1
|
Hennrich O, Weinmann L, Kulik A, Harms K, Klahn P, Youn JW, Surup F, Mast Y. Biotransformation-coupled mutasynthesis for the generation of novel pristinamycin derivatives by engineering the phenylglycine residue. RSC Chem Biol 2023; 4:1050-1063. [PMID: 38033732 PMCID: PMC10685826 DOI: 10.1039/d3cb00143a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 10/06/2023] [Indexed: 12/02/2023] Open
Abstract
Streptogramins are the last line of defense antimicrobials with pristinamycin as a representative substance used as therapeutics against highly resistant pathogenic bacteria. However, the emergence of (multi)drug-resistant pathogens renders these valuable antibiotics useless; making it necessary to derivatize compounds for new compound characteristics, which is often difficult by chemical de novo synthesis due to the complex nature of the molecules. An alternative to substance derivatization is mutasynthesis. Herein, we report about a mutasynthesis approach, targeting the phenylglycine (Phg) residue for substance derivatization, a pivotal component of streptogramin antibiotics. Mutasynthesis with halogenated Phg(-like) derivatives altogether led to the production of two new derivatized natural compounds, as there are 6-chloropristinamycin I and 6-fluoropristinamycin I based on LC-MS/MS analysis. 6-Chloropristinamycin I and 6-fluoropristinamycin I were isolated by preparative HPLC, structurally confirmed using NMR spectroscopy and tested for antimicrobial bioactivity. In a whole-cell biotransformation approach using an engineered E. coli BL21(DE3) pET28-hmo/pACYC-bcd-gdh strain, Phg derivatives were generated fermentatively. Supplementation with the E. coli biotransformation fermentation broth containing 4-fluorophenylglycine to the pristinamycin mutasynthesis strain resulted in the production of 6-fluoropristinamycin I, demonstrating an advanced level of mutasynthesis.
Collapse
Affiliation(s)
- Oliver Hennrich
- Department Bioresources for Bioeconomy and Health Research, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B 38124 Braunschweig Germany
| | - Leoni Weinmann
- Institute of Microbiology, University Stuttgart, Allmandring 31 D-70569 Stuttgart Germany
| | - Andreas Kulik
- Department Microbial Bioactive Compounds, Interfaculty Institute of Microbiology and Infection Medicine, Faculty of Science, University of Tübingen, Auf der Morgenstelle 28 D-72076 Tübingen Germany
| | - Karen Harms
- Microbial Drugs Department, Helmholtz-Centre for Infection Research 38124 Braunschweig Germany
| | - Philipp Klahn
- Division of Organic and Medicinal Chemistry, Department of Chemistry and Molecular Biology, University of Gothenburg, Kemigården 4 412 96 Göteborg Sweden
- Centre of Antimicrobial Resistance Research in Gothenburg (CARe) Gothenburg Sweden
| | - Jung-Won Youn
- Institute of Microbiology, University Stuttgart, Allmandring 31 D-70569 Stuttgart Germany
| | - Frank Surup
- Microbial Drugs Department, Helmholtz-Centre for Infection Research 38124 Braunschweig Germany
| | - Yvonne Mast
- Department Bioresources for Bioeconomy and Health Research, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B 38124 Braunschweig Germany
- Technische Universität Braunschweig, Institut für Mikrobiologie, Rebenring 56 38106 Braunschweig Germany
- German Center for Infection Research (DZIF), Partner Site Tübingen Tübingen Germany
| |
Collapse
|
2
|
Denison M, Ahrens JJ, Dunbar MN, Warmahaye H, Majeed A, Turro C, Kocarek TA, Sevrioukova IF, Kodanko JJ. Dynamic Ir(III) Photosensors for the Major Human Drug-Metabolizing Enzyme Cytochrome P450 3A4. Inorg Chem 2023; 62:3305-3320. [PMID: 36758158 PMCID: PMC10268476 DOI: 10.1021/acs.inorgchem.3c00059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Probing the activity of cytochrome P450 3A4 (CYP3A4) is critical for monitoring the metabolism of pharmaceuticals and identifying drug-drug interactions. A library of Ir(III) probes that detect occupancy of the CYP3A4 active site were synthesized and characterized. These probes show selectivity for CYP3A4 inhibition, low cellular toxicity, Kd values as low as 9 nM, and are highly emissive with lifetimes up to 3.8 μs in cell growth media under aerobic conditions. These long emission lifetimes allow for time-resolved gating to distinguish probe from background autofluorescence from growth media and live cells. X-ray crystallographic analysis revealed structure-activity relationships and the preference or indifference of CYP3A4 toward resolved stereoisomers. Ir(III)-based probes show emission quenching upon CYP3A4 binding, then emission increases following displacement with CYP3A4 inhibitors or substrates. Importantly, the lead probes inhibit the activity of CYP3A4 at concentrations as low as 300 nM in CYP3A4-overexpressing HepG2 cells that accurately mimic human hepatic drug metabolism. Thus, the Ir(III)-based agents show promise as novel chemical tools for monitoring CYP3A4 active site occupancy in a high-throughput manner to gain insight into drug metabolism and drug-drug interactions.
Collapse
Affiliation(s)
- Madeline Denison
- Department of Chemistry, Wayne State University, 5101 Cass Ave, Detroit, Michigan 48202, United States
| | - Justin J Ahrens
- Department of Chemistry, Wayne State University, 5101 Cass Ave, Detroit, Michigan 48202, United States
| | - Marilyn N Dunbar
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Habon Warmahaye
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Aliza Majeed
- Institute of Environmental Health Sciences, Wayne State University, 6135 Woodward Avenue, Integrative Biosciences Center, Room 2126, Detroit, Michigan 48202, United States
| | - Claudia Turro
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Thomas A Kocarek
- Institute of Environmental Health Sciences, Wayne State University, 6135 Woodward Avenue, Integrative Biosciences Center, Room 2126, Detroit, Michigan 48202, United States
| | - Irina F Sevrioukova
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697, United States
| | - Jeremy J Kodanko
- Department of Chemistry, Wayne State University, 5101 Cass Ave, Detroit, Michigan 48202, United States
- Barbara Ann Karmanos Cancer Institute, Detroit, Michigan 48201, United States
| |
Collapse
|
3
|
A Catalyst‐ and Solvent‐ Free Synthesis of Tetra‐Substituted Pyrroles by Multicomponent Reaction. ChemistrySelect 2023. [DOI: 10.1002/slct.202204564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
4
|
Mamada SS, Nainu F, Masyita A, Frediansyah A, Utami RN, Salampe M, Emran TB, Lima CMG, Chopra H, Simal-Gandara J. Marine Macrolides to Tackle Antimicrobial Resistance of Mycobacterium tuberculosis. Mar Drugs 2022; 20:691. [PMID: 36355013 PMCID: PMC9697125 DOI: 10.3390/md20110691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 09/01/2023] Open
Abstract
Tuberculosis has become a major health problem globally. This is worsened by the emergence of resistant strains of Mycobacterium tuberculosis showing ability to evade the effectiveness of the current antimycobacterial therapies. Therefore, the efforts carried out to explore new entities from many sources, including marine, are critical. This review summarizes several marine-derived macrolides that show promising activity against M. tuberculosis. We also provide information regarding the biosynthetic processes of marine macrolides, including the challenges that are usually experienced in this process. As most of the studies reporting the antimycobacterial activities of the listed marine macrolides are based on in vitro studies, the future direction should consider expanding the trials to in vivo and clinical trials. In addition, in silico studies should also be explored for a quick screening on marine macrolides with potent activities against mycobacterial infection. To sum up, macrolides derived from marine organisms might become therapeutical options for tackling antimycobacterial resistance of M. tuberculosis.
Collapse
Affiliation(s)
- Sukamto S. Mamada
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | - Firzan Nainu
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | - Ayu Masyita
- Department of Pharmaceutical Science and Technology, Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
- Research Center for Vaccine and Drugs, Research Organization for Health, National Research and Innovation Agency (BRIN), Tangerang Selatan 15318, Indonesia
| | - Andri Frediansyah
- Research Center for Food Technology and Processing, National Research and Innovation Agency (BRIN), Yogyakarta 55861, Indonesia
| | - Rifka Nurul Utami
- Department of Pharmaceutical Science and Technology, Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
- Institute of Pharmaceutical Science, King’s College London, London SE1 9NH, UK
| | | | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | | | - Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E32004 Ourense, Spain
| |
Collapse
|
5
|
Synthesis, structural confirmation, antibacterial properties and bio-informatics computational analyses of new pyrrole based on 8-hydroxyquinoline. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132683] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
Synthesis, bioinformatics and biological evaluation of novel pyridine based on 8-hydroxyquinoline derivatives as antibacterial agents: DFT, molecular docking and ADME/T studies. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130934] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
7
|
Dual-function enzyme catalysis for enantioselective carbon-nitrogen bond formation. Nat Chem 2021; 13:1166-1172. [PMID: 34663919 DOI: 10.1038/s41557-021-00794-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 08/23/2021] [Indexed: 12/22/2022]
Abstract
Chiral amines can be made by insertion of a carbene into an N-H bond using two-catalyst systems that combine a transition metal-based carbene-transfer catalyst and a chiral proton-transfer catalyst to enforce stereocontrol. Haem proteins can effect carbene N-H insertion, but asymmetric protonation in an active site replete with proton sources is challenging. Here we describe engineered cytochrome P450 enzymes that catalyse carbene N-H insertion to prepare biologically relevant α-amino lactones with high activity and enantioselectivity (up to 32,100 total turnovers, >99% yield and 98% e.e.). These enzymes serve as dual-function catalysts, inducing carbene transfer and promoting the subsequent proton transfer with excellent stereoselectivity in a single active site. Computational studies uncover the detailed mechanism of this new-to-nature enzymatic reaction and explain how active-site residues accelerate this transformation and provide stereocontrol.
Collapse
|
8
|
Hur J, Jang J, Sim J. A Review of the Pharmacological Activities and Recent Synthetic Advances of γ-Butyrolactones. Int J Mol Sci 2021; 22:2769. [PMID: 33803380 PMCID: PMC7967234 DOI: 10.3390/ijms22052769] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/26/2021] [Accepted: 03/03/2021] [Indexed: 02/06/2023] Open
Abstract
γ-Butyrolactone, a five-membered lactone moiety, is one of the privileged structures of diverse natural products and biologically active small molecules. Because of their broad spectrum of biological and pharmacological activities, synthetic methods for γ-butyrolactones have received significant attention from synthetic and medicinal chemists for decades. Recently, new developments and improvements in traditional methods have been reported by considering synthetic efficiency, feasibility, and green chemistry. In this review, the pharmacological activities of natural and synthetic γ-butyrolactones are described, including their structures and bioassay methods. Mainly, we summarize recent advances, occurring during the past decade, in the construction of γ-butyrolactone classified based on the bond formation in γ-butyrolactone between (i) C5-O1 bond, (ii) C4-C5 and C2-O1 bonds, (iii) C3-C4 and C2-O1 bonds, (iv) C3-C4 and C5-O1 bonds, (v) C2-C3 and C2-O1 bonds, (vi) C3-C4 bond, and (vii) C2-O1 bond. In addition, the application to the total synthesis of natural products bearing γ-butyrolactone scaffolds is described.
Collapse
Affiliation(s)
- Joonseong Hur
- Natural Products Research Institute, Korea Institute of Science and Technology (KIST), 679 Saimdang-ro, Gangneung 25451, Korea;
| | - Jaebong Jang
- College of Pharmacy, Korea University, Sejong 30019, Korea
| | - Jaehoon Sim
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|
9
|
Koronatov AN, Afanaseva KK, Sakharov PA, Rostovskii NV, Khlebnikov AF, Novikov MS. Rh(ii)-Catalyzed denitrogenative 1-sulfonyl-1,2,3-triazole-1-alkyl-1,2,3-triazole cross-coupling as a route to 3-sulfonamido-1H-pyrroles and 1,2,3-triazol-3-ium ylides. Org Chem Front 2021. [DOI: 10.1039/d0qo01571g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The reaction of 1-alkyl-1H-1,2,3-triazoles with rhodium(ii) azavinyl carbenes, generated from 1-sulfonyl-1H-1,2,3-triazoles, was utilized to prepare 3-sulfonamido-1H-pyrroles and 1,2,3-triazol-3-ium ylides in good yields.
Collapse
Affiliation(s)
| | | | - Pavel A. Sakharov
- St Petersburg State University
- Institute of Chemistry
- St Petersburg
- Russia
| | | | | | | |
Collapse
|
10
|
Janas A, Przybylski P. 14- and 15-membered lactone macrolides and their analogues and hybrids: structure, molecular mechanism of action and biological activity. Eur J Med Chem 2019; 182:111662. [DOI: 10.1016/j.ejmech.2019.111662] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/12/2019] [Accepted: 08/29/2019] [Indexed: 11/15/2022]
|
11
|
Budragchaa T, Westermann B, Wessjohann LA. Multicomponent synthesis of α-acylamino and α-acyloxy amide derivatives of desmycosin and their activity against gram-negative bacteria. Bioorg Med Chem 2019; 27:3237-3247. [PMID: 31229422 DOI: 10.1016/j.bmc.2019.05.046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/27/2019] [Accepted: 05/29/2019] [Indexed: 11/17/2022]
Abstract
Bacterial resistance to the existing drugs requires constant development of new antibiotics. Developing compounds active against gram-negative bacteria thereby is one of the more challenging tasks. Among the many approaches to develop successful antibacterials, medicinal chemistry driven evolution of existing successful antibiotics is considered to be the most effective one. Towards this end, the C-20 aldehyde moiety of desmycosin was modified into α-acylamino and α-acyloxy amide functionalities using isonitrile-based Ugi and Passerini reactions, aiming for enhanced antibacterial and physicochemical properties. The desired compounds were obtained in 45-93% yield under mild conditions. The antibacterial activity of the resulting conjugates was tested against gram-negative Aliivibrio fischeri. The antibiotic strength is mostly governed by the amine component introduced. Thus, methylamine derived desmycosin bis-amide 4 displayed an enhanced inhibition rate vs. desmycosin (99% vs. 83% at 1 µM). Derivatives with long acyclic or bulky amine and isocyanide Ugi components reduced potency, whereas carboxylic acid reagents with longer chain length afforded increased bioactivity. In Passerini 3-component products, the butyric ester amide 22 displayed a higher activity (90% at 1 µM) than the parent compound desmycosin (2).
Collapse
Affiliation(s)
- Tuvshinjargal Budragchaa
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle, Saale, Germany
| | - Bernhard Westermann
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle, Saale, Germany; Institute of Organic Chemistry, Faculty of Natural Sciences II, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Strasse 2, 06120 Halle, Germany
| | - Ludger A Wessjohann
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle, Saale, Germany; Institute of Organic Chemistry, Faculty of Natural Sciences II, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Strasse 2, 06120 Halle, Germany.
| |
Collapse
|
12
|
Park JW, Yoon YJ. Recent advances in the discovery and combinatorial biosynthesis of microbial 14-membered macrolides and macrolactones. J Ind Microbiol Biotechnol 2018; 46:445-458. [PMID: 30415291 DOI: 10.1007/s10295-018-2095-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 10/19/2018] [Indexed: 01/05/2023]
Abstract
Macrolides, especially 14-membered macrolides, are a valuable group of antibiotics that originate from various microorganisms. In addition to their antibacterial activity, newly discovered 14-membered macrolides exhibit other therapeutic potentials, such as anti-proliferative and anti-protistal activities. Combinatorial biosynthetic approaches will allow us to create structurally diversified macrolide analogs, which are especially important during the emerging post-antibiotic era. This review focuses on recent advances in the discovery of new 14-membered macrolides (also including macrolactones) from microorganisms and the current status of combinatorial biosynthetic approaches, including polyketide synthase (PKS) and post-PKS tailoring pathways, and metabolic engineering for improved production together with heterologous production of 14-membered macrolides.
Collapse
Affiliation(s)
- Je Won Park
- School of Biosystem and Biomedical Science, Korea University, Seoul, 02841, Republic of Korea
| | - Yeo Joon Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, Republic of Korea.
| |
Collapse
|
13
|
Singh PK, Silakari O. The Current Status of O-Heterocycles: A Synthetic and Medicinal Overview. ChemMedChem 2018; 13:1071-1087. [PMID: 29603634 DOI: 10.1002/cmdc.201800119] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 03/23/2018] [Indexed: 12/20/2022]
Abstract
O-Heterocycles have been explored in the field of medicinal chemistry for a long time, but their significance has not been duly recognised and they are often shunned in favour of N-heterocycles. The design of bioactive molecules for nearly every pathophysiological condition is primarily focused on novel N-heterocycles. The main reasons for such bias include the ease of synthesis and possible mimicking of physiological molecules by N-heterocycles. But considering only this criterion rarely provides breakthrough molecules for a given disease condition, and instead the risks of toxicity or side effects are increased with such molecules. On the other hand, owing to improved synthetic feasibility, O-heterocycles have established themselves as equally potent lead molecules for a wide range of pathophysiological conditions. In the last decade there have been hundreds of reports validating the fact that equally potent molecules can be designed and developed by using O-heterocycles, and these are also expected to have comparably low toxicity. Even so, researchers tend to remain biased toward the use of N-heterocycles over O-heterocycles. Thus, this review provides a critical analysis of the synthesis and medicinal attributes of O-heterocycles, such as pyrones, oxazolones, furanones, oxetanes, oxazolidinones, and dioxolonones, and others, reported in the last five years, underlining the need for and the advantages guiding researchers toward them.
Collapse
Affiliation(s)
- Pankaj Kumar Singh
- Molecular Modelling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, 147002, India
| | - Om Silakari
- Molecular Modelling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, 147002, India
| |
Collapse
|
14
|
Peng J, Gao Y, Zhu C, Liu B, Gao Y, Hu M, Wu W, Jiang H. Synthesis of Polysubstituted 3-Amino Pyrroles via Palladium-Catalyzed Multicomponent Reaction. J Org Chem 2017; 82:3581-3588. [DOI: 10.1021/acs.joc.7b00098] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Jianwen Peng
- Key Laboratory of Functional
Molecular Engineering of Guangdong Province, School of Chemistry and
Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yang Gao
- Key Laboratory of Functional
Molecular Engineering of Guangdong Province, School of Chemistry and
Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Chuanle Zhu
- Key Laboratory of Functional
Molecular Engineering of Guangdong Province, School of Chemistry and
Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Bifu Liu
- Key Laboratory of Functional
Molecular Engineering of Guangdong Province, School of Chemistry and
Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yinglan Gao
- Key Laboratory of Functional
Molecular Engineering of Guangdong Province, School of Chemistry and
Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Miao Hu
- Key Laboratory of Functional
Molecular Engineering of Guangdong Province, School of Chemistry and
Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Wanqing Wu
- Key Laboratory of Functional
Molecular Engineering of Guangdong Province, School of Chemistry and
Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Huanfeng Jiang
- Key Laboratory of Functional
Molecular Engineering of Guangdong Province, School of Chemistry and
Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
15
|
Pavlović D, Kimmins S, Mutak S. Synthesis of novel 15-membered 8a-azahomoerythromycin A acylides: Consequences of structural modification at the C-3 and C-6 position on antibacterial activity. Eur J Med Chem 2017; 125:210-224. [DOI: 10.1016/j.ejmech.2016.09.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Revised: 09/01/2016] [Accepted: 09/07/2016] [Indexed: 10/21/2022]
|
16
|
Li K, You J. Cascade Oxidative Coupling/Cyclization: A Gateway to 3-Amino Polysubstituted Five-Membered Heterocycles. J Org Chem 2016; 81:2327-39. [PMID: 26914339 DOI: 10.1021/acs.joc.5b02838] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Kaizhi Li
- Key Laboratory
of Green Chemistry
and Technology of Ministry of Education, College of Chemistry, and
State Key Laboratory of Biotherapy, West China Hospital, West China
Medical School, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China
| | - Jingsong You
- Key Laboratory
of Green Chemistry
and Technology of Ministry of Education, College of Chemistry, and
State Key Laboratory of Biotherapy, West China Hospital, West China
Medical School, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China
| |
Collapse
|
17
|
Pavlović D, Mutak S. Synthesis and antibacterial evaluation of novel 4″-glycyl linked quinolyl-azithromycins with potent activity against macrolide-resistant pathogens. Bioorg Med Chem 2016; 24:1255-67. [PMID: 26860929 DOI: 10.1016/j.bmc.2016.01.055] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 01/26/2016] [Accepted: 01/29/2016] [Indexed: 11/26/2022]
Abstract
A new azithromycin-based series of antibacterial macrolones is reported, which features the use of a 4″-ester linked glycin for tethering the quinolone side chain to the macrolide scaffold. Among the analogs prepared, compounds 9e and 22f with a quinolon-6-yl moiety were found to have potent and well-balanced activity against clinically important respiratory tract pathogens, including erythromycin-susceptible and MLSB resistant strains of Streptococcus pneumoniae, Streptococcus pyogenes, and Haemophilus influenzae. In addition, potential lead compounds 9e and 22f demonstrated outstanding levels of activity against Moraxella catarrhalis and inducibly MLSB resistant Staphylococcus aureus. The best member of this series 22f rivals or exceeds, in potency, some of the most active ketolide antibacterial agents known today, such as telithromycin and cethromycin.
Collapse
Affiliation(s)
- Dražen Pavlović
- PLIVA Research Institute, Prilaz baruna Filipovića 29, 10000 Zagreb, Croatia.
| | - Stjepan Mutak
- PLIVA Research Institute, Prilaz baruna Filipovića 29, 10000 Zagreb, Croatia
| |
Collapse
|