu
- Department of Medicinal Chemistry
- Key Laboratory of Chemical Biology (Ministry of Education)
- School of Pharmacy
- Shandong University
- Jinan 250012
| | - Weiping Tang
- Division of Pharmaceutical Sciences
- School of Pharmacy
- University of Wisconsin
- Madison 53705
- USA
| | - Hao Fang
- Department of Medicinal Chemistry
- Key Laboratory of Chemical Biology (Ministry of Education)
- School of Pharmacy
- Shandong University
- Jinan 250012
| |
Collapse
|
41
|
The discovery and optimization of novel dual inhibitors of topoisomerase ii and histone deacetylase. Bioorg Med Chem 2013; 21:6981-95. [DOI: 10.1016/j.bmc.2013.09.023] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 09/07/2013] [Accepted: 09/07/2013] [Indexed: 11/22/2022]
|