1
|
Tram NDT, Xu J, Chan KH, Rajamani L, Ee PLR. Bacterial clustering biomaterials as anti-infective therapies. Biomaterials 2025; 316:123017. [PMID: 39708775 DOI: 10.1016/j.biomaterials.2024.123017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/23/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024]
Abstract
In Nature, bacterial clustering by host-released peptides or nucleic acids is an evolutionarily conserved immune defense strategy employed to prevent adhesion of pathogenic microbes, which is prerequisite for most infections. Synthetic anti-adhesion strategies present as non-lethal means of targeting bacteria and may potentially be used to avoid resistance against antimicrobial therapies. From bacteria-agglutinating biomolecules discovered in nature to synthetic designs involving peptides, cationic polymers and nanoparticles, the modes of actions appear broad and unconsolidated. Herein, we present a critical review and update of the state-of-the-art in synthetic bacteria-clustering designs with proposition of a more streamlined nomenclature and classification. Overall, this review aims to consolidate the conceptual framework in the field of bacterial clustering and highlight its potentials as an avenue for discovering novel antibacterial biomaterials.
Collapse
Affiliation(s)
- Nhan Dai Thien Tram
- Department of Pharmacy and Pharmaceutical Sciences, National University of Singapore, 18 Science Drive 4, Singapore, 117559, Singapore
| | - Jian Xu
- Department of Pharmacy and Pharmaceutical Sciences, National University of Singapore, 18 Science Drive 4, Singapore, 117559, Singapore
| | - Kiat Hwa Chan
- Division of Science, Yale-NUS College, 16 College Avenue West, Singapore, 138527, Singapore; NUS College, National University of Singapore, 18 College Avenue East, Singapore, 138593, Singapore
| | - Lakshminarayanan Rajamani
- Department of Pharmacy and Pharmaceutical Sciences, National University of Singapore, 18 Science Drive 4, Singapore, 117559, Singapore; Ocular Infections and Anti-Microbials Research Group, Singapore Eye Research Institute, Singapore, 169856, Singapore; Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Graduate Medical School, Singapore, 169857, Singapore
| | - Pui Lai Rachel Ee
- Department of Pharmacy and Pharmaceutical Sciences, National University of Singapore, 18 Science Drive 4, Singapore, 117559, Singapore.
| |
Collapse
|
2
|
Wang S, Ren Y, Wang Z, Jiang X, Xu S, Zhang X, Zhao S, Zalloum WA, Liu X, Zhan P. The current progress in the use of boron as a platform for novel antiviral drug design. Expert Opin Drug Discov 2022; 17:1329-1340. [PMID: 36448326 DOI: 10.1080/17460441.2023.2153829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
INTRODUCTION Boron has attracted extensive interest due to several FDA-approved boron-containing drugs and other pharmacological agents in clinical trials. As a semimetal, it has peculiar biochemical characteristics which could be utilized in designing novel drugs against drug-resistant viruses. Emerging and reemerging viral pandemics are major threats to human health. Accordingly, we aim to comprehensively review the current status of antiviral boron-containing compounds. AREAS COVERED This review focuses on the utilization of boron to design molecules against viruses from two perspectives: (i) single boron atom-containing compounds acting on miscellaneous viral targets and (ii) boron clusters. The peculiar properties of antiviral boron-containing compounds and their diverse binding modes with viral targets are described in detail in this review. EXPERT OPINION Compounds bearing boronic acid can interact with viral targets by forming covalent or robust hydrogen bonds. This feature is valuable for combating resistant viruses. Furthermore, boron clusters can form dihydrogen bonds and bear features such as three-dimensional aromaticity, hydrophobicity, and biological stability. All these features demonstrated boron as a probable essential element with immense potential for drug design.
Collapse
Affiliation(s)
- Shuo Wang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, PR China
| | - Yujie Ren
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, PR China
| | - Zhao Wang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, PR China
| | - Xiangyi Jiang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, PR China
| | - Shujing Xu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, PR China
| | - Xujie Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, PR China
| | - Shujie Zhao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, PR China
| | - Waleed A Zalloum
- Department of Pharmacy, Faculty of Health Science, American University of Madaba, P.O Box 2882 11821, Amman, Jordan
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, PR China
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, PR China
| |
Collapse
|
3
|
Akinjole O, Honaryar H, Coulibaly FS, Niroobakhsh Z, Youan BBC. Rheological analysis of a novel phenylboronic acid-closomer gel. Int J Pharm 2022; 626:122070. [PMID: 36041591 DOI: 10.1016/j.ijpharm.2022.122070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 12/30/2022]
Abstract
This study aims to characterize the rheological behavior of a novel phenylboronic acid (PBA)-based closomer nanoconjugate (Closogel) with potential application in pharmaceutical formulation. PBA was used as a cross-linking agent and model (antiviral) drug. The PBA loaded Closogel chemical structure was analyzed by boron (11B) NMR and Fourier transform infrared (FTIR) spectroscopy. The Closogel and control hydroxyethyl cellulose (HEC) gel were analyzed under oscillatory and continuous shear rheometry followed by mathematical modeling to characterize the gel flow behavior. The chemical analysis confirmed the existence of characteristic borate esters peaks and Boron chemical shifts within Closogel spectra. Due to its more flexible molecular structure, undiluted Closogel exhibited lower, yield stress, viscosity and relaxation time (30 Pa &163 Pa.s & 0.21 s vs 45 Pa &301 Pa.s & 0.39 s for HEC). Both Closogel and HEC gels exhibited a thixotropic behavior. The plastic undiluted and pseudoplastic 2.5 % w/v aqueous Closogels were more viscous than elastic (tan (δ) > 1) in the linear viscoelastic range. The Herschel-Bulkley model showed a significant fitting to all experimental data (R2 > 0.95). The 0.25 % w/v aqueous Closogel nearly exhibited a Newtonian behavior with a flow index of 0.93. These data suggest that PBA loaded Closomer-based gels have similar rheological behavior, with lower complex modulus than that of HEC gels, and they can be a promising platform used for delivery of topical antiviral or other bioactive agents.
Collapse
Affiliation(s)
- Omowumi Akinjole
- Laboratory of Future Nanomedicines and Theoretical Chronopharmaceutics, Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri - Kansas City, 2464 Charlotte, Kansas City 64108, MO, USA.
| | - Houman Honaryar
- School of Computing and Engineering, University of Missouri - Kansas City, 5100 Rockhill Road, Kansas City 64110, MO, USA.
| | - Fohona S Coulibaly
- Laboratory of Future Nanomedicines and Theoretical Chronopharmaceutics, Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri - Kansas City, 2464 Charlotte, Kansas City 64108, MO, USA.
| | - Zahra Niroobakhsh
- School of Computing and Engineering, University of Missouri - Kansas City, 5100 Rockhill Road, Kansas City 64110, MO, USA.
| | - Bi-Botti C Youan
- Laboratory of Future Nanomedicines and Theoretical Chronopharmaceutics, Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri - Kansas City, 2464 Charlotte, Kansas City 64108, MO, USA.
| |
Collapse
|
4
|
Saad AA. Targeting cancer-associated glycans as a therapeutic strategy in leukemia. ALL LIFE 2022. [DOI: 10.1080/26895293.2022.2049901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Ashraf Abdullah Saad
- Unit of Pediatric Hematologic Oncology and BMT, Sultan Qaboos University Hospital, Muscat, Oman
| |
Collapse
|
5
|
Dhawan B, Akhter G, Hamid H, Kesharwani P, Alam MS. Benzoxaboroles: New emerging and versatile scaffold with a plethora of pharmacological activities. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132057] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
6
|
Zhang Y, Cheng Y, Yu Y, Li J, Hu Y, Gao Y, Huang S, Wang W, Zhang X. A Virus-like-inspired Nanoparticles Facilitates Bacterial Internalization for Enhanced Eradication of Drug-resistant Pathogen. NEW J CHEM 2022. [DOI: 10.1039/d2nj01868c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The emergence and rapid spread of bacterial resistance pose an extremely serious threat to treat infections. Inspired that the spiny surface structure of virus plays an important role in mediating...
Collapse
|
7
|
Borjihan Q, Wu H, Dong A, Gao H, Yang Y. AIEgens for Bacterial Imaging and Ablation. Adv Healthc Mater 2021; 10:e2100877. [PMID: 34342176 DOI: 10.1002/adhm.202100877] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/04/2021] [Indexed: 12/15/2022]
Abstract
Accurate and sensitive diagnosis of pathogenic bacterial infection is a fundamental first step for correct bacteria management, helping to avoid the development of drug-resistant bacteria caused by the inappropriate use and overuse of antibiotics. Fluorescence probes as a promising visual tool can help identify pathogens rapidly and reliably. However, rigidly structured traditional fluorescence probes generally suffer from the drawback of aggregation-caused quenching (ACQ) effect, which greatly undermines their advantages with respect to sensitivity. Luminogens with aggregation-induced emission properties, namely AIEgens, can overcome the ACQ effect and certain AIEgen-based materials are capable of generating reactive oxygen species (ROS) in the aggregate states. Hence, they have become powerful tools for imaging and killing bacteria. This review summarizes the recent advances in AIEgens for the diagnosis and treatment of pathogen infections. Special attention has been paid to the molecular design, the application in bacterial imaging and ablation in vitro and in vivo, and the biocompatibility of AIEgens. Finally, the challenges and prospects are discussed in terms of using AIEgens to advance precision therapies for pathogen infections.
Collapse
Affiliation(s)
- Qinggele Borjihan
- College of Chemistry and Chemical Engineering Engineering Research Center of Dairy Quality and Safety Control Technology Ministry of Education Inner Mongolia University Hohhot 010021 P. R. China
| | - Haixia Wu
- College of Chemistry and Chemical Engineering Engineering Research Center of Dairy Quality and Safety Control Technology Ministry of Education Inner Mongolia University Hohhot 010021 P. R. China
| | - Alideertu Dong
- College of Chemistry and Chemical Engineering Engineering Research Center of Dairy Quality and Safety Control Technology Ministry of Education Inner Mongolia University Hohhot 010021 P. R. China
| | - Hui Gao
- State Key Laboratory of Separation Membranes and Membrane Processes School of Materials Science and Engineering Tiangong University Tianjin 300387 P. R. China
| | - Ying‐Wei Yang
- International Joint Research Laboratory of Nano‐Micro Architecture Chemistry College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| |
Collapse
|
8
|
Kuroki A, Tay J, Lee GH, Yang YY. Broad-Spectrum Antiviral Peptides and Polymers. Adv Healthc Mater 2021; 10:e2101113. [PMID: 34599850 DOI: 10.1002/adhm.202101113] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/13/2021] [Indexed: 12/18/2022]
Abstract
As the human cost of the pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is still being witnessed worldwide, the development of broad-spectrum antiviral agents against emerging and re-emerging viruses is seen as a necessity to hamper the spread of infections. Various targets during the viral life-cycle can be considered to inhibit viral infection, from viral attachment to viral fusion or replication. Macromolecules represent a particularly attractive class of therapeutics due to their multivalency and versatility. Although several antiviral macromolecules hold great promise in clinical applications, the emergence of resistance after prolonged exposure urges the need for improved solutions. In the present article, the recent advancement in the discovery of antiviral peptides and polymers with diverse structural features and antiviral mechanisms is reviewed. Future perspectives, such as, the development of virucidal peptides/polymers and their coatings against SARS-CoV-2 infection, standardization of antiviral testing protocols, and use of artificial intelligence or machine learning as a tool to accelerate the discovery of antiviral macromolecules, are discussed.
Collapse
Affiliation(s)
- Agnès Kuroki
- Yong Loo Lin School of Medicine National University of Singapore Singapore 117597 Singapore
- Institute of Bioengineering and Bioimaging 31 Biopolis Ways, The Nanos Singapore 138669 Singapore
| | - Joyce Tay
- Institute of Bioengineering and Bioimaging 31 Biopolis Ways, The Nanos Singapore 138669 Singapore
| | - Guan Huei Lee
- Yong Loo Lin School of Medicine National University of Singapore Singapore 117597 Singapore
| | - Yi Yan Yang
- Institute of Bioengineering and Bioimaging 31 Biopolis Ways, The Nanos Singapore 138669 Singapore
| |
Collapse
|
9
|
Fujimoto K, Yamawaki-Ogata A, Narita Y, Kotsuchibashi Y. Fabrication of Cationic Poly(vinyl alcohol) Films Cross-Linked Using Copolymers Containing Quaternary Ammonium Cations, Benzoxaborole, and Carboxy Groups. ACS OMEGA 2021; 6:17531-17544. [PMID: 34278139 PMCID: PMC8280637 DOI: 10.1021/acsomega.1c02013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/16/2021] [Indexed: 05/26/2023]
Abstract
Water-insoluble cationic poly(vinyl alcohol) (PVA) films were fabricated using a mixed aqueous solution of PVA and poly([2-(methacryloyloxy)ethyl]trimethylammonium chloride (METAC)-co-methacrylic acid (MAAc)-co-5-methacrylamido-1,2-benzoxaborole (MAAmBO)) copolymer (3D). The surface of the PVA film is typically negatively charged, and simple fabrication methods for water-insoluble PVA films with cationic surface charges are required to expand their application fields. METAC, which has a permanent positive charge owing to the presence of a quaternary ammonium cation, was selected as the cationic unit. The MAAc and MAAmBO units were used as two types of cross-linking structures for the thermal cross-linking of the hydroxy and carboxy groups of the MAAc unit (covalent bonding) as well as the diol and benzoxaborole groups of the MAAmBO unit (dynamic covalent bonding). The films were thermally cross-linked at 135 °C for 4 h without the addition of materials. After immersion in surplus water at 80 °C for 3 h, the cross-linked PVA/3D films retained almost 100% of their weights. The ζ-potential of the water-insoluble PVA/3D film was 9.4 ± 0.8 mV. The PVA/3D film was strongly dyed using anionic acid red 1 (AR1) because of its positively charged surface. Interestingly, it could also be slightly dyed using cationic methylene blue (MB) and became transparent (original state) after immersion in water for 2 days. These results suggested that positive and negative charges coexisted in the PVA/3D film, and the surface properties were positively inclined. Moreover, the degree of hemolysis of the PVA/3D films was similar to that of the negative control, which showed high blood compatibility. To our knowledge, this is the first report on the fabrication of water-insoluble cationic PVA films using two types of cross-linking structures containing carboxy and benzoxaborole groups. The cross-linked PVA films were analyzed using Fourier transform infrared (FT-IR) spectroscopy, differential scanning calorimetry (DSC), and contact angle (CA) and ζ-potential measurement, as well as by determining the mechanical properties, adsorption of charged molecules, and biocompatibility. These readily fabricated water-insoluble PVA films with positive charges can show potential applications in sensors, adsorption systems, and antimicrobial materials.
Collapse
Affiliation(s)
- Kazuma Fujimoto
- Department
of Materials and Life Science, Shizuoka
Institute of Science and Technology, 2200-2 Toyosawa, Fukuroi, Shizuoka 437-8555, Japan
| | - Aika Yamawaki-Ogata
- Department
of Cardiac Surgery, Nagoya University Graduate
School of Medicine, 65
Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | - Yuji Narita
- Department
of Cardiac Surgery, Nagoya University Graduate
School of Medicine, 65
Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | - Yohei Kotsuchibashi
- Department
of Materials and Life Science, Shizuoka
Institute of Science and Technology, 2200-2 Toyosawa, Fukuroi, Shizuoka 437-8555, Japan
| |
Collapse
|
10
|
In Vitro Characterization of the Carbohydrate-Binding Agents HHA, GNA, and UDA as Inhibitors of Influenza A and B Virus Replication. Antimicrob Agents Chemother 2021; 65:AAC.01732-20. [PMID: 33288640 DOI: 10.1128/aac.01732-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 12/02/2020] [Indexed: 12/30/2022] Open
Abstract
Here, we report on the anti-influenza virus activity of the mannose-binding agents Hippeastrum hybrid agglutinin (HHA) and Galanthus nivalis agglutinin (GNA) and the (N-acetylglucosamine) n -specific Urtica dioica agglutinin (UDA). These carbohydrate-binding agents (CBA) strongly inhibited various influenza A(H1N1), A(H3N2), and B viruses in vitro, with 50% effective concentration values ranging from 0.016 to 83 nM, generating selectivity indexes up to 125,000. Somewhat less activity was observed against A/Puerto Rico/8/34 and an A(H1N1)pdm09 strain. In time-of-addition experiments, these CBA lost their inhibitory activity when added 30 min postinfection (p.i.). Interference with virus entry processes was also evident from strong inhibition of virus-induced hemolysis at low pH. However, a direct effect on acid-induced refolding of the viral hemagglutinin (HA) was excluded by the tryptic digestion assay. Instead, HHA treatment of HA-expressing cells led to a significant reduction of plasma membrane mobility. Crosslinking of membrane glycoproteins, through interaction with HA, could also explain the inhibitory effect on the release of newly formed virions when HHA was added at 6 h p.i. These CBA presumably interact with one or more N-glycans on the globular head of HA, since their absence led to reduced activity against mutant influenza B viruses and HHA-resistant A(H1N1) viruses. The latter condition emerged only after 33 cell culture passages in the continuous presence of HHA, and the A(H3N2) virus retained full sensitivity even after 50 passages. Thus, these CBA qualify as potent inhibitors of influenza A and B viruses in vitro with a pleiotropic mechanism of action and a high barrier for viral resistance.
Collapse
|
11
|
Mi F, Guan M, Hu C, Peng F, Sun S, Wang X. Application of lectin-based biosensor technology in the detection of foodborne pathogenic bacteria: a review. Analyst 2021; 146:429-443. [DOI: 10.1039/d0an01459a] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Foodborne diseases caused by pathogenic bacteria pose a serious threat to human health.
Collapse
Affiliation(s)
- Fang Mi
- College of Chemistry and Chemical Engineering
- Xinjiang normal University
- Urumqi
- China
- Xinjiang bingtuan Xingxin Vocational and Technical College
| | - Ming Guan
- College of Chemistry and Chemical Engineering
- Xinjiang normal University
- Urumqi
- China
| | - Cunming Hu
- College of Chemistry and Chemical Engineering
- Xinjiang normal University
- Urumqi
- China
| | - Fei Peng
- College of Chemistry and Chemical Engineering
- Xinjiang normal University
- Urumqi
- China
| | - Shijiao Sun
- College of Chemistry and Chemical Engineering
- Xinjiang normal University
- Urumqi
- China
| | - Xiaomei Wang
- College of Chemistry and Chemical Engineering
- Xinjiang normal University
- Urumqi
- China
| |
Collapse
|
12
|
Morgese G, de Waal BFM, Varela‐Aramburu S, Palmans ARA, Albertazzi L, Meijer EW. Anchoring Supramolecular Polymers to Human Red Blood Cells by Combining Dynamic Covalent and Non-Covalent Chemistries. Angew Chem Int Ed Engl 2020; 59:17229-17233. [PMID: 32584462 PMCID: PMC7540258 DOI: 10.1002/anie.202006381] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 06/04/2020] [Indexed: 01/13/2023]
Abstract
Understanding cell/material interactions is essential to design functional cell-responsive materials. While the scientific literature abounds with formulations of biomimetic materials, only a fraction of them focused on mechanisms of the molecular interactions between cells and material. To provide new knowledge on the strategies for materials/cell recognition and binding, supramolecular benzene-1,3,5-tricarboxamide copolymers bearing benzoxaborole moieties are anchored on the surface of human erythrocytes via benzoxaborole/sialic-acid binding. This interaction based on both dynamic covalent and non-covalent chemistries is visualized in real time by means of total internal reflection fluorescence microscopy. Exploiting this imaging method, we observe that the functional copolymers specifically interact with the cell surface. An optimal fiber affinity towards the cells as a function of benzoxaborole concentration demonstrates the crucial role of multivalency in these cell/material interactions.
Collapse
Affiliation(s)
- Giulia Morgese
- Laboratory of Macromolecular and Organic ChemistryInstitute for Complex Molecular Systems (ICMS)Eindhoven University of Technology5600MBEindhovenThe Netherlands
| | - Bas F. M. de Waal
- Laboratory of Macromolecular and Organic ChemistryInstitute for Complex Molecular Systems (ICMS)Eindhoven University of Technology5600MBEindhovenThe Netherlands
| | - Silvia Varela‐Aramburu
- Laboratory of Macromolecular and Organic ChemistryInstitute for Complex Molecular Systems (ICMS)Eindhoven University of Technology5600MBEindhovenThe Netherlands
| | - Anja R. A. Palmans
- Laboratory of Macromolecular and Organic ChemistryInstitute for Complex Molecular Systems (ICMS)Eindhoven University of Technology5600MBEindhovenThe Netherlands
| | - Lorenzo Albertazzi
- Department of Biomedical EngineeringInstitute for Complex Molecular Systems (ICMS)Eindhoven University of Technology5600MBEindhovenThe Netherlands
- Institute for Bioengineering of Catalonia (IBEC)The Barcelona Institute of Science and TechnologyBaldiri Reixac 15–2108028BarcelonaSpain
| | - E. W. Meijer
- Laboratory of Macromolecular and Organic ChemistryInstitute for Complex Molecular Systems (ICMS)Eindhoven University of Technology5600MBEindhovenThe Netherlands
| |
Collapse
|
13
|
Morgese G, Waal BFM, Varela‐Aramburu S, Palmans ARA, Albertazzi L, Meijer EW. Anchoring Supramolecular Polymers to Human Red Blood Cells by Combining Dynamic Covalent and Non‐Covalent Chemistries. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006381] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Giulia Morgese
- Laboratory of Macromolecular and Organic Chemistry Institute for Complex Molecular Systems (ICMS) Eindhoven University of Technology 5600MB Eindhoven The Netherlands
| | - Bas F. M. Waal
- Laboratory of Macromolecular and Organic Chemistry Institute for Complex Molecular Systems (ICMS) Eindhoven University of Technology 5600MB Eindhoven The Netherlands
| | - Silvia Varela‐Aramburu
- Laboratory of Macromolecular and Organic Chemistry Institute for Complex Molecular Systems (ICMS) Eindhoven University of Technology 5600MB Eindhoven The Netherlands
| | - Anja R. A. Palmans
- Laboratory of Macromolecular and Organic Chemistry Institute for Complex Molecular Systems (ICMS) Eindhoven University of Technology 5600MB Eindhoven The Netherlands
| | - Lorenzo Albertazzi
- Department of Biomedical Engineering Institute for Complex Molecular Systems (ICMS) Eindhoven University of Technology 5600MB Eindhoven The Netherlands
- Institute for Bioengineering of Catalonia (IBEC) The Barcelona Institute of Science and Technology Baldiri Reixac 15–21 08028 Barcelona Spain
| | - E. W. Meijer
- Laboratory of Macromolecular and Organic Chemistry Institute for Complex Molecular Systems (ICMS) Eindhoven University of Technology 5600MB Eindhoven The Netherlands
| |
Collapse
|
14
|
Arakawa N, Nagao K, Murakami R, Sumida Y, Arakawa H, Inagaki F, Ohmiya H. Aliphatic Oxaboroles Enabling Remarkable Recognition of Diols. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2020. [DOI: 10.1246/bcsj.20200007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Nozomi Arakawa
- Division of Pharmaceutical Sciences, Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Kazunori Nagao
- Division of Pharmaceutical Sciences, Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Ryo Murakami
- Faculty of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe 650-8586, Japan
| | - Yuto Sumida
- Division of Pharmaceutical Sciences, Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Hiroshi Arakawa
- Division of Pharmaceutical Sciences, Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Fuyuhiko Inagaki
- Faculty of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe 650-8586, Japan
| | - Hirohisa Ohmiya
- Division of Pharmaceutical Sciences, Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| |
Collapse
|
15
|
Figueiredo T, Cosenza V, Ogawa Y, Jeacomine I, Vallet A, Ortega S, Michel R, Olsson JDM, Gerfaud T, Boiteau JG, Jing J, Harris C, Auzély-Velty R. Boronic acid and diol-containing polymers: how to choose the correct couple to form "strong" hydrogels at physiological pH. SOFT MATTER 2020; 16:3628-3641. [PMID: 32222755 DOI: 10.1039/d0sm00178c] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Dynamic covalent hydrogels crosslinked by boronate ester bonds are promising materials for biomedical applications. However, little is known about the impact of the crosslink structure on the mechanical behaviour of the resulting network. Herein, we provide a mechanistic study on boronate ester crosslinking upon mixing hyaluronic acid (HA) backbones modified, on the one hand, with two different arylboronic acids, and on the other hand, with three different saccharide units. Combining rheology, NMR and computational analysis, we demonstrate that carefully selecting the arylboronic-polyol couple allows for tuning the thermodynamics and molecular exchange kinetics of the boronate ester bond, thereby controlling the rheological properties of the gel. In particular, we report the formation of "strong" gels (i.e. featuring slow relaxation dynamics) through the formation of original complex structures (tridentate or bidentate complexes). These findings offer new prospects for the rational design of hydrogel scaffolds with tailored mechanical response.
Collapse
Affiliation(s)
- Tamiris Figueiredo
- Univ. Grenoble Alpes, Centre de Recherches sur les Macromolécules Végétales (CERMAV)-CNRS, 601, rue de la Chimie, BP 53, 38041 Grenoble Cedex 9, France.
| | - Vanina Cosenza
- Univ. Grenoble Alpes, Centre de Recherches sur les Macromolécules Végétales (CERMAV)-CNRS, 601, rue de la Chimie, BP 53, 38041 Grenoble Cedex 9, France.
| | - Yu Ogawa
- Univ. Grenoble Alpes, Centre de Recherches sur les Macromolécules Végétales (CERMAV)-CNRS, 601, rue de la Chimie, BP 53, 38041 Grenoble Cedex 9, France.
| | - Isabelle Jeacomine
- Univ. Grenoble Alpes, Centre de Recherches sur les Macromolécules Végétales (CERMAV)-CNRS, 601, rue de la Chimie, BP 53, 38041 Grenoble Cedex 9, France.
| | - Alicia Vallet
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, 71 avenue des Martyrs, 38044 Grenoble Cedex 9, France
| | - Sonia Ortega
- Univ. Grenoble Alpes, Centre de Recherches sur les Macromolécules Végétales (CERMAV)-CNRS, 601, rue de la Chimie, BP 53, 38041 Grenoble Cedex 9, France.
| | - Raphael Michel
- Univ. Grenoble Alpes, Centre de Recherches sur les Macromolécules Végétales (CERMAV)-CNRS, 601, rue de la Chimie, BP 53, 38041 Grenoble Cedex 9, France.
| | - Johan D M Olsson
- Galderma/Nestlé Skin Health R&D, Seminariegatan 21, SE-752 28 Uppsala, Sweden
| | - Thibaud Gerfaud
- Galderma/Nestlé Skin Health R&D, 2400 Route de Colles, 06410 Biot, France
| | - Jean-Guy Boiteau
- Galderma/Nestlé Skin Health R&D, 2400 Route de Colles, 06410 Biot, France
| | - Jing Jing
- Galderma/Nestlé Skin Health R&D, 2400 Route de Colles, 06410 Biot, France
| | - Craig Harris
- Galderma/Nestlé Skin Health R&D, 2400 Route de Colles, 06410 Biot, France
| | - Rachel Auzély-Velty
- Univ. Grenoble Alpes, Centre de Recherches sur les Macromolécules Végétales (CERMAV)-CNRS, 601, rue de la Chimie, BP 53, 38041 Grenoble Cedex 9, France.
| |
Collapse
|
16
|
Hakuto N, Saito K, Kirihara M, Kotsuchibashi Y. Preparation of cross-linked poly(vinyl alcohol) films from copolymers with benzoxaborole and carboxylic acid groups, and their degradability in an oxidizing environment. Polym Chem 2020. [DOI: 10.1039/d0py00153h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Functionalized PVA films were prepared from copolymers with benzoxaborole and carboxyl groups.
Collapse
Affiliation(s)
- Nao Hakuto
- Department of Materials and Life Science
- Shizuoka Institute of Science and Technology
- Fukuroi
- Japan
| | - Katsuya Saito
- Department of Materials and Life Science
- Shizuoka Institute of Science and Technology
- Fukuroi
- Japan
| | - Masayuki Kirihara
- Department of Materials and Life Science
- Shizuoka Institute of Science and Technology
- Fukuroi
- Japan
| | - Yohei Kotsuchibashi
- Department of Materials and Life Science
- Shizuoka Institute of Science and Technology
- Fukuroi
- Japan
| |
Collapse
|
17
|
Ryu JH, Lee GJ, Shih YRV, Kim TI, Varghese S. Phenylboronic Acid-polymers for Biomedical Applications. Curr Med Chem 2019; 26:6797-6816. [DOI: 10.2174/0929867325666181008144436] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 09/24/2018] [Accepted: 09/26/2018] [Indexed: 02/08/2023]
Abstract
Background:
Phenylboronic acid-polymers (PBA-polymers) have attracted tremendous
attention as potential stimuli-responsive materials with applications in drug-delivery
depots, scaffolds for tissue engineering, HIV barriers, and biomolecule-detecting/sensing platforms.
The unique aspect of PBA-polymers is their interactions with diols, which result in reversible,
covalent bond formation. This very nature of reversible bonding between boronic
acids and diols has been fundamental to their applications in the biomedical area.
Methods:
We have searched peer-reviewed articles including reviews from Scopus, PubMed,
and Google Scholar with a focus on the 1) chemistry of PBA, 2) synthesis of PBA-polymers,
and 3) their biomedical applications.
Results:
We have summarized approximately 179 papers in this review. Most of the applications
described in this review are focused on the unique ability of PBA molecules to interact
with diol molecules and the dynamic nature of the resulting boronate esters. The strong sensitivity
of boronate ester groups towards the surrounding pH also makes these molecules
stimuli-responsive. In addition, we also discuss how the re-arrangement of the dynamic boronate
ester bonds renders PBA-based materials with other unique features such as self-healing
and shear thinning.
Conclusion:
The presence of PBA in the polymer chain can render it with diverse functions/
relativities without changing their intrinsic properties. In this review, we discuss the development
of PBA polymers with diverse functions and their biomedical applications with a
specific focus on the dynamic nature of boronate ester groups.
Collapse
Affiliation(s)
- Ji Hyun Ryu
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, North Carolina, NC 27703, United States
| | - Gyeong Jin Lee
- Department of Biosystems & Biomaterials Science and Engineering, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Yu-Ru V. Shih
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, North Carolina, NC 27703, United States
| | - Tae-il Kim
- Department of Biosystems & Biomaterials Science and Engineering, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Shyni Varghese
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, North Carolina, NC 27703, United States
| |
Collapse
|
18
|
Kudo Y, Ono J, Kotsuchibashi Y. Controlled water-soluble properties of poly(vinyl alcohol) films via the benzoxaborole-containing temperature-responsive copolymers. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.04.074] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
19
|
Barre A, Bourne Y, Van Damme EJM, Rougé P. Overview of the Structure⁻Function Relationships of Mannose-Specific Lectins from Plants, Algae and Fungi. Int J Mol Sci 2019; 20:E254. [PMID: 30634645 PMCID: PMC6359319 DOI: 10.3390/ijms20020254] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 12/29/2018] [Accepted: 12/31/2018] [Indexed: 01/05/2023] Open
Abstract
To date, a number of mannose-binding lectins have been isolated and characterized from plants and fungi. These proteins are composed of different structural scaffold structures which harbor a single or multiple carbohydrate-binding sites involved in the specific recognition of mannose-containing glycans. Generally, the mannose-binding site consists of a small, central, carbohydrate-binding pocket responsible for the "broad sugar-binding specificity" toward a single mannose molecule, surrounded by a more extended binding area responsible for the specific recognition of larger mannose-containing N-glycan chains. Accordingly, the mannose-binding specificity of the so-called mannose-binding lectins towards complex mannose-containing N-glycans depends largely on the topography of their mannose-binding site(s). This structure⁻function relationship introduces a high degree of specificity in the apparently homogeneous group of mannose-binding lectins, with respect to the specific recognition of high-mannose and complex N-glycans. Because of the high specificity towards mannose these lectins are valuable tools for deciphering and characterizing the complex mannose-containing glycans that decorate both normal and transformed cells, e.g., the altered high-mannose N-glycans that often occur at the surface of various cancer cells.
Collapse
Affiliation(s)
- Annick Barre
- UMR 152 PharmaDev, Institut de Recherche et Développement, Faculté de Pharmacie, Université Paul Sabatier, 35 Chemin des Maraîchers, 31062 Toulouse, France.
| | - Yves Bourne
- Centre National de la Recherche Scientifique, Aix-Marseille Univ, Architecture et Fonction des Macromolécules Biologiques, 163 Avenue de Luminy, 13288 Marseille, France.
| | - Els J M Van Damme
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000 Ghent, Belgium.
| | - Pierre Rougé
- UMR 152 PharmaDev, Institut de Recherche et Développement, Faculté de Pharmacie, Université Paul Sabatier, 35 Chemin des Maraîchers, 31062 Toulouse, France.
| |
Collapse
|
20
|
Gamrat JM, Mancini G, Burke SJ, Colandrea RC, Sadowski NR, Figula BC, Tomsho JW. Protection of the Benzoxaborole Moiety: Synthesis and Functionalization of Zwitterionic Benzoxaborole Complexes. J Org Chem 2018; 83:6193-6201. [PMID: 29724096 DOI: 10.1021/acs.joc.8b00677] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The synthesis and utility of three benzoxaborole protecting groups are reported. These protecting groups improve organic solubility and allow otherwise incompatible reactions (oxidations, substitutions, and mild reductions) to be achieved in the presence of the benzoxaborole moiety. 3-( N, N-Dimethylamino)-1-propanol was determined to be useful in one-step sequences and is readily cleaved upon workup. Two other groups, N-methylsalicylidenimine and 2-[1-(methylimino)ethyl]phenol, are suitable for multistep syntheses. Deprotection with mild aqueous acid allows for chromatography-free isolation of the benzoxaborole in high yields.
Collapse
Affiliation(s)
- James M Gamrat
- Department of Chemistry & Biochemistry , University of the Sciences in Philadelphia , Philadelphia , Pennsylvania 19104 , United States
| | - Giulia Mancini
- Department of Chemistry & Biochemistry , University of the Sciences in Philadelphia , Philadelphia , Pennsylvania 19104 , United States
| | - Sarah J Burke
- Department of Chemistry & Biochemistry , University of the Sciences in Philadelphia , Philadelphia , Pennsylvania 19104 , United States
| | - Rebecca C Colandrea
- Department of Chemistry & Biochemistry , University of the Sciences in Philadelphia , Philadelphia , Pennsylvania 19104 , United States
| | - Nicholas R Sadowski
- Department of Chemistry & Biochemistry , University of the Sciences in Philadelphia , Philadelphia , Pennsylvania 19104 , United States
| | - Bryan C Figula
- Department of Chemistry & Biochemistry , University of the Sciences in Philadelphia , Philadelphia , Pennsylvania 19104 , United States
| | - John W Tomsho
- Department of Chemistry & Biochemistry , University of the Sciences in Philadelphia , Philadelphia , Pennsylvania 19104 , United States
| |
Collapse
|
21
|
Strakova K, Soleimanpour S, Diez-Castellnou M, Sakai N, Matile S. Ganglioside-Selective Mechanosensitive Fluorescent Membrane Probes. Helv Chim Acta 2018. [DOI: 10.1002/hlca.201800019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Karolina Strakova
- Department of Organic Chemistry; University of Geneva; Quai Ernest Ansermet 30 CH-1211 Geneva 4 Switzerland
| | - Saeideh Soleimanpour
- Department of Organic Chemistry; University of Geneva; Quai Ernest Ansermet 30 CH-1211 Geneva 4 Switzerland
| | - Marta Diez-Castellnou
- Department of Organic Chemistry; University of Geneva; Quai Ernest Ansermet 30 CH-1211 Geneva 4 Switzerland
| | - Naomi Sakai
- Department of Organic Chemistry; University of Geneva; Quai Ernest Ansermet 30 CH-1211 Geneva 4 Switzerland
| | - Stefan Matile
- Department of Organic Chemistry; University of Geneva; Quai Ernest Ansermet 30 CH-1211 Geneva 4 Switzerland
| |
Collapse
|
22
|
Steketee PC, Vincent IM, Achcar F, Giordani F, Kim DH, Creek DJ, Freund Y, Jacobs R, Rattigan K, Horn D, Field MC, MacLeod A, Barrett MP. Benzoxaborole treatment perturbs S-adenosyl-L-methionine metabolism in Trypanosoma brucei. PLoS Negl Trop Dis 2018; 12:e0006450. [PMID: 29758036 PMCID: PMC5976210 DOI: 10.1371/journal.pntd.0006450] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 05/30/2018] [Accepted: 04/15/2018] [Indexed: 11/21/2022] Open
Abstract
The parasitic protozoan Trypanosoma brucei causes Human African Trypanosomiasis and Nagana in other mammals. These diseases present a major socio-economic burden to large areas of sub-Saharan Africa. Current therapies involve complex and toxic regimens, which can lead to fatal side-effects. In addition, there is emerging evidence for drug resistance. AN5568 (SCYX-7158) is a novel benzoxaborole class compound that has been selected as a lead compound for the treatment of HAT, and has demonstrated effective clearance of both early and late stage trypanosomiasis in vivo. The compound is currently awaiting phase III clinical trials and could lead to a novel oral therapeutic for the treatment of HAT. However, the mode of action of AN5568 in T. brucei is unknown. This study aimed to investigate the mode of action of AN5568 against T. brucei, using a combination of molecular and metabolomics-based approaches.Treatment of blood-stage trypanosomes with AN5568 led to significant perturbations in parasite metabolism. In particular, elevated levels of metabolites involved in the metabolism of S-adenosyl-L-methionine, an essential methyl group donor, were found. Further comparative metabolomic analyses using an S-adenosyl-L-methionine-dependent methyltransferase inhibitor, sinefungin, showed the presence of several striking metabolic phenotypes common to both treatments. Furthermore, several metabolic changes in AN5568 treated parasites resemble those invoked in cells treated with a strong reducing agent, dithiothreitol, suggesting redox imbalances could be involved in the killing mechanism.
Collapse
Affiliation(s)
- Pieter C. Steketee
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Isabel M. Vincent
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Fiona Achcar
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Federica Giordani
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Dong-Hyun Kim
- Centre for Analytical Bioscience, Division of Molecular and Cellular Sciences, School of Pharmacy, The University of Nottingham, Nottingham, United Kingdom
| | - Darren J. Creek
- Department of Biochemistry and Molecular Biology, Drug Delivery Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Yvonne Freund
- Anacor Pharmaceuticals, Inc., Palo Alto, California, United States of America
| | - Robert Jacobs
- Anacor Pharmaceuticals, Inc., Palo Alto, California, United States of America
| | - Kevin Rattigan
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - David Horn
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Mark C. Field
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Annette MacLeod
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Michael P. Barrett
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
23
|
Larcher A, Lebrun A, Smietana M, Laurencin D. A multinuclear NMR perspective on the complexation between bisboronic acids and bisbenzoxaboroles with cis-diols. NEW J CHEM 2018. [DOI: 10.1039/c7nj04143h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A new way of using solution NMR (especially 19F NMR) to study organoboron molecule/cis-diol equilibria is presented.
Collapse
Affiliation(s)
- Adèle Larcher
- Institut Charles Gerhardt de Montpellier (ICGM)
- UMR 5253
- CNRS
- Université de Montpellier
- ENSCM
| | - Aurélien Lebrun
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247
- CNRS
- Université de Montpellier
- ENSCM
| | - Michael Smietana
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247
- CNRS
- Université de Montpellier
- ENSCM
| | - Danielle Laurencin
- Institut Charles Gerhardt de Montpellier (ICGM)
- UMR 5253
- CNRS
- Université de Montpellier
- ENSCM
| |
Collapse
|
24
|
S. Coulibaly F, N. Thomas D, C. Youan BB. Anti-HIV lectins and current delivery strategies. AIMS MOLECULAR SCIENCE 2018. [DOI: 10.3934/molsci.2018.1.96] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
25
|
Ma TC, Le Guo, Zhou RH, Wang X, Liu JB, Li JL, Zhou Y, Hou W, Ho WZ. Soybean-derived Bowman-Birk inhibitor (BBI) blocks HIV entry into macrophages. Virology 2017; 513:91-97. [PMID: 29040829 DOI: 10.1016/j.virol.2017.08.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 08/21/2017] [Accepted: 08/23/2017] [Indexed: 01/16/2023]
Abstract
Bowman-Birk inhibitor (BBI) is a soybean-derived protease inhibitor that has anti-inflammation and anti-HIV effect. Here, we further investigated the anti-HIV action of BBI in macrophages, focusing on its effect on viral entry. We found that BBI could significantly block HIV entry into macrophages. Investigation of the mechanism(s) of the BBI action on HIV inhibition showed that BBI down-regulated the expression of CD4 receptor (as much as 80%) and induced the production of the CC chemokines (up to 60 folds at protein level) in macrophages. This inhibitory effect of BBI on HIV entry could be blocked by the neutralization antibodies to CC chemokines. These findings indicate that BBI may have therapeutic potential as a viral entry inhibitor for the prevention and treatment of HIV infection.
Collapse
Affiliation(s)
- Tong-Cui Ma
- Wuhan University School of Basic Medical Sciences, Wuhan, Hubei 430071, PR China
| | - Le Guo
- Wuhan University School of Basic Medical Sciences, Wuhan, Hubei 430071, PR China
| | - Run-Hong Zhou
- Wuhan University School of Basic Medical Sciences, Wuhan, Hubei 430071, PR China
| | - Xu Wang
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Jin-Biao Liu
- Wuhan University School of Basic Medical Sciences, Wuhan, Hubei 430071, PR China
| | - Jie-Liang Li
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Yu Zhou
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Wei Hou
- Wuhan University School of Basic Medical Sciences, Wuhan, Hubei 430071, PR China
| | - Wen-Zhe Ho
- Wuhan University School of Basic Medical Sciences, Wuhan, Hubei 430071, PR China; Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA.
| |
Collapse
|
26
|
Thareja S, Zhu M, Ji X, Wang B. Boron-based small molecules in disease detection and treatment (2013–2016). HETEROCYCL COMMUN 2017. [DOI: 10.1515/hc-2017-0086] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
AbstractRecent years have seen tremendous development in the design and synthesis of boron-based compounds as potential therapeutics and for detection applications. The present review highlights the most recent development of these boron-based small molecules, covering clinically used ixazomib, tavaborole, crisaborole and other molecules from 2013 to 2016.
Collapse
Affiliation(s)
- Suresh Thareja
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA
| | - Mengyuan Zhu
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA
| | - Xingyue Ji
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Binghe Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| |
Collapse
|
27
|
Wuttke A, Geyer A. Self-assembly of peptide boroxoles on cis
-dihydroxylated oligoamide templates in water. J Pept Sci 2017; 23:549-555. [DOI: 10.1002/psc.3007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/28/2017] [Accepted: 03/28/2017] [Indexed: 01/14/2023]
Affiliation(s)
- André Wuttke
- Institute of Chemistry; Philipps-University Marburg; Hans-Meerwein-Straße 35032 Marburg Germany
| | - Armin Geyer
- Institute of Chemistry; Philipps-University Marburg; Hans-Meerwein-Straße 35032 Marburg Germany
| |
Collapse
|
28
|
Edagwa B, McMillan J, Sillman B, Gendelman HE. Long-acting slow effective release antiretroviral therapy. Expert Opin Drug Deliv 2017; 14:1281-1291. [PMID: 28128004 DOI: 10.1080/17425247.2017.1288212] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Advances in long-acting antiretroviral therapy (ART) can revolutionize current HIV/AIDS treatments. We coined the term 'long-acting slow effective release ART' (LASER ART) to highlight the required formulation properties of slow drug dissolution, poor water-solubility, bioavailability, little-to-no off-target toxicities and improved regimen adherence. Drug carrier technologies characterized by high antiretroviral drug (ARV) payloads in a single carrier improve the pharmacokinetic and pharmacodynamic profiles. The surface modifications of ARV carriers target monocyte-macrophages and facilitate drug transport across physiological barriers and to virus-susceptible CD4 + T cells. Areas covered: The review highlights developments of reservoir-targeted LASER ART for improved therapeutic outcomes. Such nanoART delivery platforms include decorated multifunctional nano- and micro-particles, prodrugs and polymer conjugates. Therapeutic strategies such as gene-editing technologies boost ART effectiveness. Expert opinion: The persistence of HIV-1 in lymphoid, gut and nervous system reservoirs poses a challenge to viral eradication. Emerging slow-release drug carriers can target intracellular pathogens, activate antiviral immunity, promote genome editing, sustain drug depots and combine therapeutics with image contrast agents, and can meet unmet clinical needs for HIV-infected patients. Such efforts will bring the medicines to reservoir sites and accelerate viral clearance.
Collapse
Affiliation(s)
- Benson Edagwa
- a Department of Pharmacology and Experimental Neuroscience , University of Nebraska Medical Center , Omaha , NE , USA
| | - JoEllyn McMillan
- a Department of Pharmacology and Experimental Neuroscience , University of Nebraska Medical Center , Omaha , NE , USA
| | - Brady Sillman
- a Department of Pharmacology and Experimental Neuroscience , University of Nebraska Medical Center , Omaha , NE , USA
| | - Howard E Gendelman
- a Department of Pharmacology and Experimental Neuroscience , University of Nebraska Medical Center , Omaha , NE , USA.,b Departments of Pharmaceutical Sciences , University of Nebraska Medical Center , Omaha , NE , USA
| |
Collapse
|
29
|
Gunasekara RW, Zhao Y. A General Method for Selective Recognition of Monosaccharides and Oligosaccharides in Water. J Am Chem Soc 2017; 139:829-835. [PMID: 27983819 PMCID: PMC5243169 DOI: 10.1021/jacs.6b10773] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Molecular recognition of carbohydrates plays vital roles in biology but has been difficult to achieve with synthetic receptors. Through covalent imprinting of carbohydrates in boroxole-functionalized cross-linked micelles, we prepared nanoparticle receptors for a wide variety of mono- and oligosaccharides. The boroxole functional monomer bound the sugar templates through cis-1,2-diol, cis-3,4-diol, and trans-4,6-diol. The protein-sized nanoparticles showed excellent selectivity for d-aldohexoses in water with submillimolar binding affinities and completely distinguished the three biologically important hexoses (glucose, mannose, and galactose). Glycosides with nonpolar aglycon showed stronger binding due to enhanced hydrophobic interactions. Oligosaccharides were distinguished on the basis of their monosaccharide building blocks, glycosidic linkages, chain length, as well as additional functional groups that could interact with the nanoparticles.
Collapse
Affiliation(s)
| | - Yan Zhao
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111
| |
Collapse
|
30
|
Synthesis, characterization and antimicrobial activity of novel Schiff base tethered boronate esters of 1,2-O-isopropylidene-α-d-xylofuranose. Bioorg Med Chem Lett 2016; 26:3447-52. [PMID: 27353535 DOI: 10.1016/j.bmcl.2016.06.049] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 05/26/2016] [Accepted: 06/17/2016] [Indexed: 02/06/2023]
|
31
|
Danial M, Andersen AHF, Zuwala K, Cosson S, Riber CF, Smith AAA, Tolstrup M, Moad G, Zelikin AN, Postma A. Triple Activity of Lamivudine Releasing Sulfonated Polymers against HIV-1. Mol Pharm 2016; 13:2397-410. [DOI: 10.1021/acs.molpharmaceut.6b00156] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
| | - Anna H. F. Andersen
- Department
of Clinical Medicine, Aarhus University Hospital, Aarhus N 8200, Denmark
| | - Kaja Zuwala
- Department
of Clinical Medicine, Aarhus University Hospital, Aarhus N 8200, Denmark
| | - Steffen Cosson
- CSIRO Manufacturing, Clayton, VIC 3168, Australia
- Tissue
Engineering and Microfluidics Laboratory, Australian Institute for
Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, QLD 4072, Australia
| | | | | | - Martin Tolstrup
- Department
of Clinical Medicine, Aarhus University Hospital, Aarhus N 8200, Denmark
| | - Graeme Moad
- CSIRO Manufacturing, Clayton, VIC 3168, Australia
| | - Alexander N. Zelikin
- Department
of Chemistry, Aarhus University, Aarhus C 8000, Denmark
- iNANO
Interdisciplinary Nanoscience Centre, Aarhus University, Aarhus C 8000, Denmark
| | - Almar Postma
- CSIRO Manufacturing, Clayton, VIC 3168, Australia
| |
Collapse
|
32
|
Negri GE, Deming TJ. Protein Complexation and pH Dependent Release Using Boronic Acid Containing PEG-Polypeptide Copolymers. Macromol Biosci 2016; 17. [DOI: 10.1002/mabi.201600136] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Revised: 05/18/2016] [Indexed: 12/16/2022]
Affiliation(s)
- Graciela E. Negri
- Department of Chemistry and Biochemistry; University of California; Los Angeles 607 Charles E Young Dr. E, Los Angeles CA 90095-1600 USA
| | - Timothy J. Deming
- Department of Chemistry and Biochemistry; University of California; Los Angeles 607 Charles E Young Dr. E, Los Angeles CA 90095-1600 USA
- Department of Bioengineering; University of California; Los Angeles 5121 Engineering 5, Los Angeles CA 90095-1600 USA
| |
Collapse
|
33
|
Nagasawa T, Sato K, Shimada Y, Kasumi T. Efficient Conversion of D-Glucose to D-Fructose in the Presence of Organogermanium Compounds. J Appl Glycosci (1999) 2016; 63:39-45. [PMID: 34354481 PMCID: PMC8056899 DOI: 10.5458/jag.jag.jag-2015_025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 03/04/2016] [Indexed: 11/11/2022] Open
Abstract
D-Glucose and D-fructose are isomers of commonly consumed monosaccharides. The ratio of conversion of D-glucose to D-fructose by glucose isomerase (xylose isomerase) is not more than 50 %. However, addition of an equimolar ratio of the organogermanium compound poly-trans-[(2-carboxyethyl)germasesquioxane] (Ge-132) or its derivative increases the conversion ratio to 80 %. In contrast, use of the Lobry de Bruyn–Alberda van Ekenstein transformation with heating results in a lower conversion ratio, less than 30 %, whereas addition of an equimolar concentration of Ge-132 or its derivative to this reaction mixture increases the ratio to 73 %. Therefore, in this study, we aimed to further analyze the affinity between organogermanium compounds (i.e., Ge-132 and its derivatives) and sugar using 1H-nuclear magnetic resonance (NMR) spectrometry. For the dimethyl derivative of Ge-132, the complex formation ratios at 0.25 M (mixing ratio 1:1) were 19 and 74 % for D-glucose and D-fructose, respectively. Additionally, the complex formation constants between monosaccharides and Ge-132 were 1.2 and 46 M-1 for D-glucose and D-fructose, respectively. The complex formation capacity was approximately 40-fold higher for D-fructose than for D-glucose. Therefore, we concluded that the high affinity for the product of isomerization may promote isomerization, and that promotion of sugar isomerization using organogermanium compounds is an effective method for conversion of D-glucose to D-fructose.
Collapse
Affiliation(s)
| | | | - Yasuhiro Shimada
- 1 Asai Germanium Research Institute Co., Ltd.,2 The United Graduate School of Agricultural Sciences, Iwate University
| | - Takafumi Kasumi
- 3 Enzymology and Molecular Biology Laboratory, Department of Chemistry and Life Science, Nihon University
| |
Collapse
|
34
|
A carbohydrate-binding affinity ligand for the specific enrichment of glycoproteins. J Chromatogr A 2016; 1444:8-20. [DOI: 10.1016/j.chroma.2016.03.049] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 01/22/2016] [Accepted: 03/18/2016] [Indexed: 02/07/2023]
|
35
|
Tevyashova AN, Korolev AM, Trenin AS, Dezhenkova LG, Shtil AA, Polshakov VI, Savelyev OY, Olsufyeva EN. New conjugates of polyene macrolide amphotericin B with benzoxaboroles: synthesis and properties. J Antibiot (Tokyo) 2016; 69:549-60. [DOI: 10.1038/ja.2016.34] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Revised: 02/05/2016] [Accepted: 02/19/2016] [Indexed: 12/31/2022]
|
36
|
Kotsuchibashi Y, Ebara M. Facile Functionalization of Electrospun Poly(ethylene- co-vinyl alcohol) Nanofibers via the Benzoxaborole-Diol Interaction. Polymers (Basel) 2016; 8:E41. [PMID: 30979137 PMCID: PMC6432579 DOI: 10.3390/polym8020041] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 01/26/2016] [Accepted: 01/29/2016] [Indexed: 12/29/2022] Open
Abstract
A facile functionalization method of poly(ethylene-co-vinyl alcohol) (EVOH) nanofiber meshes was demonstrated by utilizing the benzoxaborole-diol interaction between EVOH and benzoxaborole-based copolymers (BOP). EVOH and BOP were firstly mixed to prepare the quasi-gel-state solution with enough viscosity for electro-spinning. The fiber morphology was controlled via changing the mixing ratio of EVOH and BOP. The prepared EVOH/BOP nanofiber mesh showed good stability in aqueous solution. Over 97% of the nanofibers remained after the immersion test for 24 h in acid or alkali aqueous solutions without changing their morphology. Temperature and pH-responsive moieties were copolymerized with BOP, and cationic dye was easily immobilized into the nanofiber mesh via an electrostatic interaction. Therefore, the proposed functionalization technique is possible to perform on multi-functionalized molecule-incorporated nanofibers that enable the fibers to show the environmental stimuli-responsive property for the further applications of the EVOH materials.
Collapse
Affiliation(s)
- Yohei Kotsuchibashi
- International Center for Young Scientists (ICYS) and International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
| | - Mitsuhiro Ebara
- Biomaterials Unit, WPI-MANA, NIMS, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
- Graduate School of Industrial Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika, Tokyo 125-8585, Japan.
| |
Collapse
|
37
|
Rowe L, El Khoury G, Lowe CR. A benzoboroxole-based affinity ligand for glycoprotein purification at physiological pH. J Mol Recognit 2015; 29:232-8. [DOI: 10.1002/jmr.2524] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Revised: 11/01/2015] [Accepted: 11/02/2015] [Indexed: 01/14/2023]
Affiliation(s)
- Laura Rowe
- Institute of Biotechnology, Department of Chemical Engineering and Biotechnology; University of Cambridge; Cambridge CB2 1QT UK
- Department of Chemistry; Valparaiso University; Valparaiso IN 46383 USA
| | - Graziella El Khoury
- Institute of Biotechnology, Department of Chemical Engineering and Biotechnology; University of Cambridge; Cambridge CB2 1QT UK
| | - Christopher R. Lowe
- Institute of Biotechnology, Department of Chemical Engineering and Biotechnology; University of Cambridge; Cambridge CB2 1QT UK
| |
Collapse
|
38
|
Wang B, Anzai JI. Recent Progress in Lectin-Based Biosensors. MATERIALS (BASEL, SWITZERLAND) 2015; 8:8590-8607. [PMID: 28793731 PMCID: PMC5458863 DOI: 10.3390/ma8125478] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 11/25/2015] [Accepted: 12/02/2015] [Indexed: 12/19/2022]
Abstract
This article reviews recent progress in the development of lectin-based biosensors used for the determination of glucose, pathogenic bacteria and toxins, cancer cells, and lectins. Lectin proteins have been widely used for the construction of optical and electrochemical biosensors by exploiting the specific binding affinity to carbohydrates. Among lectin proteins, concanavalin A (Con A) is most frequently used for this purpose as glucose- and mannose-selective lectin. Con A is useful for immobilizing enzymes including glucose oxidase (GOx) and horseradish peroxidase (HRP) on the surface of a solid support to construct glucose and hydrogen peroxide sensors, because these enzymes are covered with intrinsic hydrocarbon chains. Con A-modified electrodes can be used as biosensors sensitive to glucose, cancer cells, and pathogenic bacteria covered with hydrocarbon chains. The target substrates are selectively adsorbed to the surface of Con A-modified electrodes through strong affinity of Con A to hydrocarbon chains. A recent topic in the development of lectin-based biosensors is a successful use of nanomaterials, such as metal nanoparticles and carbon nanotubes, for amplifying output signals of the sensors. In addition, lectin-based biosensors are useful for studying glycan expression on living cells.
Collapse
Affiliation(s)
- Baozhen Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Shandong University, 44 Wenhua Xilu, Jinan 250012, China.
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aramaki, Aoba-ku, Sendai 980-8578, Japan.
| | - Jun-Ichi Anzai
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aramaki, Aoba-ku, Sendai 980-8578, Japan.
| |
Collapse
|
39
|
Reddy ER, Trivedi R, Sarma AVS, Sridhar B, Anantaraju HS, Sriram D, Yogeeswari P, Nagesh N. Sugar-boronate ester scaffold tethered pyridyl-imine palladium(II) complexes: synthesis and their in vitro anticancer evaluation. Dalton Trans 2015; 44:17600-17616. [PMID: 26394366 DOI: 10.1039/c5dt03266k] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
A series of five palladium(ii) pyridyl-imine Schiff base complexes 5a-e containing boronate esters with protected sugar diols derived from d-xylose, l-sorbose and d-mannitol were designed and synthesized starting from pyridyl-imines generated in situ from 3-aminophenyl boronate ester of sugars 3a-e and 2-pyridinecarboxaldehyde, followed by the addition of Pd(cod)Cl2 in dichloromethane solvent. All the complexes are remarkably stable orange/yellow crystalline solids and were obtained in good yields. The complexes were fully characterized by FT-IR, multinuclear NMR ((1)H, (13)C and (11)B), UV-visible spectroscopy, and elemental analysis. The solid state structures of 3a and 5a were established by single crystal X-ray diffraction analysis. The complexes have been tested for their in vitro anticancer activities against human colon cancer (HT-29) and breast cancer (MDA-MB-231) cell lines. All the complexes have shown moderate to good cytotoxicity in both the cancer cell lines with IC50 values ranging from 4.27 to 34.76 μM. Strikingly, 5a displayed selective anticancer activity against both HT-29 and MDA-MB-231 cells with low IC50 values 6.71 and 8.58 μM respectively. Results also demonstrate that some of these complexes are highly potent against HT-29 cells as compared to the other cancer cell lines. In particular, 1,2:5,6-di-O-isopropylidene-d-mannitol complex 5d showed a two-fold higher toxicity against HT-29 cells in comparison with that of cisplatin. In addition, these complexes are less toxic to model non-tumorigenic human embryonic kidney cells (HEK-293T). Furthermore, the interaction of the complexes with calf thymus DNA (CT-DNA) was investigated using spectroscopy and viscosity measurements. It was found that they intercalate with DNA.
Collapse
Affiliation(s)
- Eda Rami Reddy
- Inorganic and Physical Chemistry Division, CSIR-IICT, Hyderabad-500007, India.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Francesconi O, Nativi C, Gabrielli G, De Simone I, Noppen S, Balzarini J, Liekens S, Roelens S. Antiviral Activity of Synthetic Aminopyrrolic Carbohydrate Binding Agents: Targeting the Glycans of Viral gp120 to Inhibit HIV Entry. Chemistry 2015; 21:10089-93. [DOI: 10.1002/chem.201501030] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Indexed: 01/18/2023]
|
41
|
Adamczyk-Woźniak A, Borys KM, Sporzyński A. Recent Developments in the Chemistry and Biological Applications of Benzoxaboroles. Chem Rev 2015; 115:5224-47. [DOI: 10.1021/cr500642d] [Citation(s) in RCA: 154] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
| | - Krzysztof M. Borys
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Andrzej Sporzyński
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| |
Collapse
|
42
|
Adamczyk-Woźniak A, Cabaj MK, Dominiak PM, Gajowiec P, Gierczyk B, Lipok J, Popenda Ł, Schroeder G, Tomecka E, Urbański P, Wieczorek D, Sporzyński A. The influence of fluorine position on the properties of fluorobenzoxaboroles. Bioorg Chem 2015; 60:130-5. [PMID: 26004751 DOI: 10.1016/j.bioorg.2015.05.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 04/27/2015] [Accepted: 05/05/2015] [Indexed: 10/23/2022]
Abstract
5-Fluoro-2,1-benzoxaborol-1(3H)-ol, a potent antifungal drug also known as Tavaborole or AN2690, has been compared with its three isomers in terms of its activity against several fungi as well as pKa and multinuclear NMR characterization. The molecular and crystal structure of 6-fluoro-2,1-benzoxaborol-1(3H)-ol was determined and compared with that of AN2690.
Collapse
Affiliation(s)
| | - Małgorzata K Cabaj
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Paulina M Dominiak
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Patrycja Gajowiec
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Błażej Gierczyk
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Umultowska 89b, 61-614 Poznań, Poland
| | - Jacek Lipok
- Faculty of Chemistry, Opole University, Oleska 48, 45-052 Opole, Poland
| | - Łukasz Popenda
- NanoBioMedical Centre, Adam Mickiewicz University in Poznań, Umultowska 85, 61-614 Poznań, Poland
| | - Grzegorz Schroeder
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Umultowska 89b, 61-614 Poznań, Poland
| | - Ewelina Tomecka
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Piotr Urbański
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Dorota Wieczorek
- Faculty of Chemistry, Opole University, Oleska 48, 45-052 Opole, Poland
| | - Andrzej Sporzyński
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland.
| |
Collapse
|
43
|
Khanal M, Barras A, Vausselin T, Fénéant L, Boukherroub R, Siriwardena A, Dubuisson J, Szunerits S. Boronic acid-modified lipid nanocapsules: a novel platform for the highly efficient inhibition of hepatitis C viral entry. NANOSCALE 2015; 7:1392-1402. [PMID: 25502878 DOI: 10.1039/c4nr03875d] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The search for viral entry inhibitors that selectively target viral envelope glycoproteins has attracted increasing interest in recent years. Amongst the handful of molecules reported to show activity as hepatitis C virus (HCV) entry inhibitors are a variety of glycan-binding proteins including the lectins, cyanovirin-N (CV-N) and griffithsin. We recently demonstrated that boronic acid-modified nanoparticles are able to reduce HCV entry through a similar mechanism to that of lectins. A major obstacle to any further development of these nanostructures as viral entry inhibitors is their only moderate maximal inhibition potential. In the present study, we report that lipid nanocapsules (LNCs), surface-functionalized with amphiphilic boronic acid (BA) through their post-insertion into the semi-rigid shell of the LNCs, are indeed far superior as HCV entry inhibitors when compared with previously reported nanostructures. These 2(nd) generation particles (BA-LNCs) are shown to prevent HCV infection in the micromolar range (IC50 = 5.4 μM of BA moieties), whereas the corresponding BA monomers show no significant effects even at the highest analyzed concentration (20 μM). The new BA-LNCs are the most promising boronolectin-based HCV entry inhibitors reported to date and are thus observed to show great promise in the development of a pseudolectin-based therapeutic agent.
Collapse
Affiliation(s)
- Manakamana Khanal
- Institut de Recherche Interdisciplinaire (IRI, USR CNRS 3078), Université Lille 1, Parc de la Haute Borne, 50 Avenue de Halley, BP 70478, 59658 Villeneuve d'Ascq, France.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Kotsuchibashi Y, Ebara M, Sato T, Wang Y, Rajender R, Hall DG, Narain R, Aoyagi T. Spatiotemporal control of synergistic gel disintegration consisting of boroxole- and glyco-based polymers via photoinduced proton transfer. J Phys Chem B 2014; 119:2323-9. [PMID: 25211348 DOI: 10.1021/jp506478p] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
We demonstrate here a local- and remote-control of gel disintegration by using photoinduced proton transfer chemistry of photoacid generator (PAG). The gels were prepared by simply mixing two polymers, poly(N-isopropylacrylamide-co-5-methacrylamido-1,2-benzoxaborole) (P(NIPAAm-co-MAAmBO)) and poly(3-gluconamidopropyl methacrylamide) (PGAPMA) via the synergistic interaction of benzoxaborole and diol groups. The o-nitrobenzaldehyde (o-NBA) was then loaded into the gel as a PAG. The benzoxaborole-diol interaction was successfully disintegrated upon UV irradiation due to the local pH decrease inside the gel. When the gel was irradiated to a specific gel region, the synergistic interactions were disintegrated only at the exposed region. Of special interest is that the whole material eventually transitioned from gel to sol state, as the generated protons diffused gradually toward the nonilluminated region. The ability of the proposed gel-sol transition system via photoinduced proton diffusion may be beneficial for not only prompt pH changes within the gel but also the design of predictive and programmable devices for drug delivery.
Collapse
Affiliation(s)
- Yohei Kotsuchibashi
- International Center for Young Scientists (ICYS) and International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS) , 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Chenette HCS, Husson SM. Membrane adsorbers comprising grafted glycopolymers for targeted lectin binding. J Appl Polym Sci 2014; 132:1-7. [PMID: 25866416 DOI: 10.1002/app.41437] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
This work details the design and testing of affinity membrane adsorbers for lectin purifications that incorporate glucose-containing glycopolymers. It is the selective interaction between the sugar residues of the glycopolymer and the complementary carbohydrate-binding domain of the lectin that provides the basis for the isolation and purification of lectins from complex biological media. The design approach used in these studies was to graft glycopolymer 'tentacles' from macroporous regenerated cellulose membranes by atom transfer radical polymerization. As shown in earlier studies, this design approach can be used to prepare high-productivity membrane adsorbers. The model lectin, concanavalin A (conA), was used to evaluate membrane performance in bind-and-elute purification, using a low molecular weight sugar for elution. The membrane capacity for binding conA was measured at equilibrium and under dynamic conditions using flow rates of 0.1 and 1.0 mL/min. The first Damkohler number was estimated to relate the adsorption rate to the convective mass transport rate through the membrane bed. It was used to assess whether adsorption kinetics or mass transport contributed the primary limitation to conA binding. Analyses indicate that this system is not limited by the accessibility of the binding sites, but by the inherent rate of adsorption of conA onto the glycopolymer.
Collapse
Affiliation(s)
- Heather C S Chenette
- Department of Chemical and Biomolecular Engineering and Center for Advanced Engineering Fibers and Films, Clemson University, Clemson, SC 29634, USA
| | - Scott M Husson
- Department of Chemical and Biomolecular Engineering and Center for Advanced Engineering Fibers and Films, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
46
|
Dechtrirat D, Gajovic-Eichelmann N, Wojcik F, Hartmann L, Bier FF, Scheller FW. Electrochemical displacement sensor based on ferrocene boronic acid tracer and immobilized glycan for saccharide binding proteins and E. coli. Biosens Bioelectron 2014; 58:1-8. [DOI: 10.1016/j.bios.2014.02.028] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 02/11/2014] [Accepted: 02/11/2014] [Indexed: 02/07/2023]
|
47
|
Smith AAA, Kryger MBL, Wohl BM, Ruiz-Sanchis P, Zuwala K, Tolstrup M, Zelikin AN. Macromolecular (pro)drugs in antiviral research. Polym Chem 2014. [DOI: 10.1039/c4py00624k] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
48
|
Ballegaard V, Haugaard AK, Garred P, Nielsen SD, Munthe-Fog L. The lectin pathway of complement: advantage or disadvantage in HIV pathogenesis? Clin Immunol 2014; 154:13-25. [PMID: 24928325 DOI: 10.1016/j.clim.2014.06.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 06/01/2014] [Accepted: 06/02/2014] [Indexed: 02/02/2023]
Abstract
The pattern recognition molecules of the lectin complement pathway are important components of the innate immune system with known functions in host-virus interactions. This paper summarizes current knowledge of how these intriguing molecules, including mannose-binding lectin (MBL), Ficolin-1, -2 and -3, and collectin-11 (CL-11) may influence HIV-pathogenesis. It has been demonstrated that MBL is capable of binding and neutralizing HIV and may affect host susceptibility to HIV infection and disease progression. In addition, MBL may cause variations in the host immune response against HIV. Ficolin-1, -2 and -3 and CL-11 could have similar functions in HIV infection as the ficolins have been shown to play a role in other viral infections, and CL-11 resembles MBL and the ficolins in structure and binding capacity.
Collapse
Affiliation(s)
- V Ballegaard
- Viro-Immunology, Department of Infectious Diseases, Rigshospitalet (Copenhagen University Hospital), Denmark
| | - A K Haugaard
- Viro-Immunology, Department of Infectious Diseases, Rigshospitalet (Copenhagen University Hospital), Denmark
| | - P Garred
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet (Copenhagen University Hospital), Denmark
| | - S D Nielsen
- Viro-Immunology, Department of Infectious Diseases, Rigshospitalet (Copenhagen University Hospital), Denmark.
| | - L Munthe-Fog
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet (Copenhagen University Hospital), Denmark
| |
Collapse
|
49
|
Liu CT, Tomsho JW, Benkovic SJ. The unique chemistry of benzoxaboroles: current and emerging applications in biotechnology and therapeutic treatments. Bioorg Med Chem 2014; 22:4462-73. [PMID: 24864040 DOI: 10.1016/j.bmc.2014.04.065] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 04/21/2014] [Accepted: 04/30/2014] [Indexed: 12/25/2022]
Abstract
Benzoxaboroles have garnered much attention in recent years due to their diverse applications in bio-sensing technology, material science, and therapeutic intervention. Part of the reason arises from the benzoxaboroles' unique chemical properties, especially in comparison to their acyclic boronic acid counterparts. Furthermore, the low bio-toxicity combined with the high target specificity associated with benzoxaboroles make them very attractive as therapeutic agents. Herein, we provide an updated summary on the current knowledge of the fundamental chemical reactivity of benzoxaboroles, followed by highlighting their major applications reported to date.
Collapse
Affiliation(s)
- C Tony Liu
- Department of Chemistry, Pennsylvania State University, University Park, PA 16802, United States
| | - John W Tomsho
- Department of Chemistry & Biochemistry, University of the Sciences, 600 S. 43rd Street, Philadelphia, PA 19104-4495, United States.
| | - Stephen J Benkovic
- Department of Chemistry, Pennsylvania State University, University Park, PA 16802, United States.
| |
Collapse
|
50
|
Teller RS, Rastogi R, Johnson TJ, Blair MJ, Hitchcock RW, Kiser PF. Intravaginal Flux Controlled Pump for Sustained Release of Macromolecules. Pharm Res 2014; 31:2344-53. [DOI: 10.1007/s11095-014-1331-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 02/08/2014] [Indexed: 11/28/2022]
|