1
|
Mohammed AF, Othman SA, Abou-Ghadir OF, Kotb AA, Mostafa YA, El-Mokhtar MA, Abdu-Allah HHM. Design, synthesis, biological evaluation and docking study of some new aryl and heteroaryl thiomannosides as FimH antagonists. Bioorg Chem 2024; 145:107258. [PMID: 38447463 DOI: 10.1016/j.bioorg.2024.107258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/08/2024]
Abstract
FimH is a mannose-recognizing lectin that is expressed by Escherichia coli guiding its ability to adhere and infect cells. It is involved in pathogenesis of urinary tract infections and Chron's disease. Several X-ray structure-guided ligand design studies were extensively utilized in the discovery and optimization of small molecule aryl mannoside FimH antagonists. These antagonists retain key specific interactions of the mannose scaffolds with the FimH carbohydrate recognition domains. Thiomannosides are attractive and stable scaffolds, and this work reports the synthesis of some of their new aryl and heteroaryl derivatives as FimH antagonists. FimH-competitive binding assays as well as biofilm inhibition of the new compounds (24-32) were determined in comparison with the reference n-heptyl α-d-mannopyranoside (HM). The affinity among these compounds was found to be governed by the structure of the aryl and heteroarylf aglycones. Two compounds 31 and 32 revealed higher activity than HM. Molecular docking and total hydrophobic to topological polar surface area ratio calculations attributed to explain the obtained biological results. Finally, the SAR study suggested that introducing an aryl or heteroaryl aglycone of sufficient hydrophobicity and of proper orientation within the tyrosine binding site considerably enhance binding affinity. The potent and synthetically feasible FimH antagonists described herein hold potential as leads for the development of sensors for detection of E. coli and treatment of its diseases.
Collapse
Affiliation(s)
- Anber F Mohammed
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Shimaa A Othman
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Ola F Abou-Ghadir
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Ahmed A Kotb
- Department of Microbiology and Immunology, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt
| | - Yaser A Mostafa
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Mohamed A El-Mokhtar
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
| | - Hajjaj H M Abdu-Allah
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt.
| |
Collapse
|
2
|
Samanta P, Doerksen RJ. Identifying FmlH lectin-binding small molecules for the prevention of Escherichia coli-induced urinary tract infections using hybrid fragment-based design and molecular docking. Comput Biol Med 2023; 163:107072. [PMID: 37329611 PMCID: PMC10810094 DOI: 10.1016/j.compbiomed.2023.107072] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 04/26/2023] [Accepted: 05/27/2023] [Indexed: 06/19/2023]
Abstract
Nearly 50% of women are affected by urinary tract infections (UTIs) during their lifetimes. The most common agent to cause UTIs is Uropathogenic Escherichia coli (UPEC). UPEC expresses fibers known as chaperone-usher pathway pili with adhesins that specifically bind to receptors as they colonize various host tissues. UPEC uses an F9/Yde/Fml pilus, tipped with FmlH, which interacts with terminal galactoside/galactosaminoside units in glycoproteins in the epithelial cells of the bladder and kidney. The extensive use of traditional antibiotics has led to the rise of various antibiotic-resistant strains of UPEC. An alternative therapeutic approach is to use an anti-adhesion strategy mediated by competitive tight-binding FmlH inhibitors. In the current study, we have applied various computational modeling techniques, including fragment-based e-pharmacophore virtual screening, molecular docking, molecular dynamics simulations and binding free energy calculations for the design of small molecules that exhibit binding to FmlH. Our modeling protocol successfully predicted ligand moieties, such as a thiazole group, which were previously found as components of UPEC adhesin pili inhibitors, thereby validating our designed screening protocol. The screening protocol developed here could be utilized for design of ligands for other homologous protein targets. We also identified several novel galactosaminoside-containing molecules that, according to the computational modeling, are predicted to interact strongly with FmlH and hence we predict will be good FmlH inhibitors. Additionally, we have prepared and supplied a database of ∼190K small molecules obtained from virtual screening, which can serve as an excellent resource for the discovery of novel FmlH inhibitors.
Collapse
Affiliation(s)
- Priyanka Samanta
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, MS, 38677-1848, USA
| | - Robert J Doerksen
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, MS, 38677-1848, USA; Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, MS, 38677-1848, USA.
| |
Collapse
|
3
|
Krammer EM, Bridot C, Serna S, Echeverria B, Semwal S, Roubinet B, van Noort K, Wilbers RP, Bourenkov G, de Ruyck J, Landemarre L, Reichardt N, Bouckaert J. Structural insights into a cooperative switch between one and two FimH bacterial adhesins binding pauci- and high-mannose type N-glycan receptors. J Biol Chem 2023; 299:104627. [PMID: 36944399 PMCID: PMC10127133 DOI: 10.1016/j.jbc.2023.104627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 03/06/2023] [Accepted: 03/14/2023] [Indexed: 03/22/2023] Open
Abstract
The FimH type-1 fimbrial adhesin allows pathogenic Escherichia coli to adhere to glycoproteins in the epithelial linings of human bladder and intestinal tract, by using multiple fimbriae simultaneously. Pauci- and high-mannose type N-glycans are natural FimH receptors on those glycoproteins. Oligomannose-3 and -5 bind with the highest affinity to FimH by using the same Manα1,3Man branch. Oligomannose-6 is generated from oligomannose-5 in the next step of the biogenesis of high-mannose N-glycans, by the transfer of a mannose in α1,2-linkage onto this branch. Using serial crystallography and by measuring the kinetics of binding, we demonstrate that shielding the high-affinity epitope drives the binding of multiple FimH molecules. First, we profiled FimH glycan binding on a microarray containing paucimannosidic N-glycans and in a FimH LEctPROFILE® assay. To make the transition to oligomannose-6, we measured the kinetics of FimH binding using paucimannosidic N-glycans, glycoproteins and all four α-dimannosides conjugated to bovine serum albumin. Equimolar mixed interfaces of the dimannosides present in oligomannose-6 and molecular dynamics simulations suggest a positive cooperativity in the bivalent binding of Manα1,3Manα1 and Manα1,6Manα1 dimannosides. The binding of core α1,6-fucosylated oligomannose-3 in the co-crystals of FimH is monovalent, but interestingly the GlcNAc1 - Fuc moiety retains highly flexibility. In co-crystals with oligomannose-6, two FimH bacterial adhesins bind the Manα1,3Manα1 and Manα1,6Manα1 endings of the second trimannose core (A-4'-B). This cooperative switch towards bivalent binding appears sustainable beyond a molar excess of oligomannose-6. Our findings provide important novel structural insights for the design of multivalent FimH antagonists that bind with positive cooperativity.
Collapse
Affiliation(s)
- Eva-Maria Krammer
- Unité de Glycobiologie Structurale et Fonctionnelle (UGSF), UMR 8576 CNRS and University of Lille, 50 Avenue Halley, 59658 Villeneuve d'Ascq, France
| | - Clarisse Bridot
- Unité de Glycobiologie Structurale et Fonctionnelle (UGSF), UMR 8576 CNRS and University of Lille, 50 Avenue Halley, 59658 Villeneuve d'Ascq, France
| | - Sonia Serna
- Glycotechnology Group, Basque Research and Technology Alliance (BRTA), CIC biomaGUNE, Paseo Miramon 194, 20014 Donostia, Spain
| | - Begoña Echeverria
- Glycotechnology Group, Basque Research and Technology Alliance (BRTA), CIC biomaGUNE, Paseo Miramon 194, 20014 Donostia, Spain
| | - Shubham Semwal
- Unité de Glycobiologie Structurale et Fonctionnelle (UGSF), UMR 8576 CNRS and University of Lille, 50 Avenue Halley, 59658 Villeneuve d'Ascq, France
| | | | - Kim van Noort
- Laboratory of Nematology, Plant Science Group, Wageningen University and Research, Droevendaalsesteeg 1, 6708 Wageningen, The Netherlands
| | - RuudH P Wilbers
- Laboratory of Nematology, Plant Science Group, Wageningen University and Research, Droevendaalsesteeg 1, 6708 Wageningen, The Netherlands
| | - Gleb Bourenkov
- European Molecular Biology Laboratory (EMBL), Hamburg Unit c/o DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Jérôme de Ruyck
- Unité de Glycobiologie Structurale et Fonctionnelle (UGSF), UMR 8576 CNRS and University of Lille, 50 Avenue Halley, 59658 Villeneuve d'Ascq, France
| | | | - Niels Reichardt
- Glycotechnology Group, Basque Research and Technology Alliance (BRTA), CIC biomaGUNE, Paseo Miramon 194, 20014 Donostia, Spain; CIBER-BBN, Paseo Miramon 194, 20014 Donostia, Spain
| | - Julie Bouckaert
- Unité de Glycobiologie Structurale et Fonctionnelle (UGSF), UMR 8576 CNRS and University of Lille, 50 Avenue Halley, 59658 Villeneuve d'Ascq, France.
| |
Collapse
|
4
|
Mousavifar L, Parreira P, Taponard A, Graça VCD, Martins MCL, Roy R. Validation of Selective Capture of Fimbriated Uropathogenic Escherichia coli by a Label-free Engineering Detection System Using Mannosylated Surfaces. ACS APPLIED BIO MATERIALS 2022; 5:5877-5886. [PMID: 36417663 DOI: 10.1021/acsabm.2c00838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Label-free detection of pathogens is of major concern to the microbiologist community. Most procedures require several steps and amplification techniques. Carbohydrates are well-established receptors for host-pathogen interactions, which can be amplified using glycodendritic architectures on the basis of multivalent binding interactions. Given that uropathogenic Escherichia coli bacterial FimH is based on such mannopyranoside-binding interactions, we demonstrate herein that synthetic monomeric and trimeric thiolated α-d-mannosides can be effectively bound to gold substrate-functionalized self-assembled monolayers (SAMs) preactivated with maleimide functionalities. Mannosides grafted onto SAMs were followed using Quartz Crystal Microbalance with Dissipation (QCM-D). Binding recognition efficiency was first evaluated using the plant lectin from Canavalia ensiformis (ConA) also using QCM-D. We showed a direct correlation between the amount of mannoside bound and the lectin attachment. Even though there was less trimer bound (nM/cm2) to the surface, we observed a 7-fold higher amount of lectin anchoring, thus further demonstrating the value of the multivalent interactions. We next examined the relative fimbriated E. coli selective adhesion/capture to either the monomeric or the trimeric mannoside bound to the surface. Our results established the successful engineering of the surfaces to show E. coli adhesion via specific mannopyranoside binding but unexpectedly, the monomeric derivative was more efficient than the trimeric analog, which could be explained by steric hindrance. This approach strongly suggests that it could be broadly applicable to other Gram-negative bacteria sharing analogous carbohydrate-dependent binding interactions.
Collapse
Affiliation(s)
- Leila Mousavifar
- Glycosciences and Nanomaterials Laboratory, Department of Chemistry, Université du Québec à Montréal, P.O. Box 8888, Succ. Centre-Ville, Montréal, Québec H3C 3P8, Canada
| | - Paula Parreira
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal.,INEB, Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
| | - Alexis Taponard
- Glycosciences and Nanomaterials Laboratory, Department of Chemistry, Université du Québec à Montréal, P.O. Box 8888, Succ. Centre-Ville, Montréal, Québec H3C 3P8, Canada
| | - Vanessa C D Graça
- INEB, Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
| | - M Cristina L Martins
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal.,INEB, Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal.,ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4200-135 Porto, Portugal
| | - René Roy
- Glycosciences and Nanomaterials Laboratory, Department of Chemistry, Université du Québec à Montréal, P.O. Box 8888, Succ. Centre-Ville, Montréal, Québec H3C 3P8, Canada
| |
Collapse
|
5
|
Singh K, Kulkarni SS. Small Carbohydrate Derivatives as Potent Antibiofilm Agents. J Med Chem 2022; 65:8525-8549. [PMID: 35777073 DOI: 10.1021/acs.jmedchem.1c01039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Biofilm formation by most pathogenic bacteria is considered as one of the key mechanisms associated with virulence and antibiotic resistance. Biofilm-forming bacteria adhere to the surfaces of biological or implant medical devices and create communities within their self-produced extracellular matrix that are difficult to treat by existing antibiotics. There is an urgent need to synthesize and screen structurally diverse molecules for their antibiofilm activity that can remove or minimize the bacterial biofilm. The development of carbohydrate-based small molecules as antibiofilm agents holds a great promise in addressing the problem of the eradication of biofilm-related infections. Owing to their structural diversity and specificity, the sugar scaffolds are valuable entities for developing antibiofilm agents. In this perspective, we discuss the literature pertaining to carbohydrate-based natural antibiofilm agents and provide an overview of the design, activity, and mode of action of potent synthetic carbohydrate-based molecules.
Collapse
Affiliation(s)
- Kartikey Singh
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India 400076
| | - Suvarn S Kulkarni
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India 400076
| |
Collapse
|
6
|
Sokurenko EV, Tchesnokova V, Interlandi G, Klevit R, Thomas WE. Neutralizing antibodies against allosteric proteins: insights from a bacterial adhesin. J Mol Biol 2022; 434:167717. [DOI: 10.1016/j.jmb.2022.167717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 11/15/2022]
|
7
|
Al-Mughaid H, Nawasreh S, Naser H, Jaradat Y, Al-Zoubi RM. Synthesis and hemagglutination inhibitory properties of mannose-tipped ligands: The effect of terminal phenyl groups and the linker between the mannose residue and the triazole moiety. Carbohydr Res 2022; 515:108559. [DOI: 10.1016/j.carres.2022.108559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/25/2022] [Accepted: 04/11/2022] [Indexed: 12/26/2022]
|
8
|
Al-Mughaid H, Jaradat Y, Khazaaleh M. Synthesis and biological evaluation of mannosyl triazoles and varying the nature of substituents on the terminal phthalimido moiety in the aglycone backbone. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
9
|
Al-Mughaid H, Khazaaleh M. α-d-Mannoside ligands with a valency ranging from one to three: Synthesis and hemagglutination inhibitory properties. Carbohydr Res 2021; 508:108396. [PMID: 34298357 DOI: 10.1016/j.carres.2021.108396] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/29/2021] [Accepted: 07/06/2021] [Indexed: 11/28/2022]
Abstract
Six mono-, di-, and trivalent α-d-mannopyranosyl conjugates built on aromatic scaffolds were synthesized in excellent yields by Cu(I) catalyzed azide-alkyne cycloaddition reaction (CuAAC). These conjugates were designed to have unique, flexible tails that combine a mid-tail triazole ring, to interact with the tyrosine gate, with a terminal phenyl group armed with benzylic hydroxyl groups to avoid solubility problems as well as to provide options to connect to other supports. Biological evaluation of the prepared conjugates in hemagglutination inhibition (HAI) assay revealed that potency increases with valency and the trivalent ligand 6d (HAI = 0.005 mM) is approximately sevenfold better than the best meta-oriented monovalent analogues 2d and 4d (HAI ≈ 0.033 mM) and so may serve as a good starting point to find new lead ligands.
Collapse
Affiliation(s)
- Hussein Al-Mughaid
- Department of Chemistry, Jordan University of Science and Technology, PO Box 3030, Irbid 22110, Jordan.
| | - Maha Khazaaleh
- Department of Chemistry, Jordan University of Science and Technology, PO Box 3030, Irbid 22110, Jordan
| |
Collapse
|
10
|
Alonso‐Gil S. MonteCarbo: A software to generate and dock multifunctionalized ring molecules. J Comput Chem 2021; 42:1526-1534. [PMID: 33982793 PMCID: PMC8359999 DOI: 10.1002/jcc.26559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 04/25/2021] [Accepted: 04/28/2021] [Indexed: 02/01/2023]
Abstract
MonteCarbo is an open-source software to construct simple 5-, 6-, and 7-membered ring multifunctionalized monosaccharides and nucleobases and dock them into the active site of carbohydrate-active enzymes. The core bash script executes simple orders to generate the Z-matrix of the neutral molecule of interest. After that, a Fortran90 code based on a pseudo-random number generator (Monte Carlo method) is executed to assign dihedral angles to the different rotamers present in the structure (ring and rotating functional groups). The program also has a generalized internal coordinates (GIC) implementation of the Cremer and Pople puckering coordinates ring. Once the structures are generated and optimized, a second code is ready to execute in serial the docking of multiple conformers in the active site of a wide family of enzymes.
Collapse
Affiliation(s)
- Santiago Alonso‐Gil
- Department of Structural and Computational Biology, Max F. Perutz LaboratoriesUniversity of ViennaViennaAustria
| |
Collapse
|
11
|
Mousavifar L, Roy R. Recent development in the design of small 'drug-like' and nanoscale glycomimetics against Escherichia coli infections. Drug Discov Today 2021; 26:2124-2137. [PMID: 33667654 DOI: 10.1016/j.drudis.2021.02.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/19/2021] [Accepted: 02/24/2021] [Indexed: 12/25/2022]
Abstract
Glycoconjugates are involved in several pathological processes. Glycomimetics that can favorably emulate complex carbohydrate structures, while competing with natural ligands as inhibitors, are gaining considerable attention owing to their improved hydrolytic stability, binding affinity, and pharmacokinetic (PK) properties. Of particular interest are the families of α-d-mannopyranoside analogs, which can be used as inhibitors against adherent invasive Escherichia coli infections. Bacterial resistance to modern antibiotics triggers the search for new alternative antibacterial strategies that are less susceptible to acquiring resistance. In this review, we highlight recent progress in the chemical syntheses of this family of compounds, one of which having reached clinical trials against Crohn's disease (CD).
Collapse
Affiliation(s)
- Leila Mousavifar
- Department of Chemistry, Université du Québec à Montréal, PO Box 8888, Succ. Centre-Ville, Montréal, QC H3C 3P8, Canada
| | - René Roy
- Department of Chemistry, Université du Québec à Montréal, PO Box 8888, Succ. Centre-Ville, Montréal, QC H3C 3P8, Canada; INRS - Institut Armand-Frappier, Université du Québec, 531 Boul. des Prairies, Laval, QC H7V 1B7, Canada.
| |
Collapse
|
12
|
Hatton NE, Baumann CG, Fascione MA. Developments in Mannose-Based Treatments for Uropathogenic Escherichia coli-Induced Urinary Tract Infections. Chembiochem 2021; 22:613-629. [PMID: 32876368 PMCID: PMC7894189 DOI: 10.1002/cbic.202000406] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/28/2020] [Indexed: 12/16/2022]
Abstract
During their lifetime almost half of women will experience a symptomatic urinary tract infection (UTI) with a further half experiencing a relapse within six months. Currently UTIs are treated with antibiotics, but increasing antibiotic resistance rates highlight the need for new treatments. Uropathogenic Escherichia coli (UPEC) is responsible for the majority of symptomatic UTI cases and thus has become a key pathological target. Adhesion of type one pilus subunit FimH at the surface of UPEC strains to mannose-saturated oligosaccharides located on the urothelium is critical to pathogenesis. Since the identification of FimH as a therapeutic target in the late 1980s, a substantial body of research has been generated focusing on the development of FimH-targeting mannose-based anti-adhesion therapies. In this review we will discuss the design of different classes of these mannose-based compounds and their utility and potential as UPEC therapeutics.
Collapse
Affiliation(s)
- Natasha E. Hatton
- York Structural Biology Lab, Department of ChemistryUniversity of YorkHeslington RoadYorkYO10 5DDUK
| | | | - Martin A. Fascione
- York Structural Biology Lab, Department of ChemistryUniversity of YorkHeslington RoadYorkYO10 5DDUK
| |
Collapse
|
13
|
Magala P, Klevit RE, Thomas WE, Sokurenko EV, Stenkamp RE. RMSD analysis of structures of the bacterial protein FimH identifies five conformations of its lectin domain. Proteins 2019; 88:593-603. [PMID: 31622514 DOI: 10.1002/prot.25840] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 10/07/2019] [Accepted: 10/12/2019] [Indexed: 01/14/2023]
Abstract
FimH is a bacterial adhesin protein located at the tip of Escherichia coli fimbria that functions to adhere bacteria to host cells. Thus, FimH is a critical factor in bacterial infections such as urinary tract infections and is of interest in drug development. It is also involved in vaccine development and as a model for understanding shear-enhanced catch bond cell adhesion. To date, over 60 structures have been deposited in the Protein Data Bank showing interactions between FimH and mannose ligands, potential inhibitors, and other fimbrial proteins. In addition to providing insights about ligand recognition and fimbrial assembly, these structures provide insights into conformational changes in the two domains of FimH that are critical for its function. To gain further insights into these structural changes, we have superposed FimH's mannose binding lectin domain in all these structures and categorized the structures into five groups of lectin domain conformers using RMSD as a metric. Many structures also include the pilin domain, which anchors FimH to the fimbriae and regulates the conformation and function of the lectin domain. For these structures, we have also compared the relative orientations of the two domains. These structural analyses enhance our understanding of the conformational changes associated with FimH ligand binding and domain-domain interactions, including its catch bond behavior through allosteric action of force in bacterial adhesion.
Collapse
Affiliation(s)
- Pearl Magala
- Department of Biochemistry, University of Washington, Seattle, WA.,Biomolecular Structure Center, University of Washington, Seattle, WA
| | - Rachel E Klevit
- Department of Biochemistry, University of Washington, Seattle, WA.,Biomolecular Structure Center, University of Washington, Seattle, WA
| | - Wendy E Thomas
- Department of Bioengineering, University of Washington, Seattle, WA
| | | | - Ronald E Stenkamp
- Department of Biochemistry, University of Washington, Seattle, WA.,Biomolecular Structure Center, University of Washington, Seattle, WA.,Department of Biological Structure, University of Washington, Seattle, WA
| |
Collapse
|
14
|
Mousavifar L, Vergoten G, Charron G, Roy R. Comparative Study of Aryl O-, C-, and S-Mannopyranosides as Potential Adhesion Inhibitors toward Uropathogenic E. coli FimH. Molecules 2019; 24:E3566. [PMID: 31581627 PMCID: PMC6804135 DOI: 10.3390/molecules24193566] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 09/27/2019] [Accepted: 10/01/2019] [Indexed: 11/17/2022] Open
Abstract
A set of three mannopyranoside possessing identical 1,1'-biphenyl glycosidic pharmacophore but different aglyconic atoms were synthesized using either a palladium-catalyzed Heck cross coupling reaction or a metathesis reaction between their corresponding allylic glycoside derivatives. Their X-ray structures, together with their calculated 3D structures, showed strong indicators to explain the observed relative binding abilities against E. coli FimH as measured by a improved surface plasmon resonance (SPR) method. Amongst the O-, C-, and S-linked analogs, the C-linked analog showed the best ability to become a lead candidate as antagonist against uropathogenic E. coli with a Kd of 11.45 nM.
Collapse
Affiliation(s)
- Leila Mousavifar
- Department of Chemistry, Université du Québec à Montréal, P.O. Box 8888, Succ. Centre-Ville, Montréal, Québec H3C 3P8, Canada.
- Glycovax Pharma Inc., 424 Guy, Suite 202, Montreal, Quebec H3J 1S6, Canada.
| | - Gérard Vergoten
- Unité de Glycobiologie Structurale et Fonctionnelle (UGSF), UMR8576 du CNRS, Université de Lille, F-59000 Lille, France.
| | - Guillaume Charron
- Department of Chemistry, Université du Québec à Montréal, P.O. Box 8888, Succ. Centre-Ville, Montréal, Québec H3C 3P8, Canada.
| | - René Roy
- Department of Chemistry, Université du Québec à Montréal, P.O. Box 8888, Succ. Centre-Ville, Montréal, Québec H3C 3P8, Canada.
- Glycovax Pharma Inc., 424 Guy, Suite 202, Montreal, Quebec H3J 1S6, Canada.
- INRS-Institut Armand-Frappier, Université du Québec, 531 boul. des Prairies, Laval, Québec H7V 1B7, Canada.
| |
Collapse
|
15
|
Mousavifar L, Touaibia M, Roy R. Development of Mannopyranoside Therapeutics against Adherent-Invasive Escherichia coli Infections. Acc Chem Res 2018; 51:2937-2948. [PMID: 30289687 DOI: 10.1021/acs.accounts.8b00397] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Preventing bacterial adhesion to host cells is a provocative and alternative approach to traditional antibiotic treatments given the increasing microbial resistance. A brief overview of common antibiotic treatments is described in light of their respective resistance and remaining susceptibility. This strategy has been seriously considered in the context of adherent-invasive infections in Crohn's disease and urinary tract infections in particular. The adhesions of various pathogenic Escherichia coli strains to host cells are primarily mediated through carbohydrate-protein interactions involving bacterial organelles called fimbriae that can recognize specific glycoconjugate receptors on host cells. Of particular interest are the FimH and PapG fimbriae, which bind to mannosylated glycoproteins and glycolipids of the galabiose series, respectively. Therefore, blocking FimH- and PapG-mediated bacterial adhesion to uroepithelial cells by high-affinity carbohydrate antagonists constitutes a challenging therapeutic target of high interest. This is of particular interest since bacterial adhesion to host cells is a parameter unlikely to be the subject of bacterial mutations without affecting the carbohydrate ligand binding interactions at the basis of the recognition and infection processes. To date, there have been several families of potent FimH antagonists that include natural O-linked as well as unnatural analogues of α-d-mannopyranosides. These observations led to a thorough understanding of the intimate binding site interactions that helped to reveal the so-called "tyrosine gate mechanism" at the origin of the strong necessary interactions with sugar-possessing hydrophobic aglycones. By modification of the aglycones of single monosaccharidic d-mannopyranosides, it was possible to replace the natural complex oligomannoside structure by simpler ones. An appealing and successful series of analogues have been disclosed, including nanomolecular architectures such as dendrimers, polymers, and liposomes. In addition, the data were compared to the above multivalent architectures and confirmed the possibility of working with small sugar candidates. This Account primarily concentrates on the most promising types of FimH inhibitors belonging to the family of α-C-linked mannopyranosides. However, one of the drawbacks associated with C-mannopyranosides has been that they were believed to be in the inverted chair conformation, which is obviously not recognized by the E. coli FimH. To decipher this situation, various synthetic approaches, conformational aspects, and restrictions are discussed using molecular modeling, high-field NMR spectroscopy, and X-ray analysis. These combined techniques pointed to the fact that several α-C-linked mannopyranosides do exist in the required 4C1 chair conformation. Ultimately, recent findings in this growing field of interest culminated in the identification of drug candidates that have reached clinical phase I.
Collapse
Affiliation(s)
- Leila Mousavifar
- Department of Chemistry, Université du Québec à Montréal, P.O. Box 8888, Succ. Centre-Ville, Montréal, Québec H3C 3P8, Canada
- INRS-Institut Armand-Frappier, Université du Québec, 531 boul. des Prairies, Laval, Québec H7V 1B7, Canada
| | - Mohamed Touaibia
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, New Brunswick E1A 3E9, Canada
| | - René Roy
- Department of Chemistry, Université du Québec à Montréal, P.O. Box 8888, Succ. Centre-Ville, Montréal, Québec H3C 3P8, Canada
- INRS-Institut Armand-Frappier, Université du Québec, 531 boul. des Prairies, Laval, Québec H7V 1B7, Canada
- Glycovax Pharma Inc., 424 Guy, Suite 202, Montréal, Québec H3J 1S6, Canada
| |
Collapse
|
16
|
A Novel Integrated Way for Deciphering the Glycan Code for the FimH Lectin. Molecules 2018; 23:molecules23112794. [PMID: 30373288 PMCID: PMC6278545 DOI: 10.3390/molecules23112794] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 10/18/2018] [Accepted: 10/25/2018] [Indexed: 12/17/2022] Open
Abstract
The fimbrial lectin FimH from uro- and enteropathogenic Escherichia coli binds with nanomolar affinity to oligomannose glycans exposing Manα1,3Man dimannosides at their non-reducing end, but only with micromolar affinities to Manα1,2Man dimannosides. These two dimannoses play a significantly distinct role in infection by E. coli. Manα1,2Man has been described early on as shielding the (Manα1,3Man) glycan that is more relevant to strong bacterial adhesion and invasion. We quantified the binding of the two dimannoses (Manα1,2Man and Manα1,3Man to FimH using ELLSA and isothermal microcalorimetry and calculated probabilities of binding modes using molecular dynamics simulations. Our experimentally and computationally determined binding energies confirm a higher affinity of FimH towards the dimannose Manα1,3Man. Manα1,2Man displays a much lower binding enthalpy combined with a high entropic gain. Most remarkably, our molecular dynamics simulations indicate that Manα1,2Man cannot easily take its major conformer from water into the FimH binding site and that FimH is interacting with two very different conformers of Manα1,2Man that occupy 42% and 28% respectively of conformational space. The finding that Manα1,2Man binding to FimH is unstable agrees with the earlier suggestion that E. coli may use the Manα1,2Man epitope for transient tethering along cell surfaces in order to enhance dispersion of the infection.
Collapse
|
17
|
Krammer EM, de Ruyck J, Roos G, Bouckaert J, Lensink MF. Targeting Dynamical Binding Processes in the Design of Non-Antibiotic Anti-Adhesives by Molecular Simulation-The Example of FimH. Molecules 2018; 23:E1641. [PMID: 29976867 PMCID: PMC6099838 DOI: 10.3390/molecules23071641] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 06/29/2018] [Accepted: 07/02/2018] [Indexed: 12/11/2022] Open
Abstract
Located at the tip of type I fimbria of Escherichia coli, the bacterial adhesin FimH is responsible for the attachment of the bacteria to the (human) host by specifically binding to highly-mannosylated glycoproteins located on the exterior of the host cell wall. Adhesion represents a necessary early step in bacterial infection and specific inhibition of this process represents a valuable alternative pathway to antibiotic treatments, as such anti-adhesive drugs are non-intrusive and are therefore unlikely to induce bacterial resistance. The currently available anti-adhesives with the highest affinities for FimH still feature affinities in the nanomolar range. A prerequisite to develop higher-affinity FimH inhibitors is a molecular understanding of the FimH-inhibitor complex formation. The latest insights in the formation process are achieved by combining several molecular simulation and traditional experimental techniques. This review summarizes how molecular simulation contributed to the current knowledge of the molecular function of FimH and the importance of dynamics in the inhibitor binding process, and highlights the importance of the incorporation of dynamical aspects in (future) drug-design studies.
Collapse
Affiliation(s)
- Eva-Maria Krammer
- Unite de Glycobiologie Structurale et Fonctionnelle, UMR 8576 of the Centre National de la Recherche Scientifique and the University of Lille, 50 Avenue de Halley, 59658 Villeneuve d'Ascq, France.
| | - Jerome de Ruyck
- Unite de Glycobiologie Structurale et Fonctionnelle, UMR 8576 of the Centre National de la Recherche Scientifique and the University of Lille, 50 Avenue de Halley, 59658 Villeneuve d'Ascq, France.
| | - Goedele Roos
- Unite de Glycobiologie Structurale et Fonctionnelle, UMR 8576 of the Centre National de la Recherche Scientifique and the University of Lille, 50 Avenue de Halley, 59658 Villeneuve d'Ascq, France.
| | - Julie Bouckaert
- Unite de Glycobiologie Structurale et Fonctionnelle, UMR 8576 of the Centre National de la Recherche Scientifique and the University of Lille, 50 Avenue de Halley, 59658 Villeneuve d'Ascq, France.
| | - Marc F Lensink
- Unite de Glycobiologie Structurale et Fonctionnelle, UMR 8576 of the Centre National de la Recherche Scientifique and the University of Lille, 50 Avenue de Halley, 59658 Villeneuve d'Ascq, France.
| |
Collapse
|
18
|
Rabbani S, Fiege B, Eris D, Silbermann M, Jakob RP, Navarra G, Maier T, Ernst B. Conformational switch of the bacterial adhesin FimH in the absence of the regulatory domain: Engineering a minimalistic allosteric system. J Biol Chem 2018; 293:1835-1849. [PMID: 29180452 PMCID: PMC5798311 DOI: 10.1074/jbc.m117.802942] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 11/23/2017] [Indexed: 11/06/2022] Open
Abstract
For many biological processes such as ligand binding, enzymatic catalysis, or protein folding, allosteric regulation of protein conformation and dynamics is fundamentally important. One example is the bacterial adhesin FimH, where the C-terminal pilin domain exerts negative allosteric control over binding of the N-terminal lectin domain to mannosylated ligands on host cells. When the lectin and pilin domains are separated under shear stress, the FimH-ligand interaction switches in a so-called catch-bond mechanism from the low- to high-affinity state. So far, it has been assumed that the pilin domain is essential for the allosteric propagation within the lectin domain that would otherwise be conformationally rigid. To test this hypothesis, we generated mutants of the isolated FimH lectin domain and characterized their thermodynamic, kinetic, and structural properties using isothermal titration calorimetry, surface plasmon resonance, nuclear magnetic resonance, and X-ray techniques. Intriguingly, some of the mutants mimicked the conformational and kinetic behaviors of the full-length protein and, even in absence of the pilin domain, conducted the cross-talk between allosteric sites and the mannoside-binding pocket. Thus, these mutants represent a minimalistic allosteric system of FimH, useful for further mechanistic studies and antagonist design.
Collapse
Affiliation(s)
- Said Rabbani
- From the Department of Pharmaceutical Sciences, Pharmacenter of the University of Basel, Klingelbergstrasse 50 and
| | - Brigitte Fiege
- From the Department of Pharmaceutical Sciences, Pharmacenter of the University of Basel, Klingelbergstrasse 50 and
| | - Deniz Eris
- From the Department of Pharmaceutical Sciences, Pharmacenter of the University of Basel, Klingelbergstrasse 50 and
| | - Marleen Silbermann
- From the Department of Pharmaceutical Sciences, Pharmacenter of the University of Basel, Klingelbergstrasse 50 and
| | - Roman Peter Jakob
- the Department Biozentrum, Focal Area Structural Biology, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| | - Giulio Navarra
- From the Department of Pharmaceutical Sciences, Pharmacenter of the University of Basel, Klingelbergstrasse 50 and
| | - Timm Maier
- the Department Biozentrum, Focal Area Structural Biology, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| | - Beat Ernst
- From the Department of Pharmaceutical Sciences, Pharmacenter of the University of Basel, Klingelbergstrasse 50 and
| |
Collapse
|
19
|
de Ruyck J, Roos G, Krammer EM, Prévost M, Lensink MF, Bouckaert J. Molecular Mechanisms of Drug Action: X-ray Crystallography at the Basis of Structure-based and Ligand-based Drug Design. BIOPHYSICAL TECHNIQUES IN DRUG DISCOVERY 2017. [DOI: 10.1039/9781788010016-00067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Biological systems are recognized for their complexity and diversity and yet we sometimes manage to cure disease via the administration of small chemical drug molecules. At first, active ingredients were found accidentally and at that time there did not seem a need to understand the molecular mechanism of drug functioning. However, the urge to develop new drugs, the discovery of multipurpose characteristics of some drugs, and the necessity to remove unwanted secondary drug effects, incited the pharmaceutical sector to rationalize drug design. This did not deliver success in the years directly following its conception, but it drove the evolution of biochemical and biophysical techniques to enable the characterization of molecular mechanisms of drug action. Functional and structural data generated by biochemists and structural biologists became a valuable input for computational biologists, chemists and bioinformaticians who could extrapolate in silico, based on variations in the structural aspects of the drug molecules and their target. This opened up new avenues with much improved predictive power because of a clearer perception of the role and impact of structural elements in the intrinsic affinity and specificity of the drug for its target. In this chapter, we review how crystal structures can initiate structure-based drug design in general.
Collapse
Affiliation(s)
- J. de Ruyck
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 of the Centre National de la Recherche Scientifique and the University of Lille 50 Avenue de Halley 59658 Villeneuve d'Ascq France
| | - G. Roos
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 of the Centre National de la Recherche Scientifique and the University of Lille 50 Avenue de Halley 59658 Villeneuve d'Ascq France
- Université Libre de Bruxelles (ULB), Structure and Function of Biological Membranes CP 206/2, Boulevard du Triomphe, 1050 Brussels Belgium
| | - E.-M. Krammer
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 of the Centre National de la Recherche Scientifique and the University of Lille 50 Avenue de Halley 59658 Villeneuve d'Ascq France
- Université Libre de Bruxelles (ULB), Structure and Function of Biological Membranes CP 206/2, Boulevard du Triomphe, 1050 Brussels Belgium
| | - M. Prévost
- Université Libre de Bruxelles (ULB), Structure and Function of Biological Membranes CP 206/2, Boulevard du Triomphe, 1050 Brussels Belgium
| | - M. F. Lensink
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 of the Centre National de la Recherche Scientifique and the University of Lille 50 Avenue de Halley 59658 Villeneuve d'Ascq France
| | - J. Bouckaert
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 of the Centre National de la Recherche Scientifique and the University of Lille 50 Avenue de Halley 59658 Villeneuve d'Ascq France
| |
Collapse
|
20
|
Sager CP, Fiege B, Zihlmann P, Vannam R, Rabbani S, Jakob RP, Preston RC, Zalewski A, Maier T, Peczuh MW, Ernst B. The price of flexibility - a case study on septanoses as pyranose mimetics. Chem Sci 2017; 9:646-654. [PMID: 29629131 PMCID: PMC5868388 DOI: 10.1039/c7sc04289b] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 11/07/2017] [Indexed: 12/22/2022] Open
Abstract
Seven-membered ring mimetics of mannose were studied as ligands for the mannose-specific bacterial lectin FimH, which plays an essential role in the first step of urinary tract infections (UTI). A competitive binding assay and isothermal titration calorimetry (ITC) experiments indicated an approximately ten-fold lower affinity for the seven-membered ring mannose mimetic 2-O-n-heptyl-1,6-anhydro-d-glycero-d-galactitol (7) compared to n-heptyl α-d-mannopyranoside (2), resulting exclusively from a loss of conformational entropy. Investigations by solution NMR, X-ray crystallography, and molecular modeling revealed that 7 establishes a superimposable H-bond network compared to mannoside 2, but at the price of a high entropic penalty due to the loss of its pronounced conformational flexibility. These results underscore the importance of having access to the complete thermodynamic profile of a molecular interaction to "rescue" ligands from entropic penalties with an otherwise perfect fit to the protein binding site.
Collapse
Affiliation(s)
- Christoph P Sager
- University of Basel , Institute of Molecular Pharmacy , Pharmacenter of the University of Basel , Klingelbergstrasse 50 , 4056 , Basel , Switzerland .
| | - Brigitte Fiege
- University of Basel , Institute of Molecular Pharmacy , Pharmacenter of the University of Basel , Klingelbergstrasse 50 , 4056 , Basel , Switzerland .
| | - Pascal Zihlmann
- University of Basel , Institute of Molecular Pharmacy , Pharmacenter of the University of Basel , Klingelbergstrasse 50 , 4056 , Basel , Switzerland .
| | - Raghu Vannam
- Department of Chemistry , University of Connecticut , 55 N. Eagleville Road U3060, Storrs , CT , 06279 USA .
| | - Said Rabbani
- University of Basel , Institute of Molecular Pharmacy , Pharmacenter of the University of Basel , Klingelbergstrasse 50 , 4056 , Basel , Switzerland .
| | - Roman P Jakob
- University of Basel , Biozentrum: Focal Area Structural Biology , Klingelbergstrasse 70 , 4056 Basel , Switzerland
| | - Roland C Preston
- University of Basel , Institute of Molecular Pharmacy , Pharmacenter of the University of Basel , Klingelbergstrasse 50 , 4056 , Basel , Switzerland .
| | - Adam Zalewski
- University of Basel , Institute of Molecular Pharmacy , Pharmacenter of the University of Basel , Klingelbergstrasse 50 , 4056 , Basel , Switzerland .
| | - Timm Maier
- University of Basel , Biozentrum: Focal Area Structural Biology , Klingelbergstrasse 70 , 4056 Basel , Switzerland
| | - Mark W Peczuh
- Department of Chemistry , University of Connecticut , 55 N. Eagleville Road U3060, Storrs , CT , 06279 USA .
| | - Beat Ernst
- University of Basel , Institute of Molecular Pharmacy , Pharmacenter of the University of Basel , Klingelbergstrasse 50 , 4056 , Basel , Switzerland .
| |
Collapse
|
21
|
Touaibia M, Krammer EM, Shiao TC, Yamakawa N, Wang Q, Glinschert A, Papadopoulos A, Mousavifar L, Maes E, Oscarson S, Vergoten G, Lensink MF, Roy R, Bouckaert J. Sites for Dynamic Protein-Carbohydrate Interactions of O- and C-Linked Mannosides on the E. coli FimH Adhesin. Molecules 2017; 22:molecules22071101. [PMID: 28671638 PMCID: PMC6152123 DOI: 10.3390/molecules22071101] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 06/25/2017] [Accepted: 06/28/2017] [Indexed: 01/28/2023] Open
Abstract
Antagonists of the Escherichia coli type-1 fimbrial adhesin FimH are recognized as attractive alternatives for antibiotic therapies and prophylaxes against acute and recurrent bacterial infections. In this study α-d-mannopyranosides O- or C-linked with an alkyl, alkene, alkyne, thioalkyl, amide, or sulfonamide were investigated to fit a hydrophobic substituent with up to two aryl groups within the tyrosine gate emerging from the mannose-binding pocket of FimH. The results were summarized into a set of structure-activity relationships to be used in FimH-targeted inhibitor design: alkene linkers gave an improved affinity and inhibitory potential, because of their relative flexibility combined with a favourable interaction with isoleucine-52 located in the middle of the tyrosine gate. Of particular interest is a C-linked mannoside, alkene-linked to an ortho-substituted biphenyl that has an affinity similar to its O-mannosidic analog but superior to its para-substituted analog. Docking of its high-resolution NMR solution structure to the FimH adhesin indicated that its ultimate, ortho-placed phenyl ring is able to interact with isoleucine-13, located in the clamp loop that undergoes conformational changes under shear force exerted on the bacteria. Molecular dynamics simulations confirmed that a subpopulation of the C-mannoside conformers is able to interact in this secondary binding site of FimH.
Collapse
Affiliation(s)
- Mohamed Touaibia
- Pharmaqam, Department of Chemistry, Université du Québec à Montréal, P. O. Box 8888, Succ. Centre-ville, Montréal, QC H3C 3P8, Canada.
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB E1A 3E9, Canada.
| | - Eva-Maria Krammer
- Unité de Glycobiologie Structurale et Fonctionnelle (UGSF), UMR8576 du CNRS, Université de Lille, F-59000 Lille, France.
| | - Tze C Shiao
- Pharmaqam, Department of Chemistry, Université du Québec à Montréal, P. O. Box 8888, Succ. Centre-ville, Montréal, QC H3C 3P8, Canada.
| | - Nao Yamakawa
- Unité de Glycobiologie Structurale et Fonctionnelle (UGSF), UMR8576 du CNRS, Université de Lille, F-59000 Lille, France.
| | - Qingan Wang
- Pharmaqam, Department of Chemistry, Université du Québec à Montréal, P. O. Box 8888, Succ. Centre-ville, Montréal, QC H3C 3P8, Canada.
| | - Anja Glinschert
- Center for Synthesis and Chemical Biology (CSCB), University College Dublin, Belfield, Dublin 4, Ireland.
| | - Alex Papadopoulos
- Pharmaqam, Department of Chemistry, Université du Québec à Montréal, P. O. Box 8888, Succ. Centre-ville, Montréal, QC H3C 3P8, Canada.
| | - Leila Mousavifar
- Pharmaqam, Department of Chemistry, Université du Québec à Montréal, P. O. Box 8888, Succ. Centre-ville, Montréal, QC H3C 3P8, Canada.
| | - Emmanuel Maes
- Unité de Glycobiologie Structurale et Fonctionnelle (UGSF), UMR8576 du CNRS, Université de Lille, F-59000 Lille, France.
| | - Stefan Oscarson
- Center for Synthesis and Chemical Biology (CSCB), University College Dublin, Belfield, Dublin 4, Ireland.
| | - Gerard Vergoten
- Unité de Glycobiologie Structurale et Fonctionnelle (UGSF), UMR8576 du CNRS, Université de Lille, F-59000 Lille, France.
| | - Marc F Lensink
- Unité de Glycobiologie Structurale et Fonctionnelle (UGSF), UMR8576 du CNRS, Université de Lille, F-59000 Lille, France.
| | - René Roy
- Pharmaqam, Department of Chemistry, Université du Québec à Montréal, P. O. Box 8888, Succ. Centre-ville, Montréal, QC H3C 3P8, Canada.
| | - Julie Bouckaert
- Unité de Glycobiologie Structurale et Fonctionnelle (UGSF), UMR8576 du CNRS, Université de Lille, F-59000 Lille, France.
| |
Collapse
|
22
|
Mydock-McGrane LK, Hannan TJ, Janetka JW. Rational design strategies for FimH antagonists: new drugs on the horizon for urinary tract infection and Crohn's disease. Expert Opin Drug Discov 2017; 12:711-731. [PMID: 28506090 DOI: 10.1080/17460441.2017.1331216] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION The bacterial adhesin FimH is a virulence factor and an attractive therapeutic target for urinary tract infection (UTI) and Crohn's Disease (CD). Located on type 1 pili of uropathogenic E. coli (UPEC), the FimH adhesin plays an integral role in the pathogenesis of UPEC. Recent efforts have culminated in the development of small-molecule mannoside FimH antagonists that target the mannose-binding lectin domain of FimH, inhibiting its function and preventing UPEC from binding mannosylated host cells in the bladder, thereby circumventing infection. Areas covered: The authors describe the structure-guided design of mannoside ligands, and review the structural biology of the FimH lectin domain. Additionally, they discuss the lead optimization of mannosides for therapeutic application in UTI and CD, and describe various assays used to measure mannoside potency in vitro and mouse models used to determine efficacy in vivo. Expert opinion: To date, mannoside optimization has led to a diverse set of small-molecule FimH antagonists with oral bioavailability. With clinical trials already initiated in CD and on the horizon for UTI, it is the authors, opinion that mannosides will be a 'first-in-class' treatment strategy for UTI and CD, and will pave the way for treatment of other Gram-negative bacterial infections.
Collapse
Affiliation(s)
| | | | - James W Janetka
- b Department of Biochemistry and Molecular Biophysics , Washington University School of Medicine , Saint Louis , MO , USA
| |
Collapse
|
23
|
Al-Mughaid H, Al-Zoubi RM, Khazaaleh M, Grindley TB. Assembly and inhibitory activity of monovalent mannosides terminated with aromatic methyl esters: The effect of naphthyl groups. Carbohydr Res 2017; 446-447:76-84. [PMID: 28549256 DOI: 10.1016/j.carres.2017.03.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 03/13/2017] [Accepted: 03/16/2017] [Indexed: 10/19/2022]
Abstract
A series of monovalent α-D-mannoside ligands terminated with aromatic methyl esters have been synthesized in excellent yields using the Cu(I) catalyzed azide-alkyne 1,3-dipolar cycloaddition ("click chemistry"). These mannosides were designed to have a unique aglycone moiety (tail) that combines a triazole ring attached to aromatic methyl esters via a six carbon alkyl chain. The mannose unit of these ligands was linked at the ortho, meta, and para positions of substituted methyl benzoates and 1-, 3-, and 6-substituted methyl 2-napthaoates. In hemagglutination assays, ligands (32A-38A) showed better inhibitory activities than the standard inhibitor, methyl α-D-mannopyranoside. Overall, the naphthyl-based mannoside ligand (37A) showed the best activity and therefore merits further development.
Collapse
Affiliation(s)
- Hussein Al-Mughaid
- Department of Chemistry, Jordan University of Science and Technology, PO Box 3030, Irbid 22110, Jordan; Department of Chemistry, Dalhousie University, Halifax, NS, B3H 4J3, Canada.
| | - Raed M Al-Zoubi
- Department of Chemistry, Jordan University of Science and Technology, PO Box 3030, Irbid 22110, Jordan
| | - Maha Khazaaleh
- Department of Chemistry, Jordan University of Science and Technology, PO Box 3030, Irbid 22110, Jordan
| | - T Bruce Grindley
- Department of Chemistry, Dalhousie University, Halifax, NS, B3H 4J3, Canada.
| |
Collapse
|
24
|
Rabbani S, Krammer EM, Roos G, Zalewski A, Preston R, Eid S, Zihlmann P, Prévost M, Lensink MF, Thompson A, Ernst B, Bouckaert J. Mutation of Tyr137 of the universal Escherichia coli fimbrial adhesin FimH relaxes the tyrosine gate prior to mannose binding. IUCRJ 2017; 4:7-23. [PMID: 28250938 PMCID: PMC5331462 DOI: 10.1107/s2052252516016675] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 10/18/2016] [Indexed: 05/08/2023]
Abstract
The most prevalent diseases manifested by Escherichia coli are acute and recurrent bladder infections and chronic inflammatory bowel diseases such as Crohn's disease. E. coli clinical isolates express the FimH adhesin, which consists of a mannose-specific lectin domain connected via a pilin domain to the tip of type 1 pili. Although the isolated FimH lectin domain has affinities in the nanomolar range for all high-mannosidic glycans, differentiation between these glycans is based on their capacity to form predominantly hydrophobic interactions within the tyrosine gate at the entrance to the binding pocket. In this study, novel crystal structures of tyrosine-gate mutants of FimH, ligand-free or in complex with heptyl α-d-O-mannopyranoside or 4-biphenyl α-d-O-mannopyranoside, are combined with quantum-mechanical calculations and molecular-dynamics simulations. In the Y48A FimH crystal structure, a large increase in the dynamics of the alkyl chain of heptyl α-d-O-mannopyranoside attempts to compensate for the absence of the aromatic ring; however, the highly energetic and stringent mannose-binding pocket of wild-type FimH is largely maintained. The Y137A mutation, on the other hand, is the most detrimental to FimH affinity and specificity: (i) in the absence of ligand the FimH C-terminal residue Thr158 intrudes into the mannose-binding pocket and (ii) ethylenediaminetetraacetic acid interacts strongly with Glu50, Thr53 and Asn136, in spite of multiple dialysis and purification steps. Upon mutation, pre-ligand-binding relaxation of the backbone dihedral angles at position 137 in the tyrosine gate and their coupling to Tyr48 via the interiorly located Ile52 form the basis of the loss of affinity of the FimH adhesin in the Y137A mutant.
Collapse
Affiliation(s)
- Said Rabbani
- Institute of Molecular Pharmacy, Pharmacenter, University of Basel, Klingelbergstrasse 50-70, CH-4056 Basel, Switzerland
| | - Eva-Maria Krammer
- University of Lille, CNRS UMR8576 UGSF (Unité de Glycobiologie Structurale et Fonctionnelle), 59000 Lille, France
- Structure et Fonction des Membranes Biologiques, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Goedele Roos
- University of Lille, CNRS UMR8576 UGSF (Unité de Glycobiologie Structurale et Fonctionnelle), 59000 Lille, France
- Structure et Fonction des Membranes Biologiques, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Adam Zalewski
- Institute of Molecular Pharmacy, Pharmacenter, University of Basel, Klingelbergstrasse 50-70, CH-4056 Basel, Switzerland
| | - Roland Preston
- Institute of Molecular Pharmacy, Pharmacenter, University of Basel, Klingelbergstrasse 50-70, CH-4056 Basel, Switzerland
| | - Sameh Eid
- Institute of Molecular Pharmacy, Pharmacenter, University of Basel, Klingelbergstrasse 50-70, CH-4056 Basel, Switzerland
| | - Pascal Zihlmann
- Institute of Molecular Pharmacy, Pharmacenter, University of Basel, Klingelbergstrasse 50-70, CH-4056 Basel, Switzerland
| | - Martine Prévost
- Structure et Fonction des Membranes Biologiques, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Marc F. Lensink
- University of Lille, CNRS UMR8576 UGSF (Unité de Glycobiologie Structurale et Fonctionnelle), 59000 Lille, France
| | - Andrew Thompson
- Synchrotron SOLEIL, l’Orme de Merisiers, Saint-Aubin BP48, Gif-sur-Yvette CEDEX, France
| | - Beat Ernst
- Institute of Molecular Pharmacy, Pharmacenter, University of Basel, Klingelbergstrasse 50-70, CH-4056 Basel, Switzerland
| | - Julie Bouckaert
- University of Lille, CNRS UMR8576 UGSF (Unité de Glycobiologie Structurale et Fonctionnelle), 59000 Lille, France
| |
Collapse
|
25
|
de Ruyck J, Lensink MF, Bouckaert J. Structures of C-mannosylated anti-adhesives bound to the type 1 fimbrial FimH adhesin. IUCRJ 2016; 3:163-7. [PMID: 27158502 PMCID: PMC4856138 DOI: 10.1107/s2052252516002487] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 02/10/2016] [Indexed: 05/24/2023]
Abstract
Selective inhibitors of the type 1 fimbrial adhesin FimH are recognized as attractive alternatives for antibiotic therapies and prophylaxes against Escherichia coli infections such as urinary-tract infections. To construct these inhibitors, the α-d-mannopyranoside of high-mannose N-glycans, recognized with exclusive specificity on glycoprotein receptors by FimH, forms the basal structure. A hydrophobic aglycon is then linked to the mannose by the O1 oxygen inherently present in the α-anomeric configuration. Substitution of this O atom by a carbon introduces a C-glycosidic bond, which may enhance the therapeutic potential of such compounds owing to the inability of enzymes to degrade C-glycosidic bonds. Here, the first crystal structures of the E. coli FimH adhesin in complex with C-glycosidically linked mannopyranosides are presented. These findings explain the role of the spacer in positioning biphenyl ligands for interactions by means of aromatic stacking in the tyrosine gate of FimH and how the normally hydrated C-glycosidic link is tolerated. As these new compounds can bind FimH, it can be assumed that they have the potential to serve as potent new antagonists of FimH, paving the way for the design of a new family of anti-adhesive compounds against urinary-tract infections.
Collapse
Affiliation(s)
- Jerome de Ruyck
- Université Lille, CNRS, UMR 8576–UGSF–Unité de Glycobiologie Structurale et Fonctionnelle, 59000 Lille, France
| | - Marc F. Lensink
- Université Lille, CNRS, UMR 8576–UGSF–Unité de Glycobiologie Structurale et Fonctionnelle, 59000 Lille, France
| | - Julie Bouckaert
- Université Lille, CNRS, UMR 8576–UGSF–Unité de Glycobiologie Structurale et Fonctionnelle, 59000 Lille, France
| |
Collapse
|
26
|
Mydock-McGrane LK, Cusumano ZT, Janetka JW. Mannose-derived FimH antagonists: a promising anti-virulence therapeutic strategy for urinary tract infections and Crohn’s disease. Expert Opin Ther Pat 2016; 26:175-97. [DOI: 10.1517/13543776.2016.1131266] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
27
|
Lousada CM, Brinck T, Jonsson M. Application of reactivity descriptors to the catalytic decomposition of hydrogen peroxide at oxide surfaces. COMPUT THEOR CHEM 2015. [DOI: 10.1016/j.comptc.2015.08.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
28
|
Unique tetrameric and hexameric mannoside clusters prepared by click chemistry. Carbohydr Res 2015; 417:27-33. [PMID: 26398914 DOI: 10.1016/j.carres.2015.07.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 07/16/2015] [Accepted: 07/19/2015] [Indexed: 01/05/2023]
Abstract
The synthesis of novel tetrameric and hexameric mannoside clusters bearing 1,2,3-trizole linkages via Cu(I)-catalyzed azide-alkyne cycloaddition reaction ("click chemistry") is described. An attractive feature of these multiarmed mannoside clusters as potential inhibitors of uropathogenic Escherichia coli is the use of an aglycone whose length is designed to fit in the tyrosine gate. The acetylated mannosides were deprotected and the corresponding de-O-acetylated mannosides were found to exhibit good water solubility.
Collapse
|
29
|
Fiege B, Rabbani S, Preston RC, Jakob RP, Zihlmann P, Schwardt O, Jiang X, Maier T, Ernst B. The tyrosine gate of the bacterial lectin FimH: a conformational analysis by NMR spectroscopy and X-ray crystallography. Chembiochem 2015; 16:1235-46. [PMID: 25940742 DOI: 10.1002/cbic.201402714] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Indexed: 12/22/2022]
Abstract
Urinary tract infections caused by uropathogenic E. coli are among the most prevalent infectious diseases. The mannose-specific lectin FimH mediates the adhesion of the bacteria to the urothelium, thus enabling host cell invasion and recurrent infections. An attractive alternative to antibiotic treatment is the development of FimH antagonists that mimic the physiological ligand. A large variety of candidate drugs have been developed and characterized by means of in vitro studies and animal models. Here we present the X-ray co-crystal structures of FimH with members of four antagonist classes. In three of these cases no structural data had previously been available. We used NMR spectroscopy to characterize FimH-antagonist interactions further by chemical shift perturbation. The analysis allowed a clear determination of the conformation of the tyrosine gate motif that is crucial for the interaction with aglycone moieties and was not obvious from X-ray structural data alone. Finally, ITC experiments provided insight into the thermodynamics of antagonist binding. In conjunction with the structural information from X-ray and NMR experiments the results provide a mechanism for the often-observed enthalpy-entropy compensation of FimH antagonists that plays a role in fine-tuning of the interaction.
Collapse
Affiliation(s)
- Brigitte Fiege
- Institute of Molecular Pharmacy, University of Basel, Klingelbergstrasse 50, 4056 Basel (Switzerland)
| | - Said Rabbani
- Institute of Molecular Pharmacy, University of Basel, Klingelbergstrasse 50, 4056 Basel (Switzerland)
| | - Roland C Preston
- Institute of Molecular Pharmacy, University of Basel, Klingelbergstrasse 50, 4056 Basel (Switzerland)
| | - Roman P Jakob
- Structural Biology, Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel (Switzerland)
| | - Pascal Zihlmann
- Institute of Molecular Pharmacy, University of Basel, Klingelbergstrasse 50, 4056 Basel (Switzerland)
| | - Oliver Schwardt
- Institute of Molecular Pharmacy, University of Basel, Klingelbergstrasse 50, 4056 Basel (Switzerland)
| | - Xiaohua Jiang
- Institute of Molecular Pharmacy, University of Basel, Klingelbergstrasse 50, 4056 Basel (Switzerland)
| | - Timm Maier
- Structural Biology, Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel (Switzerland).
| | - Beat Ernst
- Institute of Molecular Pharmacy, University of Basel, Klingelbergstrasse 50, 4056 Basel (Switzerland).
| |
Collapse
|
30
|
Twibanire JDK, Paul NK, Grindley TB. Synthesis of novel types of polyester glycodendrimers as potential inhibitors of urinary tract infections. NEW J CHEM 2015. [DOI: 10.1039/c4nj00992d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Syntheses of highly mannosylated polyester dendrimers with 2, 4, 8, and 16 α-d-mannopyranose residues on their peripheries connected by different linker arms are presented.
Collapse
Affiliation(s)
| | - Nawal K. Paul
- Department of Chemistry
- Dalhousie University
- Halifax
- Canada
| | | |
Collapse
|
31
|
Tomašić T, Rabbani S, Gobec M, Raščan IM, Podlipnik Č, Ernst B, Anderluh M. Branched α-d-mannopyranosides: a new class of potent FimH antagonists. MEDCHEMCOMM 2014. [DOI: 10.1039/c4md00093e] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We report branched α-d-mannopyranosides as potent FimH antagonists that exploit the previously unexplored lipophilic region formed by Phe142 and Ile13.
Collapse
Affiliation(s)
- Tihomir Tomašić
- University of Ljubljana
- Faculty of Pharmacy
- SI-1000 Ljubljana
- Slovenia
| | - Said Rabbani
- Institute of Molecular Pharmacy
- Pharmacenter
- University of Basel
- CH-4056 Basel
- Switzerland
| | - Martina Gobec
- University of Ljubljana
- Faculty of Pharmacy
- SI-1000 Ljubljana
- Slovenia
| | | | - Črtomir Podlipnik
- University of Ljubljana
- Faculty of Chemistry and Chemical Technology
- SI-1000 Ljubljana
- Slovenia
| | - Beat Ernst
- Institute of Molecular Pharmacy
- Pharmacenter
- University of Basel
- CH-4056 Basel
- Switzerland
| | - Marko Anderluh
- University of Ljubljana
- Faculty of Pharmacy
- SI-1000 Ljubljana
- Slovenia
| |
Collapse
|
32
|
Gouin SG, Roos G, Bouckaert J. Discovery and Application of FimH Antagonists. TOPICS IN MEDICINAL CHEMISTRY 2014. [DOI: 10.1007/7355_2014_52] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|