1
|
Mosaddad SA, Namanloo RA, Aghili SS, Maskani P, Alam M, Abbasi K, Nouri F, Tahmasebi E, Yazdanian M, Tebyaniyan H. Photodynamic therapy in oral cancer: a review of clinical studies. Med Oncol 2023; 40:91. [PMID: 36749489 DOI: 10.1007/s12032-023-01949-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/08/2023] [Indexed: 02/08/2023]
Abstract
A significant mortality rate is associated with oral cancer, particularly in cases of late-stage diagnosis. Since the last decades, oral cancer survival rates have only gradually improved despite advances in treatment. This poor success rate is mainly due to the development of secondary tumors, local recurrence, and regional failure. Invasive treatments frequently have a negative impact on the aesthetic and functional outcomes of survivors. Novel approaches are thus needed to manage this deadly disease in light of these statistics. In photodynamic therapy (PDT), a light-sensitive medication called a photosensitizer is given first, followed by exposure to light of the proper wavelength that matches the absorbance band of the photosensitizer. The tissue oxygen-induced cytotoxic free radicals kill tumor cells directly, harm the microvascular structure, and cause inflammatory reactions at the targeted sites. In the case of early lesions, PDT can be used as a stand-alone therapy, and in the case of advanced lesions, it can be used as adjuvant therapy. The current review article discussed the uses of PDT in oral cancer therapy based on recent advances in this field.
Collapse
Affiliation(s)
- Seyed Ali Mosaddad
- Student Research Committee, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Seyedeh Sara Aghili
- Student Research Committee, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Poorya Maskani
- Dental Research Center, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mostafa Alam
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kamyar Abbasi
- Department of Prosthodontics, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farzad Nouri
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Elahe Tahmasebi
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mohsen Yazdanian
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Hamid Tebyaniyan
- Department of Science and Research, Islimic Azade University, Tehran, Iran.
| |
Collapse
|
2
|
Synthesis of Carbon-Encapsulated Magnetic Iron Oxide Nanocomposites for Bioapplication. Int J Biomater 2022; 2022:3302082. [PMID: 36176284 PMCID: PMC9514942 DOI: 10.1155/2022/3302082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/01/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
Carbon-encapsulated Fe3O4 nanoparticles (NPs) were successfully synthesized from a single precursor using one-step solvothermal methods. X-ray diffraction and transmission electron microscopy were used to characterize the as-prepared NPs, and UV-visible absorbance spectroscopy was used to check their optical properties. The morphological results revealed that Fe3O4@C, quasi-spherical Fe3O4 particles encapsulated by carbon. In addition, the carbon-encapsulated Fe3O4 NPs were conjugated with folic acid (FA) to be used as biomarkers in the diagnosis and treatment of tumour cells. Fourier transform infrared spectroscopy and UV-visible spectroscopic techniques were used to confirm the conjugation process.
Collapse
|
3
|
Biocompatible Nanocarriers for Enhanced Cancer Photodynamic Therapy Applications. Pharmaceutics 2021; 13:pharmaceutics13111933. [PMID: 34834348 PMCID: PMC8624654 DOI: 10.3390/pharmaceutics13111933] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/10/2021] [Accepted: 11/10/2021] [Indexed: 02/06/2023] Open
Abstract
In recent years, the role of nanotechnology in drug delivery has become increasingly important, and this field of research holds many potential benefits for cancer treatment, particularly, in achieving cancer cell targeting and reducing the side effects of anticancer drugs. Biocompatible and biodegradable properties have been essential for using a novel material as a carrier molecule in drug delivery applications. Biocompatible nanocarriers are easy to synthesize, and their surface chemistry often enables them to load different types of photosensitizers (PS) to use targeted photodynamic therapy (PDT) for cancer treatment. This review article explores recent studies on the use of different biocompatible nanocarriers, their potential applications in PDT, including PS-loaded biocompatible nanocarriers, and the effective targeting therapy of PS-loaded biocompatible nanocarriers in PDT for cancer treatment. Furthermore, the review briefly recaps the global clinical trials of PDT and its applications in cancer treatment.
Collapse
|
4
|
Kirar S, Thakur NS, Reddy YN, Banerjee UC, Bhaumik J. Insights on the polypyrrole based nanoformulations for photodynamic therapy. J PORPHYR PHTHALOCYA 2021. [DOI: 10.1142/s1088424621300032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
This review is written to endow updated information on polypyrrole based photosensitizers for the treatment of deadly diseases such as cancer and microbial infection. Tetrapyrrolic macromolecules such as porphyrins and phthalocyanines hold unique photophysical properties which make them very useful compounds for various biomedical applications. Besides their properties, they also have some limitations such as low water solubility, bioavailability, biocompatibility and lack of specificity, etc. Researchers are trying to overcome these limitations by incorporating photosensitizers into the different types of nanoparticles and improve the quality of photodynamic therapy. We have contributed to this field by synthesizing and developing polypyrrolic photosensitizer based nanoparticles for potential applications in antimicrobial and anticancer photodynamic activity. Throughout this review, newly synthesized and existing PSs conjugated/encapsulated/doped/incorporated with nanoparticles are emphasized, which are essential for current and future research themes. Also in this review, we briefly summarized the research work carried over the past few years by considering the porphyrin based photosensitizers as alternative therapeutic entities for the treatment of microbial infections, cancers, and many other diseases.
Collapse
Affiliation(s)
- Seema Kirar
- Department of Nanomaterials and Application Technology, Center of Innovative and Applied Bioprocessing (CIAB), Sector-81 (Knowledge City), S.A.S. Nagar-140306, Mohali, Punjab, India
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector-67, S.A.S. Nagar-160062, Mohali, Punjab, India
| | - Neeraj Singh Thakur
- Department of Nanomaterials and Application Technology, Center of Innovative and Applied Bioprocessing (CIAB), Sector-81 (Knowledge City), S.A.S. Nagar-140306, Mohali, Punjab, India
- Department of Pharmaceutical Technology (Biotechnology), National Institute of Pharmaceutical Education and Research (NIPER), Sector-67, S.A.S. Nagar-160062, Mohali, Punjab, India
| | - Yeddula Nikhileshwar Reddy
- Department of Nanomaterials and Application Technology, Center of Innovative and Applied Bioprocessing (CIAB), Sector-81 (Knowledge City), S.A.S. Nagar-140306, Mohali, Punjab, India
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Sector-81, S.A.S. Nagar-140306, Mohali, Punjab, India
| | - Uttam Chand Banerjee
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector-67, S.A.S. Nagar-160062, Mohali, Punjab, India
- Department of Pharmaceutical Technology (Biotechnology), National Institute of Pharmaceutical Education and Research (NIPER), Sector-67, S.A.S. Nagar-160062, Mohali, Punjab, India
| | - Jayeeta Bhaumik
- Department of Nanomaterials and Application Technology, Center of Innovative and Applied Bioprocessing (CIAB), Sector-81 (Knowledge City), S.A.S. Nagar-140306, Mohali, Punjab, India
| |
Collapse
|
5
|
Balas M, Popescu Din IM, Hermenean A, Cinteza LO, Dinischiotu A. Exposure to Iron Oxide Nanoparticles Coated with Phospholipid-Based Polymeric Micelles Induces Renal Transitory Biochemical and Histopathological Changes in Mice. MATERIALS (BASEL, SWITZERLAND) 2021; 14:2605. [PMID: 34067676 PMCID: PMC8156474 DOI: 10.3390/ma14102605] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/26/2021] [Accepted: 05/14/2021] [Indexed: 11/18/2022]
Abstract
The renal toxicity induced by the intravenously injected iron oxide nanoparticles (IONPs) encapsulated in phospholipid-based polymeric micelles was studied in CD1 mice for 2 weeks. Two doses of 5 and 15 mg of Fe/kg bodyweight of NPs or saline solution (control) were tested, and the levels of antioxidant enzyme activities, oxidative stress parameters, and the expressions of kidney fibrosis biomarkers were analyzed. The enzymatic activities of superoxide dismutase, catalase, glutathione peroxidase, glutathione-S-transferase, glutathione reductase, and glucose-6-phosphate dehydrogenase in the kidney were significantly decreased compared to the control in the first 3 days followed by a recovery up to 14 days. Concomitantly, a significant increase in lipid peroxidation (malondialdehyde) levels and a decrease in protein thiol groups were recorded. Moreover, increases in the expressions of T cell immunoglobulin and mucin domain 1 (TIM-1) and transforming growth factor-β (TGF-β) were observed in mouse tissue samples in the first week, which were more pronounced for the higher dose. The results suggested the role of oxidative stress as a mechanism for induced toxicity in mice kidneys after the IV administration of IONPs encapsulated in phospholipid-based polymeric micelles but also the capacity of the kidneys' defense systems to revert efficiently the biochemical modifications that were moderate and for short duration.
Collapse
Affiliation(s)
- Mihaela Balas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (M.B.); (I.M.P.D.)
| | - Ioana Mihaela Popescu Din
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (M.B.); (I.M.P.D.)
| | - Anca Hermenean
- Department of Experimental and Applied Biology, Institute of Life Sciences, Vasile Goldis Western University of Arad, 86 Rebreanu, 310414 Arad, Romania;
- Department of Histology, Faculty of Medicine, Vasile Goldis Western University of Arad, 1 Feleacului Street, 310396 Arad, Romania
| | - Ludmila Otilia Cinteza
- Department of Physical Chemistry, Faculty of Chemistry, University of Bucharest, 4-12 Regina Elisabeta Blvd, 030018 Bucharest, Romania;
| | - Anca Dinischiotu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (M.B.); (I.M.P.D.)
| |
Collapse
|
6
|
Popescu Din IM, Balas M, Hermenean A, Vander Elst L, Laurent S, Burtea C, Cinteza LO, Dinischiotu A. Novel Polymeric Micelles-Coated Magnetic Nanoparticles for In Vivo Bioimaging of Liver: Toxicological Profile and Contrast Enhancement. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E2722. [PMID: 32549296 PMCID: PMC7345181 DOI: 10.3390/ma13122722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 12/11/2022]
Abstract
Magnetic nanoparticles are intensively studied for magnetic resonance imaging (MRI) as contrast agents but yet there remained some gaps regarding their toxicity potential and clinical implications of their biodistribution in organs. This study presents the effects induced by magnetite nanoparticles encapsulated in polymeric micelles (MNP-DSPE-PEG) on biochemical markers, metabolic functions, and MRI signal in CD1 mice liver. Three groups of animals, one control and the other ones injected with a suspension of five, respectively, 15 mg Fe/kg bw nanoparticles, were monitored up to 14 days. The results indicated the presence of MNP-DSPE-PEG in the liver in the first two days of the experiment. The most significant biochemical changes also occurred in the first 3 days after exposure when the most severe histological changes were observed. The change of the MRI signal intensity on the T2-weighted images and increased transverse relaxation rates R2 in the liver were observed after the first minutes from the nanoparticle administration. The study shows that the alterations of biomarkers level resulting from exposure to MNP-DSPE-PEG are restored in time in mice liver. This was associated with a significant contrast on T2-weighted images and made us conclude that these nanoparticles might be potential candidates for use as a contrast agent in liver medical imaging.
Collapse
Affiliation(s)
- Ioana Mihaela Popescu Din
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91–95 Splaiul Independentei, 050095 Bucharest, Romania; (I.M.P.D.); (A.D.)
| | - Mihaela Balas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91–95 Splaiul Independentei, 050095 Bucharest, Romania; (I.M.P.D.); (A.D.)
| | - Anca Hermenean
- Department of Experimental and Applied Biology, Institute of Life Sciences, Vasile Goldis Western University of Arad, 86 Rebreanu, 310414 Arad, Romania;
- Department of Histology, Faculty of Medicine, Vasile Goldis Western University of Arad, 1 Feleacului street, 310396 Arad, Romania
| | - Luce Vander Elst
- Department of General, Organic and Biomedical Chemistry, NMR and Molecular Imaging Laboratory, Faculty of Medicine and Pharmacy, University of Mons, 19, Avenue Maistriau, Mendeleev Building, B-7000 Mons, Belgium; (L.V.E.); (S.L.); (C.B.)
| | - Sophie Laurent
- Department of General, Organic and Biomedical Chemistry, NMR and Molecular Imaging Laboratory, Faculty of Medicine and Pharmacy, University of Mons, 19, Avenue Maistriau, Mendeleev Building, B-7000 Mons, Belgium; (L.V.E.); (S.L.); (C.B.)
| | - Carmen Burtea
- Department of General, Organic and Biomedical Chemistry, NMR and Molecular Imaging Laboratory, Faculty of Medicine and Pharmacy, University of Mons, 19, Avenue Maistriau, Mendeleev Building, B-7000 Mons, Belgium; (L.V.E.); (S.L.); (C.B.)
| | - Ludmila Otilia Cinteza
- Department of Physical Chemistry, Faculty of Chemistry, University of Bucharest, 4-12 Regina Elisabeta Blvd, 030018 Bucharest, Romania;
| | - Anca Dinischiotu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91–95 Splaiul Independentei, 050095 Bucharest, Romania; (I.M.P.D.); (A.D.)
| |
Collapse
|
7
|
Wang J, Liu L, Chen J, Deng M, Feng X, Chen L. Supramolecular nanoplatforms via cyclodextrin host-guest recognition for synergistic gene-photodynamic therapy. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.04.051] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
8
|
Xie X, Zhang X, Chen J, Tang X, Wang M, Zhang L, Guo Z, Shen W. Fe3O4-solamargine induces apoptosis and inhibits metastasis of pancreatic cancer cells. Int J Oncol 2019; 54:905-915. [PMID: 30483763 PMCID: PMC6365027 DOI: 10.3892/ijo.2018.4637] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 07/30/2018] [Indexed: 11/06/2022] Open
Abstract
Fe3O4-magnetic liposome (MLP) can deliver drugs to target tissues and can increase drug efficacy. The present study aimed to investigate the effects of solamargine (SM) and Fe3O4-SM in pancreatic cancer (PC). Cell viability was detected using a Cell Counting kit‑8 assay. Apoptosis and cell cycle progression was tested using a flow cytometry assay. A scratch assay was used to examine cell metastasis. Quantitative polymerase chain reaction, western blot analysis or immunohistochemical analysis were performed to determine the expression of target factors. Magnetic resonance imagining (MRI) and terminal deoxynucleotidyl-transferase-mediated dUTP nick end labelling were conducted to detect tumor growth and apoptosis in vivo, respectively. It was demonstrated that Fe3O4-SM inhibited cancer cell growth via a slow release of SM over an extended period of time. SM was revealed to induce apoptosis and cell cycle arrest. Furthermore, SM decreased the expression of X-linked inhibitor of apoptosis, Survivin, Ki‑67, proliferating cell nuclear antigen and cyclin D1, but increased the activity of caspase-3. It was also observed that SM inhibited tumor cell metastasis by modulating the expression of matrix metalloproteinase (MMP)-2 and TIMP metallopeptidase inhibitor-2. Furthermore, the phosphorylation of protein kinase B and mechanistic target of rapamycin was suppressed by SM. Notably, the effect of SM was enhanced by Fe3O4-SM. The malignant growth of PC was decreased by SM in vivo. Furthermore, the expression of Ki‑67 was decreased by SM and Fe3O4-SM. Additionally, cell apoptosis was increased in the Fe3O4-SM group, compared with the SM group. The present study illustrated the antitumor effect and action mec-hanism produced by SM. Additionally, it was demonstrated that Fe3O4-SM was more effective than SM in protecting against PC.
Collapse
Affiliation(s)
| | | | | | - Xun Tang
- Department of Clinical Laboratory, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu 210000, P.R. China
| | | | | | | | | |
Collapse
|
9
|
Liu Q, Li H, Lam KY. Optimization of Deformable Magnetic-Sensitive Hydrogel-Based Targeting System in Suspension Fluid for Site-Specific Drug Delivery. Mol Pharm 2018; 15:4632-4642. [DOI: 10.1021/acs.molpharmaceut.8b00626] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Qimin Liu
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Republic of Singapore
| | - Hua Li
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Republic of Singapore
| | - K. Y. Lam
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Republic of Singapore
| |
Collapse
|
10
|
Horne TK, Cronjé MJ. Mechanistics and photo-energetics of macrocycles and photodynamic therapy: An overview of aspects to consider for research. Chem Biol Drug Des 2017; 89:221-242. [DOI: 10.1111/cbdd.12761] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 03/24/2016] [Accepted: 04/05/2016] [Indexed: 12/17/2022]
Affiliation(s)
- Tamarisk K. Horne
- Department of Biochemistry; Faculty of Science; University of Johannesburg; Auckland Park South Africa
| | - Marianne J. Cronjé
- Department of Biochemistry; Faculty of Science; University of Johannesburg; Auckland Park South Africa
| |
Collapse
|
11
|
Saini R, Lee NV, Liu KYP, Poh CF. Prospects in the Application of Photodynamic Therapy in Oral Cancer and Premalignant Lesions. Cancers (Basel) 2016; 8:cancers8090083. [PMID: 27598202 PMCID: PMC5040985 DOI: 10.3390/cancers8090083] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 08/26/2016] [Accepted: 08/30/2016] [Indexed: 12/16/2022] Open
Abstract
Oral cancer is a global health burden with significantly poor survival, especially when the diagnosis is at its late stage. Despite advances in current treatment modalities, there has been minimal improvement in survival rates over the last five decades. The development of local recurrence, regional failure, and the formation of second primary tumors accounts for this poor outcome. For survivors, cosmetic and functional compromises resulting from treatment are often devastating. These statistics underscore the need for novel approaches in the management of this deadly disease. Photodynamic therapy (PDT) is a treatment modality that involves administration of a light-sensitive drug, known as a photosensitizer, followed by light irradiation of an appropriate wavelength that corresponds to an absorbance band of the sensitizer. In the presence of tissue oxygen, cytotoxic free radicals that are produced cause direct tumor cell death, damage to the microvasculature, and induction of inflammatory reactions at the target sites. PDT offers a prospective new approach in controlling this disease at its various stages either as a stand-alone therapy for early lesions or as an adjuvant therapy for advanced cases. In this review, we aim to explore the applications of PDT in oral cancer therapy and to present an overview of the recent advances in PDT that can potentially reposition its utility for oral cancer treatment.
Collapse
Affiliation(s)
- Rajan Saini
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| | - Nathan V Lee
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| | - Kelly Y P Liu
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| | - Catherine F Poh
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada.
| |
Collapse
|
12
|
Broekgaarden M, van Vught R, Oliveira S, Roovers RC, van Bergen en Henegouwen PMP, Pieters RJ, Van Gulik TM, Breukink E, Heger M. Site-specific conjugation of single domain antibodies to liposomes enhances photosensitizer uptake and photodynamic therapy efficacy. NANOSCALE 2016; 8:6490-6494. [PMID: 26954515 DOI: 10.1039/c6nr00014b] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Photodynamic therapy for therapy-resistant cancers will greatly benefit from targeted delivery of tumor photosensitizing agents. In this study, a strategy for the site-specific conjugation of single domain antibodies onto liposomes containing the photosensitizer zinc phthalocyanine was developed and tested.
Collapse
Affiliation(s)
- M Broekgaarden
- Department of Experimental Surgery, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands.
| | - R van Vught
- Department of Membrane Biochemistry and Biophysics, Institute of Biomembranes, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - S Oliveira
- Division of Cell Biology, Science Faculty, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - R C Roovers
- Division of Cell Biology, Science Faculty, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | | | - R J Pieters
- Department of Medicinal Chemistry and Chemical Biology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, P. O. Box 80082, NL-3508 TB, Utrecht, The Netherlands
| | - T M Van Gulik
- Department of Experimental Surgery, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands.
| | - E Breukink
- Department of Membrane Biochemistry and Biophysics, Institute of Biomembranes, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - M Heger
- Department of Experimental Surgery, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands.
| |
Collapse
|
13
|
Mogoşanu GD, Grumezescu AM, Bejenaru C, Bejenaru LE. Polymeric protective agents for nanoparticles in drug delivery and targeting. Int J Pharm 2016; 510:419-29. [PMID: 26972379 DOI: 10.1016/j.ijpharm.2016.03.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Accepted: 03/09/2016] [Indexed: 01/08/2023]
Abstract
Surface modification/functionalization of nanoparticles (NPs) using polymeric protective agents is an issue of great importance and actuality for drug delivery and targeting. Improving the blood circulation half-life of surface-protected nanocarriers is closely related to the elimination of main biological barriers and limiting factors (protein absorption and opsonization), due to the phagocytic activity of reticuloendothelial system. For passive or active targeted delivery, in biomedical area, surface-functionalized NPs with tissue-recognition ligands were designed and optimized as a result of modern research techniques. Also, multi-functionalized nanostructures are characterized by enhanced bioavailability, efficacy, targeted localization, active cellular uptake, and low side effects. Surface-protected NPs are obtained from biocompatible, biodegradable and less toxic natural polymers (dextran, β-cyclodextrin, chitosan, hyaluronic acid, heparin, gelatin) or synthetic polymers, such as poly(lactic acid), poly(lactic-co-glycolic) acid, poly(ε-caprolactone) and poly(alkyl cyanoacrylates). PEGylation is one of the most important functionalization methods providing steric stabilization, long circulating and 'stealth' properties for both polymeric and inorganic-based nanosystems. In addition, for their antimicrobial, antiviral and antitumor effects, cutting-edge researches in the field of pharmaceutical nanobiotechnology highlighted the importance of noble metal (platinum, gold, silver) NPs decorated with biopolymers.
Collapse
Affiliation(s)
- George Dan Mogoşanu
- Department of Pharmacognosy & Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxidic Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 1-7 Polizu Street, 011061 Bucharest, Romania.
| | - Cornelia Bejenaru
- Department of Vegetal & Animal Biology, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania
| | - Ludovic Everard Bejenaru
- Department of Pharmacognosy & Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania
| |
Collapse
|
14
|
Tan G, Li W, Cheng J, Wang Z, Wei S, Jin Y, Guo C, Qu F. Magnetic iron oxide modified pyropheophorbide-a fluorescence nanoparticles as photosensitizers for photodynamic therapy against ovarian cancer (SKOV-3) cells. Photochem Photobiol Sci 2016; 15:1567-1578. [DOI: 10.1039/c6pp00340k] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Magnetic iron oxide modified pyropheophorbide-a fluorescence nanoparticles for photodynamic therapy against SKOV-3 cells.
Collapse
Affiliation(s)
- Guanghui Tan
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province. Harbin
- College of Life Science and Technology
- Harbin Normal University
- Harbin
- China
| | - Wenting Li
- College of Chemistry & Chemical Engineering
- Harbin Normal University
- Harbin
- China
| | - Jianjun Cheng
- College of Chemistry & Chemical Engineering
- Harbin Normal University
- Harbin
- China
| | - Zhiqiang Wang
- College of Chemistry & Chemical Engineering
- Harbin Normal University
- Harbin
- China
| | - Shuquan Wei
- College of Chemistry & Chemical Engineering
- Harbin Normal University
- Harbin
- China
| | - Yingxue Jin
- College of Chemistry & Chemical Engineering
- Harbin Normal University
- Harbin
- China
| | - Changhong Guo
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province. Harbin
- College of Life Science and Technology
- Harbin Normal University
- Harbin
- China
| | - Fengyu Qu
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province. Harbin
- College of Life Science and Technology
- Harbin Normal University
- Harbin
- China
| |
Collapse
|
15
|
Radu Balas M, Din Popescu IM, Hermenean A, Cinteză OL, Burlacu R, Ardelean A, Dinischiotu A. Exposure to Iron Oxide Nanoparticles Coated with Phospholipid-Based Polymeric Micelles Induces Biochemical and Histopathological Pulmonary Changes in Mice. Int J Mol Sci 2015; 16:29417-35. [PMID: 26690409 PMCID: PMC4691116 DOI: 10.3390/ijms161226173] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 11/11/2015] [Accepted: 11/19/2015] [Indexed: 01/16/2023] Open
Abstract
The biochemical and histopathological changes induced by the exposure to iron oxide nanoparticles coated with phospholipid-based polymeric micelles (IONPs-PM) in CD-1 mice lungs were analyzed. After 2, 3, 7 and 14 days following the intravenous injection of IONPs-PM (5 and 15 mg Fe/kg bw), lactate dehydrogenase (LDH) activity, oxidative stress parameters and the expression of Bax, Bcl-2, caspase-3 and TNF-α were evaluated in lung tissue. An increase of catalase (CAT) and glutathione reductase (GR) activities on the second day followed by a decrease on the seventh day, as well as a decline of lactate dehydrogenase (LDH), superoxide dismutase (SOD) and glutathione peroxidase (GPx) activity on the third and seventh day were observed in treated groups vs. controls. However, all these enzymatic activities almost fully recovered on the 14th day. The reduced glutathione (GSH) and protein thiols levels decreased significantly in nanoparticles-treated groups and remained diminished during the entire experimental period; by contrast malondialdehyde (MDA) and protein carbonyls increased between the 3rd and 14th day of treatment vs. control. Relevant histopathological modifications were highlighted using Hematoxylin and Eosin (H&E) staining. In addition, major changes in the expression of apoptosis markers were observed in the first week, more pronounced for the higher dose. The injected IONPs-PM generated a dose-dependent decrease of the mouse lung capacity, which counteracted oxidative stress, thus creating circumstances for morphopathological lesions and oxidation processes.
Collapse
Affiliation(s)
- Mihaela Radu Balas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, Bucharest 050095, Romania.
- Department of Experimental and Applied Biology, Institute of Life Sciences, Vasile Goldis Western University of Arad, 86 Rebreanu, Arad 310414, Romania.
| | - Ioana Mihaela Din Popescu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, Bucharest 050095, Romania.
| | - Anca Hermenean
- Department of Experimental and Applied Biology, Institute of Life Sciences, Vasile Goldis Western University of Arad, 86 Rebreanu, Arad 310414, Romania.
- Department of Histology, Faculty of Medicine, Vasile Goldis Western University of Arad, 1 Feleacului, Arad 310396, Romania.
| | - Otilia Ludmila Cinteză
- Department of Physical Chemistry, Faculty of Chemistry, University of Bucharest, 4-12 Regina Elisabeta Blvd, Bucharest 030018, Romania.
| | - Radu Burlacu
- Department of Mathematics, University of Agriculture Sciences and Veterinary Medicine, 59 Marasti, Bucharest 011464, Romania.
| | - Aurel Ardelean
- Department of Experimental and Applied Biology, Institute of Life Sciences, Vasile Goldis Western University of Arad, 86 Rebreanu, Arad 310414, Romania.
| | - Anca Dinischiotu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, Bucharest 050095, Romania.
| |
Collapse
|
16
|
Mfuh AM, Mahindaratne MPD, Yñigez-Gutierrez AE, Ramos Dominguez JR, Bedell JT, Garcia CD, Negrete GR. Acid-responsive nanospheres from an asparagine-derived amphiphile. RSC Adv 2015; 5:8585-8590. [PMID: 25914807 PMCID: PMC4407701 DOI: 10.1039/c4ra11884g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We describe the synthesis and self-assembly of an asparagine-derived amphiphile. The self-assembled systems formulated with the inclusion of cholesterol (0-50 mol%) show encapsulation for a hydrophobic model drug and rapidly disintegrate in response to mild acidic conditions.
Collapse
Affiliation(s)
- Adelphe M. Mfuh
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249-1644, USA
| | | | - Audrey E. Yñigez-Gutierrez
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249-1644, USA
| | - Juan R. Ramos Dominguez
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249-1644, USA
| | - Jefferson T. Bedell
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249-1644, USA
| | - Carlos D. Garcia
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249-1644, USA
| | - George R. Negrete
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249-1644, USA
| |
Collapse
|
17
|
Abstract
Photodynamic therapy (PDT) is a light-based intervention with a long and successful clinical track record for both oncology and non-malignancies. In cancer patients, a photosensitizing agent is intravenously, orally or topically applied and allowed time to preferentially accumulate in the tumor region. Light of the appropriate wavelength and intensity to activate the particular photosensitizer employed is then introduced to the tumor bed. The light energy will activate the photosensitizer, which in the presence of oxygen should allow for creation of the toxic photodynamic reaction generating reactive oxygen species. The photodynamic reaction creates a cascading series of events including initiation of apoptotic and necrotic pathways both in tumor and neovasculature, leading to permanent lesion destruction often with upregulation of the immune system. Cutaneous phototoxicity from unintentional sunlight exposure remains the most common morbidity from PDT. This paper will highlight current research and outcomes from the basic science and clinical applications of oncologic PDT and interpret how these findings may lead to enhanced and refined future PDT.
Collapse
Affiliation(s)
- Ron R Allison
- 21st Century Oncology, 801 WH Smith Boulevard, Greenville, NC 27834, USA.
| |
Collapse
|
18
|
Srivatsan A, Jenkins SV, Jeon M, Wu Z, Kim C, Chen J, Pandey R. Gold nanocage-photosensitizer conjugates for dual-modal image-guided enhanced photodynamic therapy. Am J Cancer Res 2014; 4:163-74. [PMID: 24465274 PMCID: PMC3900801 DOI: 10.7150/thno.7064] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 11/04/2013] [Indexed: 12/20/2022] Open
Abstract
We have demonstrated that gold nanocage-photosensitizer conjugates can enable dual image-guided delivery of photosensitizer and significantly improve the efficacy of photodynamic therapy in a murine model. The photosensitizer, 3-devinyl-3-(1'-hexyloxyethyl)pyropheophorbide (HPPH), was noncovalently entrapped in the poly(ethylene glycol) monolayer coated on the surface of gold nanocages. The conjugate is stable in saline solutions, while incubation in protein rich solutions leads to gradual unloading of the HPPH, which can be monitored optically by fluorescence and photoacoustic imaging. The slow nature of the release in turn results in an increase in accumulation of the drug within implanted tumors due to the passive delivery of gold nanocages. Furthermore, the conjugate is found to generate more therapeutic singlet oxygen and have a lower IC50 value than the free drug alone. Thus the conjugate shows significant suppression of tumor growth as compared to the free drug in vivo. Short-term study showed neither toxicity nor phenotypical changes in mice at therapeutic dose of the conjugates or even at 100-fold higher than therapeutic dose of gold nanocages.
Collapse
|
19
|
Ohulchanskyy TY, Kopwitthaya A, Jeon M, Guo M, Law WC, Furlani EP, Kim C, Prasad PN. Phospholipid micelle-based magneto-plasmonic nanoformulation for magnetic field-directed, imaging-guided photo-induced cancer therapy. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2013; 9:1192-202. [DOI: 10.1016/j.nano.2013.05.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 04/19/2013] [Accepted: 05/25/2013] [Indexed: 12/29/2022]
|
20
|
Weingart J, Vabbilisetty P, Sun XL. Membrane mimetic surface functionalization of nanoparticles: methods and applications. Adv Colloid Interface Sci 2013; 197-198:68-84. [PMID: 23688632 PMCID: PMC3729609 DOI: 10.1016/j.cis.2013.04.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 04/18/2013] [Accepted: 04/19/2013] [Indexed: 11/22/2022]
Abstract
Nanoparticles (NPs), due to their size-dependent physical and chemical properties, have shown remarkable potential for a wide range of applications over the past decades. Particularly, the biological compatibilities and functions of NPs have been extensively studied for expanding their potential in areas of biomedical application such as bioimaging, biosensing, and drug delivery. In doing so, surface functionalization of NPs by introducing synthetic ligands and/or natural biomolecules has become a critical component in regard to the overall performance of the NP system for its intended use. Among known examples of surface functionalization, the construction of an artificial cell membrane structure, based on phospholipids, has proven effective in enhancing biocompatibility and has become a viable alternative to more traditional modifications, such as direct polymer conjugation. Furthermore, certain bioactive molecules can be immobilized onto the surface of phospholipid platforms to generate displays more reminiscent of cellular surface components. Thus, NPs with membrane-mimetic displays have found use in a range of bioimaging, biosensing, and drug delivery applications. This review herein describes recent advances in the preparations and characterization of integrated functional NPs covered by artificial cell membrane structures and their use in various biomedical applications.
Collapse
Affiliation(s)
- Jacob Weingart
- Department of Chemistry, Cleveland State University, Cleveland, OH 44115
| | | | - Xue-Long Sun
- Department of Chemistry, Cleveland State University, Cleveland, OH 44115
- Chemical and Biomedical Engineering, Cleveland State University, Cleveland, OH 44115
| |
Collapse
|
21
|
Shibu ES, Hamada M, Murase N, Biju V. Nanomaterials formulations for photothermal and photodynamic therapy of cancer. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2013. [DOI: 10.1016/j.jphotochemrev.2012.09.004] [Citation(s) in RCA: 207] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
22
|
Ling D, Hyeon T. Chemical design of biocompatible iron oxide nanoparticles for medical applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2013; 9:1450-66. [PMID: 23233377 DOI: 10.1002/smll.201202111] [Citation(s) in RCA: 215] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Indexed: 05/26/2023]
Abstract
Iron oxide nanoparticles are one of the most versatile and safe nanomaterials used in medicine. Recent progress in nanochemistry enables fine control of the size, crystallinity, uniformity, and surface properties of iron oxide nanoparticles. In this review, the synthesis of chemically designed biocompatible iron oxide nanoparticles with improved quality and reduced toxicity is discussed for use in diverse biomedical applications.
Collapse
Affiliation(s)
- Daishun Ling
- Center for Nanoparticle Research, Institute for Basic Science (IBS) and School of Chemical and Biological Engineering, Seoul National University, Seoul 151-742, Korea
| | | |
Collapse
|
23
|
Tao X, Yang YJ, Liu S, Zheng YZ, Fu J, Chen JF. Poly(amidoamine) dendrimer-grafted porous hollow silica nanoparticles for enhanced intracellular photodynamic therapy. Acta Biomater 2013; 9:6431-8. [PMID: 23380206 DOI: 10.1016/j.actbio.2013.01.028] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 01/22/2013] [Accepted: 01/25/2013] [Indexed: 01/01/2023]
Abstract
We report a novel photodynamic therapy (PDT) drug-carrier system, whereby third-generation (G3) polyamidoamine (PAMAM) was successfully grafted to the surface of porous hollow silica nanoparticles (PHSNPs), followed by the attachment of gluconic acid (GA) for surface charge tuning. The composite G3-PAMAM-grafted PHSNPs (denoted as G3-PHSNPs) with a diameter range of 100-200 nm and about 30 nm sized shell thickness retain bimodal pore structures (e.g. inner voids and porous structure of the shells) and PAMAM-functionalized outer layer with a large number of amino groups, allowing high loading efficacy of aluminum phthalocyanine tetrasulfonate (AlPcS4) and its effective release to target tissue. The GA-induced G3-PHSNPs were evidenced to be able to favorably cross tumor cell walls and enter into the cell interior. The generation of singlet oxygen ((1)O2) from AlPcS4-GA-G3-PHSNPs under visible light excitation was detected by the in situ electron spin resonance measurements and the oxidative reaction between the generated (1)O2 and a chemical probe. In vitro cellular experiments showed that the photosensitive GA-G3-PHSNPs exhibited a good biocompatibility in the dark and a higher killing efficacy against MCF-7 tumor cells upon irradiation as compared with free AlPcS4, which implies that the preformed photosensitive drug-carrier system might be potentially applicable in PDT.
Collapse
|
24
|
Tumor delivery of Photofrin® by PLL-g-PEG for photodynamic therapy. J Control Release 2013; 167:315-21. [PMID: 23454112 DOI: 10.1016/j.jconrel.2013.02.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 02/07/2013] [Accepted: 02/17/2013] [Indexed: 11/24/2022]
Abstract
Photofrin® (porfimer sodium) is a photosensitive reagent used for photodynamic therapy (PDT) of tumors and dysplasias. Because only photo-irradiated sites are damaged, PDT is less invasive than systemic treatments. However, a photosensitive reaction is a major side effect of systemically delivered Photofrin. To enhance localization of Photofrin to tumors, we have formulated Photofrin with the tumor-localizing graft copolymer poly(ethylene glycol)-grafted poly(l-lysine), PLL-g-PEG. We demonstrate that Photofrin preferentially interacts with PLL-g-PEG through both ionic and hydrophobic interactions. The serum competitive study showed that the highly PEG-grafted PLL is better for preventing serum binding to the Photofrin/PLL-g-PEG complex. In tumor-bearing mice, formulation of Photofrin with PLL-g-PEG enhanced tumor localization of Photofrin as twice as Photofrin alone and concomitantly suppressed the photosensitivity reaction drastically.
Collapse
|
25
|
Yoon I, Li JZ, Shim YK. Advance in photosensitizers and light delivery for photodynamic therapy. Clin Endosc 2013; 46:7-23. [PMID: 23423543 PMCID: PMC3572355 DOI: 10.5946/ce.2013.46.1.7] [Citation(s) in RCA: 233] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 12/14/2012] [Accepted: 12/14/2012] [Indexed: 01/28/2023] Open
Abstract
The brief history of photodynamic therapy (PDT) research has been focused on photosensitizers (PSs) and light delivery was introduced recently. The appropriate PSs were developed from the first generation PS Photofrin (QLT) to the second (chlorins or bacteriochlorins derivatives) and third (conjugated PSs on carrier) generations PSs to overcome undesired disadvantages, and to increase selective tumor accumulation and excellent targeting. For the synthesis of new chlorin PSs chlorophyll a is isolated from natural plants or algae, and converted to methyl pheophorbide a (MPa) as an important starting material for further synthesis. MPa has various active functional groups easily modified for the preparation of different kinds of PSs, such as methyl pyropheophorbide a, purpurin-18, purpurinimide, and chlorin e6 derivatives. Combination therapy, such as chemotherapy and photothermal therapy with PDT, is shortly described here. Advanced light delivery system is shown to establish successful clinical applications of PDT. Phtodynamic efficiency of the PSs with light delivery was investigated in vitro and/or in vivo.
Collapse
Affiliation(s)
- Il Yoon
- PDT Research Institute, Inje University School of Nano System Engineering, Gimhae, Korea
| | | | | |
Collapse
|
26
|
Formation of polyion complex micelles with tunable isoelectric points based on zwitterionic block copolymers. Macromol Res 2013. [DOI: 10.1007/s13233-012-0177-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
27
|
Zhang D, Zhao YX, Gao YJ, Gao FP, Fan YS, Li XJ, Duan ZY, Wang H. Anti-bacterial and in vivo tumor treatment by reactive oxygen species generated by magnetic nanoparticles. J Mater Chem B 2013; 1:5100-5107. [DOI: 10.1039/c3tb20907e] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
28
|
Aravindu K, Mass O, Vairaprakash P, Springer JW, Yang E, Niedzwiedzki DM, Kirmaier C, Bocian DF, Holten D, Lindsey JS. Amphiphilic chlorins and bacteriochlorins in micellar environments. Molecular design, de novo synthesis, and photophysical properties. Chem Sci 2013. [DOI: 10.1039/c3sc51335a] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
29
|
Reddy LH, Arias JL, Nicolas J, Couvreur P. Magnetic nanoparticles: design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications. Chem Rev 2012; 112:5818-78. [PMID: 23043508 DOI: 10.1021/cr300068p] [Citation(s) in RCA: 1121] [Impact Index Per Article: 93.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- L Harivardhan Reddy
- Laboratoire de Physico-Chimie, Pharmacotechnie et Biopharmacie, Université Paris-Sud XI, UMR CNRS, Faculté de Pharmacie, IFR, Châtenay-Malabry, France
| | | | | | | |
Collapse
|
30
|
Wang S, Fan W, Kim G, Hah HJ, Lee YEK, Kopelman R, Ethirajan M, Gupta A, Goswami LN, Pera P, Morgan J, Pandey RK. Novel methods to incorporate photosensitizers into nanocarriers for cancer treatment by photodynamic therapy. Lasers Surg Med 2012; 43:686-95. [PMID: 22057496 DOI: 10.1002/lsm.21113] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE A hydrophobic photosensitizer, 2-[1-hexyloxyethyl]-2-devinyl pyropheophorbide-a (HPPH), was loaded into nontoxic biodegradable amine functionalized polyacrylamide (AFPAA) nanoparticles using three different methods (encapsulation, conjugation, and post-loading), forming a stable aqueous dispersion. Each formulation was characterized for physicochemical properties as well as for photodynamic performance so as to determine the most effective nanocarrier formulation containing HPPH for photodynamic therapy (PDT). MATERIALS AND METHODS HPPH or HPPH-linked acrylamide was added into monomer mixture and polymerized in a microemulsion for encapsulation and conjugation, respectively. For post-loading, HPPH was added to an aqueous suspension of pre-formed nanoparticles. Those nanoparticles were tested for optical characteristics, dye loading, dye leaching, particle size, singlet oxygen production, dark toxicity, in vitro photodynamic cell killing, whole body fluorescence imaging and in vivo PDT. RESULTS HPPH was successfully encapsulated, conjugated or post-loaded into the AFPAA nanoparticles. The resultant nanoparticles were spherical with a mean diameter of 29 ± 3 nm. The HPPH remained intact after entrapment and the HPPH leaching out of nanoparticles was negligible for all three formulations. The highest singlet oxygen production was achieved by the post-loaded formulation, which caused the highest phototoxicity in in vitro assays. No dark toxicity was observed. Post-loaded HPPH AFPAA nanoparticles were localized to tumors in a mouse colon carcinoma model, enabling fluorescence imaging, and producing a similar photodynamic tumor response to that of free HPPH in equivalent dose. CONCLUSIONS Post-loading is the promising method for loading nanoparticles with hydrophobic photosensitizers to achieve effective in vitro and in vivo PDT.
Collapse
Affiliation(s)
- Shouyan Wang
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Sailor MJ, Park JH. Hybrid nanoparticles for detection and treatment of cancer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2012; 24:3779-802. [PMID: 22610698 PMCID: PMC3517011 DOI: 10.1002/adma.201200653] [Citation(s) in RCA: 301] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 04/05/2012] [Indexed: 05/04/2023]
Abstract
There is currently considerable effort to incorporate both diagnostic and therapeutic functions into a single nanoscale system for the more effective treatment of cancer. Nanoparticles have great potential to achieve such dual functions, particularly if more than one type of nanostructure can be incorporated in a nanoassembly, referred to in this review as a hybrid nanoparticle. Here we review recent developments in the synthesis and evaluation of such hybrid nanoparticles based on two design strategies (barge vs. tanker), in which liposomal, micellar, porous silica, polymeric, viral, noble metal, and nanotube systems are incorporated either within (barge) or at the surface of (tanker) a nanoparticle. We highlight the design factors that should be considered to obtain effective nanodevices for cancer detection and treatment.
Collapse
Affiliation(s)
- Michael J Sailor
- Materials Science and Engineering Program, Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman, La Jolla, CA 92093, USA.
| | | |
Collapse
|
32
|
Wahajuddin, Arora S. Superparamagnetic iron oxide nanoparticles: magnetic nanoplatforms as drug carriers. Int J Nanomedicine 2012; 7:3445-71. [PMID: 22848170 PMCID: PMC3405876 DOI: 10.2147/ijn.s30320] [Citation(s) in RCA: 553] [Impact Index Per Article: 46.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
A targeted drug delivery system is the need of the hour. Guiding magnetic iron oxide nanoparticles with the help of an external magnetic field to its target is the principle behind the development of superparamagnetic iron oxide nanoparticles (SPIONs) as novel drug delivery vehicles. SPIONs are small synthetic γ-Fe2O3 (maghemite) or Fe3O4 (magnetite) particles with a core ranging between 10 nm and 100 nm in diameter. These magnetic particles are coated with certain biocompatible polymers, such as dextran or polyethylene glycol, which provide chemical handles for the conjugation of therapeutic agents and also improve their blood distribution profile. The current research on SPIONs is opening up wide horizons for their use as diagnostic agents in magnetic resonance imaging as well as for drug delivery vehicles. Delivery of anticancer drugs by coupling with functionalized SPIONs to their targeted site is one of the most pursued areas of research in the development of cancer treatment strategies. SPIONs have also demonstrated their efficiency as nonviral gene vectors that facilitate the introduction of plasmids into the nucleus at rates multifold those of routinely available standard technologies. SPION-induced hyperthermia has also been utilized for localized killing of cancerous cells. Despite their potential biomedical application, alteration in gene expression profiles, disturbance in iron homeostasis, oxidative stress, and altered cellular responses are some SPION-related toxicological aspects which require due consideration. This review provides a comprehensive understanding of SPIONs with regard to their method of preparation, their utility as drug delivery vehicles, and some concerns which need to be resolved before they can be moved from bench top to bedside.
Collapse
Affiliation(s)
- Wahajuddin
- Pharmacokinetics and Metabolism Division, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India.
| | | |
Collapse
|
33
|
Lim SB, Banerjee A, Önyüksel H. Improvement of drug safety by the use of lipid-based nanocarriers. J Control Release 2012; 163:34-45. [PMID: 22698939 DOI: 10.1016/j.jconrel.2012.06.002] [Citation(s) in RCA: 195] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 05/21/2012] [Accepted: 06/01/2012] [Indexed: 01/01/2023]
Abstract
Drug toxicity is an important factor that contributes significantly to adverse drug events in current healthcare practice. Application of lipid-based nanocarriers in drug formulation is one approach to improve drug safety. Lipid-based delivery systems include micelles, liposomes, solid lipid nanoparticles, nanoemulsions and nanosuspensions. These carriers are generally composed of physiological lipids well tolerated by human body. Delivery of water-insoluble drugs in these formulations increases their solubility and stability in aqueous media and eliminates the need for toxic co-solvents or pH adjustment to solubilize hydrophobic drugs. Association or encapsulation of peptides/proteins within lipid-based carriers protects the labile biologics against enzymatic degradation, hence reducing the therapeutic dose required and risk of dose-dependent toxicity. Most importantly, lipid-based nanocarriers alter the pharmacokinetics and biodistribution of drugs through passive and active targeting, leading to increased drug accumulation at target sites while significantly decreasing non-specific distribution to other tissues. Furthermore, surface modification of these nanocarriers reduces immunogenicity of drug-carrier complexes, imparts stealth by preventing opsonization and removal by phagocytes and minimizes interaction with circulating blood components. In view of heightening attention on drug safety in patient treatment, lipid-based nanocarrier is therefore an important and promising option for formulation of pharmaceutical products to improve treatment safety and efficacy.
Collapse
Affiliation(s)
- Sok Bee Lim
- Department of Biopharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL 60612-7231, USA
| | | | | |
Collapse
|
34
|
Lee N, Hyeon T. Designed synthesis of uniformly sized iron oxide nanoparticles for efficient magnetic resonance imaging contrast agents. Chem Soc Rev 2011; 41:2575-89. [PMID: 22138852 DOI: 10.1039/c1cs15248c] [Citation(s) in RCA: 586] [Impact Index Per Article: 45.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Various magnetic nanoparticles have been extensively investigated as novel magnetic resonance imaging (MRI) contrast agents owing to their unique characteristics, including efficient contrast effects, biocompatibility, and versatile surface functionalization capability. Nanoparticles with high relaxivity are very desirable because they would increase the accuracy of MRI. Recent progress in nanotechnology enables fine control of the size, crystal structure, and surface properties of iron oxide nanoparticles. In this tutorial review, we discuss how MRI contrast effects can be improved by controlling the size, composition, doping, assembly, and surface properties of iron-oxide-based nanoparticles.
Collapse
Affiliation(s)
- Nohyun Lee
- World Class University Program of Chemical Convergence for Energy & Environment, and School of Chemical and Biological Engineering, Seoul National University, Seoul, 151-744, Korea
| | | |
Collapse
|
35
|
rPark JR, Choi DS, Gracias DH, Leong TG, Presser N, Stupian GW, Leung MS, Kim YK. Fabrication and characterization of RF nanoantenna on a nanoliter-scale 3D microcontainer. NANOTECHNOLOGY 2011; 22:455303. [PMID: 22020056 DOI: 10.1088/0957-4484/22/45/455303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
We report the design and fabrication of a nanoantenna structure on the surface of a 3D nanoliter-scale container for the development of communicable nanoliter-scale chemical delivery systems. The porous container was self-assembled, after which the nanoantenna was fabricated on the top of the microcontainer using focused ion beam (FIB) ion-induced metal deposition. The nanoantenna was structured as a rectangular metal coil composed of platinum (Pt) nanowires (70 nm in width). The response of the nanoantenna structure was simulated using finite element software and showed a strong resonant feature at 10.8 GHz, which was confirmed by high frequency measurements.
Collapse
Affiliation(s)
- Jung-rae rPark
- Department of Plastic Engineering, University of Massachusetts, Lowell, MA 01854, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Shi D, Bedford NM, Cho HS. Engineered multifunctional nanocarriers for cancer diagnosis and therapeutics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2011; 7:2549-2567. [PMID: 21648074 DOI: 10.1002/smll.201100436] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 04/23/2011] [Indexed: 05/30/2023]
Abstract
This article reviews advances in the design and development of multifunctional carbon-based and/or magnetic nanoparticle systems (or simply 'nanocarriers') for early cancer diagnosis and spatially and temporally controlled therapy. The critical issues in cancer diagnosis and treatment are addressed based on novel nanotechnologies such as real-time in-vivo imaging, drug storage and release, and specific cancer-cell targeting. The implementation of nanocarriers into animal models and the subsequent effectiveness in treating tumors is also reviewed. Recommendations for future research are given.
Collapse
Affiliation(s)
- Donglu Shi
- The Institute for Advanced Materials and Nano Biomedicine, Tongji University, Shanghai 200092, China.
| | | | | |
Collapse
|
37
|
Yang X, Huang J, Wang K, Li W, Cui L, Li X. Angiogenin-mediated photosensitizer-aptamer conjugate for photodynamic therapy. ChemMedChem 2011; 6:1778-80. [PMID: 21774079 DOI: 10.1002/cmdc.201100226] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Indexed: 11/06/2022]
Affiliation(s)
- Xiaohai Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, PR China
| | | | | | | | | | | |
Collapse
|
38
|
Chemiluminescent nanomicelles for imaging hydrogen peroxide and self-therapy in photodynamic therapy. J Biomed Biotechnol 2011; 2011:679492. [PMID: 21765637 PMCID: PMC3134417 DOI: 10.1155/2011/679492] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Revised: 03/18/2011] [Accepted: 03/24/2011] [Indexed: 11/20/2022] Open
Abstract
Hydrogen peroxide is a signal molecule of the tumor, and its overproduction makes a higher concentration in tumor tissue compared to normal tissue. Based on the fact that peroxalates can make chemiluminescence with a high efficiency in the presence of hydrogen peroxide, we developed nanomicelles composed of peroxalate ester oligomers and fluorescent dyes, called peroxalate nanomicelles (POMs), which could image hydrogen peroxide with high sensitivity and stability. The potential application of the POMs in photodynamic therapy (PDT) for cancer was also investigated. It was found that the PDT-drug-loaded POMs were sensitive to hydrogen peroxide, and the PDT drug could be stimulated by the chemiluminescence from the reaction between POMs and hydrogen peroxide, which carried on a self-therapy of the tumor without the additional laser light resource.
Collapse
|
39
|
Bugaj AM. Targeted photodynamic therapy--a promising strategy of tumor treatment. Photochem Photobiol Sci 2011; 10:1097-109. [PMID: 21547329 DOI: 10.1039/c0pp00147c] [Citation(s) in RCA: 192] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Targeted therapy is a new promising therapeutic strategy, created to overcome growing problems of contemporary medicine, such as drug toxicity and drug resistance. An emerging modality of this approach is targeted photodynamic therapy (TPDT) with the main aim of improving delivery of photosensitizer to cancer tissue and at the same time enhancing specificity and efficiency of PDT. Depending on the mechanism of targeting, we can divide the strategies of TPDT into "passive", "active" and "activatable", where in the latter case the photosensitizer is activated only in the target tissue. In this review, contemporary strategies of TPDT are described, including new innovative concepts, such as targeting assisted by peptides and aptamers, multifunctional nanoplatforms with navigation by magnetic field or "photodynamic molecular beacons" activatable by enzymes and nucleic acid. The imperative of introducing a new paradigm of PDT, focused on the concepts of heterogeneity and dynamic state of tumor, is also called for.
Collapse
|
40
|
Huang P, Li Z, Lin J, Yang D, Gao G, Xu C, Bao L, Zhang C, Wang K, Song H. Photosensitizer-conjugated magnetic nanoparticles for in vivo simultaneous magnetofluorescent imaging and targeting therapy. Biomaterials 2011; 32:3447-58. [DOI: 10.1016/j.biomaterials.2011.01.032] [Citation(s) in RCA: 215] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Accepted: 01/12/2011] [Indexed: 11/24/2022]
|
41
|
Chelebaeva E, Larionova J, Guari Y, Ferreira RAS, Carlos LD, Trifonov AA, Kalaivani T, Lascialfari A, Guérin C, Molvinger K, Datas L, Maynadier M, Gary-Bobo M, Garcia M. Nanoscale coordination polymers exhibiting luminescence properties and NMR relaxivity. NANOSCALE 2011; 3:1200-1210. [PMID: 21258695 DOI: 10.1039/c0nr00709a] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
This article presents the first example of ultra-small (3-4 nm) magneto-luminescent cyano-bridged coordination polymer nanoparticles Ln0.33(3+)Gdx3+/[Mo(CN)8]3- (Ln=Eu (x=0.34), Tb (x=0.35)) enwrapped by a natural biocompatible polymer chitosan. The aqueous colloidal solutions of these nanoparticles present a luminescence characteristic of the corresponding lanthanides (5D0→7F0-4 (Eu3+) or the 5D4→7F6-2 (Tb3+)) under UV excitation and a green luminescence of the chitosan shell under excitation in the visible region. Magnetic Resonance Imaging (MRI) efficiency, i.e. the nuclear relaxivity, measurements performed for Ln0.33(3+)Gdx3+/[Mo(CN)8]3- nanoparticles show r1p and r2p relaxivities slightly higher than or comparable to the ones of the commercial paramagnetic compounds Gd-DTPA® or Omniscan® indicating that our samples may potentially be considered as a positive contrast agent for MRI. The in vitro studies performed on these nanoparticles show that they maybe internalized into human cancer and normal cells and well detected by fluorescence at the single cell level. They present high stability even at low pH and lack of cytotoxicity both in human cancer and normal cells.
Collapse
Affiliation(s)
- Elena Chelebaeva
- Institut Charles Gerhardt Montpellier, UMR5253, Chimie Moléculaire et Organisation du Solide, Université Montpellier II, Place E. Bataillon, 34095, Montpellier cedex 5, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Gai S, Yang P, Ma P, Wang D, Li C, Li X, Niu N, Lin J. Fibrous-structured magnetic and mesoporous Fe3O4/silica microspheres: synthesis and intracellular doxorubicin delivery. ACTA ACUST UNITED AC 2011. [DOI: 10.1039/c1jm13357h] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
43
|
Multi-functional magnetic nanoparticles for magnetic resonance imaging and cancer therapy. Biomaterials 2010; 32:1890-905. [PMID: 21167595 DOI: 10.1016/j.biomaterials.2010.11.028] [Citation(s) in RCA: 260] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2010] [Accepted: 11/14/2010] [Indexed: 12/22/2022]
Abstract
We have developed a multi-layer approach for the synthesis of water-dispersible superparamagnetic iron oxide nanoparticles for hyperthermia, magnetic resonance imaging (MRI) and drug delivery applications. In this approach, iron oxide core nanoparticles were obtained by precipitation of iron salts in the presence of ammonia and provided β-cyclodextrin and pluronic polymer (F127) coatings. This formulation (F127250) was highly water dispersible which allowed encapsulation of the anti-cancer drug(s) in β-cyclodextrin and pluronic polymer for sustained drug release. The F127250 formulation has exhibited superior hyperthermia effects over time under alternating magnetic field compared to pure magnetic nanoparticles (MNP) and β-cyclodextrin coated nanoparticles (CD200). Additionally, the improved MRI characteristics were also observed for the F127250 formulation in agar gel and in cisplatin resistant ovarian cancer cells (A12780CP) compared to MNP and CD200 formulations. Furthermore, the drug-loaded formulation of F127250 exhibited many folds of imaging contrast properties. Due to the internalization capacity of the F127250 formulation, its curcumin-loaded formulation (F127250-CUR) exhibited almost equivalent inhibition effects on A2780CP (ovarian), MDA-MB-231 (breast), and PC-3 (prostate) cancer cells even though curcumin release was only 40%. The improved therapeutic effects were verified by examining molecular effects using Western blotting and transmission electron microscopic (TEM) studies. F127250-CUR also exhibited haemocompatibility, suggesting a nanochemo-therapeutic agent for cancer therapy.
Collapse
|
44
|
Abstract
Nanooncology, the application of nanobiotechnology to the management of cancer, is currently the most important chapter of nanomedicine. Nanobiotechnology has refined and extended the limits of molecular diagnosis of cancer, for example, through the use of gold nanoparticles and quantum dots. Nanobiotechnology has also improved the discovery of cancer biomarkers, one such example being the sensitive detection of multiple protein biomarkers by nanobiosensors. Magnetic nanoparticles can capture circulating tumor cells in the bloodstream followed by rapid photoacoustic detection. Nanoparticles enable targeted drug delivery in cancer that increases efficacy and decreases adverse effects through reducing the dosage of anticancer drugs administered. Nanoparticulate anticancer drugs can cross some of the biological barriers and achieve therapeutic concentrations in tumor and spare the surrounding normal tissues from toxic effects. Nanoparticle constructs facilitate the delivery of various forms of energy for noninvasive thermal destruction of surgically inaccessible malignant tumors. Nanoparticle-based optical imaging of tumors as well as contrast agents to enhance detection of tumors by magnetic resonance imaging can be combined with delivery of therapeutic agents for cancer. Monoclonal antibody nanoparticle complexes are under investigation for diagnosis as well as targeted delivery of cancer therapy. Nanoparticle-based chemotherapeutic agents are already on the market, and several are in clinical trials. Personalization of cancer therapies is based on a better understanding of the disease at the molecular level, which is facilitated by nanobiotechnology. Nanobiotechnology will facilitate the combination of diagnostics with therapeutics, which is an important feature of a personalized medicine approach to cancer.
Collapse
|
45
|
Yallapu MM, Jaggi M, Chauhan SC. Scope of nanotechnology in ovarian cancer therapeutics. J Ovarian Res 2010; 3:19. [PMID: 20691083 PMCID: PMC2924337 DOI: 10.1186/1757-2215-3-19] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Accepted: 08/06/2010] [Indexed: 12/02/2022] Open
Abstract
This review describes the use of polymer micelle nanotechnology based chemotherapies for ovarian cancer. While various chemotherapeutic agents can be utilized to improve the survival rate of patients with ovarian cancer, their distribution throughout the entire body results in high normal organ toxicity. Polymer micelle nanotechnology aims to improve the therapeutic efficacy of anti-cancer drugs while minimizing the side effects. Herein, different types of polymer micelle technology based nanotherapies such as PLGA, polymerosomes, acid cleavable, thermosensitive, pH sensitive, and cross-linked micelles are introduced and structural differences are explained. Additionally, production methods, stability, sustainability, drug incorporation and drug release profiles of various polymer micelle based nanoformulations are discussed. An important feature of polymer micelle nanotechnology is the small size (10-100 nm) of particles which improves circulation and enables superior accumulation of the therapeutic drugs at the tumor sites. This review provides a comprehensive evaluation of different types of polymer micelles and their implications in ovarian cancer therapeutics.
Collapse
Affiliation(s)
- Murali M Yallapu
- Cancer Biology Research Center, Sanford Research/USD, Sioux Falls, SD 57104, USA.
| | | | | |
Collapse
|
46
|
Camerin M, Magaraggia M, Soncin M, Jori G, Moreno M, Chambrier I, Cook MJ, Russell DA. The in vivo efficacy of phthalocyanine–nanoparticle conjugates for the photodynamic therapy of amelanotic melanoma. Eur J Cancer 2010; 46:1910-8. [DOI: 10.1016/j.ejca.2010.02.037] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Revised: 02/16/2010] [Accepted: 02/23/2010] [Indexed: 01/28/2023]
|
47
|
Shieh MJ, Peng CL, Chiang WL, Wang CH, Hsu CY, Wang SJJ, Lai PS. Reduced Skin Photosensitivity with meta-Tetra(hydroxyphenyl)chlorin-Loaded Micelles Based on a Poly(2-ethyl-2-oxazoline)-b-poly(d,l-lactide) Diblock Copolymer in Vivo. Mol Pharm 2010; 7:1244-53. [DOI: 10.1021/mp100060v] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Ming-Jium Shieh
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, No. 1, Section 1, Jen-Ai Road, Taipei 100, Taiwan, Department of Oncology, National Taiwan University Hospital and College of Medicine, No. 7, Chung-Shan South Road, Taipei 100, Taiwan, Material and Chemical Research Laboratories, Industrial Technology Research Institute, No. 195, Section 4, Chung-Hsing Road, Chu Tung Township, Hsin Chu 310, Taiwan, and Department of Chemistry, National Chung
| | - Cheng-Liang Peng
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, No. 1, Section 1, Jen-Ai Road, Taipei 100, Taiwan, Department of Oncology, National Taiwan University Hospital and College of Medicine, No. 7, Chung-Shan South Road, Taipei 100, Taiwan, Material and Chemical Research Laboratories, Industrial Technology Research Institute, No. 195, Section 4, Chung-Hsing Road, Chu Tung Township, Hsin Chu 310, Taiwan, and Department of Chemistry, National Chung
| | - Wei-Lun Chiang
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, No. 1, Section 1, Jen-Ai Road, Taipei 100, Taiwan, Department of Oncology, National Taiwan University Hospital and College of Medicine, No. 7, Chung-Shan South Road, Taipei 100, Taiwan, Material and Chemical Research Laboratories, Industrial Technology Research Institute, No. 195, Section 4, Chung-Hsing Road, Chu Tung Township, Hsin Chu 310, Taiwan, and Department of Chemistry, National Chung
| | - Chau-Hui Wang
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, No. 1, Section 1, Jen-Ai Road, Taipei 100, Taiwan, Department of Oncology, National Taiwan University Hospital and College of Medicine, No. 7, Chung-Shan South Road, Taipei 100, Taiwan, Material and Chemical Research Laboratories, Industrial Technology Research Institute, No. 195, Section 4, Chung-Hsing Road, Chu Tung Township, Hsin Chu 310, Taiwan, and Department of Chemistry, National Chung
| | - Chia-Yen Hsu
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, No. 1, Section 1, Jen-Ai Road, Taipei 100, Taiwan, Department of Oncology, National Taiwan University Hospital and College of Medicine, No. 7, Chung-Shan South Road, Taipei 100, Taiwan, Material and Chemical Research Laboratories, Industrial Technology Research Institute, No. 195, Section 4, Chung-Hsing Road, Chu Tung Township, Hsin Chu 310, Taiwan, and Department of Chemistry, National Chung
| | - Shian-Jy Jassy Wang
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, No. 1, Section 1, Jen-Ai Road, Taipei 100, Taiwan, Department of Oncology, National Taiwan University Hospital and College of Medicine, No. 7, Chung-Shan South Road, Taipei 100, Taiwan, Material and Chemical Research Laboratories, Industrial Technology Research Institute, No. 195, Section 4, Chung-Hsing Road, Chu Tung Township, Hsin Chu 310, Taiwan, and Department of Chemistry, National Chung
| | - Ping-Shan Lai
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, No. 1, Section 1, Jen-Ai Road, Taipei 100, Taiwan, Department of Oncology, National Taiwan University Hospital and College of Medicine, No. 7, Chung-Shan South Road, Taipei 100, Taiwan, Material and Chemical Research Laboratories, Industrial Technology Research Institute, No. 195, Section 4, Chung-Hsing Road, Chu Tung Township, Hsin Chu 310, Taiwan, and Department of Chemistry, National Chung
| |
Collapse
|
48
|
Abstract
Magnetic particles are finding increasing use in bioapplications, especially as carrier particles to transport biomaterials such as proteins, enzymes, nucleic acids and whole cells etc. Magnetic particles can be prepared with biofunctional coatings to target and label a specific biomaterial, and they enable controlled manipulation of a labeled biomaterial using an external magnetic field. In this review, we discuss the use of magnetic nanoparticles as transport agents in various bioapplications. We provide an overview of the properties of magnetic nanoparticles and their functionalization for bioapplications. We discuss the basic physics and equations governing the transport of magnetic particles at the micro- and nanoscale. We present two different transport models: a classical Newtonian model for predicting the motion of individual particles, and a drift-diffusion model for predicting the behavior of a concentration of nanoparticles that takes into account Brownian motion. We review specific magnetic biotransport applications including bioseparation, drug delivery and magnetofection. We demonstrate the transport models via application to these processes.
Collapse
|
49
|
Tokar VP, Losytskyy MY, Ohulchanskyy TY, Kryvorotenko DV, Kovalska VB, Balanda AO, Dmytruk IM, Prokopets VM, Yarmoluk SM, Yashchuk VM. Styryl Dyes as Two-Photon Excited Fluorescent Probes for DNA Detection and Two-Photon Laser Scanning Fluorescence Microscopy of Living Cells. J Fluoresc 2010; 20:865-72. [PMID: 20198411 DOI: 10.1007/s10895-010-0630-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2009] [Accepted: 02/08/2010] [Indexed: 11/25/2022]
Affiliation(s)
- Valentyna P Tokar
- Institute of Molecular Biology and Genetics of NASU, 150 Zabolotnogo Str., 03143, Kyiv, Ukraine
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Lee JE, Lee N, Kim H, Kim J, Choi SH, Kim JH, Kim T, Song IC, Park SP, Moon WK, Hyeon T. Uniform Mesoporous Dye-Doped Silica Nanoparticles Decorated with Multiple Magnetite Nanocrystals for Simultaneous Enhanced Magnetic Resonance Imaging, Fluorescence Imaging, and Drug Delivery. J Am Chem Soc 2009; 132:552-7. [DOI: 10.1021/ja905793q] [Citation(s) in RCA: 642] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Ji Eun Lee
- National Creative Research Initiative Center for Oxide Nanocrystalline Materials, and School of Chemical and Biological Engineering, Seoul National University, Seoul 151-744, Korea, and Diagnostic Radiology, Seoul National University Hospital, and Institute of Radiation Medicine, Medical Research Center, Seoul National University, 28, Yeongeon-dong, Jongno-gu, Seoul 110-744, Korea
| | - Nohyun Lee
- National Creative Research Initiative Center for Oxide Nanocrystalline Materials, and School of Chemical and Biological Engineering, Seoul National University, Seoul 151-744, Korea, and Diagnostic Radiology, Seoul National University Hospital, and Institute of Radiation Medicine, Medical Research Center, Seoul National University, 28, Yeongeon-dong, Jongno-gu, Seoul 110-744, Korea
| | - Hyoungsu Kim
- National Creative Research Initiative Center for Oxide Nanocrystalline Materials, and School of Chemical and Biological Engineering, Seoul National University, Seoul 151-744, Korea, and Diagnostic Radiology, Seoul National University Hospital, and Institute of Radiation Medicine, Medical Research Center, Seoul National University, 28, Yeongeon-dong, Jongno-gu, Seoul 110-744, Korea
| | - Jaeyun Kim
- National Creative Research Initiative Center for Oxide Nanocrystalline Materials, and School of Chemical and Biological Engineering, Seoul National University, Seoul 151-744, Korea, and Diagnostic Radiology, Seoul National University Hospital, and Institute of Radiation Medicine, Medical Research Center, Seoul National University, 28, Yeongeon-dong, Jongno-gu, Seoul 110-744, Korea
| | - Seung Hong Choi
- National Creative Research Initiative Center for Oxide Nanocrystalline Materials, and School of Chemical and Biological Engineering, Seoul National University, Seoul 151-744, Korea, and Diagnostic Radiology, Seoul National University Hospital, and Institute of Radiation Medicine, Medical Research Center, Seoul National University, 28, Yeongeon-dong, Jongno-gu, Seoul 110-744, Korea
| | - Jeong Hyun Kim
- National Creative Research Initiative Center for Oxide Nanocrystalline Materials, and School of Chemical and Biological Engineering, Seoul National University, Seoul 151-744, Korea, and Diagnostic Radiology, Seoul National University Hospital, and Institute of Radiation Medicine, Medical Research Center, Seoul National University, 28, Yeongeon-dong, Jongno-gu, Seoul 110-744, Korea
| | - Taeho Kim
- National Creative Research Initiative Center for Oxide Nanocrystalline Materials, and School of Chemical and Biological Engineering, Seoul National University, Seoul 151-744, Korea, and Diagnostic Radiology, Seoul National University Hospital, and Institute of Radiation Medicine, Medical Research Center, Seoul National University, 28, Yeongeon-dong, Jongno-gu, Seoul 110-744, Korea
| | - In Chan Song
- National Creative Research Initiative Center for Oxide Nanocrystalline Materials, and School of Chemical and Biological Engineering, Seoul National University, Seoul 151-744, Korea, and Diagnostic Radiology, Seoul National University Hospital, and Institute of Radiation Medicine, Medical Research Center, Seoul National University, 28, Yeongeon-dong, Jongno-gu, Seoul 110-744, Korea
| | - Seung Pyo Park
- National Creative Research Initiative Center for Oxide Nanocrystalline Materials, and School of Chemical and Biological Engineering, Seoul National University, Seoul 151-744, Korea, and Diagnostic Radiology, Seoul National University Hospital, and Institute of Radiation Medicine, Medical Research Center, Seoul National University, 28, Yeongeon-dong, Jongno-gu, Seoul 110-744, Korea
| | - Woo Kyung Moon
- National Creative Research Initiative Center for Oxide Nanocrystalline Materials, and School of Chemical and Biological Engineering, Seoul National University, Seoul 151-744, Korea, and Diagnostic Radiology, Seoul National University Hospital, and Institute of Radiation Medicine, Medical Research Center, Seoul National University, 28, Yeongeon-dong, Jongno-gu, Seoul 110-744, Korea
| | - Taeghwan Hyeon
- National Creative Research Initiative Center for Oxide Nanocrystalline Materials, and School of Chemical and Biological Engineering, Seoul National University, Seoul 151-744, Korea, and Diagnostic Radiology, Seoul National University Hospital, and Institute of Radiation Medicine, Medical Research Center, Seoul National University, 28, Yeongeon-dong, Jongno-gu, Seoul 110-744, Korea
| |
Collapse
|