1
|
Wang J, Zhang S, Li Y, Xu Q, Kritzer JA. Investigating the Cytosolic Delivery of Proteins by Lipid Nanoparticles Using the Chloroalkane Penetration Assay. Biochemistry 2024. [PMID: 38334719 DOI: 10.1021/acs.biochem.3c00614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Protein therapeutics are an expanding area for research and drug development, and lipid nanoparticles (LNPs) are the most prominent nonviral vehicles for protein delivery. The most common methods for assessing protein delivery by LNPs include assays that measure the total amount of protein taken up by cells and assays that measure the phenotypic changes associated with protein delivery. However, assays for total cellular uptake include large amounts of protein that are trapped in endosomes or are otherwise nonfunctional. Assays for functional delivery are important, but the readouts are indirect and amplified, limiting the quantitative interpretation. Here, we apply an assay for cytosolic delivery, the chloroalkane penetration assay (CAPA), to measure the cytosolic delivery of a (-30) green fluorescent protein (GFP) fused to Cre recombinase (Cre(-30)GFP) fusion protein by LNPs. We compare these data to the data from total cellular uptake and functional delivery assays to provide a richer analysis of uptake and endosomal escape for LNP-mediated protein delivery. We also use CAPA for a screen of a small library of lipidoids, identifying those with a promising ability to deliver Cre(-30)GFP to the cytosol of mammalian cells. With careful controls and optimized conditions, we expect that CAPA will be a useful tool for investigating the rate, efficiency, and mechanisms of LNP-mediated delivery of therapeutic proteins.
Collapse
Affiliation(s)
- Jing Wang
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Shiying Zhang
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Yamin Li
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Qiaobing Xu
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Joshua A Kritzer
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
2
|
Yang M, Haider MS, Forster S, Hu C, Luxenhofer R. Synthesis and Investigation of Chiral Poly(2,4-disubstituted-2-oxazoline)-Based Triblock Copolymers, Their Self-Assembly, and Formulation with Chiral and Achiral Drugs. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mengshi Yang
- Functional Polymer Materials, Chair for Chemical Technology of Material Synthesis, Institute for Functional Materials and Biofabrication, Department of Chemistry and Pharmacy, Julius-Maximilians-University Würzburg, Röntgenring 11, 97070 Würzburg, Germany
| | - Malik Salman Haider
- Functional Polymer Materials, Chair for Chemical Technology of Material Synthesis, Institute for Functional Materials and Biofabrication, Department of Chemistry and Pharmacy, Julius-Maximilians-University Würzburg, Röntgenring 11, 97070 Würzburg, Germany
| | - Stefan Forster
- Functional Polymer Materials, Chair for Chemical Technology of Material Synthesis, Institute for Functional Materials and Biofabrication, Department of Chemistry and Pharmacy, Julius-Maximilians-University Würzburg, Röntgenring 11, 97070 Würzburg, Germany
| | - Chen Hu
- Functional Polymer Materials, Chair for Chemical Technology of Material Synthesis, Institute for Functional Materials and Biofabrication, Department of Chemistry and Pharmacy, Julius-Maximilians-University Würzburg, Röntgenring 11, 97070 Würzburg, Germany
| | - Robert Luxenhofer
- Functional Polymer Materials, Chair for Chemical Technology of Material Synthesis, Institute for Functional Materials and Biofabrication, Department of Chemistry and Pharmacy, Julius-Maximilians-University Würzburg, Röntgenring 11, 97070 Würzburg, Germany
- Soft Matter Chemistry, Department of Chemistry and Helsinki Institute of Sustainability Science, Faculty of Science, University of Helsinki, P.O. Box 55, 00014 Helsinki, Finland
| |
Collapse
|
3
|
Feng S, Bandari S, Repka MA. Investigation of poly(2-ethyl-2-oxazoline) as a novel extended release polymer for hot-melt extrusion paired with fused deposition modeling 3D printing. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
4
|
Mallick AM, Tripathi A, Mishra S, Mukherjee A, Dutta C, Chatterjee A, Sinha Roy R. Emerging Approaches for Enabling RNAi Therapeutics. Chem Asian J 2022; 17:e202200451. [PMID: 35689534 DOI: 10.1002/asia.202200451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/04/2022] [Indexed: 11/07/2022]
Abstract
RNA interference (RNAi) is a primitive evolutionary mechanism developed to escape incorporation of foreign genetic material. siRNA has been instrumental in achieving the therapeutic potential of RNAi by theoretically silencing any gene of interest in a reversible and sequence-specific manner. Extrinsically administered siRNA generally needs a delivery vehicle to span across different physiological barriers and load into the RISC complex in the cytoplasm in its functional form to show its efficacy. This review discusses the designing principles and examples of different classes of delivery vehicles that have proved to be efficient in RNAi therapeutics. We also briefly discuss the role of RNAi therapeutics in genetic and rare diseases, epigenetic modifications, immunomodulation and combination modality to inch closer in creating a personalized therapy for metastatic cancer. At the end, we present, strategies and look into the opportunities to develop efficient delivery vehicles for RNAi which can be translated into clinics.
Collapse
Affiliation(s)
- Argha M Mallick
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India
| | - Archana Tripathi
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India
| | - Sukumar Mishra
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India
| | - Asmita Mukherjee
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India
| | - Chiranjit Dutta
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India.,Present address:Department of Biological Sciences, NUS Environmental Research Institute (NERI), National University of Singapore (NUS), Block S2 #05-01, 16 Science Drive 4, Singapore, 117558, Singapore
| | - Ananya Chatterjee
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India
| | - Rituparna Sinha Roy
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India.,Centre for Advanced Functional Materials, Indian Institute of Science Education and Research Kolkata, 741246, Mohanpur, India.,Centre for Climate and Environmental Studies, Indian Institute of Science Education and Research Kolkata, 741246, Mohanpur, India
| |
Collapse
|
5
|
Jana S, Hoogenboom R. Poly(2‐oxazoline)s: A comprehensive overview of polymer structures and their physical properties – An update. POLYM INT 2022. [DOI: 10.1002/pi.6426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Somdeb Jana
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry Ghent University, Krijgslaan 281‐S4 9000 Ghent Belgium
| | - Richard Hoogenboom
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry Ghent University, Krijgslaan 281‐S4 9000 Ghent Belgium
| |
Collapse
|
6
|
Beudert M, Hahn L, Horn AHC, Hauptstein N, Sticht H, Meinel L, Luxenhofer R, Gutmann M, Lühmann T. Merging bioresponsive release of insulin-like growth factor I with 3D printable thermogelling hydrogels. J Control Release 2022; 347:115-126. [PMID: 35489547 DOI: 10.1016/j.jconrel.2022.04.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/31/2022] [Accepted: 04/16/2022] [Indexed: 11/15/2022]
Abstract
3D printing of biomaterials enables spatial control of drug incorporation during automated manufacturing. This study links bioresponsive release of the anabolic biologic, insulin-like growth factor-I (IGF-I) in response to matrix metalloproteinases (MMP) to 3D printing using the block copolymer of poly(2-methyl-2-oxazoline) and thermoresponsive poly(2-n-propyl-2-oxazine) (POx-b-POzi). For that, a chemo-enzymatic synthesis was deployed, ligating IGF-I enzymatically to a protease sensitive linker (PSL), which was conjugated to a POx-b-POzi copolymer. The product was blended with the plain thermogelling POx-b-POzi hydrogel. MMP exposure of the resulting hydrogel triggered bioactive IGF-I release. The bioresponsive IGF-I containing POx-b-POzi hydrogel system was further detailed for shape control and localized incorporation of IGF-I via extrusion 3D printing for future applications in biomedicine and biofabrication.
Collapse
Affiliation(s)
- Matthias Beudert
- University of Würzburg, Institute for Pharmacy and Food Chemistry, 97074 Würzburg, Germany
| | - Lukas Hahn
- University of Würzburg, Institute for Pharmacy and Food Chemistry, 97074 Würzburg, Germany; Functional Polymer Materials, Chair for Advanced Materials Synthesis, Institute for Functional Materials and Biofabrication, Department of Chemistry and Pharmacy, Julius-Maximilians-University Würzburg, Röntgenring 11, 97070 Würzburg, Germany
| | - Anselm H C Horn
- Bioinformatics, Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Fahrstraße 17, 91054 Erlangen, Germany; Erlangen National High Performance Computing Center (NHR@FAU), Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstraße 1, 91058 Erlangen, Germany
| | - Niklas Hauptstein
- University of Würzburg, Institute for Pharmacy and Food Chemistry, 97074 Würzburg, Germany
| | - Heinrich Sticht
- Bioinformatics, Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Fahrstraße 17, 91054 Erlangen, Germany; Erlangen National High Performance Computing Center (NHR@FAU), Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstraße 1, 91058 Erlangen, Germany
| | - Lorenz Meinel
- University of Würzburg, Institute for Pharmacy and Food Chemistry, 97074 Würzburg, Germany; Helmholtz Institute for RNA-based Infection Research, Josef-Schneider-Straße 2, DE-97080 Würzburg, Germany
| | - Robert Luxenhofer
- Functional Polymer Materials, Chair for Advanced Materials Synthesis, Institute for Functional Materials and Biofabrication, Department of Chemistry and Pharmacy, Julius-Maximilians-University Würzburg, Röntgenring 11, 97070 Würzburg, Germany; Soft Matter Chemistry, Department of Chemistry and Helsinki Institute of Sustainability Science, Faculty of Science, University of Helsinki, P.O. Box 55, 00014 Helsinki, Finland
| | - Marcus Gutmann
- University of Würzburg, Institute for Pharmacy and Food Chemistry, 97074 Würzburg, Germany.
| | - Tessa Lühmann
- University of Würzburg, Institute for Pharmacy and Food Chemistry, 97074 Würzburg, Germany.
| |
Collapse
|
7
|
Conka R, Marien Y, Van Steenberge P, Hoogenboom R, D'hooge DR. A unified kinetic Monte Carlo approach to evaluate (a)symmetric block and gradient copolymers with linear and branched chains illustrated for poly(2-oxazoline)s. Polym Chem 2022. [DOI: 10.1039/d1py01391b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis of well-defined gradient, block-gradient and di-block copolymers with both asymmetric and symmetric compositions considering hydrophilic and hydrophobic monomer units is relevant for application fields, such as drug/gene delivery...
Collapse
|
8
|
Seo Y, Ghazanfari L, Master A, Vishwasrao HM, Wan X, Sokolsky-Papkov M, Kabanov AV. Poly(2-oxazoline)-magnetite NanoFerrogels: Magnetic field responsive theranostic platform for cancer drug delivery and imaging. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2022; 39:102459. [PMID: 34530163 PMCID: PMC8665074 DOI: 10.1016/j.nano.2021.102459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 07/21/2021] [Accepted: 08/03/2021] [Indexed: 01/03/2023]
Abstract
Combining diagnosis and treatment approaches in one entity is the goal of theranostics for cancer therapy. Magnetic nanoparticles have been extensively used as contrast agents for nuclear magnetic resonance imaging as well as drug carriers and remote actuation agents. Poly(2-oxazoline)-based polymeric micelles, which have been shown to efficiently solubilize hydrophobic drugs and drug combinations, have high loading capacity (above 40% w/w) for paclitaxel. In this study, we report the development of novel theranostic system, NanoFerrogels, which is designed to capitalize on the magnetic nanoparticle properties as imaging agents and the poly(2-oxazoline)-based micelles as drug loading compartment. We developed six formulations with magnetic nanoparticle content of 0.3%-12% (w/w), with the z-average sizes of 85-130 nm and ξ-potential of 2.7-28.3 mV. The release profiles of paclitaxel from NanoFerrogels were notably dependent on the degree of dopamine grafting on poly(2-oxazoline)-based micelles. Paclitaxel loaded NanoFerrogels showed efficacy against three breast cancer lines which was comparable to free paclitaxel. They also showed improved tumor and lymph node accumulation and signal reduction in vivo (2.7% in tumor; 8.5% in lymph node) compared to clinically approved imaging agent ferumoxytol (FERAHEME®) 24 h after administration. NanoFerrogels responded to super-low frequency alternating current magnetic field (50 kA m-1, 50 Hz) which accelerated drug release from paclitaxel-loaded NanoFerrogels or caused death of cells loaded with NanoFerrogels. These proof-of-concept experiments demonstrate that NanoFerrogels have potential as remotely actuated theranostic platform for cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Youngee Seo
- Center for Nanotechnology in Drug Delivery, Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Lida Ghazanfari
- Center for Nanotechnology in Drug Delivery, Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Alyssa Master
- Center for Nanotechnology in Drug Delivery, Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Hemant M Vishwasrao
- Center for Drug Delivery and Nanomedicine and Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, United States
| | - Xiaomeng Wan
- Center for Nanotechnology in Drug Delivery, Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Marina Sokolsky-Papkov
- Center for Nanotechnology in Drug Delivery, Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.
| | - Alexander V Kabanov
- Center for Nanotechnology in Drug Delivery, Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Laboratory of Chemical Design of Bionanomaterials, Faculty of Chemistry, M.V. Lomonosov Moscow State University, Moscow, Russia.
| |
Collapse
|
9
|
Hauptstein N, Pouyan P, Kehrein J, Dirauf M, Driessen MD, Raschig M, Licha K, Gottschaldt M, Schubert US, Haag R, Meinel L, Sotriffer C, Lühmann T. Molecular Insights into Site-Specific Interferon-α2a Bioconjugates Originated from PEG, LPG, and PEtOx. Biomacromolecules 2021; 22:4521-4534. [PMID: 34643378 DOI: 10.1021/acs.biomac.1c00775] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Conjugation of biologics with polymers modulates their pharmacokinetics, with polyethylene glycol (PEG) as the gold standard. We compared alternative polymers and two types of cyclooctyne linkers (BCN/DBCO) for bioconjugation of interferon-α2a (IFN-α2a) using 10 kDa polymers including linear mPEG, poly(2-ethyl-2-oxazoline) (PEtOx), and linear polyglycerol (LPG). IFN-α2a was azide functionalized via amber codon expansion and bioorthogonally conjugated to all cyclooctyne linked polymers. Polymer conjugation did not impact IFN-α2a's secondary structure and only marginally reduced IFN-α2a's bioactivity. In comparison to PEtOx, the LPG polymer attached via the less rigid cyclooctyne linker BCN was found to stabilize IFN-α2a against thermal stress. These findings were further detailed by molecular modeling studies which showed a modulation of protein flexibility upon PEtOx conjugation and a reduced amount of protein native contacts as compared to PEG and LPG originated bioconjugates. Polymer interactions with IFN-α2a were further assessed via a limited proteolysis (LIP) assay, which resulted in comparable proteolytic cleavage patterns suggesting weak interactions with the protein's surface. In conclusion, both PEtOx and LPG bioconjugates resulted in a similar biological outcome and may become promising PEG alternatives for bioconjugation.
Collapse
Affiliation(s)
- Niklas Hauptstein
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Paria Pouyan
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Josef Kehrein
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Michael Dirauf
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743 Jena, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Marc D Driessen
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Martina Raschig
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Kai Licha
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Michael Gottschaldt
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743 Jena, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Ulrich S Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743 Jena, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Rainer Haag
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Lorenz Meinel
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany.,Helmholtz Institute for RNA-Based Infection Research (HIRI), Helmholtz Center for Infection Research (HZI), 97080 Würzburg, Germany
| | - Christoph Sotriffer
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Tessa Lühmann
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
10
|
Zaghmi A, Drouin-Ouellet J, Brambilla D, Gauthier MA. Treating brain diseases using systemic parenterally-administered protein therapeutics: Dysfunction of the brain barriers and potential strategies. Biomaterials 2020; 269:120461. [PMID: 33218788 DOI: 10.1016/j.biomaterials.2020.120461] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/23/2020] [Accepted: 10/18/2020] [Indexed: 12/12/2022]
Abstract
The parenteral administration of protein therapeutics is increasingly gaining importance for the treatment of human diseases. However, the presence of practically impermeable blood-brain barriers greatly restricts access of such pharmaceutics to the brain. Treating brain disorders with proteins thus remains a great challenge, and the slow clinical translation of these therapeutics may be largely ascribed to the lack of appropriate brain delivery system. Exploring new approaches to deliver proteins to the brain by circumventing physiological barriers is thus of great interest. Moreover, parallel advances in the molecular neurosciences are important for better characterizing blood-brain interfaces, particularly under different pathological conditions (e.g., stroke, multiple sclerosis, Parkinson's disease, and Alzheimer's disease). This review presents the current state of knowledge of the structure and the function of the main physiological barriers of the brain, the mechanisms of transport across these interfaces, as well as alterations to these concomitant with brain disorders. Further, the different strategies to promote protein delivery into the brain are presented, including the use of molecular Trojan horses, the formulation of nanosystems conjugated/loaded with proteins, protein-engineering technologies, the conjugation of proteins to polymers, and the modulation of intercellular junctions. Additionally, therapeutic approaches for brain diseases that do not involve targeting to the brain are presented (i.e., sink and scavenging mechanisms).
Collapse
Affiliation(s)
- A Zaghmi
- Institut National de la Recherche Scientifique (INRS), EMT Research Center, Varennes, QC, J3X 1S2, Canada
| | - J Drouin-Ouellet
- Faculty of Pharmacy, Université de Montréal, CP 6128, succ. Centre-ville, Montréal, QC, H3C 3J7, Canada
| | - D Brambilla
- Faculty of Pharmacy, Université de Montréal, CP 6128, succ. Centre-ville, Montréal, QC, H3C 3J7, Canada
| | - M A Gauthier
- Institut National de la Recherche Scientifique (INRS), EMT Research Center, Varennes, QC, J3X 1S2, Canada.
| |
Collapse
|
11
|
Day RA, Estabrook DA, Wu C, Chapman JO, Togle AJ, Sletten EM. Systematic Study of Perfluorocarbon Nanoemulsions Stabilized by Polymer Amphiphiles. ACS APPLIED MATERIALS & INTERFACES 2020; 12:38887-38898. [PMID: 32706233 PMCID: PMC8341393 DOI: 10.1021/acsami.0c07206] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Perfluorocarbon (PFC) nanoemulsions, droplets of fluorous solvent stabilized by surfactants dispersed in water, are simple yet versatile nanomaterials. The orthogonal nature of the fluorous phase promotes the formation of nanoemulsions through a simple, self-assembly process while simultaneously encapsulating fluorous-tagged payloads for various applications. The size, stability, and surface chemistry of PFC nanoemulsions are controlled by the surfactant. Here, we systematically study the effect of the hydrophilic portion of polymer surfactants on PFC nanoemulsions. We find that the hydrophilic block length and identity, the overall polymer hydrophilic/lipophilic balance, and the polymer architecture are all important factors. The ability to modulate these parameters enables control over initial size, stability, payload retention, cellular internalization, and protein adsorption of PFC nanoemulsions. With the insight obtained from this systematic study of polymer amphiphiles stabilizing PFC nanoemulsions, design features required for the optimal material are obtained.
Collapse
Affiliation(s)
- Rachael A Day
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Daniel A Estabrook
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Carolyn Wu
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - John O Chapman
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Alyssa J Togle
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Ellen M Sletten
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
12
|
|
13
|
|
14
|
Englert C, Brendel JC, Majdanski TC, Yildirim T, Schubert S, Gottschaldt M, Windhab N, Schubert US. Pharmapolymers in the 21st century: Synthetic polymers in drug delivery applications. Prog Polym Sci 2018. [DOI: 10.1016/j.progpolymsci.2018.07.005] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
15
|
Ward S, Skinner M, Saha B, Emrick T. Polymer-Temozolomide Conjugates as Therapeutics for Treating Glioblastoma. Mol Pharm 2018; 15:5263-5276. [PMID: 30354145 PMCID: PMC6220362 DOI: 10.1021/acs.molpharmaceut.8b00766] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 09/05/2018] [Accepted: 09/17/2018] [Indexed: 01/20/2023]
Abstract
A series of polymer-drug conjugates based on 2-methacryloyloxyethyl phosphorylcholine (MPC) was prepared with the glioblastoma drug temozolomide (TMZ) as pendent groups. Random and block copolymers were synthesized by reversible addition-fragmentation chain-transfer (RAFT) polymerization using a TMZ-containing methacrylate monomer. The solution properties of the polyMPC-TMZ copolymers were investigated by dynamic light scattering and transmission electron microscopy, revealing well-defined nanostructures from the block copolymers. Conjugation of TMZ to polyMPC enhanced drug stability, with decomposition half-life values ranging from 2- to 19-times longer than that of free TMZ. The cytotoxicity of polyMPC-TMZ was evaluated in both chemosensitive (U87MG) and chemoresistant (T98G) glioblastoma cell lines. Furthermore, the polyMPC-TMZ platform was expanded considerably by the preparation of redox-sensitive polyMPC-TMZ copolymers utilizing disulfides as the polymer-to-drug linker.
Collapse
Affiliation(s)
| | | | - Banishree Saha
- Polymer Science and Engineering Department, University of Massachusetts, 120 Governors Drive, Amherst, Massachusetts 01003, United States
| | - Todd Emrick
- Polymer Science and Engineering Department, University of Massachusetts, 120 Governors Drive, Amherst, Massachusetts 01003, United States
| |
Collapse
|
16
|
Glassner M, Vergaelen M, Hoogenboom R. Poly(2-oxazoline)s: A comprehensive overview of polymer structures and their physical properties. POLYM INT 2017. [DOI: 10.1002/pi.5457] [Citation(s) in RCA: 151] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Mathias Glassner
- Supramolecular Chemistry Group, Department of Organic and Macromolecular Chemistry; Ghent University; Krijgslaan Belgium
| | - Maarten Vergaelen
- Supramolecular Chemistry Group, Department of Organic and Macromolecular Chemistry; Ghent University; Krijgslaan Belgium
| | - Richard Hoogenboom
- Supramolecular Chemistry Group, Department of Organic and Macromolecular Chemistry; Ghent University; Krijgslaan Belgium
| |
Collapse
|
17
|
Raveendran R, Mullen KM, Wellard RM, Sharma CP, Hoogenboom R, Dargaville TR. Poly(2-oxazoline) block copolymer nanoparticles for curcumin loading and delivery to cancer cells. Eur Polym J 2017. [DOI: 10.1016/j.eurpolymj.2017.02.043] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
18
|
Lorson T, Jaksch S, Lübtow MM, Jüngst T, Groll J, Lühmann T, Luxenhofer R. A Thermogelling Supramolecular Hydrogel with Sponge-Like Morphology as a Cytocompatible Bioink. Biomacromolecules 2017; 18:2161-2171. [DOI: 10.1021/acs.biomac.7b00481] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Thomas Lorson
- Functional
Polymer Materials, Chair for Advanced Materials Synthesis, Department
of Chemistry and Pharmacy and Bavarian Polymer Institute, Julius-Maximilians-Universität Würzburg, Röntgenring 11, 97070 Würzburg, Germany
| | - Sebastian Jaksch
- Jülich
Centre for Neutron Science JCNS, Forschungszentrum Jülich GmbH, Outstation at MLZ, Lichtenbergstraße 1, 85748 Garching, Germany
| | - Michael M. Lübtow
- Functional
Polymer Materials, Chair for Advanced Materials Synthesis, Department
of Chemistry and Pharmacy and Bavarian Polymer Institute, Julius-Maximilians-Universität Würzburg, Röntgenring 11, 97070 Würzburg, Germany
| | - Tomasz Jüngst
- Chair
for Functional Materials in Medicine and Dentistry and Bavarian Polymer
Institute, Julius-Maximilians-Universität Würzburg, Pleicherwall
2, 97070 Würzburg, Germany
| | - Jürgen Groll
- Chair
for Functional Materials in Medicine and Dentistry and Bavarian Polymer
Institute, Julius-Maximilians-Universität Würzburg, Pleicherwall
2, 97070 Würzburg, Germany
| | - Tessa Lühmann
- Institute
of Pharmacy and Food Chemistry, Department of Chemistry and Pharmacy, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Robert Luxenhofer
- Functional
Polymer Materials, Chair for Advanced Materials Synthesis, Department
of Chemistry and Pharmacy and Bavarian Polymer Institute, Julius-Maximilians-Universität Würzburg, Röntgenring 11, 97070 Würzburg, Germany
| |
Collapse
|
19
|
Vlassi E, Papagiannopoulos A, Pispas S. Amphiphilic poly(2-oxazoline) copolymers as self-assembled carriers for drug delivery applications. Eur Polym J 2017. [DOI: 10.1016/j.eurpolymj.2016.10.034] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
20
|
Osawa S, Ishii T, Takemoto H, Osada K, Kataoka K. A facile amino-functionalization of poly(2-oxazoline)s’ distal end through sequential azido end-capping and Staudinger reactions. Eur Polym J 2017. [DOI: 10.1016/j.eurpolymj.2016.11.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
21
|
Affiliation(s)
- Paul Wilson
- University of Warwick; Department of Chemistry; Coventry Library Rd CV4 7AL UK
| |
Collapse
|
22
|
Lühmann T, Schmidt M, Leiske MN, Spieler V, Majdanski TC, Grube M, Hartlieb M, Nischang I, Schubert S, Schubert US, Meinel L. Site-Specific POxylation of Interleukin-4. ACS Biomater Sci Eng 2017; 3:304-312. [DOI: 10.1021/acsbiomaterials.6b00578] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Tessa Lühmann
- Institute
of Pharmacy and Food Chemistry, University of Würzburg, Am
Hubland, DE-97074 Würzburg, Germany
| | - Marcel Schmidt
- Institute
of Pharmacy and Food Chemistry, University of Würzburg, Am
Hubland, DE-97074 Würzburg, Germany
| | - Meike N. Leiske
- Institute of Organic and Macromolecular Chemistry [IOMC], Friedrich Schiller University Jena, Humboldtstrasse 10, DE-07743 Jena, Germany
- Jena
Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, DE-07743 Jena, Germany
| | - Valerie Spieler
- Institute
of Pharmacy and Food Chemistry, University of Würzburg, Am
Hubland, DE-97074 Würzburg, Germany
| | - Tobias C. Majdanski
- Institute of Organic and Macromolecular Chemistry [IOMC], Friedrich Schiller University Jena, Humboldtstrasse 10, DE-07743 Jena, Germany
- Jena
Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, DE-07743 Jena, Germany
| | - Mandy Grube
- Institute of Organic and Macromolecular Chemistry [IOMC], Friedrich Schiller University Jena, Humboldtstrasse 10, DE-07743 Jena, Germany
- Jena
Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, DE-07743 Jena, Germany
| | - Matthias Hartlieb
- Institute of Organic and Macromolecular Chemistry [IOMC], Friedrich Schiller University Jena, Humboldtstrasse 10, DE-07743 Jena, Germany
- Jena
Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, DE-07743 Jena, Germany
| | - Ivo Nischang
- Institute of Organic and Macromolecular Chemistry [IOMC], Friedrich Schiller University Jena, Humboldtstrasse 10, DE-07743 Jena, Germany
- Jena
Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, DE-07743 Jena, Germany
| | - Stephanie Schubert
- Jena
Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, DE-07743 Jena, Germany
- Department
of Pharmaceutical Technology, Friedrich Schiller University Jena, Otto-Schott-Strasse 41, DE-07747 Jena, Germany
| | - Ulrich S. Schubert
- Institute of Organic and Macromolecular Chemistry [IOMC], Friedrich Schiller University Jena, Humboldtstrasse 10, DE-07743 Jena, Germany
- Jena
Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, DE-07743 Jena, Germany
| | - Lorenz Meinel
- Institute
of Pharmacy and Food Chemistry, University of Würzburg, Am
Hubland, DE-97074 Würzburg, Germany
| |
Collapse
|
23
|
|
24
|
Moraes J, Peltier R, Gody G, Blum M, Recalcati S, Klok HA, Perrier S. Influence of Block versus Random Monomer Distribution on the Cellular Uptake of Hydrophilic Copolymers. ACS Macro Lett 2016; 5:1416-1420. [PMID: 35651220 DOI: 10.1021/acsmacrolett.6b00652] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The use of polymers has revolutionized the field of drug delivery in the past two decades. Properties such as polymer size, charge, hydrophilicity, or branching have all been shown to play an important role in the cellular internalization of polymeric systems. In contrast, the fundamental impact of monomer distribution on the resulting biological properties of copolymers remains poorly studied and is always only investigated for biologically active self-assembling polymeric systems. Here, we explore the fundamental influence of monomer distribution on the cellular uptake of nonaggregating and biologically passive copolymers. Reversible addition-fragmentation chain-transfer (RAFT) polymerization was used to prepare precisely defined copolymers of three hydrophilic acrylamide monomers. The cellular internalization of block copolymers was compared with the uptake of a random copolymer where monomers are statistically distributed along the chain. The results demonstrate that monomer distribution in itself has a negligible impact on copolymer uptake.
Collapse
Affiliation(s)
- John Moraes
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- École Polytechnique Fédérale de Lausanne (EPFL), Institut des Matériaux et Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères, Bâtiment MXD, Station 12, CH-1015 Lausanne, Switzerland
| | - Raoul Peltier
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- École Polytechnique Fédérale de Lausanne (EPFL), Institut des Matériaux et Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères, Bâtiment MXD, Station 12, CH-1015 Lausanne, Switzerland
| | - Guillaume Gody
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- École Polytechnique Fédérale de Lausanne (EPFL), Institut des Matériaux et Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères, Bâtiment MXD, Station 12, CH-1015 Lausanne, Switzerland
| | - Muriel Blum
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- École Polytechnique Fédérale de Lausanne (EPFL), Institut des Matériaux et Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères, Bâtiment MXD, Station 12, CH-1015 Lausanne, Switzerland
| | - Sebastien Recalcati
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- École Polytechnique Fédérale de Lausanne (EPFL), Institut des Matériaux et Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères, Bâtiment MXD, Station 12, CH-1015 Lausanne, Switzerland
| | - Harm-Anton Klok
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- École Polytechnique Fédérale de Lausanne (EPFL), Institut des Matériaux et Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères, Bâtiment MXD, Station 12, CH-1015 Lausanne, Switzerland
| | - Sébastien Perrier
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- École Polytechnique Fédérale de Lausanne (EPFL), Institut des Matériaux et Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères, Bâtiment MXD, Station 12, CH-1015 Lausanne, Switzerland
| |
Collapse
|
25
|
Fang Y, Xue J, Ke L, Liu Y, Shi K. Polymeric lipid vesicles with pH-responsive turning on-off membrane for programed delivery of insulin in GI tract. Drug Deliv 2016; 23:3582-3593. [PMID: 27685178 DOI: 10.1080/10717544.2016.1212440] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
A kind of polymeric lipid vesicles (PLVs) with pH-responsive turning on-off membrane for programed delivery of insulin in gastrointestinal (GI) tract was developed, which was self-assembled from the grafted amphipathic polymer of N-tocopheryl-N'-succinyl-ɛ-poly-l-lysine (TP/SC-g-PLL). By controlling the grafting ratio of hydrophobic alkane and ionizable carboxyl branches, the permeability of membrane was adjustable and thus allowing insulin release in a GI-pH dependent manner. The effects of grafting degree of substitution (DS) on the pH-responsive behavior of the formed vesicles were confirmed by critical aggregation concentration determination, morphology and size characterization. Their transepithelial permeability across the GI tract was proved by both confocal visualization in vitro model of Caco-2 cellular monolayer and in vivo hypoglycemic study in diabetic rats. Accordingly, the work described here indicated that the self-assembled PLVs could be a promising candidate for improving the GI delivery of hydrophilic biomacromolecule agents.
Collapse
Affiliation(s)
- Yan Fang
- a Department of Pharmaceutics , School of Pharmaceutical Science, Shenyang Pharmaceutical University , Shenyang , China
| | - Jianxiu Xue
- a Department of Pharmaceutics , School of Pharmaceutical Science, Shenyang Pharmaceutical University , Shenyang , China
| | - Liyuan Ke
- a Department of Pharmaceutics , School of Pharmaceutical Science, Shenyang Pharmaceutical University , Shenyang , China
| | - Yang Liu
- a Department of Pharmaceutics , School of Pharmaceutical Science, Shenyang Pharmaceutical University , Shenyang , China
| | - Kai Shi
- a Department of Pharmaceutics , School of Pharmaceutical Science, Shenyang Pharmaceutical University , Shenyang , China
| |
Collapse
|
26
|
Palao-Suay R, Gómez-Mascaraque L, Aguilar M, Vázquez-Lasa B, Román JS. Self-assembling polymer systems for advanced treatment of cancer and inflammation. Prog Polym Sci 2016. [DOI: 10.1016/j.progpolymsci.2015.07.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
27
|
Jung S, Kwon I. Expansion of bioorthogonal chemistries towards site-specific polymer–protein conjugation. Polym Chem 2016. [DOI: 10.1039/c6py00856a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Bioorthogonal chemistries have been used to achieve polymer-protein conjugation with the retained critical properties.
Collapse
Affiliation(s)
- Secheon Jung
- School of Materials Science and Engineering
- Gwangju Institute of Science and Technology (GIST)
- Gwangju 61005
- Republic of Korea
| | - Inchan Kwon
- School of Materials Science and Engineering
- Gwangju Institute of Science and Technology (GIST)
- Gwangju 61005
- Republic of Korea
- Department of Chemical Engineering
| |
Collapse
|
28
|
Qi Y, Chilkoti A. Protein-polymer conjugation-moving beyond PEGylation. Curr Opin Chem Biol 2015; 28:181-93. [PMID: 26356631 DOI: 10.1016/j.cbpa.2015.08.009] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 08/05/2015] [Accepted: 08/18/2015] [Indexed: 01/09/2023]
Abstract
In this review, we summarize-from a materials science perspective-the current state of the field of polymer conjugates of peptide and protein drugs, with a focus on polymers that have been developed as alternatives to the current gold standard, poly(ethylene glycol) (PEG). PEGylation, or the covalent conjugation of PEG to biological therapeutics to improve their therapeutic efficacy by increasing their circulation half-lives and stability, has been the gold standard in the pharmaceutical industry for several decades. After years of research and development, the limitations of PEG, specifically its non-degradability and immunogenicity have become increasingly apparent. While PEG is still currently the best polymer available with the longest clinical track record, extensive research is underway to develop alternative materials in an effort to address these limitations of PEG. Many of these alternative materials have shown promise, though most of them are still in an early stage of development and their in vivo distribution, mechanism of degradation, route of elimination and immunogenicity have not been investigated to a similar extent as for PEG. Thus, further in-depth in vivo testing is essential to validate whether any of the alternative materials discussed in this review qualify as a replacement for PEG.
Collapse
Affiliation(s)
- Yizhi Qi
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA; Center for Biologically Inspired Materials and Materials Systems, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
29
|
He Z, Miao L, Jordan R, S-Manickam D, Luxenhofer R, Kabanov AV. A Low Protein Binding Cationic Poly(2-oxazoline) as Non-Viral Vector. Macromol Biosci 2015; 15:1004-20. [PMID: 25846127 PMCID: PMC4893346 DOI: 10.1002/mabi.201500021] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Revised: 03/12/2015] [Indexed: 01/01/2023]
Abstract
Developing safe and efficient non-viral gene delivery systems remains a major challenge. We present a new cationic poly(2-oxazoline) (CPOx) block copolymer for gene therapy that was synthesized by sequential polymerization of non-ionic 2-methyl-2-oxazoline and a new 2-oxazoline monomer, 2-(N-methyl, N-Boc-amino)-methyl-2-oxazoline, followed by deprotection of the pendant secondary amine groups. Upon mixing with plasmid DNA (pDNA), CPOx forms small (diameter ≈80 nm) and narrowly dispersed polyplexes (PDI <0.2), which are stable upon dilution in saline and against thermal challenge. These polyplexes exhibited low plasma protein binding and very low cytotoxicity in vitro compared to the polyplexes of pDNA and poly(ethylene glycol)-b-poly(L-lysine) (PEG-b-PLL). CPOx/pDNA polyplexes at N/P = 5 bound considerably less plasma protein compared to polyplexes of PEG-b-PLL at the same N/P ratio. This is a unique aspect of the developed polyplexes emphasizing their potential for systemic delivery in vivo. The transfection efficiency of the polyplexes in B16 murine melanoma cells was low after 4 h, but increased significantly for 10 h exposure time, indicative of slow internalization of polyplexes. Addition of Pluronic P85 boosted the transfection using CPOx/pDNA polyplexes considerably. The low protein binding of CPOx/pDNA polyplexes is particularly interesting for the future development of targeted gene delivery.
Collapse
Affiliation(s)
- Zhijian He
- Center for Nanotechnology in Drug Delivery, Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Lei Miao
- Center for Nanotechnology in Drug Delivery, Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Rainer Jordan
- Department Chemie, Technische Universität Dresden, Mommsenstr. 4, 01069 Dresden, Germany
| | - Devika S-Manickam
- Center for Nanotechnology in Drug Delivery, Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Robert Luxenhofer
- Functional Polymer Materials, Chair for Chemical Technology of Materials Synthesis, Universität Würzburg, 97070 Würzburg, Germany.
| | - Alexander V Kabanov
- Laboratory for Chemical Design of Bionanomaterials, Faculty of Chemistry, M.V. Lomonosov Moscow State University, Moscow 119899, Russia.
| |
Collapse
|
30
|
Seo Y, Schulz A, Han Y, He Z, Bludau H, Wan X, Tong J, Bronich TK, Sokolsky M, Luxenhofer R, Jordan R, Kabanov AV. Poly(2-oxazoline) block copolymer based formulations of taxanes: effect of copolymer and drug structure, concentration, and environmental factors. POLYM ADVAN TECHNOL 2015. [DOI: 10.1002/pat.3556] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Youngee Seo
- Center for Nanotechnology in Drug Delivery, Division of Molecular Pharmaceutics, Eshelman School of Pharmacy; University of North Carolina at Chapel Hill; Chapel Hill NC 27599-7362 USA
| | - Anita Schulz
- Department Chemie; Technische Universität Dresden; Zellescher Weg 19 01069 Dresden Germany
| | - Yingchao Han
- Center for Drug Delivery and Nanomedicine and Department of Pharmaceutical Sciences, College of Pharmacy; University of Nebraska Medical Center; Omaha NE 68198-5830 USA
| | - Zhijian He
- Center for Nanotechnology in Drug Delivery, Division of Molecular Pharmaceutics, Eshelman School of Pharmacy; University of North Carolina at Chapel Hill; Chapel Hill NC 27599-7362 USA
| | - Herdis Bludau
- Department Chemie; Technische Universität Dresden; Zellescher Weg 19 01069 Dresden Germany
| | - Xiaomeng Wan
- Center for Nanotechnology in Drug Delivery, Division of Molecular Pharmaceutics, Eshelman School of Pharmacy; University of North Carolina at Chapel Hill; Chapel Hill NC 27599-7362 USA
| | - Jing Tong
- Center for Drug Delivery and Nanomedicine and Department of Pharmaceutical Sciences, College of Pharmacy; University of Nebraska Medical Center; Omaha NE 68198-5830 USA
| | - Tatiana K. Bronich
- Center for Drug Delivery and Nanomedicine and Department of Pharmaceutical Sciences, College of Pharmacy; University of Nebraska Medical Center; Omaha NE 68198-5830 USA
| | - Marina Sokolsky
- Center for Nanotechnology in Drug Delivery, Division of Molecular Pharmaceutics, Eshelman School of Pharmacy; University of North Carolina at Chapel Hill; Chapel Hill NC 27599-7362 USA
| | - Robert Luxenhofer
- Functional Polymer Materials, Chair for Chemical Technology of Materials Synthesis, Department Chemistry and Pharmacy; Julius-Maximilians-Universität Würzburg; Röntgenring 11 97070 Würzburg Germany
| | - Rainer Jordan
- Department Chemie; Technische Universität Dresden; Zellescher Weg 19 01069 Dresden Germany
| | - Alexander V. Kabanov
- Center for Nanotechnology in Drug Delivery, Division of Molecular Pharmaceutics, Eshelman School of Pharmacy; University of North Carolina at Chapel Hill; Chapel Hill NC 27599-7362 USA
- Laboratory of Chemical Design of Bionanomaterials, Faculty of Chemistry; M.V. Lomonosov Moscow State University; Moscow 119992 Russia
| |
Collapse
|
31
|
Schmitz M, Kuhlmann M, Reimann O, Hackenberger CR, Groll J. Side-chain cysteine-functionalized poly(2-oxazoline)s for multiple peptide conjugation by native chemical ligation. Biomacromolecules 2015; 16:1088-94. [PMID: 25728550 PMCID: PMC4428813 DOI: 10.1021/bm501697t] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 02/27/2015] [Indexed: 12/19/2022]
Abstract
We prepared statistical copolymers composed of 2-methyl-2-oxazoline (MeOx) in combination with 2-butenyl-2-oxazoline (BuOx) or 2-decenyl-2-oxazoline (DecOx) as a basis for polymer analogous introduction of 1,2-aminothiol moieties at the side chain. MeOx provides hydrophilicity as well as cyto- and hemocompatibility, whereas the alkene groups of BuOx and DecOx serve for functionalization with a thiofunctional thiazolidine by UV-mediated thiol-ene reaction. After deprotection the cysteine content in functionalized poly(2-oxazoline) (POx) is quantified by NMR and a modified trinitrobenzenesulfonic acid assay. The luminescent cell viability assay shows no negative influence of cysteine-functionalized POx (cys-POx) concerning cell viability and cell number. cys-POx was used for multiple chemically orthogonal couplings with thioester-terminated peptides through native chemical ligation (NCL), which was performed and confirmed by NMR and MALDI-ToF measurements.
Collapse
Affiliation(s)
- Michael Schmitz
- Department
of Functional Materials in Medicine and Dentistry, University of Würzburg, Pleicherwall 2, 97070 Würzburg, Germany
| | - Matthias Kuhlmann
- Department
of Functional Materials in Medicine and Dentistry, University of Würzburg, Pleicherwall 2, 97070 Würzburg, Germany
| | - Oliver Reimann
- Department
Chemical Biology II, Leibniz-Institut für
Molekulare Pharmakologie (FMP), Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Christian
P. R. Hackenberger
- Department
Chemical Biology II, Leibniz-Institut für
Molekulare Pharmakologie (FMP), Robert-Rössle-Straße 10, 13125 Berlin, Germany
- Humboldt
Universität zu Berlin, Department
Chemie, Brook-Taylor-Straße
2, 12489 Berlin, Germany
| | - Jürgen Groll
- Department
of Functional Materials in Medicine and Dentistry, University of Würzburg, Pleicherwall 2, 97070 Würzburg, Germany
| |
Collapse
|
32
|
Muro S. Strategies for delivery of therapeutics into the central nervous system for treatment of lysosomal storage disorders. Drug Deliv Transl Res 2015; 2:169-86. [PMID: 24688886 DOI: 10.1007/s13346-012-0072-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Lysosomal storage disorders (LSDs) are a group of about fifty life-threatening conditions caused by genetic defects affecting lysosomal components. The underscoring molecular deficiency leads to widespread cellular dysfunction through most tissues in the body, including peripheral organs and the central nervous system (CNS). Efforts during the last few decades have rendered a remarkable advance regarding our knowledge, medical awareness, and early detection of these genetic defects, as well as development of several treatment modalities. Clinical and experimental strategies encompassing enzyme replacement, gene and cell therapies, substrate reduction, and chemical chaperones are showing considerable potential in attenuating the peripheral pathology. However, a major drawback has been encountered regarding the suboptimal impact of these approaches on the CNS pathology. Particular anatomical and biochemical constraints of this tissue pose a major obstacle to the delivery of therapeutics into the CNS. Approaches to overcome these obstacles include modalities of local administration, strategies to enhance the blood-CNS permeability, intranasal delivery, use of exosomes, and those exploiting targeting of transporters and transcytosis pathways in the endothelial lining. The later two approaches are being pursued at the time by coupling therapeutic agents to affinity moieties and drug delivery systems capable of targeting these natural transport routes. This approach is particularly promising, as using paths naturally active at this interface may render safe and effective delivery of LSD therapies into the CNS.
Collapse
Affiliation(s)
- Silvia Muro
- Institute for Bioscience and Biotechnology Research University of Maryland, College Park, MD, 20742, USA ; Fischell Dept. of Bioengineering, University of Maryland, College Park, MD, 20742, USA
| |
Collapse
|
33
|
Oleszko N, Utrata-Wesołek A, Wałach W, Libera M, Hercog A, Szeluga U, Domański M, Trzebicka B, Dworak A. Crystallization of Poly(2-isopropyl-2-oxazoline) in Organic Solutions. Macromolecules 2015. [DOI: 10.1021/ma502586x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Natalia Oleszko
- Centre
of Polymer and Carbon Materials, Polish Academy of Sciences, ul. M. Curie - Skłodowskiej 34, 41-819 Zabrze, Poland
| | - Alicja Utrata-Wesołek
- Centre
of Polymer and Carbon Materials, Polish Academy of Sciences, ul. M. Curie - Skłodowskiej 34, 41-819 Zabrze, Poland
| | - Wojciech Wałach
- Centre
of Polymer and Carbon Materials, Polish Academy of Sciences, ul. M. Curie - Skłodowskiej 34, 41-819 Zabrze, Poland
| | - Marcin Libera
- Centre
of Polymer and Carbon Materials, Polish Academy of Sciences, ul. M. Curie - Skłodowskiej 34, 41-819 Zabrze, Poland
| | - Anna Hercog
- Centre
of Polymer and Carbon Materials, Polish Academy of Sciences, ul. M. Curie - Skłodowskiej 34, 41-819 Zabrze, Poland
| | - Urszula Szeluga
- Centre
of Polymer and Carbon Materials, Polish Academy of Sciences, ul. M. Curie - Skłodowskiej 34, 41-819 Zabrze, Poland
| | - Marian Domański
- Centre
of Polymer and Carbon Materials, Polish Academy of Sciences, ul. M. Curie - Skłodowskiej 34, 41-819 Zabrze, Poland
| | - Barbara Trzebicka
- Centre
of Polymer and Carbon Materials, Polish Academy of Sciences, ul. M. Curie - Skłodowskiej 34, 41-819 Zabrze, Poland
| | - Andrzej Dworak
- Centre
of Polymer and Carbon Materials, Polish Academy of Sciences, ul. M. Curie - Skłodowskiej 34, 41-819 Zabrze, Poland
| |
Collapse
|
34
|
|
35
|
KC RB, Kucharski C, Uludağ H. Additive nanocomplexes of cationic lipopolymers for improved non-viral gene delivery to mesenchymal stem cells. J Mater Chem B 2015; 3:3972-3982. [DOI: 10.1039/c4tb02101k] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Additive polyplexes composed of cationic lipopolymers and hyaluronic acid–pDNA combination for implementing gene delivery to mesenchymal stem cells.
Collapse
Affiliation(s)
- Remant Bahadur KC
- Department of Chemical & Material Engineering
- Faculty of Engineering
- University of Alberta
- Edmonton
- Canada
| | - Cezary Kucharski
- Department of Chemical & Material Engineering
- Faculty of Engineering
- University of Alberta
- Edmonton
- Canada
| | - Hasan Uludağ
- Department of Chemical & Material Engineering
- Faculty of Engineering
- University of Alberta
- Edmonton
- Canada
| |
Collapse
|
36
|
Legros C, Wirotius AL, De Pauw-Gillet MC, Tam KC, Taton D, Lecommandoux S. Poly(2-oxazoline)-based nanogels as biocompatible pseudopolypeptide nanoparticles. Biomacromolecules 2014; 16:183-91. [PMID: 25409266 DOI: 10.1021/bm501393q] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Hydrophilic nanogels based on partially hydrolyzed poly(2-ethyl-2-oxazoline) were synthesized in dilute aqueous media in the presence of 1,6-hexanediol diglycidyl ether as a cross-linker. Nanogel formation was monitored by DLS and HSQC NMR spectroscopy, and the final nano-objects were characterized by DLS, TEM, AFM, and NanoSight analyses. Nanogels with a hydrodynamic radius of 78 nm exhibiting a slight positive surface charge were obtained. MTS assays (cell metabolic activity test) evidenced that nanogels were nontoxic in the investigated concentration range (i.e., 0.1 to 400 μg/mL) and that no specific interaction with bovine serum albumin was observed.
Collapse
Affiliation(s)
- Camille Legros
- Université de Bordeaux , UMR5629, ENSCPB, 16 Avenue Pey Berland, 33607 Pessac Cedex, France
| | | | | | | | | | | |
Collapse
|
37
|
Jiménez-Sánchez G, Pavot V, Chane-Haong C, Handké N, Terrat C, Gigmes D, Trimaille T, Verrier B. Preparation and In Vitro Evaluation of Imiquimod Loaded Polylactide-based Micelles as Potential Vaccine Adjuvants. Pharm Res 2014; 32:311-20. [DOI: 10.1007/s11095-014-1465-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 07/24/2014] [Indexed: 10/24/2022]
|
38
|
Mitragotri S, Burke PA, Langer R. Overcoming the challenges in administering biopharmaceuticals: formulation and delivery strategies. Nat Rev Drug Discov 2014; 13:655-72. [PMID: 25103255 PMCID: PMC4455970 DOI: 10.1038/nrd4363] [Citation(s) in RCA: 1091] [Impact Index Per Article: 99.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The formulation and delivery of biopharmaceutical drugs, such as monoclonal antibodies and recombinant proteins, poses substantial challenges owing to their large size and susceptibility to degradation. In this Review we highlight recent advances in formulation and delivery strategies--such as the use of microsphere-based controlled-release technologies, protein modification methods that make use of polyethylene glycol and other polymers, and genetic manipulation of biopharmaceutical drugs--and discuss their advantages and limitations. We also highlight current and emerging delivery routes that provide an alternative to injection, including transdermal, oral and pulmonary delivery routes. In addition, the potential of targeted and intracellular protein delivery is discussed.
Collapse
Affiliation(s)
- Samir Mitragotri
- Department of Chemical Engineering, Center for Bioengineering, University of California, Santa Barbara, California 92106, USA
| | - Paul A Burke
- Burke Bioventures LLC, 277 Broadway, Cambridge, Massachusetts 02139, USA
| | - Robert Langer
- Department of Chemical Engineering, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
39
|
Yi X, Kabanov AV. Brain delivery of proteins via their fatty acid and block copolymer modifications. J Drug Target 2014; 21:940-55. [PMID: 24160902 DOI: 10.3109/1061186x.2013.847098] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
It is well known that hydrophobic small molecules penetrate cell membranes better than hydrophilic molecules. Amphiphilic molecules that dissolve both in lipid and aqueous phases are best suited for membrane transport. Transport of biomacromolecules across physiological barriers, e.g. the blood-brain barrier, is greatly complicated by the unique structure and function of such barriers. Two decades ago we adopted a simple philosophy that to increase protein delivery to the brain one needs to modify this protein with hydrophobic moieties. With this general idea we began modifying proteins (antibodies, enzymes, hormones, etc.) with either hydrophobic fatty acid residues or amphiphilic block copolymer moieties, such as poy(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (pluronics or poloxamers) and more recently, poly(2-oxasolines). This simple approach has resulted in impressive successes in CNS drug delivery. We present a retrospective overview of these works initiated in the Soviet Union in 1980s, and then continued in the United States and other countries. Notably some of the early findings were later corroborated by brain pharmacokinetic data. Industrial development of several drug candidates employing these strategies has followed. Overall modification by hydrophobic fatty acids residues or amphiphilic block copolymers represents a promising and relatively safe strategy to deliver proteins to the brain.
Collapse
Affiliation(s)
- Xiang Yi
- Division of Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill , Chapel Hill, NC , USA and
| | | |
Collapse
|
40
|
Agile delivery of protein therapeutics to CNS. J Control Release 2014; 190:637-63. [PMID: 24956489 DOI: 10.1016/j.jconrel.2014.06.017] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 06/10/2014] [Accepted: 06/13/2014] [Indexed: 12/11/2022]
Abstract
A variety of therapeutic proteins have shown potential to treat central nervous system (CNS) disorders. Challenge to deliver these protein molecules to the brain is well known. Proteins administered through parenteral routes are often excluded from the brain because of their poor bioavailability and the existence of the blood-brain barrier (BBB). Barriers also exist to proteins administered through non-parenteral routes that bypass the BBB. Several strategies have shown promise in delivering proteins to the brain. This review, first, describes the physiology and pathology of the BBB that underscore the rationale and needs of each strategy to be applied. Second, major classes of protein therapeutics along with some key factors that affect their delivery outcomes are presented. Third, different routes of protein administration (parenteral, central intracerebroventricular and intraparenchymal, intranasal and intrathecal) are discussed along with key barriers to CNS delivery associated with each route. Finally, current delivery strategies involving chemical modification of proteins and use of particle-based carriers are overviewed using examples from literature and our own work. Whereas most of these studies are in the early stage, some provide proof of mechanism of increased protein delivery to the brain in relevant models of CNS diseases, while in few cases proof of concept had been attained in clinical studies. This review will be useful to broad audience of students, academicians and industry professionals who consider critical issues of protein delivery to the brain and aim developing and studying effective brain delivery systems for protein therapeutics.
Collapse
|
41
|
de la Rosa VR. Poly(2-oxazoline)s as materials for biomedical applications. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2014; 25:1211-1225. [PMID: 23975334 DOI: 10.1007/s10856-013-5034-y] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 08/14/2013] [Indexed: 06/02/2023]
Abstract
The conjunction of polymers and medicine enables the development of new materials that display novel features, opening new ways to administrate drugs, design implants and biosensors, to deliver pharmaceuticals impacting cancer treatment, regenerative medicine or gene therapy. Poly(2-oxazoline)s (POx) constitute a polymer class with exceptional properties for their use in a plethora of different biomedical applications and are proposed as a versatile platform for the development of new medicine. Herein, a global vision of POx as a platform for novel biomaterials is offered, by highlighting the recent advances and breakthroughs in this fascinating field.
Collapse
Affiliation(s)
- Victor R de la Rosa
- Supramolecular Chemistry Group, Department of Organic Chemistry, Ghent University, Krijgslaan 281-S4, 9000, Ghent, Belgium,
| |
Collapse
|
42
|
|
43
|
Gawlitza K, Georgieva R, Tavraz N, Keller J, von Klitzing R. Immobilization of water-soluble HRP within poly-N-isopropylacrylamide microgel particles for use in organic media. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:16002-16009. [PMID: 24320795 DOI: 10.1021/la403598s] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
In the present work, the immobilization of enzymes within poly-N-isopropylacrylamide (p-NIPAM) microgels using the method of solvent exchange is applied to the enzyme horseradish peroxidase (HRP). When the solvent is changed from water to isopropanol, HRP is embedded within the polymer structure. After the determination of the immobilized amount of enzyme, an enhanced specific activity of the biocatalyst in isopropanol can be observed. Karl Fischer titration is used to determine the amount of water within the microgel particles before and after solvent exchange, leading to the conclusion that an "aqueous cage" remains within the polymer structure. This represents the driving force for the immobilization due to the high affinity of HRP for water. Beside, confocal laser scanning microscopy (CLSM) images show that HRP is located within the microgel network after immobilization. This gives the best conditions for HRP to be protected against chemical and mechanical stress. We were able to transfer a water-soluble enzyme to an organic phase by reaching a high catalytic activity. Hence, the method of solvent exchange displays a general method for immobilizing enzymes within p-NIPAM microgels for use in organic solvents. With this strategy, enzymes that are not soluble in organic solvents such as HRP can be used in such polar organic solvents.
Collapse
Affiliation(s)
- Kornelia Gawlitza
- Stranski-Laboratory for Physical and Theoretical Chemistry and ‡Institute of Chemistry, Technische Universität Berlin , 10623 Berlin, Germany
| | | | | | | | | |
Collapse
|
44
|
Multifunctional nanoparticles for targeted delivery of immune activating and cancer therapeutic agents. J Control Release 2013; 172:1020-34. [PMID: 24140748 DOI: 10.1016/j.jconrel.2013.10.012] [Citation(s) in RCA: 169] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 10/08/2013] [Accepted: 10/09/2013] [Indexed: 01/20/2023]
Abstract
Nanoparticles (NPs) have been extensively investigated for applications in both experimental and clinical settings to improve delivery efficiency of therapeutic and diagnostic agents. Most recently, novel multifunctional nanoparticles have attracted much attention because of their ability to carry diverse functionalities to achieve effective synergistic therapeutic treatments. Multifunctional NPs have been designed to co-deliver multiple components, target the delivery of drugs by surface functionalization, and realize therapy and diagnosis simultaneously. In this review, various materials of diverse chemistries for fabricating multifunctional NPs with distinctive architectures are discussed and compared. Recent progress involving multifunctional NPs for immune activation, anticancer drug delivery, and synergistic theranostics is the focus of this review. Overall, this comprehensive review demonstrates that multifunctional NPs have distinctive properties that make them highly suitable for targeted therapeutic delivery in these areas.
Collapse
|
45
|
|
46
|
Krumm C, Konieczny S, Dropalla GJ, Milbradt M, Tiller JC. Amphiphilic Polymer Conetworks Based on End Group Cross-Linked Poly(2-oxazoline) Homo- and Triblock Copolymers. Macromolecules 2013. [DOI: 10.1021/ma4004665] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Christian Krumm
- Biomaterials and Polymer Science,
Department of Biochemical
and Chemical Engineering, TU Dortmund,
Emil-Figge-Straße 66, 44227 Dortmund, Germany
| | - Stefan Konieczny
- Biomaterials and Polymer Science,
Department of Biochemical
and Chemical Engineering, TU Dortmund,
Emil-Figge-Straße 66, 44227 Dortmund, Germany
| | - Georg J. Dropalla
- Biomaterials and Polymer Science,
Department of Biochemical
and Chemical Engineering, TU Dortmund,
Emil-Figge-Straße 66, 44227 Dortmund, Germany
| | - Marc Milbradt
- Biomaterials and Polymer Science,
Department of Biochemical
and Chemical Engineering, TU Dortmund,
Emil-Figge-Straße 66, 44227 Dortmund, Germany
| | - Joerg C. Tiller
- Biomaterials and Polymer Science,
Department of Biochemical
and Chemical Engineering, TU Dortmund,
Emil-Figge-Straße 66, 44227 Dortmund, Germany
| |
Collapse
|
47
|
Stemmelen M, Travelet C, Lapinte V, Borsali R, Robin JJ. Synthesis and self-assembly of amphiphilic polymers based on polyoxazoline and vegetable oil derivatives. Polym Chem 2013. [DOI: 10.1039/c2py20840g] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
48
|
Tong J, Yi X, Luxenhofer R, Banks WA, Jordan R, Zimmerman MC, Kabanov AV. Conjugates of superoxide dismutase 1 with amphiphilic poly(2-oxazoline) block copolymers for enhanced brain delivery: synthesis, characterization and evaluation in vitro and in vivo. Mol Pharm 2012; 10:360-77. [PMID: 23163230 DOI: 10.1021/mp300496x] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Superoxide dismutase 1 (SOD1) efficiently catalyzes dismutation of superoxide, but its poor delivery to the target sites in the body, such as brain, hinders its use as a therapeutic agent for superoxide-associated disorders. Here to enhance the delivery of SOD1 across the blood-brain barrier (BBB) and in neurons the enzyme was conjugated with poly(2-oxazoline) (POx) block copolymers, P(MeOx-b-BuOx) or P(EtOx-b-BuOx), composed of (1) hydrophilic 2-methyl-2-oxazoline (MeOx) or 2-ethyl-2-oxazoline (EtOx) and (2) hydrophobic 2-butyl-2-oxazoline (BuOx) repeating units. The conjugates contained from 2 to 3 POx chains joining the protein amino groups via cleavable -(ss)- or noncleavable -(cc)- linkers at the BuOx block terminus. They retained 30% to 50% of initial SOD1 activity, were conformationally and thermally stable, and assembled in 8 or 20 nm aggregates in aqueous solution. They had little if any toxicity to CATH.a neurons and displayed enhanced uptake in these neurons as compared to native or PEGylated SOD1. Of the two conjugates, SOD1-(cc)-P(MeOx-b-BuOx) and SOD1-(cc)-P(EtOx-b-BuOx), compared, the latter was entering cells 4 to 7 times faster and at 6 h colocalized predominantly with endoplasmic reticulum (41 ± 3%) and mitochondria (21 ± 2%). Colocalization with endocytosis markers and pathway inhibition assays suggested that it was internalized through lipid raft/caveolae, also employed by the P(EtOx-b-BuOx) copolymer. The SOD activity in cell lysates and ability to attenuate angiotensin II (Ang II)-induced superoxide in live cells were increased for this conjugate compared to SOD1 and PEG-SOD1. Studies in mice showed that SOD1-POx had ca. 1.75 times longer half-life in blood than native SOD1 (28.4 vs 15.9 min) and after iv administration penetrated the BBB significantly faster than albumin to accumulate in brain parenchyma. The conjugate maintained high stability both in serum and in brain (77% vs 84% at 1 h postinjection). Its amount taken up by the brain reached a maximum value of 0.08% ID/g (percent of the injected dose taken up per gram of brain) 4 h postinjection. The entry of SOD1-(cc)-P(EtOx-b-BuOx) to the brain was mediated by a nonsaturable mechanism. Altogether, SOD1-POx conjugates are promising candidates as macromolecular antioxidant therapies for superoxide-associated diseases such as Ang II-induced neurocardiovascular diseases.
Collapse
Affiliation(s)
- Jing Tong
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | | | | | | | | | | | | |
Collapse
|
49
|
Luxenhofer R, Han Y, Schulz A, Tong J, He Z, Kabanov AV, Jordan R. Poly(2-oxazoline)s as polymer therapeutics. Macromol Rapid Commun 2012; 33:1613-31. [PMID: 22865555 PMCID: PMC3608391 DOI: 10.1002/marc.201200354] [Citation(s) in RCA: 326] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 06/12/2012] [Indexed: 01/21/2023]
Abstract
Poly(2-oxazoline)s (POx) are currently discussed as an upcoming polymer platform for biomaterials design and especially for polymer therapeutics. POx meet specific requirements needed for the development of next-generation polymer therapeutics such as biocompatibility, high modulation of solubility, variation of size, architecture as well as chemical functionality. Although in the early 1990s first and promising POx-based systems were presented, the field lay dormant for almost two decades. Only very recently, POx-based polymer therapeutics came back into the focus of very intensive research. In this review, we give an overview on the chemistry and physicochemical properties of POx and summarize the research of POx-protein conjugates, POx-drug conjugates, POx-based polyplexes and POx micelles for drug delivery.
Collapse
Affiliation(s)
- Robert Luxenhofer
- Professur für Makromolekulare Chemie, Department Chemie, Technische Universität Dresden, Zellescher Weg 19, 01069 Dresden, Germany
| | - Yingchao Han
- Center for Drug Delivery and Nanomedicine and Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198-5830, U.S.A
| | - Anita Schulz
- Professur für Makromolekulare Chemie, Department Chemie, Technische Universität Dresden, Zellescher Weg 19, 01069 Dresden, Germany
| | - Jing Tong
- Center for Drug Delivery and Nanomedicine and Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198-5830, U.S.A
| | - Zhijian He
- Center for Drug Delivery and Nanomedicine and Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198-5830, U.S.A
| | - Alexander V. Kabanov
- Center for Drug Delivery and Nanomedicine and Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198-5830, U.S.A
| | - Rainer Jordan
- Professur für Makromolekulare Chemie, Department Chemie, Technische Universität Dresden, Zellescher Weg 19, 01069 Dresden, Germany
| |
Collapse
|
50
|
Sedlacek O, Monnery BD, Filippov SK, Hoogenboom R, Hruby M. Poly(2-Oxazoline)s - Are They More Advantageous for Biomedical Applications Than Other Polymers? Macromol Rapid Commun 2012; 33:1648-62. [DOI: 10.1002/marc.201200453] [Citation(s) in RCA: 233] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|