1
|
Ribeiro J, Luís MÂ, Rodrigues B, Santos FM, Mesquita J, Boto R, Tomaz CT. Cryogels and Monoliths: Promising Tools for Chromatographic Purification of Nucleic Acids. Gels 2024; 10:198. [PMID: 38534616 DOI: 10.3390/gels10030198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/09/2024] [Accepted: 03/11/2024] [Indexed: 03/28/2024] Open
Abstract
The increasing demand for highly pure biopharmaceuticals has put significant pressure on the biotechnological industry to innovate in production and purification processes. Nucleic acid purification, crucial for gene therapy and vaccine production, presents challenges due to the unique physical and chemical properties of these molecules. Meeting regulatory standards necessitates large quantities of biotherapeutic agents of high purity. While conventional chromatography offers versatility and efficiency, it suffers from drawbacks like low flow rates and binding capacity, as well as high mass transfer resistance. Recent advancements in continuous beds, including monoliths and cryogel-based systems, have emerged as promising solutions to overcome these limitations. This review explores and evaluates the latest progress in chromatography utilizing monolithic and cryogenic supports for nucleic acid purification.
Collapse
Affiliation(s)
- João Ribeiro
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal
- Department of Chemistry, University of Beira Interior, Rua Marquês de Ávila e Bolama, 6201-001 Covilhã, Portugal
| | - Marco  Luís
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal
- Department of Chemistry, University of Beira Interior, Rua Marquês de Ávila e Bolama, 6201-001 Covilhã, Portugal
| | - Bruno Rodrigues
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal
- Department of Chemistry, University of Beira Interior, Rua Marquês de Ávila e Bolama, 6201-001 Covilhã, Portugal
| | - Fátima Milhano Santos
- Functional Proteomics Laboratory, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Calle Darwin 3, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Joana Mesquita
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal
| | - Renato Boto
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal
- Department of Chemistry, University of Beira Interior, Rua Marquês de Ávila e Bolama, 6201-001 Covilhã, Portugal
| | - Cândida Teixeira Tomaz
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal
- Department of Chemistry, University of Beira Interior, Rua Marquês de Ávila e Bolama, 6201-001 Covilhã, Portugal
| |
Collapse
|
2
|
Jin Y, Yu W, Zhang W, Wang C, Liu Y, Yuan WE, Feng Y. A novel fluorinated polyethyleneimine with microRNA-942-5p-sponges polyplex gene delivery system for non-small-cell lung cancer therapy. J Colloid Interface Sci 2023; 648:287-298. [PMID: 37301153 DOI: 10.1016/j.jcis.2023.05.153] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/18/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023]
Abstract
Gene delivery for non-small-cell lung cancer treatment has been a challenge due to low nucleic acid binding ability, cell-wall barrier, and high cytotoxicity. Cationic polymers, such as the traditional "golden standard" polyethyleneimine (PEI) 25 kDa have emerged as a promising carrier for non-coding RNA delivery. However, the high cytotoxicity associated with its high molecular weight has limited its application in gene delivery. To address this limitation, herein, we designed a novel delivery system using fluorine-modified polyethyleneimine (PEI) 1.8 kDa for microRNA-942-5p-sponges non-coding RNA delivery. Compared to PEI 25 kDa, this novel gene delivery system demonstrated an approximately six-fold enhancement in endocytosis capability and maintain a higher cell viability. In vivo studies also showed good biosafety and anti-tumor effects, attribute to the positive charge of PEI and the hydrophobic and oleophobic properties of the fluorine-modified group. This study provides an effective gene delivery system for non-small-cell lung cancer treatment.
Collapse
Affiliation(s)
- Yi Jin
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China., National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wei Yu
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China., National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wenkai Zhang
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China., National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chen Wang
- Department of Respiration, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Kunming University of Science and Technology, Kunming, China
| | - Yao Liu
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China., National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wei-En Yuan
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China., National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Yun Feng
- Department of Respiration, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Kunming University of Science and Technology, Kunming, China.
| |
Collapse
|
3
|
Su DD, Gervais V, Ulrich S, Barboiu M. Complexation Preferences of Dynamic Constitutional Frameworks as Adaptive Gene Vectors. Chemistry 2023; 29:e202203062. [PMID: 36345945 PMCID: PMC10108089 DOI: 10.1002/chem.202203062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/10/2022]
Abstract
The growing applications of therapeutic nucleic acids requires the concomitant development of vectors that are optimized to complex one type of nucleic acid, forming nanoparticles suitable for further trafficking and delivery. While fine-tuning a vector by molecular engineering to obtain a particular nanoscale organization at the nanoparticle level can be a challenging endeavor, we turned the situation around and instead screened the complexation preferences of dynamic constitutional frameworks toward different types of DNAs. Dynamic constitutional frameworks (DCF) are recently-identified vectors by our group that can be prepared in a versatile manner through dynamic covalent chemistry. Herein, we designed and synthesized 40 new DCFs that vary in hydrophilic/hydrophobic balance, number of cationic headgroups. The results of DNA complexation obtained through gel electrophoresis and fluorescent displacement assays reveal binding preferences of different DCFs toward different DNAs. The formation of compact spherical architectures with an optimal diameter of 100-200 nm suggests that condensation into nanoparticles is more effective for longer PEG chains and PEI groups that induce a better binding performance in the presence of DNA targets.
Collapse
Affiliation(s)
- Dan-Dan Su
- Institut Européen des Membranes, Adaptive Supramolecular Nanosystems Group, University of Montpellier, ENSCM-CNRS, Place E. Bataillon CC047, Montpellier, 34095, France.,Institut des Biomolécules Max Mousseron (IBMM), Université de Montpellier, CNRS, ENSCM, 34095, Montpellier, France
| | - Virginie Gervais
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Sébastien Ulrich
- Institut des Biomolécules Max Mousseron (IBMM), Université de Montpellier, CNRS, ENSCM, 34095, Montpellier, France
| | - Mihail Barboiu
- Institut Européen des Membranes, Adaptive Supramolecular Nanosystems Group, University of Montpellier, ENSCM-CNRS, Place E. Bataillon CC047, Montpellier, 34095, France
| |
Collapse
|
4
|
Zhang P, Zhang H, Zheng B, Wang H, Qi X, Wang S, Liu Z, Sun L, Liu Y, Qin X, Fan W, Ma M, Lai WF, Zhang D. Combined Self-Assembled Hendeca-Arginine Nanocarriers for Effective Targeted Gene Delivery to Bladder Cancer. Int J Nanomedicine 2022; 17:4433-4448. [PMID: 36172006 PMCID: PMC9512291 DOI: 10.2147/ijn.s379356] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/06/2022] [Indexed: 12/24/2022] Open
Abstract
Introduction Bladder cancer (BCa) is among the most prevalent cancers worldwide. However, the effectiveness of intravesical therapy for BCa is limited due to the short dwell time and the presence of the permeation barrier. Methods Nanocomplexes were self-assembled between DNA and hendeca-arginine peptide (R11). Stepwise intravesical instillation of R11 and the generated nanocomplexes significantly enhanced the targeting capacity and penetration efficiency in BCa therapy. The involved mechanism of cellular uptake and penetration of the nanocomplexes was determined. The therapeutic effect of the nanocomplexes was verified preclinically in murine orthotopic BCa models. Results Nanocomplexes exhibited the best BCa targeting efficiency at a nitrogen-to-phosphate (NP) ratio of 5 but showed a lack of stability during cellular uptake. The method of stepwise intravesical instillation not only increased the stability and target specificity of the DNA component but also caused the delivered DNA to more effectively penetrate into the glycosaminoglycan layer and plasma membrane. The method promotes the accumulation of the delivered DNA in the clathrin-independent endocytosis pathway, directs the intracellular trafficking of the delivered DNA to nonlysosome-localized regions, and enables the intercellular transport of the delivered DNA via a direct transfer mechanism. In preclinical trials, our stepwise method was shown to remarkably enhance the targeting and penetration efficiency of DNA in murine orthotopic BCa models. Conclusion With this method, a stepwise intravesical instillation of self-assembled nanocomplexes, which are generated from hendeca-arginine peptides, was achieved; thus, this method offers an effective strategy to deliver DNA to target and penetrate BCa cells during gene therapy and warrants further development for future intravesical gene therapy in the clinical context.
Collapse
Affiliation(s)
- Pu Zhang
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang People's Republic of China
| | - Haibao Zhang
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Bin Zheng
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang People's Republic of China
| | - Heng Wang
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang People's Republic of China
| | - Xiaolong Qi
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang People's Republic of China
| | - Shuai Wang
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang People's Republic of China
| | - Zhenghong Liu
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang People's Republic of China
| | - Li Sun
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang People's Republic of China
| | - Yang Liu
- Cancer Center, Department of Ultrasound Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang People's Republic of China
| | - Xiaowen Qin
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang People's Republic of China
| | - Weijiao Fan
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang People's Republic of China
| | - Minghai Ma
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Wing-Fu Lai
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang People's Republic of China
| | - Dahong Zhang
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang People's Republic of China
| |
Collapse
|
5
|
Wang JW, Cunningham FJ, Goh NS, Boozarpour NN, Pham M, Landry MP. Nanoparticles for protein delivery in planta. CURRENT OPINION IN PLANT BIOLOGY 2021; 60:102052. [PMID: 33984712 PMCID: PMC10461801 DOI: 10.1016/j.pbi.2021.102052] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 04/01/2021] [Accepted: 04/04/2021] [Indexed: 05/08/2023]
Abstract
Delivery of proteins into walled plant cells remains a challenge with few tractable solutions. Recent advances in biomacromolecule delivery using nanotechnology may evince methods to be exploited for protein delivery. While protein delivery remains no small feat, even in mammalian systems, the ability for nanoparticles to penetrate the cell wall and be decorated with a plethora of functional moieties makes them ideal protein vehicles in plants. As advances in protein biotechnology accelerate, so does the need for commensurate delivery systems. However, the road to nanoparticle-mediated protein delivery is fraught with challenges in regard to cell wall penetration, intracellular delivery, endosomal escape, and nanoparticle chemistry and design. The dearth of literature surrounding protein delivery in walled plant cells hints at the challenge of this problem but also indicates vast opportunity for innovations in plant-tailored nanotechnology.
Collapse
Affiliation(s)
- Jeffrey W Wang
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, 94720, USA
| | - Francis J Cunningham
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, 94720, USA
| | - Natalie S Goh
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, 94720, USA
| | - Navid N Boozarpour
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, 94720, USA
| | - Matthew Pham
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, 94720, USA
| | - Markita P Landry
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, 94720, USA; Innovative Genomics Institute (IGI), Berkeley, CA, 94720, USA; California Institute for Quantitative Biosciences, QB3, University of California, Berkeley, CA, 94720, USA; Chan-Zuckerberg Biohub, San Francisco, CA, 94158, USA.
| |
Collapse
|
6
|
McErlean EM, Ziminska M, McCrudden CM, McBride JW, Loughran SP, Cole G, Mulholland EJ, Kett V, Buckley NE, Robson T, Dunne NJ, McCarthy HO. Rational design and characterisation of a linear cell penetrating peptide for non-viral gene delivery. J Control Release 2020; 330:1288-1299. [PMID: 33227336 DOI: 10.1016/j.jconrel.2020.11.037] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 11/16/2020] [Accepted: 11/19/2020] [Indexed: 01/19/2023]
Abstract
The design of a non-viral gene delivery system that can release a functional nucleic acid at the intracellular destination site is an exciting but also challenging proposition. The ideal gene delivery vector must be non-toxic, non-immunogenic, overcome extra- and intra-cellular barriers, protect the nucleic acid cargo from degradation with stability over a range of temperatures. A new 15 amino acid linear peptide termed CHAT was designed in this study with the goal of delivering DNA with high efficiency into cells in vitro and tissues in vivo. Rational design involved incorporation of key amino acids including arginine for nucleic acid complexation and cellular uptake, tryptophan to enhance hydrophobic interaction with cell membranes, histidine to facilitate endosomal escape and cysteine for stability and controlled cargo release. Six linear peptides were synthesised with strategic sequences and amino acid substitutions. Data demonstrated that all six peptides complexed pDNA to produce cationic nanoparticles less than 200 nm in diameter, but not all peptides resulted in successful transfection; indicating the influence of peptide design for endosomal escape. Peptide 4, now termed CHAT, was non-cytotoxic, traversed the plasma membrane of breast and prostate cancer cell lines, and elicited reporter-gene expression following intra-tumoural and intravenous delivery in vivo. CHAT presents an exciting new peptide for the delivery of nucleic acid therapeutics.
Collapse
Affiliation(s)
- Emma M McErlean
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Monika Ziminska
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Cian M McCrudden
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - John W McBride
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Stephen P Loughran
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Grace Cole
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Eoghan J Mulholland
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Vicky Kett
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Niamh E Buckley
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Tracy Robson
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons Ireland, 111 St Stephen's Green, Dublin 2, Ireland
| | - Nicholas J Dunne
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland; Centre for Medical Engineering Research, School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland; Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin 2, Ireland; Advanced Manufacturing Research Centre (I-Form), School of Mechanical and Manufacturing Engineering, Dublin City University, Glasnevin, Dublin 9, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin 2, Ireland; Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Helen O McCarthy
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; School of Chemical Sciences, Dublin City University, Dublin 9, Ireland.
| |
Collapse
|
7
|
Peptides as a material platform for gene delivery: Emerging concepts and converging technologies. Acta Biomater 2020; 117:40-59. [PMID: 32966922 DOI: 10.1016/j.actbio.2020.09.027] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/27/2020] [Accepted: 09/16/2020] [Indexed: 02/06/2023]
Abstract
Successful gene therapies rely on methods that safely introduce DNA into target cells and enable subsequent expression of proteins. To that end, peptides are an attractive materials platform for DNA delivery, facilitating condensation into nanoparticles, delivery into cells, and subcellular release to enable protein expression. Peptides are programmable materials that can be designed to address biocompatibility, stability, and subcellular barriers that limit efficiency of non-viral gene delivery systems. This review focuses on fundamental structure-function relationships regarding peptide design and their impact on nanoparticle physical properties, biologic activity, and biocompatibility. Recent peptide technologies utilize multi-dimensional structures, non-natural chemistries, and combinations of peptides with lipids to achieve desired properties and efficient transfection. Advances in DNA cargo design are also presented to highlight further opportunities for peptide-based gene delivery. Modern DNA designs enable prolonged expression compared to traditional plasmids, providing an additional component that can be synergized with peptide carriers for improved transfection. Peptide transfection systems are poised to become a flexible and efficient platform incorporating new chemistries, functionalities, and improved DNA cargos to usher in a new era of gene therapy.
Collapse
|
8
|
Egorova AA, Shtykalova SV, Maretina MA, Selyutin AV, Shved NY, Krylova NV, Ilina AV, Pyankov IA, Freund SA, Selkov SA, Baranov VS, Kiselev AV. Cys-Flanked Cationic Peptides For Cell Delivery of the Herpes Simplex Virus Thymidine Kinase Gene for Suicide Gene Therapy of Uterine Leiomyoma. Mol Biol 2020. [DOI: 10.1134/s0026893320030061] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
9
|
Miyamoto T, Tsuchiya K, Numata K. Dual Peptide-Based Gene Delivery System for the Efficient Transfection of Plant Callus Cells. Biomacromolecules 2020; 21:2735-2744. [PMID: 32432860 DOI: 10.1021/acs.biomac.0c00481] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Owing to their diverse functions and tunable physicochemical properties, peptides are promising alternatives to the conventional gene delivery tools that are available for plant systems. However, peptide-mediated gene delivery is limited by low transfection efficiency in plants because of the insufficient cytosolic translocation of DNA cargo. Here, we report a dual peptide-based gene delivery system for the efficient transfection of plant callus cells. This system is based on the combination of an artificial peptide composed of cationic cell-penetrating and hydrophobic endosomal escape domains with a gene carrier peptide composed of amphiphilic cell-penetrating and cationic DNA-binding domains. Cellular internalization and transfection studies revealed that this dual peptide-based system enables more efficient transfection of callus cells than does a carrier peptide alone by enhancing the endocytic uptake and subsequent cytosolic translocation of a carrier peptide/DNA complex. The present strategy will expand the utility of peptide-mediated plant gene delivery for a wide range of applications and basic research.
Collapse
Affiliation(s)
- Takaaki Miyamoto
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Kousuke Tsuchiya
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Keiji Numata
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan.,Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto-Daigaku-Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
10
|
Kim K, Ryu K, Cho H, Shim MS, Cho YY, Lee JY, Lee HS, Kang HC. Effects of Decomplexation Rates on Ternary Gene Complex Transfection with α-Poly(l-Lysine) or ε-Poly(l-Lysine) as a Decomplexation Controller in An Easy-To-Transfect Cell or A Hard-To-Transfect Cell. Pharmaceutics 2020; 12:pharmaceutics12060490. [PMID: 32481637 PMCID: PMC7356167 DOI: 10.3390/pharmaceutics12060490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/26/2020] [Accepted: 05/26/2020] [Indexed: 11/16/2022] Open
Abstract
The tight binding of pDNA with a cationic polymer is the crucial requirement that prevents DNA degradation from undesired DNase attack to safely deliver the pDNA to its target site. However, cationic polymer-mediated strong gene holding limits pDNA dissociation from the gene complex, resulting in a reduction in transfection efficiency. In this study, to control the decomplexation rate of pDNA from the gene complex in a hard-to-transfect cell or an easy-to-transfect cell, either α-poly(l-lysine) (APL) or ε-poly(l-lysine) (EPL) was incorporated into branched polyethylenimine (bPEI)-based nanocomplexes (NCs). Compared to bPEI/pDNA NCs, the addition of APL or EPL formed smaller bPEI-APL/pDNA NCs with similar zeta potentials or larger bPEI-EPL/pDNA NCs with reduced zeta potentials, respectively, due to the different characteristics of the primary amines in the two poly(l-lysine)s (PLs). Interestingly, although both bPEI-APL/pDNA NCs and bPEI-EPL/pDNA NCs showed similar pDNA compactness to bPEI/pDNA NCs, the addition of APL or EPL resulted in slower or faster pDNA release, respectively, from the bPEI-PL/pDNA NCs than from the bPEI/pDNA NCs. bPEI-EPL/pDNA NCs with a decomplexation enhancer (i.e., EPL) improved the transfection efficiency (TE) in both a hard-to-transfect HepG2 cell and an easy-to-transfect HEK293 cell. However, although a decomplexation inhibitor (i.e., APL) reduced the TE of bPEI-APL/pDNA NCs in both cells, the degree of reduction in the TE could be compensated by PL-mediated enhanced nuclear delivery, particularly in HepG2 cells but not HEK293 cells, because both PLs facilitate nuclear localization of the gene complex per its cellular uptake. In conclusion, a decomplexation rate controller could be a potential factor to establish a high TE and design clinically available gene complex systems.
Collapse
Affiliation(s)
- Kyoungnam Kim
- Department of Pharmacy, College of Pharmacy, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 14662, Korea; (K.K.); (K.R.); (H.C.); (Y.-Y.C.); (J.Y.L.); (H.S.L.)
| | - Kitae Ryu
- Department of Pharmacy, College of Pharmacy, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 14662, Korea; (K.K.); (K.R.); (H.C.); (Y.-Y.C.); (J.Y.L.); (H.S.L.)
| | - Hana Cho
- Department of Pharmacy, College of Pharmacy, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 14662, Korea; (K.K.); (K.R.); (H.C.); (Y.-Y.C.); (J.Y.L.); (H.S.L.)
| | - Min Suk Shim
- Division of Bioengineering, Incheon National University, Incheon 22012, Korea;
| | - Yong-Yeon Cho
- Department of Pharmacy, College of Pharmacy, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 14662, Korea; (K.K.); (K.R.); (H.C.); (Y.-Y.C.); (J.Y.L.); (H.S.L.)
| | - Joo Young Lee
- Department of Pharmacy, College of Pharmacy, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 14662, Korea; (K.K.); (K.R.); (H.C.); (Y.-Y.C.); (J.Y.L.); (H.S.L.)
| | - Hye Suk Lee
- Department of Pharmacy, College of Pharmacy, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 14662, Korea; (K.K.); (K.R.); (H.C.); (Y.-Y.C.); (J.Y.L.); (H.S.L.)
| | - Han Chang Kang
- Department of Pharmacy, College of Pharmacy, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 14662, Korea; (K.K.); (K.R.); (H.C.); (Y.-Y.C.); (J.Y.L.); (H.S.L.)
- Correspondence: ; Tel.: +82-2-2164-6533; Fax: +82-2-2164-4059
| |
Collapse
|
11
|
Czuba-Wojnilowicz E, Viventi S, Howden SE, Maksour S, Hulme AE, Cortez-Jugo C, Dottori M, Caruso F. Particle-mediated delivery of frataxin plasmid to a human sensory neuronal model of Friedreich's ataxia. Biomater Sci 2020; 8:2398-2403. [PMID: 32270790 DOI: 10.1039/c9bm01757g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Increasing frataxin protein levels through gene therapy is envisaged to improve therapeutic outcomes for patients with Friedreich's ataxia (FRDA). A non-viral strategy that uses submicrometer-sized multilayered particles to deliver frataxin-encoding plasmid DNA affords up to 27 000-fold increase in frataxin gene expression within 2 days in vitro in a stem cell-derived neuronal model of FRDA.
Collapse
Affiliation(s)
- Ewa Czuba-Wojnilowicz
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Shah SS, Casanova N, Antuono G, Sabatino D. Polyamide Backbone Modified Cell Targeting and Penetrating Peptides in Cancer Detection and Treatment. Front Chem 2020; 8:218. [PMID: 32296681 PMCID: PMC7136562 DOI: 10.3389/fchem.2020.00218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 03/09/2020] [Indexed: 12/15/2022] Open
Abstract
Cell penetrating and targeting peptides (CPPs and CTPs) encompass an important class of biochemically active peptides owning the capabilities of targeting and translocating within selected cell types. As such, they have been widely used in the delivery of imaging and therapeutic agents for the diagnosis and treatment of various diseases, especially in cancer. Despite their potential utility, first generation CTPs and CPPs based on the native peptide sequences are limited by poor biological and pharmacological properties, thereby restricting their efficacy. Therefore, medicinal chemistry approaches have been designed and developed to construct related peptidomimetics. Of specific interest herein, are the design applications which modify the polyamide backbone of lead CTPs and CPPs. These modifications aim to improve the biochemical characteristics of the native peptide sequence in order to enhance its diagnostic and therapeutic capabilities. This review will focus on a selected set of cell penetrating and targeting peptides and their related peptidomimetics whose polyamide backbone has been modified in order to improve their applications in cancer detection and treatment.
Collapse
Affiliation(s)
- Sunil S Shah
- Department of Chemistry and Biochemistry, Seton Hall University, South Orange, NJ, United States
| | - Nelson Casanova
- Department of Chemistry and Biochemistry, Seton Hall University, South Orange, NJ, United States
| | - Gina Antuono
- Department of Chemistry and Biochemistry, Seton Hall University, South Orange, NJ, United States
| | - David Sabatino
- Department of Chemistry and Biochemistry, Seton Hall University, South Orange, NJ, United States
| |
Collapse
|
13
|
Yamada Y, Fukuda Y, Sasaki D, Maruyama M, Harashima H. Development of a nanoparticle that releases nucleic acids in response to a mitochondrial environment. Mitochondrion 2020; 52:67-74. [PMID: 32097722 DOI: 10.1016/j.mito.2020.02.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 02/06/2020] [Accepted: 02/21/2020] [Indexed: 12/16/2022]
Abstract
The delivery of nucleic acids targeting mutant mtDNA represent a potential strategy for addressing a variety of mitochondria-related diseases. We previously developed a MITO-Porter, a nano carrier that is capable of delivering nanoparticles of nucleic acids to mitochondria of human cells. Here, we report on an investigation of a series of nanoparticles formed with various poly cationic peptides that can release nucleic acids in response to a mitochondrial environment. A significant relationship was found between the number of and the location of arginine and histidine residues in the peptide sequence and the release of nucleic acids in a mitochondrial environment.
Collapse
Affiliation(s)
- Yuma Yamada
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan.
| | - Yutaka Fukuda
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Daisuke Sasaki
- Department of Pediatrics, Hokkaido University Hospital, Kita-15, Nishi-7, Kita-ku, Sapporo 060-8638, Japan
| | - Minako Maruyama
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Hideyoshi Harashima
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan.
| |
Collapse
|
14
|
Gomes Dos Reis L, Lee WH, Svolos M, Moir LM, Jaber R, Engel A, Windhab N, Young PM, Traini D. Delivery of pDNA to lung epithelial cells using PLGA nanoparticles formulated with a cell-penetrating peptide: understanding the intracellular fate. Drug Dev Ind Pharm 2020; 46:427-442. [PMID: 32070151 DOI: 10.1080/03639045.2020.1724134] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The combination of nanoparticles (NPs) and cell-penetrating peptide (CPP) represents a new opportunity to develop plasmid DNA (pDNA) delivery systems with desirable properties for lung delivery. In this study, poly(lactide-co-glycolide) (PLGA) NPs containing pDNA were formulated with and without CPP using a double-emulsion technique. NPs were characterized in regards of size, surface charge, release profile, pDNA encapsulation efficiency and pDNA integrity. Cellular uptake, intracellular trafficking, uptake mechanism and pDNA expression were assessed in both A549 and Beas-2B cells. Manufactured PLGA-NPs efficiently encapsulated pDNA with approximately 50% released in the first 24 h of incubation. Addition of CPP was essential to promote NP internalization in both cell lines, with 83.85 ± 1.2% and 96.76 ± 1.7% of Beas-2B and A549 cells, respectively, with internalized NP-DNA-CPP after 3 h of incubation. Internalization appears to occur mainly via clathrin-mediated endocytosis, with other pathways also being used by the different cell lines. An endosomal-escape mechanism seems to happen in both cell lines, and eGFP expression was observed in Beas-2B after 96 h of incubation. In summary, the NP-DNA-CPP delivery system efficiently encapsulated and protected pDNA structure and is being investigated as a promising tool for gene delivery to the lungs.
Collapse
Affiliation(s)
- Larissa Gomes Dos Reis
- Department of Respiratory Technology, Faculty of Medicine and Health, Woolcock Institute of Medical Research and Discipline of Pharmacology, The University of Sydney, Glebe, NSW, Australia
| | - Wing-Hin Lee
- Department of Respiratory Technology, Faculty of Medicine and Health, Woolcock Institute of Medical Research and Discipline of Pharmacology, The University of Sydney, Glebe, NSW, Australia
| | - Maree Svolos
- Department of Respiratory Technology, Faculty of Medicine and Health, Woolcock Institute of Medical Research and Discipline of Pharmacology, The University of Sydney, Glebe, NSW, Australia
| | - Lyn M Moir
- Department of Respiratory Technology, Faculty of Medicine and Health, Woolcock Institute of Medical Research and Discipline of Pharmacology, The University of Sydney, Glebe, NSW, Australia
| | - Rima Jaber
- Evonik Industries AG, Darmstadt, Germany
| | | | | | - Paul M Young
- Department of Respiratory Technology, Faculty of Medicine and Health, Woolcock Institute of Medical Research and Discipline of Pharmacology, The University of Sydney, Glebe, NSW, Australia
| | - Daniela Traini
- Department of Respiratory Technology, Faculty of Medicine and Health, Woolcock Institute of Medical Research and Discipline of Pharmacology, The University of Sydney, Glebe, NSW, Australia
| |
Collapse
|
15
|
Gigante A, Li M, Junghänel S, Hirschhäuser C, Knauer S, Schmuck C. Non-viral transfection vectors: are hybrid materials the way forward? MEDCHEMCOMM 2019; 10:1692-1718. [PMID: 32180915 PMCID: PMC7053704 DOI: 10.1039/c9md00275h] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 08/12/2019] [Indexed: 12/18/2022]
Abstract
Transfection is a process by which oligonucleotides (DNA or RNA) are delivered into living cells. This allows the synthesis of target proteins as well as their inhibition (gene silencing). However, oligonucleotides cannot cross the plasma membrane by themselves; therefore, efficient carriers are needed for successful gene delivery. Recombinant viruses are among the earliest described vectors. Unfortunately, they have severe drawbacks such as toxicity and immunogenicity. In this regard, the development of non-viral transfection vectors has attracted increasing interests, and has become an important field of research. In the first part of this review we start with a tutorial introduction into the biological backgrounds of gene transfection followed by the classical non-viral vectors (cationic organic carriers and inorganic nanoparticles). In the second part we highlight selected recent reports, which demonstrate that hybrid vectors that combine key features of classical carriers are a remarkable strategy to address the current challenges in gene delivery.
Collapse
Affiliation(s)
- A Gigante
- Institute of Organic Chemistry , University of Duisburg-Essen , 45141 Essen , Germany .
| | - M Li
- Institute of Organic Chemistry , University of Duisburg-Essen , 45141 Essen , Germany .
| | - S Junghänel
- Institute of Organic Chemistry , University of Duisburg-Essen , 45141 Essen , Germany .
- Biomedical Technology Center of the Medical Faculty , University of Muenster , Muenster , Germany
| | - C Hirschhäuser
- Institute of Organic Chemistry , University of Duisburg-Essen , 45141 Essen , Germany .
| | - S Knauer
- Faculty of Biology , University of Duisburg-Essen , 45141 Essen , Germany
| | - C Schmuck
- Institute of Organic Chemistry , University of Duisburg-Essen , 45141 Essen , Germany .
| |
Collapse
|
16
|
Killian T, Buntz A, Herlet T, Seul H, Mundigl O, Längst G, Brinkmann U. Antibody-targeted chromatin enables effective intracellular delivery and functionality of CRISPR/Cas9 expression plasmids. Nucleic Acids Res 2019; 47:e55. [PMID: 30809660 PMCID: PMC6547418 DOI: 10.1093/nar/gkz137] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 01/21/2019] [Accepted: 02/20/2019] [Indexed: 01/01/2023] Open
Abstract
We report a novel system for efficient and specific targeted delivery of large nucleic acids to and into cells. Plasmid DNA and core histones were assembled to chromatin by salt gradient dialysis and subsequently connected to bispecific antibody derivatives (bsAbs) via a nucleic acid binding peptide bridge. The resulting reconstituted vehicles termed 'plasmid-chromatin' deliver packaged nucleic acids to and into cells expressing antigens that are recognized by the bsAb, enabling intracellular functionality without detectable cytotoxicity. High efficiency of intracellular nucleic acid delivery is revealed by intracellular expression of plasmid encoded genes in most (∼90%) target cells to which the vehicles were applied under normal growth/medium conditions in nanomolar concentrations. Specific targeting, uptake and transgene expression depends on antibody-mediated cell surface binding: plasmid chromatin of identical composition but with non-targeting bsAbs or without bsAbs is ineffective. Examples that demonstrate applicability, specificity and efficacy of antibody-targeted plasmid chromatin include reporter gene constructs as well as plasmids that enable CRISPR/Cas9 mediated genome editing of target cells.
Collapse
Affiliation(s)
- Tobias Killian
- Roche Pharma Research and Early Development (pRED), Therapeutic Modalities - Large Molecule Research, Roche Innovation Center Munich, Nonnenwald 2, D-82377 Penzberg, Germany
| | - Annette Buntz
- Roche Pharma Research and Early Development (pRED), Therapeutic Modalities - Large Molecule Research, Roche Innovation Center Munich, Nonnenwald 2, D-82377 Penzberg, Germany
| | - Teresa Herlet
- Roche Pharma Research and Early Development (pRED), Therapeutic Modalities - Large Molecule Research, Roche Innovation Center Munich, Nonnenwald 2, D-82377 Penzberg, Germany
| | - Heike Seul
- Roche Pharma Research and Early Development (pRED), Therapeutic Modalities - Large Molecule Research, Roche Innovation Center Munich, Nonnenwald 2, D-82377 Penzberg, Germany
| | - Olaf Mundigl
- Roche Pharma Research and Early Development (pRED), Therapeutic Modalities - Large Molecule Research, Roche Innovation Center Munich, Nonnenwald 2, D-82377 Penzberg, Germany
| | - Gernot Längst
- Biochemistry III; Biochemistry Centre Regensburg (BCR), University of Regensburg, Regensburg, Germany
| | - Ulrich Brinkmann
- Roche Pharma Research and Early Development (pRED), Therapeutic Modalities - Large Molecule Research, Roche Innovation Center Munich, Nonnenwald 2, D-82377 Penzberg, Germany
| |
Collapse
|
17
|
Zinchenko A, Hiramatsu H, Yamaguchi H, Kubo K, Murata S, Kanbe T, Hazemoto N, Yoshikawa K, Akitaya T. Amino Acid Sequence of Oligopeptide Causes Marked Difference in DNA Compaction and Transcription. Biophys J 2019; 116:1836-1844. [PMID: 31076102 PMCID: PMC6531782 DOI: 10.1016/j.bpj.2019.04.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/04/2019] [Accepted: 04/12/2019] [Indexed: 02/04/2023] Open
Abstract
Compaction of T4 phage DNA (166 kbp) by short oligopeptide octamers composed of two types of amino acids, four cationic lysine (K), and four polar nonionic serine (S) having different sequence order was studied by single-molecule fluorescent microscopy. We found that efficient DNA compaction by oligopeptide octamers depends on the geometrical match between phosphate groups of DNA and cationic amines. The amino acid sequence order in octamers dramatically affects the mechanism of DNA compaction, which changes from a discrete all-or-nothing coil-globule transition induced by a less efficient (K4S4) octamer to a continuous compaction transition induced by a (KS)4 octamer with a stronger DNA-binding character. This difference in the DNA compaction mechanism dramatically changes the packaging density, and the morphology of T4 DNA condensates: DNA is folded into ordered toroidal or rod morphologies during all-or-nothing compaction, whereas disordered DNA condensates are formed as a result of the continuous DNA compaction. Furthermore, the difference in DNA compaction mechanism has a certain effect on the inhibition scenario of the DNA transcription activity, which is gradual for the continuous DNA compaction and abrupt for the all-or-nothing DNA collapse.
Collapse
Affiliation(s)
- Anatoly Zinchenko
- Graduate School of Environmental Studies, Nagoya University, Furocho, Chikusa-ku, Nagoya, Japan.
| | - Hiroyuki Hiramatsu
- Faculty of Pharmaceutical Science, Nagoya City University, Mizuho-ku, Nagoya, Japan
| | | | - Koji Kubo
- Graduate School of Environmental Studies, Nagoya University, Furocho, Chikusa-ku, Nagoya, Japan
| | - Shizuaki Murata
- Graduate School of Environmental Studies, Nagoya University, Furocho, Chikusa-ku, Nagoya, Japan
| | - Toshio Kanbe
- Laboratory of Medical Mycology, Research Institute for Disease Mechanism and Control, School of Medicine, Nagoya University, Tsurumai-cho, Showa-ku, Nagoya, Japan
| | - Norio Hazemoto
- Faculty of Pharmaceutical Science, Nagoya City University, Mizuho-ku, Nagoya, Japan
| | - Kenichi Yoshikawa
- Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| | - Tatsuo Akitaya
- Department of Chemistry, Asahikawa Medical University, Asahikawa, Hokkaido, Japan.
| |
Collapse
|
18
|
Subia B, Reinisalo M, Dey N, Tavakoli S, Subrizi A, Ganguli M, Ruponen M. Nucleic acid delivery to differentiated retinal pigment epithelial cells using cell-penetrating peptide as a carrier. Eur J Pharm Biopharm 2019; 140:91-99. [PMID: 31085311 DOI: 10.1016/j.ejpb.2019.05.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 04/16/2019] [Accepted: 05/08/2019] [Indexed: 10/26/2022]
Abstract
Nucleic acid delivery to the eye is a promising treatment strategy for many retinal disorders. In this manuscript, retinal gene delivery with non-coated and chondroitin sulphate (CS) coated amphipathic and cationic peptides was tested. The transfection and gene knockdown efficiencies were evaluated in different retinal pigment epithelial (RPE) cell models including both dividing and differentiated cells. In addition, the mobility of peptide-based gene delivery systems was examined in porcine vitreous by particle tracking analysis. The results indicate that amphipathic and cationic peptides are safe in vitro and are capable of high transgene expression and gene knockdown in dividing cells. We further demonstrate that incorporation of CS improves the efficiency of gene delivery of peptide-based systems. Most importantly, the transgene expression mediated by both non-coated and CS coated peptides was high in differentiated as well as in human primary RPE cells which are typically difficult to transfect. Coating of peptide-based gene delivery systems with CS improved diffusion in the vitreous and enhanced the stability of the polyplexes. The results indicate that a peptide-based system can be fine-tuned as a promising approach for retinal gene delivery.
Collapse
Affiliation(s)
- Bano Subia
- School of Pharmacy, University of Eastern Finland, Kuopio 70211, Finland.
| | - Mika Reinisalo
- School of Pharmacy, University of Eastern Finland, Kuopio 70211, Finland
| | - Namit Dey
- Delhi Technological University, Delhi 110042, India
| | | | - Astrid Subrizi
- School of Pharmacy, University of Eastern Finland, Kuopio 70211, Finland; Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C 800, Denmark
| | - Munia Ganguli
- CSIR-Institute of Genomics and Integrative Biology, New Delhi 110021, India
| | - Marika Ruponen
- School of Pharmacy, University of Eastern Finland, Kuopio 70211, Finland
| |
Collapse
|
19
|
Gupta S, Tiwari N, Munde M. A Comprehensive Biophysical Analysis of the Effect of DNA Binding Drugs on Protamine-induced DNA Condensation. Sci Rep 2019; 9:5891. [PMID: 30971720 PMCID: PMC6458161 DOI: 10.1038/s41598-019-41975-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 03/13/2019] [Indexed: 11/21/2022] Open
Abstract
DNA condensation is a ubiquitous phenomenon in biology, yet the physical basis for it has remained elusive. Here, we have explored the mechanism of DNA condensation through the protamine-DNA interaction, and by examining on it the influence of DNA binding drugs. We observed that the DNA condensation is accompanied by B to Ψ-DNA transition as a result of DNA base pair distortions due to protamine binding, bringing about the formation of toroidal structure through coil-globule transition. The binding energetics suggested that electrostatic energy, bending energy and hydration energy must play crucial roles in DNA condensation. EtBr intercalation interferes with the protamine-DNA interaction, challenging the distortion of the DNA helix and separation of DNA base pairs by protamine. Thus, EtBr, by competing directly with protamine, resists the phenomenon of DNA condensation. On the contrary, netropsin impedes the DNA condensation by an allosteric mechanism, by resisting the probable DNA major groove bending by protamine. In summary, we demonstrate that drugs with distinct binding modes use different mechanism to interfere with DNA condensation.
Collapse
Affiliation(s)
- Sakshi Gupta
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Neha Tiwari
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Manoj Munde
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
20
|
Delivery of pDNA Polyplexes to Bronchial and Alveolar Epithelial Cells Using a Mesh Nebulizer. Pharm Res 2018; 36:14. [DOI: 10.1007/s11095-018-2542-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 11/07/2018] [Indexed: 12/11/2022]
|
21
|
Design and development of a robust photo-responsive block copolymer framework for tunable nucleic acid delivery and efficient gene silencing. Polym J 2018. [DOI: 10.1038/s41428-018-0077-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
22
|
Arginine homopeptides for plasmid DNA purification using monolithic supports. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1087-1088:149-157. [DOI: 10.1016/j.jchromb.2018.04.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 04/11/2018] [Accepted: 04/15/2018] [Indexed: 12/15/2022]
|
23
|
Danilevich VN, Mulyukin AL, Machulin AV, Sorokin VV, Kozlov SA. Structural variability of DNA-containing Mg-pyrophosphate microparticles: optimized conditions to produce particles with desired size and morphology. J Biomol Struct Dyn 2018; 37:918-930. [PMID: 29457757 DOI: 10.1080/07391102.2018.1442747] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Our previous studies demonstrated the formation of structurally diverse DNA-containing microparticles (DNA MPs) in PCR with Mg-pyrophosphate (MgPPi) as the structure-forming component. These DNA MPs were referred to major structural types: microdisks (2D MPs) with nanometer thickness and 3D MPs with sophisticated morphology and constructed from intersecting disks and their segments. Little is known about factors that influence both the morphology and size of DNA MPs, and the present study was aimed at fulfilling this gap. We showed that the addition of Mn2+ cations to PCR mixtures caused the profound changes in MPs morphology, depending on DNA polymerase used (KlenTaq or Taq). Asymmetric PCR with 20-fold decrease in the concentration of one of two primers facilitated the predominant formation of microdisks with unusual structure. The addition of 1 mM Na-pyrophosphate to PCR mixtures with synthesized DNA and subsequent thermal cycling (10-15 cycles) were optimal to produce microdisks or nanometer 3D particles. Using electron microscopy, we studied also the structure of inorganic micro- and nanoparticles from MgPPi, formed during multiple heating and cooling cycles of a mixture of Mg2+ and Na-pyrophosphate in various regimes. Also, we found the conditions to yield planar (Mg·Mn)PPi nanocrystals (diameter ~100 nm and thickness ~10 nm) which efficiently adsorbed exogenous DNA. These inorganic nanoparticles are promising for DNA delivery in transfection studies. Mechanisms to be involved in structural modifications of MPs and perspectives of their practical application are discussed.
Collapse
Affiliation(s)
- Vasily N Danilevich
- a Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry , Russian Academy of Science , ul. Miklukho-Maklaya 16/10, Moscow 117997 , Russia
| | - Andrey L Mulyukin
- b Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences . 33, bld. 2 Leninsky Ave., Moscow 119071 , Russia
| | - Andrey V Machulin
- c Skryabin Institute of Biochemistry and Physiology of Microorganisms , Russian Academy of Sciences , Pr. Nauki 5, Pushchino 142290 , Russia
| | - Vladimir V Sorokin
- b Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences . 33, bld. 2 Leninsky Ave., Moscow 119071 , Russia
| | - Sergey A Kozlov
- a Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry , Russian Academy of Science , ul. Miklukho-Maklaya 16/10, Moscow 117997 , Russia
| |
Collapse
|
24
|
Zhang W, Zhou Y, Li X, Xu X, Chen Y, Zhu R, Yin L. Macrophage-targeting and reactive oxygen species (ROS)-responsive nanopolyplexes mediate anti-inflammatory siRNA delivery against acute liver failure (ALF). Biomater Sci 2018; 6:1986-1993. [DOI: 10.1039/c8bm00389k] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Macrophage-targeting and ROS-degradable nanopolyplexes were developed to realize efficient TNF-α siRNA delivery toward the treatment of acute liver failure.
Collapse
Affiliation(s)
- Wenxin Zhang
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices
- Institute of Functional Nano and Soft Materials (FUNSOM)
- Collaborative Innovation Center of Suzhou Nano Science and Technology
- Soochow University
- Suzhou 215123
| | - Yang Zhou
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices
- Institute of Functional Nano and Soft Materials (FUNSOM)
- Collaborative Innovation Center of Suzhou Nano Science and Technology
- Soochow University
- Suzhou 215123
| | - Xudong Li
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices
- Institute of Functional Nano and Soft Materials (FUNSOM)
- Collaborative Innovation Center of Suzhou Nano Science and Technology
- Soochow University
- Suzhou 215123
| | - Xin Xu
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices
- Institute of Functional Nano and Soft Materials (FUNSOM)
- Collaborative Innovation Center of Suzhou Nano Science and Technology
- Soochow University
- Suzhou 215123
| | - Yongbing Chen
- Department of Thoracic Surgery
- the Second Affiliated Hospital of Soochow University
- Suzhou 215004
- P.R. China
| | - Rongying Zhu
- Department of Thoracic Surgery
- the Second Affiliated Hospital of Soochow University
- Suzhou 215004
- P.R. China
| | - Lichen Yin
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices
- Institute of Functional Nano and Soft Materials (FUNSOM)
- Collaborative Innovation Center of Suzhou Nano Science and Technology
- Soochow University
- Suzhou 215123
| |
Collapse
|
25
|
Junghänel S, Karczewski S, Bäcker S, Knauer SK, Schmuck C. A Systematic Structure-Activity Study of a New Type of Small Peptidic Transfection Vector Reveals the Importance of a Special Oxo-Anion-Binding Motif for Gene Delivery. Chembiochem 2017; 18:2268-2279. [PMID: 28914486 DOI: 10.1002/cbic.201700433] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Indexed: 12/16/2022]
Abstract
We discovered a new class of artificial peptidic transfection vectors based on an artificial anion-binding motif, the guanidiniocarbonylpyrrole (GCP) cation. This new type of vector is surprisingly smaller than traditional systems, and our previous work suggested that the GCP group was important for promoting critical endosomal escape. We now present here a systematic comparison of similar DNA ligands featuring our GCP oxo-anion-binding motif with DNA ligands only consisting of naturally occurring amino acids. Structure-activity studies showed that the artificial binding motif clearly outperformed natural amino acids such as histidine, lysine, and arginine. It improved the ability to shuttle foreign genetic material into cells, yet successfully mediated endosomal escape. Also, plasmids that were complexed by our artificial ligands were stabilized against cytosolic degradation to some extent. This resulted in the successful expression of plasmid information (comparable to gold standards such as polyethyleneimine). Hence, our study clearly demonstrates the importance of the tailor-made GCP anion-binding site for efficient gene transfection.
Collapse
Affiliation(s)
- Sandra Junghänel
- Institute of Organic Chemistry, University of Duisburg-Essen, Universitätsstrasse 7, 45117, Essen, Germany
| | - Sarah Karczewski
- Institute of Molecular Biology, University of Duisburg-Essen, Universitätsstrasse 7, 45117, Essen, Germany
| | - Sandra Bäcker
- Institute of Molecular Biology, University of Duisburg-Essen, Universitätsstrasse 7, 45117, Essen, Germany
| | - Shirley K Knauer
- Institute of Molecular Biology, University of Duisburg-Essen, Universitätsstrasse 7, 45117, Essen, Germany
| | - Carsten Schmuck
- Institute of Organic Chemistry, University of Duisburg-Essen, Universitätsstrasse 7, 45117, Essen, Germany
| |
Collapse
|
26
|
Yang Z, Li Y, Gao J, Cao Z, Jiang Q, Liu J. pH and redox dual-responsive multifunctional gene delivery with enhanced capability of transporting DNA into the nucleus. Colloids Surf B Biointerfaces 2017; 153:111-122. [DOI: 10.1016/j.colsurfb.2017.02.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 01/25/2017] [Accepted: 02/13/2017] [Indexed: 12/16/2022]
|
27
|
Incorporation of arginine mimetic residue into peptides for recognition of double stranded nucleic acid structure: Binding and aggregation studies. Bioorg Med Chem 2017; 25:1875-1880. [DOI: 10.1016/j.bmc.2017.02.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 01/27/2017] [Accepted: 02/02/2017] [Indexed: 01/22/2023]
|
28
|
Deng Q, Li X, Zhu L, He H, Chen D, Chen Y, Yin L. Serum-resistant, reactive oxygen species (ROS)-potentiated gene delivery in cancer cells mediated by fluorinated, diselenide-crosslinked polyplexes. Biomater Sci 2017; 5:1174-1182. [DOI: 10.1039/c7bm00334j] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Fluorinated, diselenide-crosslinked polyplexes were developed to enable ROS-responsive and serum-resistant gene delivery in cancer cells.
Collapse
Affiliation(s)
- Qiurong Deng
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices
- Institute of Functional Nano and Soft Materials (FUNSOM)
- Soochow University
- Suzhou 215123
- P.R. China
| | - Xudong Li
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices
- Institute of Functional Nano and Soft Materials (FUNSOM)
- Soochow University
- Suzhou 215123
- P.R. China
| | - Lipeng Zhu
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices
- Institute of Functional Nano and Soft Materials (FUNSOM)
- Soochow University
- Suzhou 215123
- P.R. China
| | - Hua He
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices
- Institute of Functional Nano and Soft Materials (FUNSOM)
- Soochow University
- Suzhou 215123
- P.R. China
| | - Donglai Chen
- Department of Thoracic Surgery
- Shanghai Pulmonary Hospital
- Tongji University School of Medicine
- Shanghai
- P.R. China
| | - Yongbing Chen
- Department of Cardiothoracic Surgery
- The Second Affiliated Hospital of Soochow University
- Suzhou 215004
- P.R. China
| | - Lichen Yin
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices
- Institute of Functional Nano and Soft Materials (FUNSOM)
- Soochow University
- Suzhou 215123
- P.R. China
| |
Collapse
|
29
|
Supramolecular host-guest polycationic gene delivery system based on poly(cyclodextrin) and azobenzene-terminated polycations. Colloids Surf B Biointerfaces 2016; 147:25-35. [PMID: 27478960 DOI: 10.1016/j.colsurfb.2016.07.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Revised: 07/08/2016] [Accepted: 07/11/2016] [Indexed: 12/21/2022]
Abstract
This article describes the supramolecular host-guest polycationic gene delivery system based on poly(β-cyclodextrin) (PCD) and azobenzene-terminated polycations. The azobenzene-terminated linear (Az-LPDM) and branched (Az-BPDM) cationic polymers were synthesized by atom transfer radical polymerization (ATRP) of 2-dimethylamino ethyl methacrylate (DMAEMA). The formation and photosensitive behavior of the supramolecular polycations of azobenzene-terminated polycations Az-LPDM and Az-BPDM with PCD were confirmed by UV-vis and NMR analysis. The supramolecular PCD/Az-BPDM/DNA and PCD/Az-LPDM/DNA polyplexes showed smaller size and were less positive than those of their corresponding polyplexes without PCD. Moreover, the UV irradiation may promote release of DNA from the photosensitive supramolecular polyplexes due to dissociation of supramoelcular polyplexes. In vitro experiments revealed that the photosensitive supramolecular polycationic polyplexes (PCD/Az-LPDM/DNA and PCD/Az-BPDM/DNA) exhibited enhancement of cellular uptake, higher transfection efficiency, and lower cytoxicity compared to the azobenzene-terminated polycation/DNA polyplexes in the absence of PCD. Branched polycationic polyplexes showed higher transfection efficiency than its linear polycationic polyplexes. Furthermore, after UV irradiation, the transfection efficiency of photosensitive supramolecular polyplexes was improved resulting from more DNAs delivered and released inside of the cell nuclei. Thus this photoresponsive supramolecular host-guest system containing azobenzene-terminated branched cationic polymers and PCD is a promising gene vector.
Collapse
|
30
|
Kwok A, McCarthy D, Hart SL, Tagalakis AD. Systematic Comparisons of Formulations of Linear Oligolysine Peptides with siRNA and Plasmid DNA. Chem Biol Drug Des 2016; 87:747-63. [PMID: 26684657 PMCID: PMC4991294 DOI: 10.1111/cbdd.12709] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 11/26/2015] [Accepted: 11/27/2015] [Indexed: 01/18/2023]
Abstract
The effects of lysine peptide lengths on DNA and siRNA packaging and delivery were studied using four linear oligolysine peptides with 8 (K8), 16 (K16), 24 (K24) and 32 (K32) lysines. Oligolysine peptides with 16 lysines or longer were effective for stable monodisperse particle formation and optimal transfection efficiency with plasmid DNA (pDNA), but K8 formulations were less stable under anionic heparin challenge and consequently displayed poor transfection efficiency. However, here we show that the oligolysines were not able to package siRNA to form stable complexes, and consequently, siRNA transfection was unsuccessful. These results indicate that the physical structure and length of cationic peptides and their charge ratios are critical parameters for stable particle formation with pDNA and siRNA and that without packaging, delivery and transfection cannot be achieved.
Collapse
Affiliation(s)
- Albert Kwok
- Experimental and Personalised Medicine SectionUCL Institute of Child HealthUniversity College London30 Guilford StreetLondonWC1N 1EHUK
- Present address: Department of Clinical Biochemistry University of CambridgeBox 289, Addenbrooke's HospitalCambridgeCB2 0QQUK
| | - David McCarthy
- UCL School of Pharmacy29‐39 Brunswick SquareLondonWC1N 1AXUK
| | - Stephen L. Hart
- Experimental and Personalised Medicine SectionUCL Institute of Child HealthUniversity College London30 Guilford StreetLondonWC1N 1EHUK
| | - Aristides D. Tagalakis
- Experimental and Personalised Medicine SectionUCL Institute of Child HealthUniversity College London30 Guilford StreetLondonWC1N 1EHUK
| |
Collapse
|
31
|
Zhao L, Zhang K, Bu W, Xu X, Jin H, Chang B, Wang B, Sun Y, Yang B, Zheng C, Sun H. Effective delivery of bone morphogenetic protein 2 gene using chitosan–polyethylenimine nanoparticle to promote bone formation. RSC Adv 2016. [DOI: 10.1039/c5ra24891d] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Treating bone defects is still a challenge in clinical practice.
Collapse
|
32
|
Jiang Q, Zhang Y, Zhuo R, Jiang X. A light and reduction dual sensitive supramolecular self-assembly gene delivery system based on poly(cyclodextrin) and disulfide-containing azobenzene-terminated branched polycations. J Mater Chem B 2016; 4:7731-7740. [DOI: 10.1039/c6tb02248k] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Light and reduction sensitive supramolecular host–guest gene vectors can regulate gene release upon exposure to reduction environments and light radiation inside cells.
Collapse
Affiliation(s)
- Qimin Jiang
- Key Laboratory of Biomedical Polymers of the Ministry of Education & Department of Chemistry
- Wuhan University
- Wuhan 430072
- P. R. China
| | - Yunti Zhang
- Key Laboratory of Biomedical Polymers of the Ministry of Education & Department of Chemistry
- Wuhan University
- Wuhan 430072
- P. R. China
| | - Renxi Zhuo
- Key Laboratory of Biomedical Polymers of the Ministry of Education & Department of Chemistry
- Wuhan University
- Wuhan 430072
- P. R. China
| | - Xulin Jiang
- Key Laboratory of Biomedical Polymers of the Ministry of Education & Department of Chemistry
- Wuhan University
- Wuhan 430072
- P. R. China
| |
Collapse
|
33
|
Danilevich VN, Machulin AV, Sorokin VV, Mulyukin AL. The structure-forming role of magnesium pyrophosphate in the formation of DNA-containing microparticles during PCR. DOKL BIOCHEM BIOPHYS 2015; 463:259-63. [PMID: 26335826 DOI: 10.1134/s1607672915040171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Indexed: 11/22/2022]
Abstract
This work is devoted to studying the mechanisms of formation of DNA-containing microparticles (MPs) during PCR. It was found that pyrophosphate, a byproduct of DNA synthesis, and magnesium cations are required for their formation, as evidenced by the results of biochemical and electron microscopy studies.
Collapse
Affiliation(s)
- V N Danilevich
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, Moscow, 117997, Russia,
| | | | | | | |
Collapse
|
34
|
Danilevich VN, Machulin AV, Lipkin AV, Kulakovskaya TV, Smith SS, Mulyukin AL. New insight into formation of DNA-containing microparticles during PCR: the scaffolding role of magnesium pyrophosphate crystals. J Biomol Struct Dyn 2015; 34:625-39. [PMID: 25891071 DOI: 10.1080/07391102.2015.1040842] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
This work aims to study molecular mechanisms involved in the formation of DNA-containing microparticles and nanoparticles during PCR. Both pyrophosphate and Mg(2+) ions proved to play an important role in the generation of DNA microparticles (MPs) with a unique and sophisticated structure in PCR with Taq polymerase. Thus, the addition of Tli thermostable pyrophosphatase to a PCR mixture inhibited this process and caused the destruction of synthesized DNA MPs. Thermal cycling of Na-pyrophosphate (Na-PPi)- and Mg(2+)-containing mixtures (without DNA polymerase and dNTPs) under the standard PCR regime yielded crystalline oval or lenticular microdisks and 3D MPs composed from magnesium pyrophosphate (Mg-PPi). As shown by scanning electron microscopy (SEM), the produced Mg-PPi microparticles consisted of intersecting disks or their segments. They were morphologically similar but simpler than DNA-containing MPs generated in PCR. The incorporation of dNTPs, primers, or dsDNA into Mg-pyrophosphate particles resulted in the structural diversification of 3D microparticles. Thus, the unusual and complex structure of DNA MPs generated in PCR is governed by the unique feature of Mg-pyrophosphate to form supramolecular particles during thermal cycling. We hypothesize the Mg-pyrophosphate particles that are produced during thermal cycling serve as scaffolds for amplicon DNA condensation.
Collapse
Affiliation(s)
- Vasily N Danilevich
- a Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry , Russian Academy of Science , ul. Miklukho-Maklaya 16/10, Moscow 117997 , Russia
| | - Andrey V Machulin
- b Skryabin Institute of Biochemistry and Physiology of Microorganisms , Russian Academy of Sciences , Pr. Nauki 5, 142290 Pushchino , Moscow Region, Russia
| | - Alexey V Lipkin
- a Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry , Russian Academy of Science , ul. Miklukho-Maklaya 16/10, Moscow 117997 , Russia
| | - Tatyana V Kulakovskaya
- b Skryabin Institute of Biochemistry and Physiology of Microorganisms , Russian Academy of Sciences , Pr. Nauki 5, 142290 Pushchino , Moscow Region, Russia
| | - Steven S Smith
- c Beckman Research Institute and Division of Urology and Urologic Oncology , City of Hope National Medical Center , 1500 E. Duarte Rd., Duarte , CA 91010 , USA
| | - Andrey L Mulyukin
- d Winogradsky Institute of Microbiology , Russian Academy of Science , Pr. 60-letiya Oktyabrya 7/2, Moscow 117312 , Russia
| |
Collapse
|
35
|
Yao C, Tai Z, Wang X, Liu J, Zhu Q, Wu X, Zhang L, Zhang W, Tian J, Gao Y, Gao S. Reduction-responsive cross-linked stearyl peptide for effective delivery of plasmid DNA. Int J Nanomedicine 2015; 10:3403-16. [PMID: 26056440 PMCID: PMC4431505 DOI: 10.2147/ijn.s82413] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Low efficiency and significant toxicity are the main obstacles to successful gene delivery. We have developed a cationic reduction-responsive vector based on a disulfide cross-linked stearylated polyarginine peptide modified with histidine (C-SHR) for DNA delivery. The structure of the C-SHR was characterized, and the in vitro and in vivo transfection efficiency and cytotoxicity of C-SHR/plasmid DNA complexes were examined. Compared with non-cross-linked stearylated polyarginine peptide (SHR), C-SHR increased the intracellular uptake and dissociation behavior of the complexes. In addition, the gene transfection efficiency of C-SHR/plasmid DNA complexes in HEK293 and HeLa cells was improved and was comparable with that of bPEI-25K/plasmid DNA complexes, and the cytotoxicity of C-SHR was significantly less than that of bPEI-25K. Importantly, the in vivo gene transfection efficiency of C-SHR/plasmid DNA complexes was five fold higher than that of SHR/plasmid DNA complexes, suggesting that C-SHR is an efficient non-viral vector for DNA delivery.
Collapse
Affiliation(s)
- Chong Yao
- Department of Pharmaceutics, Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Zongguang Tai
- Department of Pharmaceutics, Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Xiaoyu Wang
- Department of Pharmaceutics, Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Jiyong Liu
- Department of Pharmaceutics, Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Quangang Zhu
- Department of Pharmaceutics, Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China ; Department of Pharmacy, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Xin Wu
- Department of Pharmaceutics, Shanghai First People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Lijuan Zhang
- Department of Pharmaceutics, Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Wei Zhang
- Department of Pharmaceutics, Shanghai Pulmonary Hospital, Shanghai Tongji University, Shanghai, People's Republic of China
| | - Jing Tian
- Department of Pharmaceutics, Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Yuan Gao
- Department of Pharmaceutics, Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Shen Gao
- Department of Pharmaceutics, Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China
| |
Collapse
|
36
|
Foster AA, Greco CT, Green MD, Epps TH, Sullivan MO. Light-mediated activation of siRNA Release in diblock copolymer assemblies for controlled gene silencing. Adv Healthc Mater 2015; 4:760-70. [PMID: 25530259 PMCID: PMC4429132 DOI: 10.1002/adhm.201400671] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 11/24/2014] [Indexed: 11/08/2022]
Abstract
Controllable release is particularly important for the delivery of small interfering RNA (siRNA), as siRNAs have a high susceptibility to enzymatic degradation if release is premature, yet lack silencing activity if they remain inaccessible within the cytoplasm. To overcome these hurdles, novel and tailorable mPEG-b-poly(5-(3-(amino)propoxy)-2-nitrobenzyl methacrylate) (mPEG-b-P(APNBMA)) diblock copolymers containing light-sensitive o-nitrobenzyl moieties and pendant amines are employed to provide both efficient siRNA binding, via electrostatic and hydrophobic interactions, as well as triggered charge reversal and nucleic acid release. In particular, siRNA/mPEG-b-P(APNBMA)23.6 polyplexes show minimal aggregation in physiological salt and serum, and enhanced resistance to polyanion-induced unpackaging compared to polyethylenimine preparations. Cellular delivery of siRNA/mPEG-b-P(APNBMA)23.6 polyplexes reveals greater than 80% cellular transfection, as well as rapid and widespread cytoplasmic distribution. Additionally, UV irradiation indicates ≈70% reduction in targeted gene expression following siRNA/mPEG-b-P(APNBMA)23.6 polyplex treatment, as compared to 0% reduction in polyplex-treated cells without UV irradiation, and only ≈30% reduction for Lipofectamine-treated cells. The results here highlight the potential of these light-sensitive copolymers with a well-defined on/off switch for applications including cellular patterning for guided cell growth and extension, and cellular microarrays for exploring protein and drug interactions that require enhanced spatiotemporal control of gene activation.
Collapse
Affiliation(s)
- Abbygail A. Foster
- Department of Chemical and Biomolecular Engineering, Newark, DE 19716, USA
| | - Chad T. Greco
- Department of Chemical and Biomolecular Engineering, Newark, DE 19716, USA
| | - Matthew D. Green
- Department of Chemical and Biomolecular Engineering, Newark, DE 19716, USA
| | - Thomas H. Epps
- Department of Chemical and Biomolecular Engineering, Newark, DE 19716, USA
| | | |
Collapse
|
37
|
Ageitos JM, Chuah JA, Numata K. Chemo-Enzymatic Synthesis of Linear and Branched Cationic Peptides: Evaluation as Gene Carriers. Macromol Biosci 2015; 15:990-1003. [PMID: 25828913 DOI: 10.1002/mabi.201400487] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 01/30/2015] [Indexed: 11/08/2022]
Abstract
Cationic peptides such as poly(l-lysine) and poly(l-arginine) are important tools for gene delivery since they can efficiently condense DNA. It is difficult to produce cationic peptides by recombinant bacterial expression, and its chemical synthesis requires several steps of protection/deprotection and toxic agents. Chemo-enzymatic synthesis of peptides is a clean chemistry technique that allows fast production under mild conditions. With the aim to simplify the production of cationic peptides, the present work develops an enzymatic reaction which enables the synthesis of linear cationic peptides and, through terminal functionalization with tris(2-aminoethyl)amine, of branched cationic peptide conjugates, which show improved DNA complex formation. Cytotoxicity and transfection efficiency of all the chemo-enzymatically synthesized cationic peptides are evaluated for their novel use as gene delivery agents. Synthesized peptides exhibit transfection efficiencies comparable to previously reported monodisperse peptides. Chemo-enzymatic synthesis opens the door for efficient production of cationic peptides for their use as gene delivery carriers.
Collapse
Affiliation(s)
- Jose Manuel Ageitos
- Enzyme Research Team, Biomass Engineering Program Cooperation Division, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Jo-Ann Chuah
- Enzyme Research Team, Biomass Engineering Program Cooperation Division, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Keiji Numata
- Enzyme Research Team, Biomass Engineering Program Cooperation Division, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan.
| |
Collapse
|
38
|
Avila LA, Aps LRMM, Sukthankar P, Ploscariu N, Gudlur S, Šimo L, Szoszkiewicz R, Park Y, Lee SY, Iwamoto T, Ferreira LCS, Tomich JM. Branched Amphiphilic Cationic Oligopeptides Form Peptiplexes with DNA: A Study of Their Biophysical Properties and Transfection Efficiency. Mol Pharm 2015; 12:706-15. [DOI: 10.1021/mp500524s] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- L. Adriana Avila
- Department of Biochemistry & Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506-3902, United States
| | - Luana R. M. M. Aps
- Institute
of Biomedical Sciences, University of São Paulo, São Paulo, São Paulo 05508-900, Brazil
| | - Pinakin Sukthankar
- Department of Biochemistry & Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506-3902, United States
| | - Nicoleta Ploscariu
- Department
of Physics, Kansas State University, Manhattan, Kansas 66506-2601, United States
| | - Sushanth Gudlur
- Department of Biochemistry & Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506-3902, United States
| | - Ladislav Šimo
- Department
of Entomology, Kansas State University, Manhattan, Kansas 66506-4004, United States
| | - Robert Szoszkiewicz
- Department
of Physics, Kansas State University, Manhattan, Kansas 66506-2601, United States
| | - Yoonseong Park
- Department
of Entomology, Kansas State University, Manhattan, Kansas 66506-4004, United States
| | - Stella Y. Lee
- Division
of Biology, Kansas State University, Manhattan, Kansas 66506-3902, United States
| | - Takeo Iwamoto
- Division
of Biochemistry, Core Research Facilities, Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Luis C. S. Ferreira
- Institute
of Biomedical Sciences, University of São Paulo, São Paulo, São Paulo 05508-900, Brazil
| | - John M. Tomich
- Department of Biochemistry & Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506-3902, United States
| |
Collapse
|
39
|
Bartolami E, Bessin Y, Bettache N, Gary-Bobo M, Garcia M, Dumy P, Ulrich S. Multivalent DNA recognition by self-assembled clusters: deciphering structural effects by fragments screening and evaluation as siRNA vectors. Org Biomol Chem 2015; 13:9427-38. [DOI: 10.1039/c5ob01404b] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fragment self-assembly was used for producing clusters with a variety of scaffolds and ligands, and an effective siRNA vector was identified.
Collapse
Affiliation(s)
- Eline Bartolami
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247
- CNRS
- Université Montpellier
- ENSCM
| | - Yannick Bessin
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247
- CNRS
- Université Montpellier
- ENSCM
| | - Nadir Bettache
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247
- CNRS
- Université Montpellier
- ENSCM
| | - Magali Gary-Bobo
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247
- CNRS
- Université Montpellier
- ENSCM
| | - Marcel Garcia
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247
- CNRS
- Université Montpellier
- ENSCM
| | - Pascal Dumy
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247
- CNRS
- Université Montpellier
- ENSCM
| | - Sébastien Ulrich
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247
- CNRS
- Université Montpellier
- ENSCM
| |
Collapse
|
40
|
Feng L, Xie A, Hu X, Liu Y, Zhang J, Li S, Dong W. A releasable disulfide carbonate linker for polyethyleneimine (PEI)-based gene vectors. NEW J CHEM 2014. [DOI: 10.1039/c4nj00699b] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
41
|
Mann A, Shukla V, Khanduri R, Dabral S, Singh H, Ganguli M. Linear short histidine and cysteine modified arginine peptides constitute a potential class of DNA delivery agents. Mol Pharm 2014; 11:683-96. [PMID: 24476132 DOI: 10.1021/mp400353n] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The success of gene therapy relies on the development of safe and efficient multifunctional carriers of nucleic acids that can overcome extra- and intracellular barriers, protect the nucleic acid and mediate its release at the desired site allowing gene expression. Peptides bear unique properties that are indispensable for any carrier, e.g., they can mediate DNA condensation, cellular targeting, membrane translocation, endosomal escape and nuclear localization. In an effort to design a multifunctional peptide, we have modified an arginine homopeptide R16 by replacement of seven arginines with histidines and addition of one cysteine at each end respectively to impart endosomal escape property while maintaining the DNA condensation and release balance. Addition of histidines imparts endosomal escape property to arginine homopeptide, but their arrangement with respect to arginines is more critical in controlling DNA condensation, release and transfection efficiency. Intriguingly, R5H7R4 peptide where charge/arginine is distributed in blocks is preferred for strong condensation while more efficient transfection is seen in the variants R9H7 and H4R9H3, which exhibit weak condensation and strong release. Addition of cysteine to each of these peptides further fine-tuned the condensation-release balance without application of any oxidative procedure unlike other similar systems reported in the literature. This resulted in a large increase in the transfection efficiency in all of the histidine modified peptides irrespective of the arginine and histidine positions. This series of multifunctional peptides shows comparable transfection efficiency to commercially available transfection reagent Lipofectamine 2000 at low charge ratios, with simple preparative procedure and exhibits much less toxicity.
Collapse
Affiliation(s)
- Anita Mann
- CSIR-Institute of Genomics and Integrative Biology , Mall Road (near Jubilee Hall), Delhi 110 007, India
| | | | | | | | | | | |
Collapse
|
42
|
Bagnacani V, Franceschi V, Bassi M, Lomazzi M, Donofrio G, Sansone F, Casnati A, Ungaro R. Arginine clustering on calix[4]arene macrocycles for improved cell penetration and DNA delivery. Nat Commun 2013; 4:1721. [PMID: 23591888 PMCID: PMC3644092 DOI: 10.1038/ncomms2721] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 03/08/2013] [Indexed: 12/23/2022] Open
Abstract
Cell-penetrating peptides are widely used as molecular transporters for the internalization inside cells of various cargo, including proteins and nucleic acids. A special role is played by arginine-rich peptides and oligoarginines covalently linked or simply mixed with the cargo. Here we report cell-penetrating agents in which arginine units are clustered on a macrocyclic scaffold. Instead of using long peptides, four single arginine units were covalently attached to either the upper or lower rim of a calix[4]arene, kept in the cone conformation building a 'parallel' cyclic array. These new macrocyclic carriers show high efficiency in DNA delivery and transfection in a variety of cell lines.
Collapse
|
43
|
Govan JM, Uprety R, Thomas M, Lusic H, Lively MO, Deiters A. Cellular delivery and photochemical activation of antisense agents through a nucleobase caging strategy. ACS Chem Biol 2013; 8:2272-82. [PMID: 23915424 DOI: 10.1021/cb400293e] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Antisense oligonucleotides are powerful tools to regulate gene expression in cells and model organisms. However, a transfection or microinjection is typically needed for efficient delivery of the antisense agent. We report the conjugation of multiple HIV TAT peptides to a hairpin-protected antisense agent through a light-cleavable nucleobase caging group. This conjugation allows for the facile delivery of the antisense agent without a transfection reagent, and photochemical activation offers precise control over gene expression. The developed approach is highly modular, as demonstrated by the conjugation of folic acid to the caged antisense agent. This enabled targeted cell delivery through cell-surface folate receptors followed by photochemical triggering of antisense activity. Importantly, the presented strategy delivers native oligonucleotides after light-activation, devoid of any delivery functionalities or modifications that could otherwise impair their antisense activity.
Collapse
Affiliation(s)
- Jeane M. Govan
- North Carolina State University, Department of Chemistry, Raleigh,
North Carolina 27695, United States
| | - Rajendra Uprety
- North Carolina State University, Department of Chemistry, Raleigh,
North Carolina 27695, United States
| | - Meryl Thomas
- North Carolina State University, Department of Chemistry, Raleigh,
North Carolina 27695, United States
| | - Hrvoje Lusic
- North Carolina State University, Department of Chemistry, Raleigh,
North Carolina 27695, United States
| | - Mark O. Lively
- Wake Forest University School of Medicine, Center for Structural Biology, Winston-Salem,
North Carolina 27157, United States
| | - Alexander Deiters
- North Carolina State University, Department of Chemistry, Raleigh,
North Carolina 27695, United States
| |
Collapse
|
44
|
Zhou T, Llizo A, Wang C, Xu G, Yang Y. Nanostructure-induced DNA condensation. NANOSCALE 2013; 5:8288-8306. [PMID: 23838744 DOI: 10.1039/c3nr01630g] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The control of the DNA condensation process is essential for compaction of DNA in chromatin, as well as for biological applications such as nonviral gene therapy. This review endeavours to reflect the progress of investigations on DNA condensation effects of nanostructure-based condensing agents (such as nanoparticles, nanotubes, cationic polymer and peptide agents) observed by using atomic force microscopy (AFM) and other techniques. The environmental effects on structural characteristics of nanostructure-induced DNA condensates are also discussed.
Collapse
Affiliation(s)
- Ting Zhou
- National Center for Nanoscience and Technology (NCNST), Beijing 100190, PR China
| | | | | | | | | |
Collapse
|
45
|
Patel P, Hanawa E, Yadav R, Samuni U, Marzabadi C, Sabatino D. Synthesis, DNA binding and anti-leukemic activity of an aminoacyl nucleolipid. Bioorg Med Chem Lett 2013; 23:5086-90. [DOI: 10.1016/j.bmcl.2013.07.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2013] [Revised: 07/06/2013] [Accepted: 07/16/2013] [Indexed: 11/17/2022]
|
46
|
Vijayanathan V, Agostinelli E, Thomas T, Thomas TJ. Innovative approaches to the use of polyamines for DNA nanoparticle preparation for gene therapy. Amino Acids 2013; 46:499-509. [DOI: 10.1007/s00726-013-1549-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 06/26/2013] [Indexed: 12/19/2022]
|
47
|
Hu Y, Haynes MT, Wang Y, Liu F, Huang L. A highly efficient synthetic vector: nonhydrodynamic delivery of DNA to hepatocyte nuclei in vivo. ACS NANO 2013; 7:5376-84. [PMID: 23647441 PMCID: PMC3718078 DOI: 10.1021/nn4012384] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Multifunctional membrane-core nanoparticles, composed of calcium phosphate cores, arginine-rich peptides, cationic and PEGylated lipid membranes, and galactose targeting ligands, have been developed as synthetic vectors for efficient nuclear delivery of plasmid DNA and subsequent gene expression in hepatocytes in vivo. Targeted particles exhibited rapid and extensive hepatic accumulation and were predominantly internalized by hepatocytes, while the inclusion of such peptides in LCP was sufficient to elicit high degrees of nuclear translocation of plasmid DNA. Monocyclic CR8C significantly enhanced in vivo gene expression over 10-fold more than linear CR8C, likely due to a release-favoring mechanism of the DNA/peptide complex. Though 100-fold lower in activity than that achieved via hydrodynamic injection, this formulation presents as a much less invasive alternative. To our knowledge, this is the most effective synthetic vector for liver gene transfer.
Collapse
Affiliation(s)
- Yunxia Hu
- The Center for Nanotechnology in Drug Delivery, Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill NC 27599, USA
- Correspondence: Yunxia Hu,
| | - Matthew T. Haynes
- The Center for Nanotechnology in Drug Delivery, Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill NC 27599, USA
| | - Yuhua Wang
- The Center for Nanotechnology in Drug Delivery, Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill NC 27599, USA
| | - Feng Liu
- The Center for Nanotechnology in Drug Delivery, Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill NC 27599, USA
| | - Leaf Huang
- The Center for Nanotechnology in Drug Delivery, Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill NC 27599, USA
- Correspondence: Leaf Huang,
| |
Collapse
|
48
|
Self-assembled nanoparticles based on modified cationic dipeptides and DNA: novel systems for gene delivery. J Nanobiotechnology 2013; 11:18. [PMID: 23800286 PMCID: PMC3707807 DOI: 10.1186/1477-3155-11-18] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 06/14/2013] [Indexed: 01/02/2023] Open
Abstract
Background Gene therapy is most effective when delivery is both efficient and safe. However, it has often proven difficult to find a balance between efficiency and safety in case of viral or polymeric vectors for gene therapy. Peptide based delivery systems may be attractive alternatives but their relative instability to proteolysis is a major concern in realizing their potential application in biomedical sciences. In this work we report gene delivery potential of nanoparticles (Nps) synthesized from cationic dipeptides containing a non-protein amino acid α, β-dehydrophenylalanine (∆Phe) residue. Methods Dipeptides were synthesized using solution phase peptide synthesis method. Nps were formed using self-assembly. Nps were characterized using light scattering, electron microscopy. Transfection efficiency was tested in hepatocellular carcinoma (HuH 7) cells. Results The cationic dipeptides condensed plasmid DNA into discrete vesicular nanostructures. Dipeptide Nps are non-cytotoxic, protected the condensed DNAs from enzymatic degradation and ferried them successfully inside different types of cells. GFP encoding plasmid DNA loaded dipeptide Nps showed positive transfection and gene expression in HuH 7 cells. Conclusions The cationic dipeptide Nps can successfully deliver DNA without exerting any cytotoxic effect. Owing to their simple dipeptide origin, ease of synthesis, enhanced enzymatic stability as well unmatched biocompatibility, these could be successfully developed as vehicles for effective gene therapy.
Collapse
|
49
|
Sharma R, Shivpuri S, Anand A, Kulshreshtha A, Ganguli M. Insight into the role of physicochemical parameters in a novel series of amphipathic peptides for efficient DNA delivery. Mol Pharm 2013; 10:2588-600. [PMID: 23725377 DOI: 10.1021/mp400032q] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Amphipathic peptides constitute a class of molecules with the potential to develop as efficient and safer alternatives to viral and other nonviral vectors for intracellular delivery of therapeutics. These peptides can be useful for nucleic acid delivery and hence promise to have pharmaceutical application, particularly in gene therapy. In order to design novel amphipathic peptides and improve their efficiency of therapeutic cargo delivery, one needs to understand the role of the physicochemical properties of the peptide. There are very few reports in the literature where the physicochemical properties of the peptide have been correlated with efficiency of plasmid DNA delivery. In the present work we hunted out a naturally occurring amphipathic peptide termed Mgpe-1 (derived from HUMAN Protein phosphatase 1E) as a possible novel DNA delivery agent. We systematically altered the physicochemical parameters of this peptide to further enhance its DNA delivery efficiency. We changed its amphipathicity (from secondary to primary), the total charge (from +6 to +9), hydrophobicity, and the amino acid composition (lysine and serines to arginine; substitution of tryptophan) and studied which of these alterations affect DNA delivery efficiency. Our results showed that although Mgpe-1 exhibited very strong cellular uptake, its plasmid DNA delivery efficiency was poor. The presence of nine arginines improved the DNA delivery efficiency, and the effect was observed in both the primary and the secondary amphipathic variants. We further observed that the presence of tryptophan was important but not essential and the effect of its removal was stronger in the case of the secondary amphipathic peptide. However, increase in total hydrophobicity of the peptide led to a fall in transfection efficiency in the primary amphipathic peptide whereas the secondary amphipathic peptide having the same chemical composition was almost unaffected by this change. The primary amphipathic peptides with high positive charge and low hydrophobicity formed colloidally stable polyplexes with DNA and avoided a major impediment in DNA delivery, namely, the aggregation of polyplexes and cytotoxicity. The secondary amphipathic variants by virtue of the positional arrangement of the amino acids led to formation of polyplexes with partly hydrophilic surfaces which prevented aggregation and controlled particle size irrespective of the hydrophobicity. Two variants in the series Mgpe-3 and Mgpe-4 having nine positive charges with less hydrophobicity showed high transfection efficiency in multiple cell lines along with serum stability and much less cytotoxicity and promise to be novel and efficient DNA delivery vectors.
Collapse
Affiliation(s)
- Rajpal Sharma
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi 110 007, India
| | | | | | | | | |
Collapse
|
50
|
Different roles of cell surface and exogenous glycosaminoglycans in controlling gene delivery by arginine-rich peptides with varied distribution of arginines. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:1484-93. [DOI: 10.1016/j.bbamem.2013.02.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 12/27/2012] [Accepted: 02/19/2013] [Indexed: 11/19/2022]
|