1
|
Kim S, Kim NH, Khaleel ZH, Sa DH, Choi D, Ga S, Kim CG, Jang J, Kim K, Kim YJ, Chang SN, Park SM, Park SY, Lee B, Kim J, Lee J, An S, Park JG, Kim YH. Mussel‐Inspired Recombinant Adhesive Protein‐Based Functionalization for Consistent and Effective Antimicrobial Treatment in Chronic Inflammatory Skin Diseases. ADVANCED THERAPEUTICS 2024; 7. [DOI: 10.1002/adtp.202300353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Indexed: 08/07/2024]
Abstract
AbstractChronic inflammatory skin diseases, characterized by a vicious cycle of infection and hyperinflammation, necessitate consistent and effective antimicrobial treatment of target lesions to achieve practical therapeutic outcomes. Antimicrobial dressing materials offer notable advantages over conventional therapeutic drugs, including ease of application, extended contact time, and targeted antimicrobial action, resulting in enhanced efficacy in breaking the vicious cycle. In line with these advantages, this study aims to develop a plug‐and‐playable recombinant adhesive protein (RAP) inspired by the adhesive properties of marine mussels, serving as a durable and effective surface functionalization strategy. By genetically recombining mussel foot protein with antimicrobial peptides, RAP effectively incorporates antimicrobial properties into biomaterials for treating chronic inflammatory skin diseases. The durable adhesion of RAP ensures long‐lasting antimicrobial functionality on target surfaces, MFP making it a promising approach to inhibit chronic inflammation. In addition, when dip‐coated onto cotton gauze, RAP can be utilized as an antimicrobial patch, effectively suppressing chronic inflammation through the inhibition of bacteria‐induced toll‐like receptor signaling. These findings underscore the potential of nature‐inspired protein‐based surface functionalization of biomaterials as a compelling approach to advance the treatment of chronic inflammatory skin diseases.
Collapse
Affiliation(s)
- Suhyeon Kim
- SKKU Advanced Institute of Nanotechnology (SAINT) Sungkyunkwan University (SKKU) 2066 Seobu‐ro, Jangan‐gu Suwon Gyeonggi‐do 16419 Republic of Korea
- Department of Nano Science and Technology Sungkyunkwan University (SKKU) 2066 Seobu‐ro, Jangan‐gu Suwon Gyeonggi‐do 16419 Republic of Korea
| | - Nam Hyeong Kim
- SKKU Advanced Institute of Nanotechnology (SAINT) Sungkyunkwan University (SKKU) 2066 Seobu‐ro, Jangan‐gu Suwon Gyeonggi‐do 16419 Republic of Korea
- Department of Nano Science and Technology Sungkyunkwan University (SKKU) 2066 Seobu‐ro, Jangan‐gu Suwon Gyeonggi‐do 16419 Republic of Korea
| | - Zinah Hilal Khaleel
- SKKU Advanced Institute of Nanotechnology (SAINT) Sungkyunkwan University (SKKU) 2066 Seobu‐ro, Jangan‐gu Suwon Gyeonggi‐do 16419 Republic of Korea
- Department of Nano Science and Technology Sungkyunkwan University (SKKU) 2066 Seobu‐ro, Jangan‐gu Suwon Gyeonggi‐do 16419 Republic of Korea
| | - Deok Hyang Sa
- SKKU Advanced Institute of Nanotechnology (SAINT) Sungkyunkwan University (SKKU) 2066 Seobu‐ro, Jangan‐gu Suwon Gyeonggi‐do 16419 Republic of Korea
- Department of Nano Science and Technology Sungkyunkwan University (SKKU) 2066 Seobu‐ro, Jangan‐gu Suwon Gyeonggi‐do 16419 Republic of Korea
| | - Daekyu Choi
- SKKU Advanced Institute of Nanotechnology (SAINT) Sungkyunkwan University (SKKU) 2066 Seobu‐ro, Jangan‐gu Suwon Gyeonggi‐do 16419 Republic of Korea
| | - Seongmin Ga
- SKKU Advanced Institute of Nanotechnology (SAINT) Sungkyunkwan University (SKKU) 2066 Seobu‐ro, Jangan‐gu Suwon Gyeonggi‐do 16419 Republic of Korea
- Department of Nano Science and Technology Sungkyunkwan University (SKKU) 2066 Seobu‐ro, Jangan‐gu Suwon Gyeonggi‐do 16419 Republic of Korea
| | - Chang Geon Kim
- SKKU Advanced Institute of Nanotechnology (SAINT) Sungkyunkwan University (SKKU) 2066 Seobu‐ro, Jangan‐gu Suwon Gyeonggi‐do 16419 Republic of Korea
- Advanced Bio Convergence Center (ABCC) Pohang Technopark Foundation Pohang Gyeongbuk 37668 Republic of Korea
| | - Jiye Jang
- School of Pharmacy Sungkyunkwan University (SKKU) 2066 Seobu‐ro, Jangan‐gu Suwon Gyeonggi‐do 16419 Republic of Korea
- Department of Biopharmaceutical Convergence Sungkyunkwan University (SKKU) 2066 Seobu‐ro, Jangan‐gu Suwon Gyeonggi‐do 16419 Republic of Korea
| | - Kyeonghyun Kim
- Department of Nano Science and Technology Sungkyunkwan University (SKKU) 2066 Seobu‐ro, Jangan‐gu Suwon Gyeonggi‐do 16419 Republic of Korea
| | - Ye Ji Kim
- Department of Nano Science and Technology Sungkyunkwan University (SKKU) 2066 Seobu‐ro, Jangan‐gu Suwon Gyeonggi‐do 16419 Republic of Korea
| | - Sukkum Ngullie Chang
- Advanced Bio Convergence Center (ABCC) Pohang Technopark Foundation Pohang Gyeongbuk 37668 Republic of Korea
| | - Seon Min Park
- Advanced Bio Convergence Center (ABCC) Pohang Technopark Foundation Pohang Gyeongbuk 37668 Republic of Korea
| | - Su Yeon Park
- SKKU Advanced Institute of Nanotechnology (SAINT) Sungkyunkwan University (SKKU) 2066 Seobu‐ro, Jangan‐gu Suwon Gyeonggi‐do 16419 Republic of Korea
- Department of Nano Science and Technology Sungkyunkwan University (SKKU) 2066 Seobu‐ro, Jangan‐gu Suwon Gyeonggi‐do 16419 Republic of Korea
| | - Bok‐Soo Lee
- SKKU Advanced Institute of Nanotechnology (SAINT) Sungkyunkwan University (SKKU) 2066 Seobu‐ro, Jangan‐gu Suwon Gyeonggi‐do 16419 Republic of Korea
| | - Jin‐Chul Kim
- Natural Products Research Institute Korea Institute of Science and Technology Gangneung Gangwon‐do 25451 Republic of Korea
| | - Jaecheol Lee
- School of Pharmacy Sungkyunkwan University (SKKU) 2066 Seobu‐ro, Jangan‐gu Suwon Gyeonggi‐do 16419 Republic of Korea
- Department of Biopharmaceutical Convergence Sungkyunkwan University (SKKU) 2066 Seobu‐ro, Jangan‐gu Suwon Gyeonggi‐do 16419 Republic of Korea
- Imnewrun Inc. 2066 Seobu‐ro, Jangan‐gu Suwon Gyeonggi‐do 16419 Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS) Sungkyunkwan University (SKKU) 2066 Seobu‐ro, Jangan‐gu Suwon Gyeonggi‐do 16419 Republic of Korea
| | - Seongpil An
- SKKU Advanced Institute of Nanotechnology (SAINT) Sungkyunkwan University (SKKU) 2066 Seobu‐ro, Jangan‐gu Suwon Gyeonggi‐do 16419 Republic of Korea
| | - Jae Gyu Park
- Advanced Bio Convergence Center (ABCC) Pohang Technopark Foundation Pohang Gyeongbuk 37668 Republic of Korea
- Department of Nano Engineering Sungkyunkwan University (SKKU) 2066 Seobu‐ro, Jangan‐gu Suwon Gyeonggi‐do 16419 Republic of Korea
| | - Yong Ho Kim
- SKKU Advanced Institute of Nanotechnology (SAINT) Sungkyunkwan University (SKKU) 2066 Seobu‐ro, Jangan‐gu Suwon Gyeonggi‐do 16419 Republic of Korea
- Department of Nano Science and Technology Sungkyunkwan University (SKKU) 2066 Seobu‐ro, Jangan‐gu Suwon Gyeonggi‐do 16419 Republic of Korea
- Imnewrun Inc. 2066 Seobu‐ro, Jangan‐gu Suwon Gyeonggi‐do 16419 Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS) Sungkyunkwan University (SKKU) 2066 Seobu‐ro, Jangan‐gu Suwon Gyeonggi‐do 16419 Republic of Korea
- Department of Nano Engineering Sungkyunkwan University (SKKU) 2066 Seobu‐ro, Jangan‐gu Suwon Gyeonggi‐do 16419 Republic of Korea
| |
Collapse
|
2
|
González-Rodríguez S, Trueba-Santiso A, Lu-Chau TA, Moreira MT, Eibes G. Valorization of bioethanol by-products to produce unspecific peroxygenase with Agrocybe aegerita: technological and proteomic perspectives. N Biotechnol 2023; 76:63-71. [PMID: 37169331 DOI: 10.1016/j.nbt.2023.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/22/2023] [Accepted: 05/08/2023] [Indexed: 05/13/2023]
Abstract
Unspecific peroxygenase (UPO) presents a wide range of biotechnological applications. This study targets the use of by-products from bioethanol synthesis to produce UPO by Agrocybe aegerita. Solid-state and submerged fermentations (SSF and SmF) were evaluated, achieving the highest titers of UPO and laccase in SmF using vinasse as nutrients source. Optimized UPO production of 331U/L was achieved in 50% (v:v) vinasse with an inoculum grown for 14 days. These conditions were scaled-up to a 4L reactor, achieving a UPO activity of 265U/L. Fungal proteome expression was analyzed before and after UPO activity appeared by shotgun mass spectrometry proteomics. Laccase, dye-decolorizing peroxidases (DyP), lectins and proteins involved in reactive oxygen species (ROS) production and control were detected (in addition to UPO). Interestingly, the metabolism of complex sugars and nitrogen sources had a different activity at the beginning and end of the submerged fermentation. DATA AVAILABILITY: The data used to support the findings of this study are available from the corresponding author upon reasonable request.
Collapse
Affiliation(s)
- Sandra González-Rodríguez
- CRETUS, Department of Chemical Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Galicia, Spain.
| | - Alba Trueba-Santiso
- CRETUS, Department of Chemical Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Galicia, Spain
| | - Thelmo A Lu-Chau
- CRETUS, Department of Chemical Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Galicia, Spain
| | - María Teresa Moreira
- CRETUS, Department of Chemical Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Galicia, Spain
| | - Gemma Eibes
- CRETUS, Department of Chemical Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Galicia, Spain
| |
Collapse
|
3
|
Anticryptococcal activity and mechanistic investigation of histidine-rich short peptides. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
4
|
Sharma K, Sharma KK, Mahindra A, Sehra N, Bagra N, Aaghaz S, Parmar R, Rathod GK, Jain R. Design, synthesis, and applications of ring-functionalized histidines in peptide-based medicinal chemistry and drug discovery. Med Res Rev 2023. [PMID: 36710510 DOI: 10.1002/med.21936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 12/12/2022] [Accepted: 01/06/2023] [Indexed: 01/31/2023]
Abstract
Modified and synthetic α-amino acids are known to show diverse applications. Histidine, which possesses numerous applications when subjected to synthetic modifications, is one such amino acid. The utility of modified histidines varies widely from remarkable biological activities to catalysis, and from nanotechnology to polymer chemistry. This renders histidine residue an important place in scientific research. Histidine is a well-studied scaffold and constitutes the active site of various enzymes catalyzing important reactions in the biological systems. A rational modification in histidine structure with a distinctly developed protocol extensively changes its physical and chemical properties. The utilization of modified histidines in search of potent, target selective and proteostable scaffolds is vital in the development of bioactive peptides with enhanced drug-likeliness. This review is a compilation and analysis of reported side-chain ring modifications at histidine followed by applications of ring-modified histidines in the synthesis of various categories of bioactive peptides and peptidomimetics.
Collapse
Affiliation(s)
- Komal Sharma
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Nagar, Punjab, India
| | - Krishna K Sharma
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Nagar, Punjab, India
| | - Amit Mahindra
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Nagar, Punjab, India
| | - Naina Sehra
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Nagar, Punjab, India
| | - Nitin Bagra
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Nagar, Punjab, India
| | - Shams Aaghaz
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Nagar, Punjab, India
| | - Rajesh Parmar
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Nagar, Punjab, India
| | - Gajanan K Rathod
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Nagar, Punjab, India
| | - Rahul Jain
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Nagar, Punjab, India
| |
Collapse
|
5
|
Giving a Hand: Synthetic Peptides Boost the Antifungal Activity of Itraconazole against Cryptococcus neoformans. Antibiotics (Basel) 2023; 12:antibiotics12020256. [PMID: 36830167 PMCID: PMC9952215 DOI: 10.3390/antibiotics12020256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/22/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Cryptococcus neoformans is a multidrug-resistant pathogen responsible for infections in immunocompromised patients. Here, itraconazole (ITR), a commercial antifungal drug with low effectiveness against C. neoformans, was combined with different synthetic antimicrobial peptides (SAMPs), Mo-CBP3-PepII, RcAlb-PepII, RcAlb-PepIII, PepGAT, and PepKAA. The Mo-CBP3-PepII was designed based on the sequence of MoCBP3, purified from Moringa oleifera seeds. RcAlb-PepII and RcAlb-PepIII were designed using Rc-2S-Alb, purified from Ricinus communis seed cakes. The putative sequence of a chitinase from Arabidopsis thaliana was used to design PepGAT and PepKAA. All SAMPs have a positive liquid charge and a hydrophobic potential ranging from 41-65%. The mechanisms of action responsible for the combined effect were evaluated for the best combinations using fluorescence microscopy (FM). The synthetic peptides enhanced the activity of ITR by 10-fold against C. neoformans. Our results demonstrated that the combinations could induce pore formation in the membrane and the overaccumulation of ROS on C. neoformans cells. Our findings indicate that our peptides successfully potentialize the activity of ITR against C. neoformans. Therefore, synthetic peptides are potential molecules to assist antifungal agents in treating Cryptococcal infections.
Collapse
|
6
|
Sharma K, Aaghaz S, Maurya IK, Singh S, Rudramurthy SM, Kumar V, Tikoo K, Jain R. Ring-Modified Histidine-Containing Cationic Short Peptides Exhibit Anticryptococcal Activity by Cellular Disruption. Molecules 2022; 28:molecules28010087. [PMID: 36615282 PMCID: PMC9821961 DOI: 10.3390/molecules28010087] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/19/2022] [Accepted: 12/19/2022] [Indexed: 12/25/2022] Open
Abstract
Delineation of clinical complications secondary to fungal infections, such as cryptococcal meningitis, and the concurrent emergence of multidrug resistance in large population subsets necessitates the need for the development of new classes of antifungals. Herein, we report a series of ring-modified histidine-containing short cationic peptides exhibiting anticryptococcal activity via membrane lysis. The N-1 position of histidine was benzylated, followed by iodination at the C-5 position via electrophilic iodination, and the dipeptides were obtained after coupling with tryptophan. In vitro analysis revealed that peptides Trp-His[1-(3,5-di-tert-butylbenzyl)-5-iodo]-OMe (10d, IC50 = 2.20 μg/mL; MIC = 4.01 μg/mL) and Trp-His[1-(2-iodophenyl)-5-iodo)]-OMe (10o, IC50 = 2.52 μg/mL; MIC = 4.59 μg/mL) exhibit promising antifungal activities against C. neoformans. When administered in combination with standard drug amphotericin B (Amp B), a significant synergism was observed, with 4- to 16-fold increase in the potencies of both peptides and Amp B. Electron microscopy analysis with SEM and TEM showed that the dipeptides primarily act via membrane disruption, leading to pore formation and causing cell lysis. After entering the cells, the peptides interact with the intracellular components as demonstrated by confocal laser scanning microscopy (CLSM).
Collapse
Affiliation(s)
- Komal Sharma
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar 160 062, Punjab, India
| | - Shams Aaghaz
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar 160 062, Punjab, India
| | - Indresh Kumar Maurya
- Center of Infectious Diseases, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar 160 062, Punjab, India
| | - Shreya Singh
- Department of Medical Microbiology, Post Graduate Institute of Medical Education and Research, Sector 12, Chandigarh 160 012, India
| | - Shivaprakash M. Rudramurthy
- Department of Medical Microbiology, Post Graduate Institute of Medical Education and Research, Sector 12, Chandigarh 160 012, India
| | - Vinod Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar 160 062, Punjab, India
| | - Kulbhushan Tikoo
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar 160 062, Punjab, India
| | - Rahul Jain
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar 160 062, Punjab, India
- Correspondence:
| |
Collapse
|
7
|
Sharma K, Aaghaz S, Kumar Maurya I, Sharma KK, Singh S, Rudramurthy SM, Kumar V, Tikoo K, Jain R. Synthetic Amino Acids-Derived Peptides Targets Cryptococcus neoformans by Inducing Cell Membrane Disruption. Bioorg Chem 2022; 130:106252. [DOI: 10.1016/j.bioorg.2022.106252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/13/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022]
|
8
|
Aguiar TKB, Neto NAS, Freitas CDT, Silva AFB, Bezerra LP, Malveira EA, Branco LAC, Mesquita FP, Goldman GH, Alencar LMR, Oliveira JTA, Santos-Oliveira R, Souza PFN. Antifungal Potential of Synthetic Peptides against Cryptococcus neoformans: Mechanism of Action Studies Reveal Synthetic Peptides Induce Membrane-Pore Formation, DNA Degradation, and Apoptosis. Pharmaceutics 2022; 14:pharmaceutics14081678. [PMID: 36015304 PMCID: PMC9416200 DOI: 10.3390/pharmaceutics14081678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/10/2022] [Accepted: 08/10/2022] [Indexed: 12/02/2022] Open
Abstract
Cryptococcus neoformans is a human-pathogenic yeast responsible for pneumonia and meningitis, mainly in patients immunocompromised. Infections caused by C. neoformans are a global health concern. Synthetic antimicrobial peptides (SAMPs) have emerged as alternative molecules to cope with fungal infections, including C. neoformans. Here, eight SAMPs were tested regarding their antifungal potential against C. neoformans and had their mechanisms of action elucidated by fluorescence and scanning electron microscopies. Five SAMPs showed an inhibitory effect (MIC50) on C. neoformans growth at low concentrations. Fluorescence microscope (FM) revealed that SAMPs induced 6-kDa pores in the C. neoformans membrane. Inhibitory assays in the presence of ergosterol revealed that some peptides lost their activity, suggesting interaction with it. Furthermore, FM analysis revealed that SAMPs induced caspase 3/7-mediated apoptosis and DNA degradation in C. neoformans cells. Scanning Electron Microscopy (SEM) analysis revealed that peptides induced many morphological alterations such as cell membrane, wall damage, and loss of internal content on C. neoformans cells. Our results strongly suggest synthetic peptides are potential alternative molecules to control C. neoformans growth and treat the cryptococcal infection.
Collapse
Affiliation(s)
- Tawanny K. B. Aguiar
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza 60451-970, CE, Brazil
| | - Nilton A. S. Neto
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza 60451-970, CE, Brazil
| | - Cleverson D. T. Freitas
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza 60451-970, CE, Brazil
| | - Ayrles F. B. Silva
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza 60451-970, CE, Brazil
| | - Leandro P. Bezerra
- Department of Fisheries Engineering, Federal University of Ceará, Fortaleza 60455-970, CE, Brazil
| | - Ellen A. Malveira
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza 60451-970, CE, Brazil
| | - Levi A. C. Branco
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza 60451-970, CE, Brazil
| | - Felipe P. Mesquita
- Drug Research and Development Center, Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza 60430-275, CE, Brazil
| | - Gustavo H. Goldman
- Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo 14040-903, SP, Brazil
| | - Luciana M. R. Alencar
- Department of Physics, Laboratory of Biophysics and Nanosystems, Federal University of Maranhão, São Luís 65080-805, MA, Brazil
| | - Jose T. A. Oliveira
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza 60451-970, CE, Brazil
| | - Ralph Santos-Oliveira
- Laboratory of Nanoradiopharmaceuticals and Radiopharmacy, Zona Oeste State University, Rio de Janeiro 23070-200, RJ, Brazil
- Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Rio de Janeiro 21941-906, RJ, Brazil
| | - Pedro F. N. Souza
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza 60451-970, CE, Brazil
- Drug Research and Development Center, Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza 60430-275, CE, Brazil
- Correspondence:
| |
Collapse
|
9
|
Sharma K, Aaghaz S, Maurya IK, Rudramurthy SM, Singh S, Kumar V, Tikoo K, Jain R. Antifungal evaluation and mechanistic investigations of membrane active short synthetic peptides-based amphiphiles. Bioorg Chem 2022; 127:106002. [DOI: 10.1016/j.bioorg.2022.106002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 12/26/2022]
|
10
|
Sharma KK, Sharma K, Kudwal A, Khan SI, Jain R. Peptide‐Heterocycle Conjugates as Antifungals Against Cryptococcosis. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Krishna K. Sharma
- National Institute of Pharmaceutical Education and Research Medicinal Chemistry INDIA
| | - Komal Sharma
- National Institute of Pharmaceutical Education and Research Medicinal Chemistry INDIA
| | - Anurag Kudwal
- National Institute of Pharmaceutical Education and Research Medicinal Chemistry INDIA
| | | | - Rahul Jain
- National Institute of Pharmaceutical Education and Research Medicinal Chemistry Sector 67 160062 SAS Nagar INDIA
| |
Collapse
|
11
|
Bagra N, Jain R. Synthesis of 4-(1,2,3-triazol-1-yl)-L-phenylalanines. SYNTHETIC COMMUN 2022. [DOI: 10.1080/00397911.2022.2077114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Nitin Bagra
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Punjab, India
| | - Rahul Jain
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Punjab, India
| |
Collapse
|
12
|
Synthesis of 5‐Alkynyl and 2,5‐Dialkynyl‐L‐histidines. ChemistrySelect 2022. [DOI: 10.1002/slct.202200264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
13
|
A Peptide from Budding Yeast GAPDH Serves as a Promising Antifungal against Cryptococcus neoformans. Microbiol Spectr 2022; 10:e0082621. [PMID: 35019693 PMCID: PMC8754130 DOI: 10.1128/spectrum.00826-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Infection of Cryptococcus neoformans is one of the leading causes of morbidity and mortality, particularly among immunocompromised patients. However, currently available drugs for the treatment of C. neoformans infection are minimal. Here, we report SP1, a peptide derived from glyceraldehyde-3-phosphate dehydrogenase (GAPDH) of Saccharomyces cerevisiae, efficiently kills C. neoformans and Cryptococcus gattii. SP1 causes damages to the capsule. Unlike many antimicrobial peptides, SP1 does not form pores on the cell membrane of C. neoformans. It interacts with membrane ergosterol and enters vacuole possibly through membrane trafficking. C. neoformans treated with SP1 show the apoptotic phenotypes such as imbalance of calcium ion homeostasis, reactive oxygen increment, phosphatidylserine exposure, and nuclear fragmentation. Our data imply that SP1 has the potential to be developed into a treatment option for cryptococcosis. IMPORTANCE Cryptococcus neoformans and Cryptococcus gattii can cause cryptococcosis, which has a high mortality rate. To treat the disease, amphotericin B and fluconazole are often used in clinic. However, amphotericin B has rather high renal toxicity, and tolerance to these drugs are quicky developed. The peptide SP1 derived from baker's yeast GAPDH shows antifungal function to kill Cryptococcus neoformans and Cryptococcus gattii efficiently with a high specificity, even for the drug-resistant strains. Our data demonstrate that SP1 induces the apoptosis-like death of Cryptococcus neoformans at low concentrations. The finding of this peptide may shed light on a new direction to treat cryptococcosis.
Collapse
|
14
|
Sharma KK, Ravi R, Maurya IK, Kapadia A, Khan SI, Kumar V, Tikoo K, Jain R. Modified histidine containing amphipathic ultrashort antifungal peptide, His[2-p-(n-butyl)phenyl]-Trp-Arg-OMe exhibits potent anticryptococcal activity. Eur J Med Chem 2021; 223:113635. [PMID: 34147743 DOI: 10.1016/j.ejmech.2021.113635] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/31/2021] [Accepted: 06/06/2021] [Indexed: 12/26/2022]
Abstract
In pursuit of ultrashort peptide-based antifungals, a new structural class, His(2-aryl)-Trp-Arg is reported. Structural changes were investigated on His-Trp-Arg scaffold to demonstrate the impact of charge and lipophilic character on the biological activity. The presence and size of the aryl moiety on imidazole of histidine modulated overall amphiphilic character, and biological activity. Peptides exhibited IC50 of 0.37-9.66 μg/mL against C. neoformans. Peptide 14f [His(2-p-(n-butyl)phenyl)-Trp-Arg-OMe] exhibited two-fold potency (IC50 = 0.37 μg/mL, MIC = 0.63 μg/mL) related to amphotericin B, without any cytotoxic effects up to 10 μg/mL. Peptide 14f act by nuclear fragmentation, membranes permeabilization, disruption and pore formations in the microbial cells as determined by the mechanistic studies employing Trp-quenching, CLSM, SEM, and HR-TEM. The amalgamation of short sequence, presence of appropriate aryl group on l-histidine, potent anticryptococcal activity, no cytotoxicity, and detailed mechanistic studies directed to the identification of 14f as a new antifungal structural lead.
Collapse
Affiliation(s)
- Krishna K Sharma
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S. A. S. Nagar, Punjab 160 062, India
| | - Ravikant Ravi
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S. A. S. Nagar, Punjab 160 062, India
| | - Indresh Kumar Maurya
- Department of Microbial Technology, Panjab University, Sector 25, Chandigarh 160 014, India
| | - Akshay Kapadia
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S. A. S. Nagar, Punjab 160 062, India
| | - Shabana I Khan
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, Mississippi 38677, United States
| | - Vinod Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S Nagar 160 062, Punjab India
| | - Kulbhushan Tikoo
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S Nagar 160 062, Punjab India
| | - Rahul Jain
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S. A. S. Nagar, Punjab 160 062, India.
| |
Collapse
|
15
|
β-Carbolines as potential anticancer agents. Eur J Med Chem 2021; 216:113321. [PMID: 33684825 DOI: 10.1016/j.ejmech.2021.113321] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 02/14/2021] [Accepted: 02/16/2021] [Indexed: 01/18/2023]
Abstract
β-Carbolines are indole alkaloids having a tricyclic pyrido[3,4-b]indole ring in their structure. Since the isolation of first β-carboline from Peganum harmala in 1841, the isolation and synthesis of various β-carboline derivatives surged in the following centuries. β-Carboline derivatives due to their widespread availability from natural sources, structural flexibility, quick reactivity and interaction with varied anticancer targets such as DNA (intercalation, groove binding, etc.), enzymes (GPX4, topoisomerases, kinases, etc.) and proteins (tubulin, ABCG2/BRCP1, etc.) have established themselves as promising lead compounds for the synthesis of various anticancer active agents. The current review covers the synthesis and isolation, anticancer activity, mechanism of action and SAR of various β-carboline containing molecules, its derivatives and congeners.
Collapse
|
16
|
Vasco AV, Brode M, Méndez Y, Valdés O, Rivera DG, Wessjohann LA. Synthesis of Lactam-Bridged and Lipidated Cyclo-Peptides as Promising Anti-Phytopathogenic Agents. Molecules 2020; 25:E811. [PMID: 32069902 PMCID: PMC7070897 DOI: 10.3390/molecules25040811] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 02/07/2020] [Accepted: 02/07/2020] [Indexed: 12/11/2022] Open
Abstract
Antimicrobial resistance to conventional antibiotics and the limited alternatives to combat plant-threatening pathogens are worldwide problems. Antibiotic lipopeptides exert remarkable membrane activity, which usually is not prone to fast resistance formation, and often show organism-type selectivity. Additional modes of action commonly complement the bioactivity profiles of such compounds. The present work describes a multicomponent-based methodology for the synthesis of cyclic polycationic lipopeptides with stabilized helical structures. The protocol comprises an on solid support Ugi-4-component macrocyclization in the presence of a lipidic isocyanide. Circular dichroism was employed to study the influence of both macrocyclization and lipidation on the amphiphilic helical structure in water and micellar media. First bioactivity studies against model phytopathogens demonstrated a positive effect of the lipidation on the antimicrobial activity.
Collapse
Affiliation(s)
- Aldrin V. Vasco
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany; (A.V.V.); (M.B.); (Y.M.)
| | - Martina Brode
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany; (A.V.V.); (M.B.); (Y.M.)
| | - Yanira Méndez
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany; (A.V.V.); (M.B.); (Y.M.)
- Center for Natural Products Research, Faculty of Chemistry, University of Havana, Zapata y G, Havana 10400, Cuba
| | - Oscar Valdés
- Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, Talca 3460000, Chile;
| | - Daniel G. Rivera
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany; (A.V.V.); (M.B.); (Y.M.)
- Center for Natural Products Research, Faculty of Chemistry, University of Havana, Zapata y G, Havana 10400, Cuba
| | - Ludger A. Wessjohann
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany; (A.V.V.); (M.B.); (Y.M.)
| |
Collapse
|
17
|
Rippel R, Pinheiro L, Lopes M, Lourenço A, Ferreira LM, Branco PS. Synthetic Approaches to a Challenging and Unusual Structure—An Amino-Pyrrolidine Guanine Core. Molecules 2020; 25:molecules25040797. [PMID: 32059504 PMCID: PMC7070370 DOI: 10.3390/molecules25040797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/07/2020] [Accepted: 02/10/2020] [Indexed: 11/22/2022] Open
Abstract
The synthesis of an unreported 2-aminopyrrolidine-1-carboxamidine unit is here described for the first time. This unusual and promising structure was attained through the oxidative decarboxylation of amino acids using the pair of reagents, silver(I)/peroxydisulfate (Ag(I)/S2O82−) followed by intermolecular (in the case of l-proline derivative) and intramolecular trapping (in the case of acyl l-arginine) by N-nucleophiles. The l-proline approach has a broader scope for the synthesis of 2-aminopyrrolidine-1-carboxamidine derivatives, whereas the intramolecular cyclization afforded by the l-acylarginines, when applied, results in higher yields. The former allowed the first synthesis of cernumidine, a natural alkaloid isolated in 2011 from Solanum cernuum Vell, as its racemic form.
Collapse
|
18
|
Thota CK, Berger AA, Harms B, Seidel M, Böttcher C, von Berlepsch H, Xie C, Süssmuth R, Roth C, Koksch B. Short self‐assembling cationic antimicrobial peptide mimetics based on a 3,5‐diaminobenzoic acid scaffold. Pept Sci (Hoboken) 2019. [DOI: 10.1002/pep2.24130] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Chaitanya K. Thota
- Department of Chemistry and BiochemistryFreie Universität Berlin Berlin Germany
| | - Allison A. Berger
- Department of Chemistry and BiochemistryFreie Universität Berlin Berlin Germany
| | - Björn Harms
- Department of Chemistry and BiochemistryFreie Universität Berlin Berlin Germany
| | - Maria Seidel
- Institute of ChemistryTechnische Universität Berlin Berlin Germany
| | - Christoph Böttcher
- Research Center for Electron MicroscopyFreie Universität Berlin Berlin Germany
| | - Hans von Berlepsch
- Research Center for Electron MicroscopyFreie Universität Berlin Berlin Germany
| | - Chaunxiong Xie
- Department of Chemistry and BiochemistryFreie Universität Berlin Berlin Germany
| | | | - Christian Roth
- Department of Biomolecular SystemsMax Planck Institute of Colloids and Interfaces Berlin Germany
| | - Beate Koksch
- Department of Chemistry and BiochemistryFreie Universität Berlin Berlin Germany
| |
Collapse
|
19
|
Sharma KK, Maurya IK, Khan SI, Jacob MR, Kumar V, Tikoo K, Jain R. Discovery of a Membrane-Active, Ring-Modified Histidine Containing Ultrashort Amphiphilic Peptide That Exhibits Potent Inhibition of Cryptococcus neoformans. J Med Chem 2017; 60:6607-6621. [DOI: 10.1021/acs.jmedchem.7b00481] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Krishna K. Sharma
- Department
of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S. A. S. Nagar, Punjab 160 062, India
| | - Indresh Kumar Maurya
- Department
of Microbial Biotechnology, Panjab University, Sector 25, Chandigarh, 160 014, India
| | - Shabana I. Khan
- National
Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, Mississippi 38677, United States
| | - Melissa R. Jacob
- National
Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, Mississippi 38677, United States
| | - Vinod Kumar
- Department
of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Sector 67, S. A. S. Nagar, Punjab 160 062, India
| | - Kulbhushan Tikoo
- Department
of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Sector 67, S. A. S. Nagar, Punjab 160 062, India
| | - Rahul Jain
- Department
of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S. A. S. Nagar, Punjab 160 062, India
| |
Collapse
|
20
|
Shenmar K, Sharma KK, Wangoo N, Maurya IK, Kumar V, Khan SI, Jacob MR, Tikoo K, Jain R. Synthesis, stability and mechanistic studies of potent anticryptococcal hexapeptides. Eur J Med Chem 2017; 132:192-203. [PMID: 28363154 DOI: 10.1016/j.ejmech.2017.03.046] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 02/14/2017] [Accepted: 03/22/2017] [Indexed: 01/04/2023]
Abstract
The growing incidents of cryptococcosis in immuno-compromised patients have created a need for novel drug therapies capable of eradicating the disease. The peptide-based drug therapy offers many advantages over the traditional therapeutic agents, which has been exploited in the present study by synthesizing a series of hexapeptides that exhibits promising activity against a panel of Gram-negative and Gram-positive bacteria and various pathogenic fungal strains; the most exemplary activity was observed against Cryptococcus neoformans. The peptides 3, 24, 32 and 36 displayed potent anticryptococcal activity (IC50 = 0.4-0.46 μg/mL, MIC = 0.63-1.25 μg/mL, MFC = 0.63-1.25 μg/mL), and stability under proteolytic conditions. Besides this, several other peptides displayed promising inhibition of pathogenic bacteria. The prominent ones include peptides 18-20, and 26 that exhibited IC50 values ranged between 2.1 and 3.6 μg/mL, MICs of 5-20 μg/mL and MBCs of 10-20 μg/mL against Staphylococcus aureus and methicillin-resistant S. aureus. The detailed mechanistic study on selected peptides demonstrated absolute selectivity towards the bacterial membranes and fungal cells by causing perturbations in the cell membranes, confirmed by the scanning electron microscopy and transmission electron microscopy studies.
Collapse
Affiliation(s)
- Kitika Shenmar
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S. A. S. Nagar, Punjab, 160 062, India
| | - Krishna K Sharma
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S. A. S. Nagar, Punjab, 160 062, India
| | - Nishima Wangoo
- Department of Applied Sciences, University Institute of Engineering and Technology (U.I.E.T.), Panjab University, Sector-25, Chandigarh, 160014, India
| | - Indresh K Maurya
- Department of Microbial Biotechnology, Panjab University, Sector-14, Chandigarh, 160014, India
| | - Vinod Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Sector 67, S. A. S. Nagar, Punjab, 160 062, India
| | - Shabana I Khan
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
| | - Melissa R Jacob
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
| | - Kulbhushan Tikoo
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Sector 67, S. A. S. Nagar, Punjab, 160 062, India
| | - Rahul Jain
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S. A. S. Nagar, Punjab, 160 062, India.
| |
Collapse
|
21
|
Sharma KK, Mandloi M, Jain R. Regioselective Access to 1,2-Diarylhistidines through the Copper-Catalyzed N1-Arylation of 2-Arylhistidines. European J Org Chem 2017. [DOI: 10.1002/ejoc.201601566] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Krishna K. Sharma
- Department of Medicinal Chemistry; National Institute of Pharmaceutical Education and Research; Sector 67, S. A. S. 160062 Nagar Punjab India
| | - Meenakshi Mandloi
- Department of Medicinal Chemistry; National Institute of Pharmaceutical Education and Research; Sector 67, S. A. S. 160062 Nagar Punjab India
| | - Rahul Jain
- Department of Medicinal Chemistry; National Institute of Pharmaceutical Education and Research; Sector 67, S. A. S. 160062 Nagar Punjab India
| |
Collapse
|
22
|
Singh K, Shekhar S, Yadav Y, Xess I, Dey S. DS6: anticandidal, antibiofilm peptide against Candida tropicalis
and exhibit synergy with commercial drug. J Pept Sci 2017; 23:228-235. [DOI: 10.1002/psc.2973] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 12/26/2016] [Accepted: 01/02/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Kusum Singh
- Department of Biophysics; All India Institute of Medical Sciences; New Delhi 110029 India
| | - Shashank Shekhar
- Department of Biophysics; All India Institute of Medical Sciences; New Delhi 110029 India
| | - Yudhishthir Yadav
- Department of Biophysics; All India Institute of Medical Sciences; New Delhi 110029 India
| | - Immaculata Xess
- Microbiology; All India Institute of Medical Sciences; New Delhi 110029 India
| | - Sharmistha Dey
- Department of Biophysics; All India Institute of Medical Sciences; New Delhi 110029 India
| |
Collapse
|
23
|
Sharma KK, Mandloi M, Rai N, Jain R. Copper-catalyzed N-(hetero)arylation of amino acids in water. RSC Adv 2016. [DOI: 10.1039/c6ra23364c] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
A transition metal-catalyzed, environmentally benign, rapid and cost-effective method for the N-(hetero)arylation of zwitterionic amino acids in water is reported.
Collapse
Affiliation(s)
- Krishna K. Sharma
- Department of Medicinal Chemistry
- National Institute of Pharmaceutical Education and Research
- India
| | - Meenakshi Mandloi
- Department of Medicinal Chemistry
- National Institute of Pharmaceutical Education and Research
- India
| | - Neha Rai
- Department of Medicinal Chemistry
- National Institute of Pharmaceutical Education and Research
- India
| | - Rahul Jain
- Department of Medicinal Chemistry
- National Institute of Pharmaceutical Education and Research
- India
| |
Collapse
|
24
|
Mittal S, Kaur S, Swami A, Maurya IK, Jain R, Wangoo N, Sharma RK. Alkylated histidine based short cationic antifungal peptides: synthesis, biological evaluation and mechanistic investigations. RSC Adv 2016. [DOI: 10.1039/c6ra05883c] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Novel antifungal peptides are described with some peptides exhibiting selective activity againstC. neoformans. Cytotoxicity and mechanistic studies reveal their applicability as effective antimicrobials with less susceptibility to drug resistance.
Collapse
Affiliation(s)
- Sherry Mittal
- Department of Chemistry & Centre for Advanced Studies in Chemistry
- Panjab University
- Chandigarh-160014
- India
| | - Sarabjit Kaur
- Department of Chemistry & Centre for Advanced Studies in Chemistry
- Panjab University
- Chandigarh-160014
- India
| | - Anuradha Swami
- Department of Applied Sciences
- University Institute of Engineering & Technology (U.I.E.T.)
- Panjab University
- Chandigarh-160014
- India
| | - Indresh K. Maurya
- Department of Microbial Biotechnology
- Panjab University
- Chandigarh-160014
- India
| | - Rahul Jain
- Department of Medicinal Chemistry
- National Institute of Pharmaceutical Education & Research (NIPER)
- S.A.S. Nagar
- India
| | - Nishima Wangoo
- Department of Applied Sciences
- University Institute of Engineering & Technology (U.I.E.T.)
- Panjab University
- Chandigarh-160014
- India
| | - Rohit K. Sharma
- Department of Chemistry & Centre for Advanced Studies in Chemistry
- Panjab University
- Chandigarh-160014
- India
| |
Collapse
|
25
|
Sharma KK, Mandloi M, Jain R. Regioselective copper-catalyzed N(1)-(hetero)arylation of protected histidine. Org Biomol Chem 2016; 14:8937-8941. [DOI: 10.1039/c6ob01753c] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We report regioselective N(1)-arylation of protected histidine using copper(i) iodide as a catalyst, trans-N,N′-dimethylcyclohexane-1,2-diamine as a ligand and readily available aryl iodides as coupling partners under microwave irradiation at 130 °C for 40 min.
Collapse
Affiliation(s)
- Krishna K. Sharma
- Department of Medicinal Chemistry
- National Institute of Pharmaceutical Education and Research
- India
| | - Meenakshi Mandloi
- Department of Medicinal Chemistry
- National Institute of Pharmaceutical Education and Research
- India
| | - Rahul Jain
- Department of Medicinal Chemistry
- National Institute of Pharmaceutical Education and Research
- India
| |
Collapse
|
26
|
Zats GM, Kovaliov M, Albeck A, Shatzmiller S. Antimicrobial benzodiazepine-based short cationic peptidomimetics. J Pept Sci 2015; 21:512-9. [PMID: 25807936 DOI: 10.1002/psc.2771] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Revised: 02/11/2015] [Accepted: 02/18/2015] [Indexed: 11/11/2022]
Abstract
Antimicrobial peptides (AMPs) appear to be good candidates for the development of new antibiotic drugs. We describe here the synthesis of peptidomimetic compounds that are based on a benzodiazepine scaffold flanked with positively charged and hydrophobic amino acids. These compounds mimic the essential properties of cationic AMPs. The new design possesses the benzodiazepine scaffold that is comprised of two glycine amino acids and which confers flexibility and aromatic hydrophobic 'back', and two arms used for further synthesis on solid phase for incorporation of charged and hydrophobic amino acids. This approach allowed us a better understanding of the influence of these features on the antimicrobial activity and selectivity. A novel compound was discovered which has MICs of 12.5 µg/ml against Staphylococcus aureus and 25 µg/ml against Escherichia coli, similar to the well-known antimicrobial peptide MSI-78. In contrast to MSI-78, the above mentioned compound has lower lytic effect against mammalian red blood cells. These peptidomimetic compounds will pave the way for future design of potent synthetic mimics of AMPs for therapeutic and biomedical applications.
Collapse
Affiliation(s)
- Galina M Zats
- Department of Chemistry, Bar-Ilan University, Ramat Gan, 52900, Israel.,Department of Biological Chemistry, Ariel University, Ariel, 40700, Israel
| | - Marina Kovaliov
- Department of Chemistry, Bar-Ilan University, Ramat Gan, 52900, Israel.,Department of Biological Chemistry, Ariel University, Ariel, 40700, Israel
| | - Amnon Albeck
- Department of Chemistry, Bar-Ilan University, Ramat Gan, 52900, Israel
| | - Shimon Shatzmiller
- Department of Biological Chemistry, Ariel University, Ariel, 40700, Israel
| |
Collapse
|
27
|
Lohan S, Monga J, Chauhan CS, Bisht GS. In Vitro and In Vivo Evaluation of Small Cationic Abiotic Lipopeptides as Novel Antifungal Agents. Chem Biol Drug Des 2015; 86:829-36. [PMID: 25777475 DOI: 10.1111/cbdd.12558] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 02/24/2015] [Accepted: 03/10/2015] [Indexed: 12/01/2022]
Abstract
We investigated the antifungal potential of short lipopeptides against clinical fungal isolates with an objective to evaluate their clinical feasibility. All tested lipopeptides exhibit good antifungal activity with negligible difference between the MICs against susceptible and drug-resistant clinical fungal isolates. The MTT assay results revealed the lower cytotoxicity of lipopeptides toward mammalian cells (NRK-52E). In particular, LP24 displayed highest potency against most of the tested fungal isolates with MICs in the range of 1.5-4.5 μg/mL. Calcein dye leakage experiments with model membrane suggested the membrane-active mode of action for LP24. Extending our work from model membranes to intact Aspergillus fumigatus in scanning electron micrographs, we could visualize surface perturbation caused by LP24. LP24 (5 mg/kg) significantly reduces the A. fumigatus burden among the various organs of infected animals, and 70% of the infected mice survived when observed for 28 days. This study underscores the potential of small cationic abiotic lipopeptides to develop into the next-generation antimicrobial therapy.
Collapse
Affiliation(s)
- Sandeep Lohan
- Department of Pharmacy, Jaypee University of Information Technology, Solan, 173234, India
| | - Jitender Monga
- Department of Urology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Chetan Singh Chauhan
- Department of Pharmacy, Bhupal Noble College of Pharmacy, Udaipur, Rajasthan, 313002, India
| | - Gopal Singh Bisht
- Department of Pharmacy, Jaypee University of Information Technology, Solan, 173234, India.,Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan, 173234, India
| |
Collapse
|
28
|
Mahindra A, Bagra N, Wangoo N, Jain R, Khan SI, Jacob MR, Jain R. Synthetically modified L-histidine-rich peptidomimetics exhibit potent activity against Cryptococcus neoformans. Bioorg Med Chem Lett 2014; 24:3150-4. [PMID: 24878194 PMCID: PMC4065882 DOI: 10.1016/j.bmcl.2014.04.120] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 04/01/2014] [Accepted: 04/30/2014] [Indexed: 01/27/2023]
Abstract
We describe the synthesis and antimicrobial evaluation of structurally new peptidomimetics, rich in synthetically modified L-histidine. Two series of tripeptidomimetics were synthesized by varying lipophilicity at the C-2 position of L-histidine and at the N- and C-terminus. The data indicates that peptides (5f, 6f, 9f and 10f) possessing highly lipophilic adamantan-1-yl group displayed strong inhibition of Cryptococcus neoformans. Peptide 6f is the most potent of all with IC50 and MFC values of 0.60 and 0.63 μg/mL, respectively, compared to the commercial drug amphotericin B (IC50=0.69 and MFC=1.25 μg/mL). The selectivity of these peptides to microbial pathogen was examined by a tryptophan fluorescence quenching study and transmission electron microscopy. These studies indicate that the peptides plausibly interact with the mimic membrane of pathogen by direct insertion, and results in disruption of membrane of pathogen.
Collapse
Affiliation(s)
- Amit Mahindra
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Punjab 160 062, India
| | - Nitin Bagra
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Punjab 160 062, India
| | - Nishima Wangoo
- Center for Nanoscience and Nanotechnology, Panjab University, Sector 14, Chandigarh 160 014, India
| | - Rohan Jain
- Center for Nanoscience and Nanotechnology, Panjab University, Sector 14, Chandigarh 160 014, India
| | - Shabana I Khan
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
| | - Melissa R Jacob
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
| | - Rahul Jain
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Punjab 160 062, India.
| |
Collapse
|
29
|
Mahindra A, Sharma KK, Rathore D, Khan SI, Jacob MR, Jain R. Synthesis and Antimicrobial Activities of His(2-aryl)-Arg and Trp-His(2-aryl) Classes of Dipeptidomimetics. MEDCHEMCOMM 2014; 5:671-676. [PMID: 24976942 PMCID: PMC4066839 DOI: 10.1039/c4md00041b] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In this communication, we report the design, synthesis and in vitro antimicrobial activity of ultra short peptidomimetics. Besides producing promising antibacterial activities against Staphylococcus aureus and methicillin-resistant S. aureus (MRSA), the dipeptidomimetics exhibited high antifungal activity against C. neoformans with IC50 values in the range of 0.16-19 μg/mL. The most potent analogs exhibited 4-fold higher activity than the currently used drug amphotericin B, with no apparent cytotoxicity in a panel of mammalian cell lines.
Collapse
Affiliation(s)
- Amit Mahindra
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S. A. S. Nagar, Punjab 160 062, India
| | - Krishna K. Sharma
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S. A. S. Nagar, Punjab 160 062, India
| | - Dinesh Rathore
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S. A. S. Nagar, Punjab 160 062, India
| | - Shabana. I. Khan
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, Mississippi 38677, USA
| | - Melissa R. Jacob
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, Mississippi 38677, USA
| | - Rahul Jain
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S. A. S. Nagar, Punjab 160 062, India
| |
Collapse
|
30
|
Mahindra A, Jain R. Regiocontrolled palladium-catalyzed and copper-mediated C–H bond functionalization of protectedl-histidine. Org Biomol Chem 2014; 12:3792-6. [DOI: 10.1039/c4ob00430b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Regiocontrolled transition-metal-catalyzed C–H bond arylation of protectedl-histidine with aryl halides as the coupling partner is reported.
Collapse
Affiliation(s)
- Amit Mahindra
- Department of Medicinal Chemistry
- National Institute of Pharmaceutical Education and Research
- S. A. S. Nagar, India
| | - Rahul Jain
- Department of Medicinal Chemistry
- National Institute of Pharmaceutical Education and Research
- S. A. S. Nagar, India
| |
Collapse
|