1
|
Choudhury R, Bahadi CK, Ray IP, Dash P, Pattanaik I, Mishra S, Mohapatra SR, Patnaik S, Nikhil K. PIM1 kinase and its diverse substrate in solid tumors. Cell Commun Signal 2024; 22:529. [PMID: 39487435 PMCID: PMC11531143 DOI: 10.1186/s12964-024-01898-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/18/2024] [Indexed: 11/04/2024] Open
Abstract
The PIM kinase family, consisting of PIM1, PIM2, and PIM3, is a group of serine/threonine protein kinases crucial for cellular growth, immunoregulation, and oncogenesis. PIM1 kinase is often overexpressed in solid and hematopoietic malignancies, promoting cell survival, proliferation, migration, and senescence by activating key genes. In vitro and in vivo studies have established the oncogenic potential of PIM1 kinases. These kinases have been implicated in tumor progression, metastasis, and resistance to chemotherapy, underscoring their potential as a therapeutic target for cancer therapy. This review delves into the intricate molecular mechanisms through which PIM1 interacts with specific substrates in different tumor tissues, leading to diverse outcomes in various human cancers. Over the past decade, the inhibition of PIM1 in cancers has garnered significant attention as a potential standalone treatment. Various in vitro, in vivo, and early clinical trial data have provided support for this approach to varying extents. Novel compounds that inhibit PIM1 kinase have shown effectiveness and a favorable toxicity profile in preclinical studies. Several of these substances are now being studied in clinical trials due to their promising outcomes. This article provides a thorough examination of the PIM1 kinase pathways and the recent advancements in producing PIM1 kinase inhibitors for the treatment of cancer.
Collapse
Affiliation(s)
- Rituparna Choudhury
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed-to-Be-University, Bhubaneswar, 751024, India
| | - Chandan Kumar Bahadi
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed-to-Be-University, Bhubaneswar, 751024, India
| | - Ipsa Pratibimbita Ray
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed-to-Be-University, Bhubaneswar, 751024, India
| | - Pragyanshree Dash
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed-to-Be-University, Bhubaneswar, 751024, India
| | - Isha Pattanaik
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed-to-Be-University, Bhubaneswar, 751024, India
| | - Suman Mishra
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed-to-Be-University, Bhubaneswar, 751024, India
| | - Soumya R Mohapatra
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed-to-Be-University, Bhubaneswar, 751024, India
| | - Srinivas Patnaik
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed-to-Be-University, Bhubaneswar, 751024, India
| | - Kumar Nikhil
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed-to-Be-University, Bhubaneswar, 751024, India.
| |
Collapse
|
2
|
Liu F, Wen S, Liu M, Min Y, Zhang Z, Shi L, Wang K, Deng Y, Yang Z, Yang F, Ke S. Heterocycle-functional steroidal derivatives: Design, synthesis, bioevaluation and SARs of steroidal pyrazolo[1,5-a]pyrimidines as potential ALK inhibitors. Bioorg Chem 2024; 153:107847. [PMID: 39348750 DOI: 10.1016/j.bioorg.2024.107847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/02/2024]
Abstract
Two series of heterocyclic steroidal pyrazolo[1,5-a]pyrimidines derived from dehydroepiandrosterone (DHEA) and epiandrosterone (EPIA) were designed and synthesized, and these compounds were screened for their potential antiproliferation activities. The preliminary bioassay indicated that some of target compounds exhibited significantly good antiproliferation activities against human melanoma cell line (A875) and human hepatocellular carcinoma (Huh-7) cell lines compared with 5-fluorouracil (5-FU), and some of which present good antiproliferative activities as potential ALK inhibitors. The detailed analysis of structure-activity relationships (SARs) based on the inhibition activities, kinase assay, and molecular docking demonstrated that the antiproliferation activities of these steroidal pyrazolo[1,5-a]pyrimidine might be affected by the β-hydroxyl group of steroidal scaffold and the N atom of pyridine heterocycle. Especially, compound 4c has certain inhibitory effects on the tyrosine protein kinases ALK, CDK2/CyclinE1, FAK, CDK5/P35, CDK9/CyclinT1, CDK5/P25, PIM2, CDK2/CyclinA2, CDK1/CyclinB1, etc., and which displayed highest inhibitory effect on the kinases of ALK with inhibition rate 40.63 % at the concentration of 10 μM, which induced cell death in A875 cells at least partly (initially), by apoptosis.
Collapse
Affiliation(s)
- Fang Liu
- Key Laboratory of Microbial Pesticides, Ministry of Agriculture and Rural Affairs, National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Shaohua Wen
- Key Laboratory of Microbial Pesticides, Ministry of Agriculture and Rural Affairs, National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Manli Liu
- Key Laboratory of Microbial Pesticides, Ministry of Agriculture and Rural Affairs, National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Yong Min
- Key Laboratory of Microbial Pesticides, Ministry of Agriculture and Rural Affairs, National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Zhigang Zhang
- Key Laboratory of Microbial Pesticides, Ministry of Agriculture and Rural Affairs, National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Liqiao Shi
- Key Laboratory of Microbial Pesticides, Ministry of Agriculture and Rural Affairs, National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Kaimei Wang
- Key Laboratory of Microbial Pesticides, Ministry of Agriculture and Rural Affairs, National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Yunxia Deng
- Guangdong Jiangmen Chinese Medicine College, Jiangmen 529000, China
| | - Ziwen Yang
- Key Laboratory of Microbial Pesticides, Ministry of Agriculture and Rural Affairs, National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Fei Yang
- Key Laboratory of Microbial Pesticides, Ministry of Agriculture and Rural Affairs, National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; Guangdong Jiangmen Chinese Medicine College, Jiangmen 529000, China; College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Shaoyong Ke
- Key Laboratory of Microbial Pesticides, Ministry of Agriculture and Rural Affairs, National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China.
| |
Collapse
|
3
|
Choudhuri T, Paul S, Das S, Pathak DD, Bagdi AK. Visible-Light-Mediated Regioselective C3-H Selenylation of Pyrazolo[1,5- a]pyrimidines Using Erythrosine B as Photocatalyst. J Org Chem 2023. [PMID: 37302135 DOI: 10.1021/acs.joc.3c00720] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A visible-light-induced efficient methodology has been developed for the C-H selenylation of pyrazolo[1,5-a]pyrimidine derivatives employing erythrosine B as the photocatalyst. This is the first report on the regioselective selenylation of pyrazolo[1,5-a]pyrimidines. The efficiency of this methodology for the selenylation of different electron-rich heterocycles like pyrazole, indole, imidazo[1,2-a]pyridine, imidazo[2,1-b]thiazole, and 4-(phenylamino)-2H-chromen-2-one has been also demonstrated. The exploration of erythrosine B as a photocatalyst with a simple and mild procedure, wide substrate scope, and practical applicability and the employment of eco-friendly energy, oxidant, and solvent are the attractive characteristics of this methodology.
Collapse
Affiliation(s)
| | - Suvam Paul
- Department of Chemistry, University of Kalyani, Kalyani 741235, India
| | - Sourav Das
- Department of Chemistry, University of Kalyani, Kalyani 741235, India
| | - Devendra Deo Pathak
- Department of Chemistry & Chemical Biology, Indian Institute of Technology (ISM), Dhanbad 826 004, India
| | - Avik Kumar Bagdi
- Department of Chemistry, University of Kalyani, Kalyani 741235, India
| |
Collapse
|
4
|
Sang T, Jia F, He J, Li C, Liu Y, Liu P. I 2-Catalyzed Cyclization of β-Ketonitrile with 1 H-Pyrazol-5-amine. CHINESE J ORG CHEM 2023. [DOI: 10.6023/cjoc202206017] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
5
|
Eyupoglu V, Unal A, Polat E, Eren B, Ali Kumbasar R. An efficient cobalt separation using PVDF-co-HFP based ultrafiltration polymer inclusion membrane by room temperature ionic liquids. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
Sang T, Li C, Jia F, He J, Liu Y, Vaccaro L, Liu J, Liu P. Halogenation of Pyrazolo[1,5-a]Pyrimidines with NXS. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2144906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Tian Sang
- School of Chemistry and Chemical Engineering, the Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi City, China
| | - Chuntian Li
- School of Chemistry and Chemical Engineering, the Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi City, China
| | - Fan Jia
- School of Chemistry and Chemical Engineering, the Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi City, China
| | - Jing He
- School of Chemistry and Chemical Engineering, the Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi City, China
| | - Yan Liu
- School of Chemistry and Chemical Engineering, the Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi City, China
| | - Luigi Vaccaro
- Laboratory of Green S.O.C. – Dipartimento di Chimica, Biologia e Biotecnologie, Università Degli Studi di Perugia, Perugia, Italy
| | - Jichang Liu
- School of Chemistry and Chemical Engineering, the Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi City, China
| | - Ping Liu
- School of Chemistry and Chemical Engineering, the Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi City, China
| |
Collapse
|
7
|
Hammouda MM, Gaffer HE, Elattar KM. Insights into the medicinal chemistry of heterocycles integrated with a pyrazolo[1,5- a]pyrimidine scaffold. RSC Med Chem 2022; 13:1150-1196. [PMID: 36325400 PMCID: PMC9580358 DOI: 10.1039/d2md00192f] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/25/2022] [Indexed: 09/10/2023] Open
Abstract
Pyrazolo[1,5-a]pyrimidines are the dominant motif of many drugs; for instance, zaleplon and indiplon are sedative agents and ocinaplon was identified as an anxiolytic agent. The importance of this class of compounds lies in its varied and significant biological activities, and accordingly, considerable methods have been devised to prepare these compounds. Hence, other derivatives of this class of compounds were prepared by substitution reactions with different nucleophiles exploiting the activity of groups linked to the ring carbon and nitrogen atoms. The methods used vary through the condensation reactions of the aminopyrazoles with 1,2-allenic, enaminonitriles, enaminones, 1,3-diketones, unsaturated nitriles, or unsaturated ketones. Alternatively, these compounds are prepared through the reactions of acyclic reagents, as these methods were recently developed efficiently with high yields. The current review highlighted the recent progress of the therapeutic potential of pyrazolo[1,5-a]pyrimidines as antimicrobial, anticancer, antianxiety, anti-proliferative, analgesic, and antioxidant agents, carboxylesterase, translocator protein and PDE10A inhibitors, and selective kinase inhibitors.
Collapse
Affiliation(s)
- Mohamed M Hammouda
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University Al-Kharj 11942 Saudi Arabia
- Chemistry Department, Faculty of Science, Mansoura University El-Gomhoria Street Mansoura 35516 Egypt
| | - Hatem E Gaffer
- Dyeing and Printing Department, Textile Research Division, National Research Center Dokki Cairo 12622 Egypt
| | - Khaled M Elattar
- Unit of Genetic Engineering and Biotechnology, Faculty of Science, Mansoura University El-Gomhoria Street Mansoura 35516 Egypt +201010655354
| |
Collapse
|
8
|
Koike A, Becker F, Sennhenn P, Kim J, Zhang J, Hannus S, Brehm K. Targeting Echinococcus multilocularis PIM kinase for improving anti-parasitic chemotherapy. PLoS Negl Trop Dis 2022; 16:e0010483. [PMID: 36190997 PMCID: PMC9560627 DOI: 10.1371/journal.pntd.0010483] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 10/13/2022] [Accepted: 09/20/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND The potentially lethal zoonosis alveolar echinococcosis (AE) is caused by the metacestode larval stage of the tapeworm Echinococcus multilocularis. Current AE treatment options are limited and rely on surgery as well as on chemotherapy involving benzimidazoles (BZ). BZ treatment, however, is mostly parasitostatic only, must be given for prolonged time periods, and is associated with adverse side effects. Novel treatment options are thus urgently needed. METHODOLOGY/PRINCIPAL FINDINGS By applying a broad range of kinase inhibitors to E. multilocularis stem cell cultures we identified the proto-oncogene PIM kinase as a promising target for anti-AE chemotherapy. The gene encoding the respective E. multilocularis ortholog, EmPim, was characterized and in situ hybridization assays indicated its expression in parasite stem cells. By yeast two-hybrid assays we demonstrate interaction of EmPim with E. multilocularis CDC25, indicating an involvement of EmPim in parasite cell cycle regulation. Small molecule compounds SGI-1776 and CX-6258, originally found to effectively inhibit human PIM kinases, exhibited detrimental effects on in vitro cultured parasite metacestode vesicles and prevented the formation of mature vesicles from parasite stem cell cultures. To improve compound specificity for EmPim, we applied a high throughput in silico modelling approach, leading to the identification of compound Z196138710. When applied to in vitro cultured metacestode vesicles and parasite cell cultures, Z196138710 proved equally detrimental as SGI-1776 and CX-6258 but displayed significantly reduced toxicity towards human HEK293T and HepG2 cells. CONCLUSIONS/SIGNIFICANCE Repurposing of kinase inhibitors initially designed to affect mammalian kinases for helminth disease treatment is often hampered by adverse side effects of respective compounds on human cells. Here we demonstrate the utility of high throughput in silico approaches to design small molecule compounds of higher specificity for parasite cells. We propose EmPim as a promising target for respective approaches towards AE treatment.
Collapse
Affiliation(s)
- Akito Koike
- University of Würzburg, Institute of Hygiene and Microbiology, Consultant Laboratory for Echinococcosis, Würzburg, Germany
| | | | | | - Jason Kim
- Immuneering Corporation, Cambridge, Massachusetts, United States of America
| | - Jenny Zhang
- Immuneering Corporation, Cambridge, Massachusetts, United States of America
| | | | - Klaus Brehm
- University of Würzburg, Institute of Hygiene and Microbiology, Consultant Laboratory for Echinococcosis, Würzburg, Germany
| |
Collapse
|
9
|
Karibov TT, Lichitsky BV, Melekhina VG, Komogortsev AN. The First Example of Photogeneration of a Pyrrole Molecule on the Basis of 6π-Electrocyclization of 2-Arylbenzofurans Containing a Pyrazole Fragment. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2112706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Turan T. Karibov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Science, Moscow, Russia
| | - Boris V. Lichitsky
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Science, Moscow, Russia
| | - Valeriya G. Melekhina
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Science, Moscow, Russia
| | - Andrey N. Komogortsev
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Science, Moscow, Russia
| |
Collapse
|
10
|
Prasada Rao DE, David Raju M, Ravi Kumar Reddy N, Rajendiran C, Sai Praneeth M, Tej MB, Basaveswara Rao MV, Kapavarapu R, Pal M. A Sonochemical Access to 5-Aryl Substituted Pyrazolo[1,5-a]Pyrimidines as Potential Inhibitors of TNF-α. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2028869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Daliparthi Eswara Prasada Rao
- R&D Centre, Suven Pharmaceuticals Ltd, Hyderabad, Telangana, India
- Department of Chemistry, Krishna University, Machilipatnam, Andhra Pradesh, India
| | - Medepalli David Raju
- Department of Chemistry, P.B. Siddhartha College of Arts and Sciences, Vijayawada, Andhra Pradesh, India
| | | | | | | | - Mandava Bhuvan Tej
- Faculty of Pharmacy, Sri Ramachandra Medical College and Research Institute, Chennai, Tamilnadu, India
| | | | - Ravikumar Kapavarapu
- Dr. Reddy’s Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad, India
| | - Manojit Pal
- Dr. Reddy’s Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad, India
| |
Collapse
|
11
|
Asati V, Anant A, Patel P, Kaur K, Gupta GD. Pyrazolopyrimidines as anticancer agents: A review on structural and target-based approaches. Eur J Med Chem 2021; 225:113781. [PMID: 34438126 DOI: 10.1016/j.ejmech.2021.113781] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 07/31/2021] [Accepted: 08/13/2021] [Indexed: 11/17/2022]
Abstract
Pyrazolopyrimidine scaffold is one of the privileged heterocycles in drug discovery. This scaffold produced numerous biological activities in which anticancer is important one. Previous studies showed its importance in interactions with various receptors such as growth factor receptor, TGFBR2 gene, CDK2/cyclin E and Abl kinase, adenosine receptor, calcium-dependent Protein Kinase, Pim-1 kinase, Potent Janus kinase 2, BTK kinase, P21-activated kinase 1, extracellular signal-regulated kinase 2, histone lysine demethylase and Human Kinesin-5. However, there is a need of numerous studies for the discovery of target based potential compounds. The structure activity relationship studies may help to explore the generation of potential compounds in short time period. Therefore, in the present review we tried to explore the structural aspects of Pyrazolopyrimidine with their structure activity relationship against various targets for the development of potential compounds. The current review is the compilation of significant advances made on Pyrazolopyrimidines reported between 2015 and 2020.
Collapse
Affiliation(s)
- Vivek Asati
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, India.
| | - Arjun Anant
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, India
| | - Preeti Patel
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, India
| | - Kamalpreet Kaur
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, India
| | - G D Gupta
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, India
| |
Collapse
|
12
|
Elattar KM, El-Mekabaty A. Bicyclic 5-6 Systems: Comprehensive Synthetic Strategies for the Annulations of Pyrazolo[ 1,5-a]pyrimidines. Curr Org Synth 2021; 18:547-586. [PMID: 33966620 DOI: 10.2174/1570179418666210509015108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/16/2021] [Accepted: 03/25/2021] [Indexed: 11/22/2022]
Abstract
Pyrazolopyrimidines are a privileged class of 5-6 bicyclic systems with three or four nitrogen atoms, including four possible isomeric structures. The significance of this class of compounds is that they can be applied in medical and pharmaceutical fields due to their unlimited biological aptitude, hence it is the basic skeleton of several synthetic drugs. The current review aimed to highlight all the synthetic routes that have been applied to construct the pyrazolo[1,5-a]pyrimidine ring systems up to date. The sections in this study included the synthesis of pyrazolo[1,5- a]pyrimidines by condensation reactions of 5-aminopyrazoles with each of β-diketones, 1,5-diketones, β- ketoaldehydes, α-cyanoaldehydes, β-enaminones, enamines, enaminonitriles, ethers, with unsaturated ketones, unsaturated thiones, unsaturated esters, unsaturated dienones "1,2-allenic", unsaturated aldehydes, unsaturated imines, and unsaturated nitriles. The routes adopted to synthesize this class of heterocyclic compounds were extended for ring construction from acyclic reagents and multicomponent reactions under catalytic or catalyst-free conditions.
Collapse
Affiliation(s)
- Khaled M Elattar
- Chemistry Department, Faculty of Science, Mansoura University, El-Gomhoria Street, Mansoura, 35516, Egypt
| | - Ahmed El-Mekabaty
- Chemistry Department, Faculty of Science, Mansoura University, El-Gomhoria Street, Mansoura, 35516, Egypt
| |
Collapse
|
13
|
Rathi A, Kumar D, Hasan GM, Haque MM, Hassan MI. Therapeutic targeting of PIM KINASE signaling in cancer therapy: Structural and clinical prospects. Biochim Biophys Acta Gen Subj 2021; 1865:129995. [PMID: 34455019 DOI: 10.1016/j.bbagen.2021.129995] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/28/2021] [Accepted: 08/23/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND PIM kinases are well-studied drug targets for cancer, belonging to Serine/Threonine kinases family. They are the downstream target of various signaling pathways, and their up/down-regulation affects various physiological processes. PIM family comprises three isoforms, namely, PIM-1, PIM-2, and PIM-3, on alternative initiation of translation and they have different levels of expression in different types of cancers. Its structure shows a unique ATP-binding site in the hinge region which makes it unique among other kinases. SCOPE OF REVIEW PIM kinases are widely reported in hematological malignancies along with prostate and breast cancers. Currently, many drugs are used as inhibitors of PIM kinases. In this review, we highlighted the physiological significance of PIM kinases in the context of disease progression and therapeutic targeting. We comprehensively reviewed the PIM kinases in terms of their expression and regulation of different physiological roles. We further predicted functional partners of PIM kinases to elucidate their role in the cellular physiology of different cancer and mapped their interaction network. MAJOR CONCLUSIONS A deeper mechanistic insight into the PIM signaling involved in regulating different cellular processes, including transcription, apoptosis, cell cycle regulation, cell proliferation, cell migration and senescence, is provided. Furthermore, structural features of PIM have been dissected to understand the mechanism of inhibition and subsequent implication of designed inhibitors towards therapeutic management of prostate, breast and other cancers. GENERAL SIGNIFICANCE Being a potential drug target for cancer therapy, available drugs and PIM inhibitors at different stages of clinical trials are discussed in detail.
Collapse
Affiliation(s)
- Aanchal Rathi
- Department of Biotechnology, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Dhiraj Kumar
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Gulam Mustafa Hasan
- Department of Biochemistry, College of Medicine, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | | | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| |
Collapse
|
14
|
Nadiveedhi MR, Shaik MS, Krishnammagari SK, Cirandur SR. Metal‐free multicomponent synthesis and
in vitro
antioxidant activity of indolylpyrazolopyrimidines. J Heterocycl Chem 2021. [DOI: 10.1002/jhet.4273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
15
|
Arias-Gómez A, Godoy A, Portilla J. Functional Pyrazolo[1,5- a]pyrimidines: Current Approaches in Synthetic Transformations and Uses As an Antitumor Scaffold. Molecules 2021; 26:2708. [PMID: 34063043 PMCID: PMC8125733 DOI: 10.3390/molecules26092708] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 12/29/2022] Open
Abstract
Pyrazolo[1,5-a]pyrimidine (PP) derivatives are an enormous family of N-heterocyclic compounds that possess a high impact in medicinal chemistry and have attracted a great deal of attention in material science recently due to their significant photophysical properties. Consequently, various researchers have developed different synthesis pathways for the preparation and post-functionalization of this functional scaffold. These transformations improve the structural diversity and allow a synergic effect between new synthetic routes and the possible applications of these compounds. This contribution focuses on an overview of the current advances (2015-2021) in the synthesis and functionalization of diverse pyrazolo[1,5-a]pyrimidines. Moreover, the discussion highlights their anticancer potential and enzymatic inhibitory activity, which hopefully could lead to new rational and efficient designs of drugs bearing the pyrazolo[1,5-a]pyrimidine core.
Collapse
Affiliation(s)
| | | | - Jaime Portilla
- Bioorganic Compounds Research Group, Department of Chemistry, Universidad de los Andes, Carrera 1 No. 18A-10, Bogotá 111711, Colombia; (A.A.-G.); (A.G.)
| |
Collapse
|
16
|
Mor S, Khatri M, Punia R, Sindhu S. Recent Progress on Anticancer Agents Incorporating Pyrazole Scaffold. Mini Rev Med Chem 2021; 22:115-163. [PMID: 33823764 DOI: 10.2174/1389557521666210325115218] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 02/01/2021] [Accepted: 02/07/2021] [Indexed: 11/22/2022]
Abstract
The search of new anticancer agents is considered as a dynamic field of medicinal chemistry. In recent years, the synthesis of compounds with anticancer potential has increased and a large number of structurally varied compounds displaying potent anticancer activities have been published. Pyrazole is an important biologically active scaffold that possessed nearly all types of biological activities. The aim of this review is to collate literature work reported by researchers to provide an overview on in vivo and in vitro anticancer activities of pyrazole based derivatives among the diverse biological activities displayed by them and also presents recent efforts made on this heterocyclic moiety regarding anticancer activities. This review has been driven from the increasing number of publications, on this issue, which have been reported in the literature since the ending of the 20th century (from 1995-to date).
Collapse
Affiliation(s)
- Satbir Mor
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar-125001, Haryana. India
| | - Mohini Khatri
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar-125001, Haryana. India
| | - Ravinder Punia
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar-125001, Haryana. India
| | - Suchita Sindhu
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar-125001, Haryana. India
| |
Collapse
|
17
|
Han W, Ding Y, Chen Z, Langowski JL, Bellamacina C, Rico A, Nishiguchi GA, Lan J, Atallah G, Lindvall M, Lin S, Zang R, Feucht P, Zavorotinskaya T, Dai Y, Garcia P, Burger MT. Synthesis and Structure-Activity Relationship of Tetra-Substituted Cyclohexyl Diol Inhibitors of Proviral Insertion of Moloney Virus (PIM) Kinases. J Med Chem 2020; 63:14885-14904. [PMID: 33258605 DOI: 10.1021/acs.jmedchem.0c01279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Overexpression of PIM 1, 2, and 3 kinases is frequently observed in many malignancies. Previously, we discovered a potent and selective pan-PIM kinase inhibitor, compound 2, currently in phase I clinical trials. In this work, we were interested in replacing the amino group on the cyclohexane ring in compound 2 with a hydroxyl group. Structure-based drug design led to cellularly potent but metabolically unstable tetra-substituted cyclohexyl diols. Efforts on the reduction of Log D by introducing polar heterocycles improved metabolic stability. Incorporating fluorine to the tetra-substituted cyclohexyl diol moiety further reduced Log D, resulting in compound 14, a cellularly potent tetra-substituted cyclohexyl diol inhibitor with moderate metabolic stability and good permeability. We also describe the development of efficient and scalable synthetic routes toward synthetically challenging tetra-substituted cyclohexyl diol compounds. In particular, intermediate 36 was identified as a versatile intermediate, enabling a large-scale synthesis of highly substituted cyclohexane derivatives.
Collapse
Affiliation(s)
- Wooseok Han
- Novartis Institutes for BioMedical Research, Emeryville, California 94608, United States.,Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139, United States
| | - Yu Ding
- Novartis Institutes for BioMedical Research, Emeryville, California 94608, United States.,BeiGene, Ltd., San Mateo, California 94403, United States
| | - Zheng Chen
- Novartis Institutes for BioMedical Research, Emeryville, California 94608, United States.,Boston Analytical, Salem, New Hampshire 03079, United States
| | - John L Langowski
- Novartis Institutes for BioMedical Research, Emeryville, California 94608, United States.,Kite, a Gilead Company, Emeryville, California 94608, United States
| | - Cornelia Bellamacina
- Novartis Institutes for BioMedical Research, Emeryville, California 94608, United States.,Crystallographic Consulting, Berkeley, California 94704, United States
| | - Alice Rico
- Novartis Institutes for BioMedical Research, Emeryville, California 94608, United States.,Exelixis, Alameda, California 94502, United States
| | - Gisele A Nishiguchi
- Novartis Institutes for BioMedical Research, Emeryville, California 94608, United States.,St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Jiong Lan
- Novartis Institutes for BioMedical Research, Emeryville, California 94608, United States.,Genfleet Therapeutics, Inc., Pudong District, Shanghai 201203, China
| | - Gordana Atallah
- Novartis Institutes for BioMedical Research, Emeryville, California 94608, United States.,Pharmacyclics, an AbbVie Company, Sunnyvale, California 94085, United States
| | - Mika Lindvall
- Novartis Institutes for BioMedical Research, Emeryville, California 94608, United States.,Recursion Pharmaceuticals, Salt Lake City, Utah 84101, United States
| | - Song Lin
- Novartis Institutes for BioMedical Research, Emeryville, California 94608, United States.,Astex Pharmaceuticals Inc., Pleasanton, California 94588, United States
| | - Richard Zang
- Novartis Institutes for BioMedical Research, Emeryville, California 94608, United States.,Global Blood Therapeutics, South San Francisco, California 94080, United States
| | - Paul Feucht
- Novartis Institutes for BioMedical Research, Emeryville, California 94608, United States
| | - Tatiana Zavorotinskaya
- Novartis Institutes for BioMedical Research, Emeryville, California 94608, United States.,ORIC Pharmaceuticals, South San Francisco, California 94080, United States
| | - Yumin Dai
- Novartis Institutes for BioMedical Research, Emeryville, California 94608, United States.,Bristol Myers Squibb, Redwood City, California 94158, United States
| | - Pablo Garcia
- Novartis Institutes for BioMedical Research, Emeryville, California 94608, United States.,Circle Pharma, Inc., South San Francisco, California 94080, United States
| | - Matthew T Burger
- Novartis Institutes for BioMedical Research, Emeryville, California 94608, United States.,Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
18
|
Asati V, Agarwal S, Mishra M, Das R, Kashaw SK. Structural prediction of novel pyrazolo-pyrimidine derivatives against PIM-1 kinase: In-silico drug design studies. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128375] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
19
|
Li C, Fan W, Qi C, Zhang F. Four component synthesis of pyrrolo[3,2-c]pyridin-4-one derivatives. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152253] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
Jismy B, Tikad A, Akssira M, Guillaumet G, Abarbri M. Efficient Access to 3,5-Disubstituted 7-(Trifluoromethyl)pyrazolo[1,5- a]pyrimidines Involving S NAr and Suzuki Cross-Coupling Reactions. Molecules 2020; 25:molecules25092062. [PMID: 32354132 PMCID: PMC7248703 DOI: 10.3390/molecules25092062] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/17/2020] [Accepted: 04/23/2020] [Indexed: 12/26/2022] Open
Abstract
An efficient and original synthesis of various 3,5-disubstituted 7-(trifluoromethyl)pyrazolo[1,5-a]pyrimidines is reported. A library of compounds diversely substituted in C-3 and C-5 positions was easily prepared from a common starting material, 3-bromo-7-(trifluoromethyl)pyrazolo[1,5-a]pyrimidin-5-one. In C-5 position, a SNAr type reaction was achieved by first activating the C–O bond of the lactam function with PyBroP (Bromotripyrrolidinophosphonium hexafluorophosphate), followed by the addition of amine or thiol giving monosubstituted derivatives, whereas in C-3 position, arylation was performed via Suzuki–Miyaura cross-coupling using the commercially available aromatic and heteroaromatic boronic acids. Moreover, trifluoromethylated analogues of potent Pim1 kinase inhibitors were designed following our concise synthetic methodology.
Collapse
Affiliation(s)
- Badr Jismy
- Laboratoire de Physico-Chimie des Matériaux et des Electrolytes pour l’Energie (PCM2E), EA 6299, Avenue Monge, Faculté des Sciences, Université de Tours, Parc de Grandmont, 37200 Tours, France
| | - Abdellatif Tikad
- Laboratoire de Chimie Moléculaire et Substances Naturelles, Faculté des Sciences, Université Moulay Ismail, B.P. 11201, Zitoune, Meknès 50050, Morocco
| | - Mohamed Akssira
- Laboratoire de Chimie Physique & de Chimie Bioorganique, URAC 22, Université Hassan II de Casablanca, B.P. 146, Mohammedia 28800, Morocco
| | - Gérald Guillaumet
- Institut de Chimie Organique et Analytique (ICOA), Université d’Orléans, UMR CNRS 7311, BP 6759, Rue de Chartres, CEDEX 2, 45067 Orléans, France
| | - Mohamed Abarbri
- Laboratoire de Physico-Chimie des Matériaux et des Electrolytes pour l’Energie (PCM2E), EA 6299, Avenue Monge, Faculté des Sciences, Université de Tours, Parc de Grandmont, 37200 Tours, France
- Correspondence: ; Tel.: +33-(2)47-36-73-59; Fax: +33-(2)47-36-70-73
| |
Collapse
|
21
|
Abstract
Pyrazolo[1,5-a]pyrimidines are fused N-heterocyclic systems of a pyrazole. They are considered as a key structural motif in many vital applications, such as medicinal, pharmaceuticals, pesticides, dyes and pigments. Their synthetic routes have escalated dramatically in the last decades. The current review is a recent synthetic survey of pyrazolo[ 1,5-a]pyrimidines and their applications until recently.
Collapse
Affiliation(s)
- Amal Al-Azmi
- Chemistry Department, Kuwait University, P. O. Box 5969, Safat 13060, Kuwait
| |
Collapse
|
22
|
Salem MA, Helal MH, Gouda MA, Abd EL-Gawad HH, Shehab MAM, El-Khalafawy A. Recent synthetic methodologies for pyrazolo[1,5-a]pyrimidine. SYNTHETIC COMMUN 2019. [DOI: 10.1080/00397911.2019.1604967] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Mohamed A. Salem
- Department of Chemistry, Faculty of Science and Arts, King Khalid University, Mohail Asir, Saudi Arabia
| | - Mohamed H. Helal
- Department of Chemistry, Faculty of Arts and Science, Northern Border University, Rafha, Saudi Arabia
| | - Moustafa A. Gouda
- Department of Chemistry, Faculty of Science and Arts, Ulla Taibah University, Medina, Saudi Arabia
| | - Hala H. Abd EL-Gawad
- Department of Chemistry, Faculty of Science and Arts, King Khalid University, Mohail Asir, Saudi Arabia
| | - Marwa A. M. Shehab
- Department of Chemistry, Faculty of Science and Arts, King Khalid University, Mohail Asir, Saudi Arabia
| | - Abeer El-Khalafawy
- Department of Chemistry, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
23
|
Akrami S, Karami B, Farahi M. A novel protocol for catalyst-free synthesis of fused six-member rings to triazole and pyrazole. Mol Divers 2019; 24:225-231. [PMID: 30937596 DOI: 10.1007/s11030-019-09944-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 03/21/2019] [Indexed: 02/08/2023]
Abstract
Herein, an effectual, quick and novel method is described for the synthesis of new triazolo[1,5-a]pyrimidine, triazolo[5,1-b][1,3] thiazine and pyrazolo[1,5-a]pyrimidine derivatives. This series of fused six-member rings to triazole and pyrazole was prepared via the catalyst-free reaction of dialkyl acetylenedicarboxylates and 3-substituted 1H-1,2,4-triazole or 3-amino-1H-pyrazole-4-carbonitrile. The structures of the prepared products were deduced from their Fourier-transform infrared, elemental analysis and proton and carbon-13 nuclear magnetic resonance spectral data. A novel and green method is described for the synthesis of new triazolo[1,5-a]pyrimidine, triazolo[5,1-b][1,3] thiazine and pyrazolo[1,5-a]pyrimidine derivatives.
Collapse
Affiliation(s)
- Sedigheh Akrami
- Department of Chemistry, Yasouj University, Yasuj, 75918-74831, Iran
| | - Bahador Karami
- Department of Chemistry, Yasouj University, Yasuj, 75918-74831, Iran.
| | - Mahnaz Farahi
- Department of Chemistry, Yasouj University, Yasuj, 75918-74831, Iran
| |
Collapse
|
24
|
Wang X, Blackaby W, Allen V, Chan GKY, Chang JH, Chiang PC, Diène C, Drummond J, Do S, Fan E, Harstad EB, Hodges A, Hu H, Jia W, Kofie W, Kolesnikov A, Lyssikatos JP, Ly J, Matteucci M, Moffat JG, Munugalavadla V, Murray J, Nash D, Noland CL, Del Rosario G, Ross L, Rouse C, Sharpe A, Slaga D, Sun M, Tsui V, Wallweber H, Yu SF, Ebens AJ. Optimization of Pan-Pim Kinase Activity and Oral Bioavailability Leading to Diaminopyrazole (GDC-0339) for the Treatment of Multiple Myeloma. J Med Chem 2019; 62:2140-2153. [DOI: 10.1021/acs.jmedchem.8b01857] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Xiaojing Wang
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Wesley Blackaby
- Charles River Discovery Research Services UK Limited (formerly BioFocus), Chesterford Research Park, Saffron Walden, Essex CB10 1XL, United Kingdom
| | - Vivienne Allen
- Charles River Discovery Research Services UK Limited (formerly BioFocus), Chesterford Research Park, Saffron Walden, Essex CB10 1XL, United Kingdom
| | - Grace Ka Yan Chan
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Jae H. Chang
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Po-Chang Chiang
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Coura Diène
- Charles River Discovery Research Services UK Limited (formerly BioFocus), Chesterford Research Park, Saffron Walden, Essex CB10 1XL, United Kingdom
| | - Jason Drummond
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Steven Do
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Eric Fan
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Eric B. Harstad
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Alastair Hodges
- Charles River Discovery Research Services UK Limited (formerly BioFocus), Chesterford Research Park, Saffron Walden, Essex CB10 1XL, United Kingdom
| | - Huiyong Hu
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Wei Jia
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - William Kofie
- Charles River Discovery Research Services UK Limited (formerly BioFocus), Chesterford Research Park, Saffron Walden, Essex CB10 1XL, United Kingdom
| | - Aleksandr Kolesnikov
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Joseph P. Lyssikatos
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Justin Ly
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Mizio Matteucci
- Charles River Discovery Research Services UK Limited (formerly BioFocus), Chesterford Research Park, Saffron Walden, Essex CB10 1XL, United Kingdom
| | - John G. Moffat
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | | | - Jeremy Murray
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - David Nash
- Charles River Discovery Research Services UK Limited (formerly BioFocus), Chesterford Research Park, Saffron Walden, Essex CB10 1XL, United Kingdom
| | - Cameron L. Noland
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Geoff Del Rosario
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Leanne Ross
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Craig Rouse
- Charles River Discovery Research Services UK Limited (formerly BioFocus), Chesterford Research Park, Saffron Walden, Essex CB10 1XL, United Kingdom
| | - Andrew Sharpe
- Charles River Discovery Research Services UK Limited (formerly BioFocus), Chesterford Research Park, Saffron Walden, Essex CB10 1XL, United Kingdom
| | - Dionysos Slaga
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Minghua Sun
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Vickie Tsui
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Heidi Wallweber
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Shang-Fan Yu
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Allen J. Ebens
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
25
|
Bjørnstad R, Aesoy R, Bruserud Ø, Brenner AK, Giraud F, Dowling TH, Gausdal G, Moreau P, Døskeland SO, Anizon F, Herfindal L. A Kinase Inhibitor with Anti-Pim Kinase Activity is a Potent and Selective Cytotoxic Agent Toward Acute Myeloid Leukemia. Mol Cancer Ther 2019; 18:567-578. [PMID: 30679386 DOI: 10.1158/1535-7163.mct-17-1234] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 05/05/2018] [Accepted: 01/14/2019] [Indexed: 11/16/2022]
Abstract
More than 40 years ago, the present standard induction therapy for acute myeloid leukemia (AML) was developed. This consists of the metabolic inhibitor cytarabine (AraC) and the cytostatic topoisomerase 2 inhibitor daunorubucin (DNR). In light of the high chance for relapse, as well as the large heterogeneity, novel therapies are needed to improve patient outcome. We have tested the anti-AML activity of 15 novel compounds based on the scaffolds pyrrolo[2,3-a]carbazole-3-carbaldehyde, pyrazolo[3,4-c]carbazole, pyrazolo[4,3-a]phenanthridine, or pyrrolo[2,3-g]indazole. The compounds were inhibitors of Pim kinases, but could also have inhibitory activity against other protein kinases. Ser/Thr kinases like the Pim kinases have been identified as potential drug targets for AML therapy. The compound VS-II-173 induced AML cell death with EC50 below 5 μmol/L, and was 10 times less potent against nonmalignant cells. It perturbed Pim-kinase-mediated AML cell signaling, such as attenuation of Stat5 or MDM2 phosphorylation, and synergized with DNR to induce AML cell death. VS-II-173 induced cell death also in patients with AML blasts, including blast carrying high-risk FLT3-ITD mutations. Mutation of nucleophosmin-1 was associated with good response to VS-II-173. In conclusion new scaffolds for potential AML drugs have been explored. The selective activity toward patient AML blasts and AML cell lines of the pyrazolo-analogue VS-II-173 make it a promising drug candidate to be further tested in preclinical animal models for AML.
Collapse
Affiliation(s)
- Ronja Bjørnstad
- Department of Clinical Science, Centre for Pharmacy, University of Bergen, Bergen, Norway.,Hospital Pharmacy in western Norway, Bergen
| | - Reidun Aesoy
- Department of Clinical Science, Centre for Pharmacy, University of Bergen, Bergen, Norway
| | - Øystein Bruserud
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Annette K Brenner
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Francis Giraud
- Université Clermont Auvergne, CNRS, Sigma Clermont, ICCF, F-63000 Clermont-Ferrand, France
| | - Tara Helen Dowling
- Centre for Cancer Biomarkers, Department of Clinical Science, University of Bergen, Bergen, Norway
| | | | - Pascale Moreau
- Université Clermont Auvergne, CNRS, Sigma Clermont, ICCF, F-63000 Clermont-Ferrand, France
| | | | - Fabrice Anizon
- Université Clermont Auvergne, CNRS, Sigma Clermont, ICCF, F-63000 Clermont-Ferrand, France
| | - Lars Herfindal
- Department of Clinical Science, Centre for Pharmacy, University of Bergen, Bergen, Norway.
| |
Collapse
|
26
|
Wang HL, Andrews KL, Booker SK, Canon J, Cee VJ, Chavez F, Chen Y, Eastwood H, Guerrero N, Herberich B, Hickman D, Lanman BA, Laszlo J, Lee MR, Lipford JR, Mattson B, Mohr C, Nguyen Y, Norman MH, Pettus LH, Powers D, Reed AB, Rex K, Sastri C, Tamayo N, Wang P, Winston JT, Wu B, Wu Q, Wu T, Wurz RP, Xu Y, Zhou Y, Tasker AS. Discovery of ( R)-8-(6-Methyl-4-oxo-1,4,5,6-tetrahydropyrrolo[3,4- b]pyrrol-2-yl)-3-(1-methylcyclopropyl)-2-((1-methylcyclopropyl)amino)quinazolin-4(3 H)-one, a Potent and Selective Pim-1/2 Kinase Inhibitor for Hematological Malignancies. J Med Chem 2019; 62:1523-1540. [PMID: 30624936 DOI: 10.1021/acs.jmedchem.8b01733] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Pim kinases are a family of constitutively active serine/threonine kinases that are partially redundant and regulate multiple pathways important for cell growth and survival. In human disease, high expression of the three Pim isoforms has been implicated in the progression of hematopoietic and solid tumor cancers, which suggests that Pim kinase inhibitors could provide patients with therapeutic benefit. Herein, we describe the structure-guided optimization of a series of quinazolinone-pyrrolodihydropyrrolone analogs leading to the identification of potent pan-Pim inhibitor 28 with improved potency, solubility, and drug-like properties. Compound 28 demonstrated on-target Pim activity in an in vivo pharmacodynamic assay with significant inhibition of BAD phosphorylation in KMS-12-BM multiple myeloma tumors for 16 h postdose. In a 2-week mouse xenograft model, daily dosing of compound 28 resulted in 33% tumor regression at 100 mg/kg.
Collapse
|
27
|
Castillo JC, Tigreros A, Portilla J. 3-Formylpyrazolo[1,5- a]pyrimidines as Key Intermediates for the Preparation of Functional Fluorophores. J Org Chem 2018; 83:10887-10897. [PMID: 30051714 DOI: 10.1021/acs.joc.8b01571] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A one-pot route for the regioselective synthesis of 3-formylpyrazolo[1,5- a]pyrimidines 4a-k in good yields through a microwave-assisted process is provided. The synthesis proceeds via a cyclocondensation reaction between β-enaminones 1 with NH-3-aminopyrazoles 2, followed by formylation with an iminium salt moiety (Vilsmeyer-Haack reagent). These N-heteroaryl aldehydes 4 were successfully used as strategic intermediates for the preparation of novel functional fluorophores with yields up to 98%. The structures of the products obtained and regioselectivity of the reactions were determined on the basis of NMR measurements and X-ray diffraction analysis. Since pyrazolo[1,5- a]pyrimidines (PPs) 3 have shown an important fluorescence, photophysical properties of four 2-methylderivatives substituted at position 7 with different acceptor (A) or donor (D) groups were investigated. The compounds evaluated exhibited large Stokes shift in different solvents, but only the substituted p-methoxyphenyl (4-An) showed a strong fluorescence intensity with quantum yields up to 44% due to its greater ICT. Therefore, hybrid systems based on pyrazolo[1,5- a]pyrimidines could be used as fluorescent probes to detect biologically or environmentally relevant species.
Collapse
Affiliation(s)
- Juan-Carlos Castillo
- Bioorganic Compounds Research Group, Department of Chemistry , Universidad de los Andes , Carrera 1 No. 18A-10 , Bogotá , Colombia
- Escuela de Ciencias Químicas, Facultad de Ciencias , Universidad Pedagógica y Tecnológica de Colombia UPTC , Avenida Central del Norte , Tunja , Colombia
| | - Alexis Tigreros
- Bioorganic Compounds Research Group, Department of Chemistry , Universidad de los Andes , Carrera 1 No. 18A-10 , Bogotá , Colombia
| | - Jaime Portilla
- Bioorganic Compounds Research Group, Department of Chemistry , Universidad de los Andes , Carrera 1 No. 18A-10 , Bogotá , Colombia
| |
Collapse
|
28
|
Schoepfer J, Jahnke W, Berellini G, Buonamici S, Cotesta S, Cowan-Jacob SW, Dodd S, Drueckes P, Fabbro D, Gabriel T, Groell JM, Grotzfeld RM, Hassan AQ, Henry C, Iyer V, Jones D, Lombardo F, Loo A, Manley PW, Pellé X, Rummel G, Salem B, Warmuth M, Wylie AA, Zoller T, Marzinzik AL, Furet P. Discovery of Asciminib (ABL001), an Allosteric Inhibitor of the Tyrosine Kinase Activity of BCR-ABL1. J Med Chem 2018; 61:8120-8135. [DOI: 10.1021/acs.jmedchem.8b01040] [Citation(s) in RCA: 175] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Joseph Schoepfer
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | - Wolfgang Jahnke
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | | | | | - Simona Cotesta
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | - Sandra W. Cowan-Jacob
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | - Stephanie Dodd
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Peter Drueckes
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | | | - Tobias Gabriel
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | - Jean-Marc Groell
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | - Robert M. Grotzfeld
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | | | - Chrystèle Henry
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | | | - Darryl Jones
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | | | - Alice Loo
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Paul W. Manley
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | - Xavier Pellé
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | - Gabriele Rummel
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | - Bahaa Salem
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | | | | | - Thomas Zoller
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | - Andreas L. Marzinzik
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | - Pascal Furet
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| |
Collapse
|
29
|
Oyallon B, Brachet-Botineau M, Logé C, Bonnet P, Souab M, Robert T, Ruchaud S, Bach S, Berthelot P, Gouilleux F, Viaud-Massuard MC, Denevault-Sabourin C. Structure-based design of novel quinoxaline-2-carboxylic acids and analogues as Pim-1 inhibitors. Eur J Med Chem 2018; 154:101-109. [PMID: 29778892 DOI: 10.1016/j.ejmech.2018.04.056] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/20/2018] [Accepted: 04/28/2018] [Indexed: 12/28/2022]
Abstract
We identified a new series of quinoxaline-2-carboxylic acid derivatives, targeting the human proviral integration site for Moloney murine leukemia virus-1 (HsPim-1) kinase. Seventeen analogues were synthesized providing useful insight into structure-activity relationships studied. Docking studies realized in the ATP pocket of HsPim-1 are consistent with an unclassical binding mode of these inhibitors. The lead compound 1 was able to block HsPim-1 enzymatic activity at nanomolar concentrations (IC50 of 74 nM), with a good selectivity profile against a panel of mammalian protein kinases. In vitro studies on the human chronic myeloid leukemia cell line KU812 showed an antitumor activity at micromolar concentrations. As a result, compound 1 represents a promising lead for the design of novel anticancer targeted therapies.
Collapse
Affiliation(s)
- Bruno Oyallon
- EA GICC - ERL 7001 CNRS « Groupe Innovation et Ciblage Cellulaire », Team Innovation Moléculaire et Thérapeutique, University of Tours, F-37200, Tours, France
| | - Marie Brachet-Botineau
- CNRS ERL7001 LNOx « Leukemic Niche and RedOx Metabolism » - EA GICC, University of Tours, F-37000, Tours, France; CHRU de Tours, Service d'Hématologie Biologique, F-37044, Tours, France
| | - Cédric Logé
- Université de Nantes, Nantes Atlantique Universités, Département de Chimie Thérapeutique, Cibles et Médicaments des Infections et du Cancer, IICIMED- EA1155, Institut de Recherche en Santé 2, F-44200, Nantes, France
| | - Pascal Bonnet
- UMR University of Orléans-CNRS 7311, Institut de Chimie Organique et Analytique (ICOA), University of Orléans, F-45067, Orléans, France
| | - Mohamed Souab
- Sorbonne Universités, USR3151 CNRS/UPMC, Plateforme de criblage KISSf (Kinase Inhibitor Specialized Screening Facility), Station Biologique, Place Georges Teissier, F-29688, Roscoff, France
| | - Thomas Robert
- Sorbonne Universités, USR3151 CNRS/UPMC, Plateforme de criblage KISSf (Kinase Inhibitor Specialized Screening Facility), Station Biologique, Place Georges Teissier, F-29688, Roscoff, France
| | - Sandrine Ruchaud
- Sorbonne Universités, USR3151 CNRS/UPMC, Plateforme de criblage KISSf (Kinase Inhibitor Specialized Screening Facility), Station Biologique, Place Georges Teissier, F-29688, Roscoff, France
| | - Stéphane Bach
- Sorbonne Universités, USR3151 CNRS/UPMC, Plateforme de criblage KISSf (Kinase Inhibitor Specialized Screening Facility), Station Biologique, Place Georges Teissier, F-29688, Roscoff, France
| | - Pascal Berthelot
- UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, University of Lille, Inserm, CHU Lille, F-59000, Lille, France
| | - Fabrice Gouilleux
- CNRS ERL7001 LNOx « Leukemic Niche and RedOx Metabolism » - EA GICC, University of Tours, F-37000, Tours, France
| | - Marie-Claude Viaud-Massuard
- EA GICC - ERL 7001 CNRS « Groupe Innovation et Ciblage Cellulaire », Team Innovation Moléculaire et Thérapeutique, University of Tours, F-37200, Tours, France
| | - Caroline Denevault-Sabourin
- EA GICC - ERL 7001 CNRS « Groupe Innovation et Ciblage Cellulaire », Team Innovation Moléculaire et Thérapeutique, University of Tours, F-37200, Tours, France.
| |
Collapse
|
30
|
Saikia L, Namsa ND, Thakur AJ. Microwave-Assisted Rapid Synthesis of Pyrido[2, 3-d
:6,5-d
]dipyrimidine-2,4,6,8-tetraones over Sulfonic Acid Functionalized Imidazolium Salts under Solvent-Free Condition. ChemistrySelect 2017. [DOI: 10.1002/slct.201701384] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Lakhinath Saikia
- Department of Chemistry; Rajiv Gandhi University (A Central University), Rono Hills; Doimukh, Arunachal Pradesh-791112 India
- Department of Chemical Sciences; Tezpur University (A Central Univrersity); Tezpur, Napaam Assam-784028 India
| | - Nima. D. Namsa
- Department of Molecular Biology and Biotechnology; Tezpur University (A Central Univrersity); Tezpur, Napaam Assam-784028 India
| | - A. J. Thakur
- Department of Chemical Sciences; Tezpur University (A Central Univrersity); Tezpur, Napaam Assam-784028 India
| |
Collapse
|
31
|
Margrey KA, McManus JB, Bonazzi S, Zecri F, Nicewicz DA. Predictive Model for Site-Selective Aryl and Heteroaryl C-H Functionalization via Organic Photoredox Catalysis. J Am Chem Soc 2017; 139:11288-11299. [PMID: 28718642 DOI: 10.1021/jacs.7b06715] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Direct C-H functionalization of aromatic compounds is a useful synthetic strategy that has garnered much attention because of its application to pharmaceuticals, agrochemicals, and late-stage functionalization reactions on complex molecules. On the basis of previous methods disclosed by our lab, we sought to develop a predictive model for site selectivity and extend this aryl functionalization chemistry to a selected set of heteroaromatic systems commonly used in the pharmaceutical industry. Using electron density calculations, we were able to predict the site selectivity of direct C-H functionalization in a number of heterocycles and identify general trends observed across heterocycle classes.
Collapse
Affiliation(s)
- Kaila A Margrey
- Department of Chemistry, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599-3290, United States
| | - Joshua B McManus
- Department of Chemistry, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599-3290, United States
| | - Simone Bonazzi
- Novartis Institutes for Biomedical Research , Global Discovery Chemistry, 181 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Frederic Zecri
- Novartis Institutes for Biomedical Research , Global Discovery Chemistry, 181 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - David A Nicewicz
- Department of Chemistry, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599-3290, United States
| |
Collapse
|
32
|
Lindsay-Scott PJ, Gallagher PT. Synthesis of heterocycles from arylacetonitriles: Powerful tools for medicinal chemists. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2017.05.089] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
33
|
Wang X, Kolesnikov A, Tay S, Chan G, Chao Q, Do S, Drummond J, Ebens AJ, Liu N, Ly J, Harstad E, Hu H, Moffat J, Munugalavadla V, Murray J, Slaga D, Tsui V, Volgraf M, Wallweber H, Chang JH. Discovery of 5-Azaindazole (GNE-955) as a Potent Pan-Pim Inhibitor with Optimized Bioavailability. J Med Chem 2017; 60:4458-4473. [DOI: 10.1021/acs.jmedchem.7b00418] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Xiaojing Wang
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Aleksandr Kolesnikov
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Suzanne Tay
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Grace Chan
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Qi Chao
- ChemPartner, No. 1 Building, 998 Halei Road,
Zhangjiang Hi-Tech Park, Pudong New Area, Shanghai 201203, China
| | - Steven Do
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Jason Drummond
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Allen J. Ebens
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Ning Liu
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Justin Ly
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Eric Harstad
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Huiyong Hu
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - John Moffat
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | | | - Jeremy Murray
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Dionysos Slaga
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Vickie Tsui
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Matthew Volgraf
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Heidi Wallweber
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Jae H. Chang
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
34
|
Cherukupalli S, Karpoormath R, Chandrasekaran B, Hampannavar GA, Thapliyal N, Palakollu VN. An insight on synthetic and medicinal aspects of pyrazolo[1,5-a]pyrimidine scaffold. Eur J Med Chem 2016; 126:298-352. [PMID: 27894044 DOI: 10.1016/j.ejmech.2016.11.019] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 10/19/2016] [Accepted: 11/08/2016] [Indexed: 11/26/2022]
Abstract
Pyrazolo[1,5-a]pyrimidine scaffold is one of the privileged hetrocycles in drug discovery. Its application as a buliding block for developing drug-like candidates has displayed broad range of medicinal properties such as anticancer, CNS agents, anti-infectious, anti-inflammatory, CRF1 antagonists and radio diagnostics. The structure-activity relationship (SAR) studies have acquired greater attention amid medicinal chemists, and many of the lead compounds were derived for various disease targets. However, there is plenty of room for the medicinal chemists to further exploit this privileged scaffold in developing potential drug candidates. The present review briefly outlines relevant synthetic strategies employed for pyrazolo[1,5-a]pyrimidine derivatives. It also extensively reveals significant biological properties along with SAR studies. To the best of our understanding current review is the first attempt made towards the compilation of significant advances made on pyrazolo[1,5-a]pyrimidines reported since 1980s.
Collapse
Affiliation(s)
- Srinivasulu Cherukupalli
- Department of Pharmaceutical Chemistry, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Rajshekhar Karpoormath
- Department of Pharmaceutical Chemistry, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa.
| | - Balakumar Chandrasekaran
- Department of Pharmaceutical Chemistry, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Girish A Hampannavar
- Department of Pharmaceutical Chemistry, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Neeta Thapliyal
- Department of Pharmaceutical Chemistry, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Venkata Narayana Palakollu
- Department of Pharmaceutical Chemistry, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| |
Collapse
|
35
|
Golubev P, Karpova EA, Pankova AS, Sorokina M, Kuznetsov MA. Regioselective Synthesis of 7-(Trimethylsilylethynyl)pyrazolo[1,5-a]pyrimidines via Reaction of Pyrazolamines with Enynones. J Org Chem 2016; 81:11268-11275. [PMID: 27749057 DOI: 10.1021/acs.joc.6b02217] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Condensation of enynones readily available from cheap starting material with pyrazolamines provides easy access to fluorescent 7-(trimethylsilylethynyl)pyrazolo[1,5-a]pyrimidines. The reaction is straightforward, does not require the use of any additional reagents or catalysts, and can be performed without inert atmosphere. Various substituents and functional groups in both enynone and pyrazolamine are tolerated. The presented method features full regioselectivity, high isolated yields, and simplicity of both setup and product purification. Fluorescent properties of the obtained pyrazolopyrimidines were studied.
Collapse
Affiliation(s)
- Pavel Golubev
- Institute of Chemistry, Saint Petersburg State University , Universitetsky pr. 26, 198504 Saint Petersburg, Russia
| | - Ekaterina A Karpova
- Institute of Chemistry, Saint Petersburg State University , Universitetsky pr. 26, 198504 Saint Petersburg, Russia
| | - Alena S Pankova
- Institute of Chemistry, Saint Petersburg State University , Universitetsky pr. 26, 198504 Saint Petersburg, Russia
| | - Mariia Sorokina
- Institute of Chemistry, Saint Petersburg State University , Universitetsky pr. 26, 198504 Saint Petersburg, Russia
| | - Mikhail A Kuznetsov
- Institute of Chemistry, Saint Petersburg State University , Universitetsky pr. 26, 198504 Saint Petersburg, Russia
| |
Collapse
|
36
|
Wurz RP, Sastri C, D'Amico DC, Herberich B, Jackson CLM, Pettus LH, Tasker AS, Wu B, Guerrero N, Lipford JR, Winston JT, Yang Y, Wang P, Nguyen Y, Andrews KL, Huang X, Lee MR, Mohr C, Zhang JD, Reid DL, Xu Y, Zhou Y, Wang HL. Discovery of imidazopyridazines as potent Pim-1/2 kinase inhibitors. Bioorg Med Chem Lett 2016; 26:5580-5590. [PMID: 27769621 DOI: 10.1016/j.bmcl.2016.09.067] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 09/23/2016] [Accepted: 09/27/2016] [Indexed: 10/20/2022]
Abstract
High levels of Pim expression have been implicated in several hematopoietic and solid tumor cancers, suggesting that inhibition of Pim signaling could provide patients with therapeutic benefit. Herein, we describe our progress towards this goal using a screening hit (rac-1) as a starting point. Modification of the indazole ring resulted in the discovery of a series of imidazopyridazine-based Pim inhibitors exemplified by compound 22m, which was found to be a subnanomolar inhibitor of the Pim-1 and Pim-2 isoforms (IC50 values of 0.024nM and 0.095nM, respectively) and to potently inhibit the phosphorylation of BAD in a cell line that expresses high levels of all Pim isoforms, KMS-12-BM (IC50=28nM). Profiling of Pim-1 and Pim-2 expression levels in a panel of multiple myeloma cell lines and correlation of these data with the potency of compound 22m in a proliferation assay suggests that Pim-2 inhibition would be advantageous for this indication.
Collapse
Affiliation(s)
- Ryan P Wurz
- Department of Therapeutic Discovery, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320-1799, USA.
| | - Christine Sastri
- Department of Oncology Research, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320-1799, USA.
| | - Derin C D'Amico
- Department of Therapeutic Discovery, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320-1799, USA
| | - Brad Herberich
- Department of Therapeutic Discovery, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320-1799, USA
| | - Claire L M Jackson
- Department of Therapeutic Discovery, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320-1799, USA
| | - Liping H Pettus
- Department of Therapeutic Discovery, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320-1799, USA
| | - Andrew S Tasker
- Department of Therapeutic Discovery, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320-1799, USA
| | - Bin Wu
- Department of Therapeutic Discovery, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320-1799, USA
| | - Nadia Guerrero
- Department of Oncology Research, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320-1799, USA
| | - J Russell Lipford
- Department of Oncology Research, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320-1799, USA
| | - Jeffrey T Winston
- Department of Oncology Research, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320-1799, USA
| | - Yajing Yang
- Department of Oncology Research, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320-1799, USA
| | - Paul Wang
- Department of Discovery Technologies, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320-1799, USA
| | - Yen Nguyen
- Department of Discovery Attribute Sciences, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320-1799, USA
| | - Kristin L Andrews
- Department of Molecular Engineering, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320-1799, USA
| | - Xin Huang
- Department of Molecular Engineering, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320-1799, USA
| | - Matthew R Lee
- Department of Molecular Engineering, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320-1799, USA
| | - Christopher Mohr
- Department of Molecular Engineering, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320-1799, USA
| | - J D Zhang
- Department of Molecular Engineering, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320-1799, USA
| | - Darren L Reid
- Department of Pre-pivotal Drug Product, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320-1799, USA
| | - Yang Xu
- Department of Clinical Pharmacology, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320-1799, USA
| | - Yihong Zhou
- Department of Pharmacokinetics and Drug Metabolism, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320-1799, USA
| | - Hui-Ling Wang
- Department of Therapeutic Discovery, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320-1799, USA
| |
Collapse
|
37
|
Sun J, Qiu JK, Jiang B, Hao WJ, Guo C, Tu SJ. I2-Catalyzed Multicomponent Reactions for Accessing Densely Functionalized Pyrazolo[1,5-a]pyrimidines and Their Disulphenylated Derivatives. J Org Chem 2016; 81:3321-8. [PMID: 26991413 DOI: 10.1021/acs.joc.6b00332] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
New I2-catalyzed multicomponent bicyclization reactions of β-ketonitriles with sulfonyl hydrazides have been established, providing a direct and metal-free access toward unreported pyrazolo[1,5-a]pyrimidin-4-ium sulfonates. The latter could be quantitatively converted into densely functionalized pyrazolo[1,5-a]pyrimidines in the presence of bases. Using sulfonyl hydrazides as a sulfenylating agent, the resulting pyrazolo[1,5-a]pyrimidines enabled I2-catalyzed unprecedented disulphenylations to access fully substituted pyrazolo[1,5-a]pyrimidines through direct C(sp(2))-H bond bifunctionalization.
Collapse
Affiliation(s)
- Jun Sun
- College of Chemistry and Molecular Engineering, Biotechnology and Pharmaceutical Engineering, Nanjing Tech University , Nanjing 211816, P. R. China
| | - Jiang-Kai Qiu
- College of Chemistry and Molecular Engineering, Biotechnology and Pharmaceutical Engineering, Nanjing Tech University , Nanjing 211816, P. R. China
| | - Bo Jiang
- School of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University , Xuzhou 221116, P. R. China
| | - Wen-Juan Hao
- School of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University , Xuzhou 221116, P. R. China
| | - Cheng Guo
- College of Chemistry and Molecular Engineering, Biotechnology and Pharmaceutical Engineering, Nanjing Tech University , Nanjing 211816, P. R. China
| | - Shu-Jiang Tu
- School of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University , Xuzhou 221116, P. R. China
| |
Collapse
|
38
|
Metwally NH, Abdallah MA, Almabrook SA. Pyrazolo[1,5-a]Pyrimidine Derivative as Precursor for Some Novel Pyrazolo[1,5-a]Pyrimidines and Tetraheterocyclic Compounds. J Heterocycl Chem 2016. [DOI: 10.1002/jhet.2590] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
39
|
Fan YB, Li K, Huang M, Cao Y, Li Y, Jin SY, Liu WB, Wen JC, Liu D, Zhao LX. Design and synthesis of substituted pyrido[3,2-d]-1,2,3-triazines as potential Pim-1 inhibitors. Bioorg Med Chem Lett 2016; 26:1224-8. [PMID: 26804231 DOI: 10.1016/j.bmcl.2016.01.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 12/24/2015] [Accepted: 01/12/2016] [Indexed: 12/31/2022]
Abstract
A novel series of substituted pyrido[3,2-d]-1,2,3-triazines were designed and synthesized as Pim-1 inhibitors through scaffold hopping. Most of the derivatives showed potent in vitro Pim-1 inhibitory activities and anti-proliferative effects toward prostate cancer cells. Among them, 6b, 6h and 6m showed the best Pim-1 inhibitory activity with IC50 values of 0.69, 0.60 and 0.80 μM, respectively. Furthermore, compounds 6b, 6i, 6j and 6m showed strong inhibitory activity to human prostate cancer LNcap and PC-3 cell lines with IC50 values at low micromolar level. Structure-activity relationship analysis revealed that appropriate substitutions at C-6 positions contributed to the kinase inhibition and antiproliferative effects. Moreover, western blot assay suggested that 6j could decrease the levels of p-BAD and p-4E-BP1 in a dose-dependent manner in PC-3 cells. Docking studies showed that 3-N of the scaffold formed a hydrogen bond with Lys67, aromatic 4-aniline formed a key π-π stack with Phe49. Taken together, this study might provide the first sight for developing the pyrido[3,2-d]-1,2,3-triazine scaffold as novel Pim-1 inhibitors.
Collapse
Affiliation(s)
- Yin-Bo Fan
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Kun Li
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Min Huang
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yu Cao
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ying Li
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Shu-Yu Jin
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Wen-Bing Liu
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jia-Chen Wen
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Dan Liu
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Lin-Xiang Zhao
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
40
|
Saikia P, Gogoi S, Boruah RC. Carbon-Carbon Bond Cleavage Reaction: Synthesis of Multisubstituted Pyrazolo[1,5-a]pyrimidines. J Org Chem 2015; 80:6885-9. [PMID: 26083788 DOI: 10.1021/acs.joc.5b00933] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A new carbon-carbon bond cleavage reaction was developed for the efficient synthesis of multisubstituted pyrazolo[1,5-a]pyrimidines. This base induced reaction of 1,3,5-trisubstituted pentane-1,5-diones and substituted pyrazoles afforded good yields of the pyrazolo[1,5-a]pyrimidines.
Collapse
Affiliation(s)
- Pallabi Saikia
- Medicinal Chemistry Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam 785006, India
| | - Sanjib Gogoi
- Medicinal Chemistry Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam 785006, India
| | - Romesh C Boruah
- Medicinal Chemistry Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam 785006, India
| |
Collapse
|