1
|
Chen GQ, Guo HY, Quan ZS, Shen QK, Li X, Luan T. Natural Products-Pyrazine Hybrids: A Review of Developments in Medicinal Chemistry. Molecules 2023; 28:7440. [PMID: 37959859 PMCID: PMC10649211 DOI: 10.3390/molecules28217440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/15/2023] Open
Abstract
Pyrazine is a six-membered heterocyclic ring containing nitrogen, and many of its derivatives are biologically active compounds. References have been downloaded through Web of Science, PubMed, Science Direct, and SciFinder Scholar. The structure, biological activity, and mechanism of natural product derivatives containing pyrazine fragments reported from 2000 to September 2023 were reviewed. Publications reporting only the chemistry of pyrazine derivatives are beyond the scope of this review and have not been included. The results of research work show that pyrazine-modified natural product derivatives have a wide range of biological activities, including anti-inflammatory, anticancer, antibacterial, antiparasitic, and antioxidant activities. Many of these derivatives exhibit stronger pharmacodynamic activity and less toxicity than their parent compounds. This review has a certain reference value for the development of heterocyclic compounds, especially pyrazine natural product derivatives.
Collapse
Affiliation(s)
- Guo-Qing Chen
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China; (G.-Q.C.); (H.-Y.G.); (Z.-S.Q.); (Q.-K.S.)
| | - Hong-Yan Guo
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China; (G.-Q.C.); (H.-Y.G.); (Z.-S.Q.); (Q.-K.S.)
| | - Zhe-Shan Quan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China; (G.-Q.C.); (H.-Y.G.); (Z.-S.Q.); (Q.-K.S.)
| | - Qing-Kun Shen
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China; (G.-Q.C.); (H.-Y.G.); (Z.-S.Q.); (Q.-K.S.)
| | - Xiaoting Li
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China; (G.-Q.C.); (H.-Y.G.); (Z.-S.Q.); (Q.-K.S.)
| | - Tian Luan
- Department of Pharmacy, Shenyang Medical College, Shenyang 110034, China
| |
Collapse
|
2
|
Yang YH, Dai SY, Deng FH, Peng LH, Li C, Pei YH. Recent advances in medicinal chemistry of oleanolic acid derivatives. PHYTOCHEMISTRY 2022; 203:113397. [PMID: 36029846 DOI: 10.1016/j.phytochem.2022.113397] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/14/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
Oleanolic acid (OA), a ubiquitous pentacyclic oleanane-type triterpene isolated from edible and medicinal plants, exhibits a wide spectrum of pharmacological activities and tremendous therapeutic potential. However, the undesirable pharmacokinetic properties limit its application and development. Numerous researches on structural modifications of OA have been carried out to overcome this limitation and improve its pharmacokinetic and therapeutic properties. This review aims to compile and summarize the recent progresses in the medicinal chemistry of OA derivatives, especially on structure-activity relationship in the last few years (2010-2021). It gives insights into the rational design of bioactive derivatives from OA scaffold as promising therapeutic agents.
Collapse
Affiliation(s)
- Yi-Hui Yang
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, 150081, PR China
| | - Si-Yang Dai
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, 150081, PR China
| | - Fu-Hua Deng
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, 150081, PR China
| | - Li-Huan Peng
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, 150081, PR China
| | - Chang Li
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, 150081, PR China.
| | - Yue-Hu Pei
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, 150081, PR China.
| |
Collapse
|
3
|
Wang J, Du MM, Du Y, Li JX. HA-20 prevents hepatocyte steatosis in metabolic-associated fatty liver disease via regulating Ca 2+ relative signalling pathways. Eur J Pharmacol 2022; 921:174838. [PMID: 35218717 DOI: 10.1016/j.ejphar.2022.174838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 02/09/2022] [Accepted: 02/15/2022] [Indexed: 11/03/2022]
Abstract
Metabolic-associated fatty liver disease (MAFLD) is caused by hepatocyte steatosis and is associated with obesity, type II diabetes, and heart disease. There are currently no effective drugs to treat MAFLD. This study explored the effect of HA-20, an oleanolic acid derivative, on hepatocyte steatosis in MAFLD. HepG2, L02, and AML12 cells were developed using oleic acid for in vitro MAFLD cell assays, and a high-fat diet + high-fructose diet-induced (HFHF) MAFLD mouse model was established for in vivo studies. The results demonstrated that HA-20 prevented hepatocyte steatosis in cell assays and caused 26.3, 57.7 and 70.0% inhibition of triglyceride (TG) levels in the 5.0, 10.0 and 20.0 μM HA-20 groups, respectively. The EC50 values of HA-20 treatment in HepG2, L02 and AML12 cells were 9.7 ± 0.6 μM, 42.4 ± 3.5 μM and 71.0 ± 14.7 μM, respectively. HA-20 also prevented hepatocyte steatosis in the MAFLD mouse model, the liver triglyceride contents were 2.3 ± 0.4 and 1.5 ± 0.2 mmol/L in the 2.5 and 5.0 mg/kg/day HA-20 groups, lower than 6.2 ± 0.7 mmol/L in the HFHF group and 3.3 ± 0.4 mmol/L in the metformin group. Further mechanistic investigation revealed that HA-20 increased the phosphorylation of calmodulin-dependent protein kinase kinase (p-CaMKK) and the phosphorylation of AMP-activated protein kinase (p-AMPK), at least partially by increasing intracellular Ca2+ concentration, which suppressed lipogenesis and enhanced β-oxidation. Our findings provide new insight into preventing MAFLD by increasing Ca2+ and suggest that HA-20 possesses therapeutic potential for MAFLD management.
Collapse
Affiliation(s)
- Jie Wang
- State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Centre of Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, PR China
| | - Ming-Ming Du
- State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Centre of Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, PR China
| | - Yun Du
- State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Centre of Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, PR China
| | - Jian-Xin Li
- State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Centre of Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, PR China.
| |
Collapse
|
4
|
Fluorescence live cell imaging revealed wogonin targets mitochondria. Talanta 2021; 230:122328. [PMID: 33934785 DOI: 10.1016/j.talanta.2021.122328] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/15/2021] [Accepted: 03/18/2021] [Indexed: 02/06/2023]
Abstract
Scutellaria baicalensis is one of the widely used Chinese traditional medicines, and wogonin is one of major active components in it. However, the mechanism of action of wogonin has largely remained unclear. In this work, we designed a fluorescent probe, namely ATTO565-WGN, by conjugating wogonin with the fluorophore ATTO565 based on Mannich reaction via a flexible chain linker. In vitro assays verified that the ATTO565-WGN conjugate has a similar anti-proliferative activity to wogonin against human A549 and HeLa cancer cell lines. Combining co-localization and competition studies, confocal fluorescence imaging clearly demonstrated that the fluorescent wogonin probe predominantly located in mitochondrial area of living cells, indicating that wogonin acts at mitochondrion to exert its pharmacological functions. Significantly, the conjugated ATTO565 fluorophore conferred the wogonin probe STED (Stimulated Emission Depletion) feature, enabling STED fluorescence living cell imaging with a 55 nm of ultrahigh spatial resolution. This will greatly beneficial for the in situ investigation of interactions between wogonin and biological targets at the finely organized and dynamic mitochondria of living cells. Moreover, this work also provides novel insights into rational design of mitochondrion targeting fluorescence probes for ultrahigh resolution living cell imaging.
Collapse
|
5
|
Jin M, Ji X, Stoika R, Liu K, Wang L, Song Y. Synthesis of a novel fluorescent berberine derivative convenient for its subcellular localization study. Bioorg Chem 2020; 101:104021. [DOI: 10.1016/j.bioorg.2020.104021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/21/2020] [Accepted: 06/13/2020] [Indexed: 12/12/2022]
|
6
|
Zhang Y, Shen Q, Zhu M, Wang J, Du Y, Wu J, Li J. Modified Quinoxaline‐Fused Oleanolic Acid Derivatives as Inhibitors of Osteoclastogenesis and Potential Agent in Anti‐Osteoporosis. ChemistrySelect 2020. [DOI: 10.1002/slct.201904521] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yu‐Chao Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Centre of Chemistry for Life SciencesJiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Qi Shen
- State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Centre of Chemistry for Life SciencesJiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Ming‐Wu Zhu
- Department of Clinical Laboratorythe First Affiliated Hospital of Xinxiang Medical University Weihui 453100 P. R. China
| | - Jie Wang
- State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Centre of Chemistry for Life SciencesJiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Yun Du
- State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Centre of Chemistry for Life SciencesJiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Jing Wu
- State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Centre of Chemistry for Life SciencesJiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Jian‐Xin Li
- State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Centre of Chemistry for Life SciencesJiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| |
Collapse
|
7
|
Yanagi S, Sugai T, Noguchi T, Kawakami M, Sasaki M, Niwa S, Sugimoto A, Fuwa H. Fluorescence-labeled neopeltolide derivatives for subcellular localization imaging. Org Biomol Chem 2020; 17:6771-6776. [PMID: 31259993 DOI: 10.1039/c9ob01276a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Design, synthesis and functional analysis of fluorescent derivatives of neopeltolide, an antiproliferative marine macrolide, are reported herein. Live cell imaging using the fluorescent derivatives showed rapid cellular uptake and localization within the endoplasmic reticulum as well as the mitochondria.
Collapse
Affiliation(s)
- Shota Yanagi
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Tomoya Sugai
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan.
| | - Takuma Noguchi
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Masato Kawakami
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Makoto Sasaki
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Shinsuke Niwa
- Frontier Research Institute for Interdisciplinary Sciences (FRIS), Tohoku University, 6-3 Aramaki Aoba, Aoba-ku, Sendai, Miyagi 980-0845, Japan
| | - Asako Sugimoto
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Haruhiko Fuwa
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan.
| |
Collapse
|
8
|
Cui W, Liu CX, Wang J, Zhang YC, Shen Q, Feng ZH, Wu J, Li JX. An oleanolic acid derivative reduces denervation-induced muscle atrophy via activation of CNTF-mediated JAK2/STAT3 signaling pathway. Eur J Pharmacol 2019; 861:172612. [PMID: 31421088 DOI: 10.1016/j.ejphar.2019.172612] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 08/10/2019] [Accepted: 08/14/2019] [Indexed: 02/07/2023]
Abstract
Denervation caused by sciatic nerve injury has brought great harm to the patients, especially denervation-induced muscle atrophy. The body stress produces a large number of Schwann cells when the sciatic nerve is injured, and the cells secrete some cytokines including ciliary neurotrophic factor (CNTF) that not only play a role in promoting the repair of sciatic nerve, but also maintain the normal physiological function of the muscles surrounding the damaged nerves. CNTF upregulates janus kinase 2 (JAK2) and signal transducers and activators of transcription 3 (STAT3) signals in myoblasts, and consequently accelerates the proliferation and differentiation of myoblasts. This effect on myoblasts is the most effective way to relieve muscle atrophy. Therefore, increasing CNTF is a promising direction to improve muscle atrophy. In the present study, an oleanolic acid derivative, HA-19, increased the proliferation of Schwann cells, and elevated CNTF production of the cells. HA-19 up-regulated the phosphorylation of JAK2 and STAT3 not only by directly acting on myoblasts, but also by increasing the secretion of CNTF of Schwann cells; and consequently, promoted the proliferation and differentiation of myoblasts. In denervation-induced muscle atrophy mice model, treatment with HA-19 significantly increased the weights of tibialis anterior (TA), gastrocnemius (Gastroc.), extensor digitorum longus (EDL), soleus and quadriceps (Quad.) under atrophied state. And, very interestingly, these muscles under normal condition were also strengthened by HA-19. Our finding demonstrated that HA-19 has a great potential as a lead compound for the drug discovery of anti-denervation-induced muscle atrophy.
Collapse
Affiliation(s)
- Wei Cui
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Chen-Xi Liu
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jie Wang
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yu-Chao Zhang
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Qi Shen
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Zhen-Hua Feng
- The Center of Diagnosis and Treatment for Joint Disease, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, 210008, China
| | - Jing Wu
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| | - Jian-Xin Li
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
9
|
Cui W, Liu CX, Zhang YC, Shen Q, Feng ZH, Wang J, Lu SF, Wu J, Li JX. A novel oleanolic acid derivative HA-19 ameliorates muscle atrophy via promoting protein synthesis and preventing protein degradation. Toxicol Appl Pharmacol 2019; 378:114625. [PMID: 31201822 DOI: 10.1016/j.taap.2019.114625] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/18/2019] [Accepted: 06/11/2019] [Indexed: 12/13/2022]
Abstract
Muscle atrophy refers to a decrease in the size of muscles in the body, occurs in certain muscles with inactivity in many diseases and lacks effective therapies up to date. Natural products still play an important role in drug discovery. In the present study, derivatives of a natural product, oleanolic acid, were screened with myoblast differentiation and myotube atrophy assays, respectively. Results revealed that one of the derivatives, HA-19 showed the most potent anti-muscle atrophy activity, and was used for further studies. We demonstrated that HA-19 led to the increase of the protein synthesis by activating mechanistic target of rapamycin complex 1 (mTORC1)/p70 S6K pathways, and also enhanced myoblast proliferation and terminal differentiation via up-regulating of the myogenic transcription factors Pax7, MyoD and Myogenin. The interesting thing was that HA-19 also suppressed protein degradation to prevent myotube atrophy by down-regulating negative growth factors, FoxO1, MuRF1 and Atrogin-1. The results were also supported by puromycin labelling and protein ubiquitination assays. These data revealed that HA-19 possessed a "dual effect" on inhibition of muscle atrophy. In disuse-induced muscle atrophy mice model, HA-19 treatment significantly increased the weights of bilateral tibialis anterior (TA), gastrocnemius (Gastroc.), quadriceps (Quad.), suggesting the effectiveness of HA-19 to remit disuse-induced muscle atrophy. Our finding demonstrated that HA-19 has a great potential as an inhibitor or lead compound for the anti-muscle atrophy drug discovery.
Collapse
Affiliation(s)
- Wei Cui
- State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Chen-Xi Liu
- State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yu-Chao Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Qi Shen
- State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Zhen-Hua Feng
- The Center of Diagnosis and Treatment for Joint Disease, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing 210008, China
| | - Jie Wang
- State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Sheng-Feng Lu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jing Wu
- State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Jian-Xin Li
- State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
10
|
Hanson RN, Gajadeera N. Design and synthesis of fluorescently labeled steroidal antiestrogens. Steroids 2019; 145:39-46. [PMID: 30797876 DOI: 10.1016/j.steroids.2019.02.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 02/04/2019] [Accepted: 02/14/2019] [Indexed: 01/21/2023]
Abstract
A set of derivatives of 11β-(4-oxyphenyl)estradiol were prepared as potential fluorescent imaging agents for the evaluation of the estrogen receptor. The compounds were designed based on the established affinity and selectivity of 11β-[4-(dimethylethoxy)phenyl]estradiol (RU39411) as an estrogen receptor (ER) antagonist. The 5-(dimethylamino) naphathalene-1-sulfonyl (dansyl) and 7-nitrobenzo[c][1,2,5] oxadiaol-4-yl (NBD) moieties were selected based on their fluorescent and physicochemical properties. A convergent synthesis was developed that culminated in the [3 + 2] copper (I) assisted alkyne-azide cycloaddition coupling of the steroidal and fluorescent components. Good yields were obtained for the intermediates and final products, and the structural variations in the steroid component will permit evaluation of ER affinity and selectivity.
Collapse
Affiliation(s)
- Robert N Hanson
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, United States.
| | - Nisal Gajadeera
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, United States
| |
Collapse
|
11
|
Gajadeera N, Hanson RN. Review of fluorescent steroidal ligands for the estrogen receptor 1995-2018. Steroids 2019; 144:30-46. [PMID: 30738074 DOI: 10.1016/j.steroids.2019.02.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 01/10/2019] [Accepted: 02/04/2019] [Indexed: 12/17/2022]
Abstract
The development of fluorescent ligands for the estrogen receptor (ER) continues to be of interest. Over the past 20 years, most efforts have focused on appending an expanding variety of fluorophores to the B-, C- and D-rings of the steroidal scaffold. This review highlights the synthesis and evaluation of derivatives substituted primarily at the 6-, 7α- and 17α-positions, culminating with our recent work on 11β-substituted estradiols, and proposes an approach to new fluorescent imaging agents that retain high ER affinity.
Collapse
Affiliation(s)
- Nisal Gajadeera
- Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Avenue, Boston MA02115-5000, United States
| | - Robert N Hanson
- Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Avenue, Boston MA02115-5000, United States.
| |
Collapse
|
12
|
Chen S, Dong G, Wu S, Liu N, Zhang W, Sheng C. Novel fluorescent probes of 10-hydroxyevodiamine: autophagy and apoptosis-inducing anticancer mechanisms. Acta Pharm Sin B 2019; 9:144-156. [PMID: 30766786 PMCID: PMC6361730 DOI: 10.1016/j.apsb.2018.08.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 07/25/2018] [Accepted: 08/05/2018] [Indexed: 12/21/2022] Open
Abstract
Natural product evodiamine and its derivatives represent a promising class of multi-target antitumor agents. However, the clinical development of these compounds has been hampered by a poor understanding of their antitumor mechanisms. To tackle this obstacle, herein, novel fluorescent probes were designed to elucidate the antitumor mode of action of 10-hydroxyevodiamine. This compound was proven to be distributed in the mitochondria and lysosomes and to act by autophagy and apoptosis mechanisms.
Collapse
Key Words
- 10-Hydroxyevodiamine
- 3MA, 3-methyladenine
- Anticancer mechanisms
- Apoptosis
- Autophagy
- Boc, di-tert-butyl dicarbonate
- CCK8, cell counting kit-8
- DMAP, 4-dimethylaminopyridine
- DMSO, dimethylsulfoxide
- EDC, 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride
- Fluorescent probes
- HBTU, O-benzotriazole-N,N,N,N-tetramethyl-uronium-hexafluorophosphate
- MMP, mitochondrial membrane potential
- NPs, natural products
- TEA, trimethylamine
- TFA, trifluoroacetic acid
Collapse
|
13
|
Yao H, Wei G, Liu Y, Yao H, Zhu Z, Ye W, Wu X, Xu J, Xu S. Synthesis, Biological Evaluation of Fluorescent 23-Hydroxybetulinic Acid Probes, and Their Cellular Localization Studies. ACS Med Chem Lett 2018; 9:1030-1034. [PMID: 30344912 DOI: 10.1021/acsmedchemlett.8b00321] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 09/25/2018] [Indexed: 12/26/2022] Open
Abstract
23-Hydroxybetulinic acid (23-HBA) is a complex lupane triterpenoid, which has attracted increasing attention as an anticancer agent. However, its detailed mechanism of anticancer action remains elusive so far. To reveal its anticancer mode of action, a series of fluorescent 23-HBA derivatives conjugated with coumarin dyes were designed, synthesized, and evaluated for their antiproliferative activities. Subcellular localization and uptake profile studies of representative fluorescent 23-HBA probe 26c were performed in B16F10 cells, and the results suggested that probe 26c was rapidly taken up into B10F10 cells in a dose-dependent manner and mitochondrion was the main site of its accumulation. Further mode of action studies implied that the mitochondrial pathway was involved in 23-HBA-mediated apoptosis. Together, our results provided new clues for revealing the molecular mechanism of natural product 23-HBA for its further development into an antitumor agent.
Collapse
Affiliation(s)
- Hong Yao
- Department of Medicinal Chemistry and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Guoxiang Wei
- Department of Medicinal Chemistry and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Yanpeng Liu
- Department of Medicinal Chemistry and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Hequan Yao
- Department of Medicinal Chemistry and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Zheying Zhu
- Division of Molecular Therapeutics & Formulation, School of Pharmacy, The University of Nottingham, University Park Campus, Nottingham NG7 2RD, U.K
| | - Wencai Ye
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Xiaoming Wu
- Department of Medicinal Chemistry and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Jinyi Xu
- Department of Medicinal Chemistry and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Shengtao Xu
- Department of Medicinal Chemistry and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| |
Collapse
|
14
|
Xu S, Luo S, Yao H, Cai H, Miao X, Wu F, Yang DH, Wu X, Xie W, Yao H, Chen ZS, Xu J. Probing the Anticancer Action of Oridonin with Fluorescent Analogues: Visualizing Subcellular Localization to Mitochondria. J Med Chem 2016; 59:5022-34. [PMID: 27089099 DOI: 10.1021/acs.jmedchem.6b00408] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Oridonin (1) is a complex ent-kaurane diterpenoid exhibiting remarkable antitumor activity. However, the detailed mechanism or cellular target that underlies this activity has not yet been identified. Herein, we report an efficient approach for exploring the anticancer mechanism of oridonin through development of the potent fluorescent analogues. A series of novel fluorescent oridonin probes linked with coumarin moieties were designed, synthesized, and characterized. Fluorescence microscopy and confocal imaging studies suggested that fluorescent oridonin probe 17d was rapidly taken up into tumor cells and the mitochondrion was the main site of its accumulation. Moreover, we confirmed that cytochrome c played an important role in oridonin induced mitochondrion-mediated apoptosis and α,β-unsaturated ketone is the active moiety of oridonin, which is crucial to its uptake, localization, and cytotoxicity. Our results provide new insights on the molecular mechanism of oridonin and would be useful for its further development into an antitumor agent.
Collapse
Affiliation(s)
- Shengtao Xu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University , 24 Tong Jia Xiang, Nanjing 210009, P. R. China
| | - Shanshan Luo
- Department of Pharmacology, School of Pharmacy, Fudan University , Shanghai 201203, P. R. China
| | - Hong Yao
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University , 24 Tong Jia Xiang, Nanjing 210009, P. R. China
| | - Hao Cai
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University , 24 Tong Jia Xiang, Nanjing 210009, P. R. China
| | - Xiaoming Miao
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University , Tianjin 300071, P. R. China
| | - Fang Wu
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University , Shanghai 200240, P. R. China
| | - Dong-Hua Yang
- College of Pharmacy and Health Sciences, St. John's University , 8000 Utopia Parkway, Queens, New York, New York 11439, United States
| | - Xiaoming Wu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University , 24 Tong Jia Xiang, Nanjing 210009, P. R. China
| | - Weijia Xie
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University , 24 Tong Jia Xiang, Nanjing 210009, P. R. China
| | - Hequan Yao
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University , 24 Tong Jia Xiang, Nanjing 210009, P. R. China
| | - Zhe-Sheng Chen
- College of Pharmacy and Health Sciences, St. John's University , 8000 Utopia Parkway, Queens, New York, New York 11439, United States
| | - Jinyi Xu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University , 24 Tong Jia Xiang, Nanjing 210009, P. R. China
| |
Collapse
|