1
|
Gray EH, Srenathan U, Durham LE, Lalnunhlimi S, Steel KJA, Catrina A, Kirkham BW, Taams LS. Human in vitro-induced IL-17A+ CD8+ T-cells exert pro-inflammatory effects on synovial fibroblasts. Clin Exp Immunol 2023; 214:103-119. [PMID: 37367825 PMCID: PMC10711358 DOI: 10.1093/cei/uxad068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/25/2023] [Accepted: 06/26/2023] [Indexed: 06/28/2023] Open
Abstract
IL-17A+ CD8+ T-cells, termed Tc17 cells, have been identified at sites of inflammation in several immune-mediated inflammatory diseases. However, the biological function of human IL-17A+ CD8+ T-cells is not well characterized, likely due in part to the relative scarcity of these cells. Here, we expanded IL-17A+ CD8+ T-cells from healthy donor PBMC or bulk CD8+ T-cell populations using an in vitro polarization protocol. We show that T-cell activation in the presence of IL-1β and IL-23 significantly increased the frequencies of IL-17A+ CD8+ T-cells, which was not further enhanced by IL-6, IL-2, or anti-IFNγ mAb addition. In vitro-generated IL-17A+ CD8+ T-cells displayed a distinct type-17 profile compared with IL-17A- CD8+ T-cells, as defined by transcriptional signature (IL17A, IL17F, RORC, RORA, MAF, IL23R, CCR6), high surface expression of CCR6 and CD161, and polyfunctional production of IL-17A, IL-17F, IL-22, IFNγ, TNFα, and GM-CSF. A significant proportion of in vitro-induced IL-17A+ CD8+ T-cells expressed TCRVα7.2 and bound MR1 tetramers indicative of MAIT cells, indicating that our protocol expanded both conventional and unconventional IL-17A+ CD8+ T-cells. Using an IL-17A secretion assay, we sorted the in vitro-generated IL-17A+ CD8+ T-cells for functional analysis. Both conventional and unconventional IL-17A+ CD8+ T-cells were able to induce pro-inflammatory IL-6 and IL-8 production by synovial fibroblasts from patients with psoriatic arthritis, which was reduced upon addition of anti-TNFα and anti-IL-17A neutralizing antibodies. Collectively, these data demonstrate that human in vitro-generated IL-17A+ CD8+ T-cells are biologically functional and that their pro-inflammatory function can be targeted, at least in vitro, using existing immunotherapy.
Collapse
Affiliation(s)
- Elizabeth H Gray
- Centre for Inflammation Biology and Cancer Immunology, Department of Inflammation Biology, School of Immunology & Microbial Sciences, King’s College London, London, UK
| | - Ushani Srenathan
- Centre for Inflammation Biology and Cancer Immunology, Department of Inflammation Biology, School of Immunology & Microbial Sciences, King’s College London, London, UK
| | - Lucy E Durham
- Centre for Inflammation Biology and Cancer Immunology, Department of Inflammation Biology, School of Immunology & Microbial Sciences, King’s College London, London, UK
| | - Sylvine Lalnunhlimi
- Centre for Inflammation Biology and Cancer Immunology, Department of Inflammation Biology, School of Immunology & Microbial Sciences, King’s College London, London, UK
| | - Kathryn J A Steel
- Centre for Inflammation Biology and Cancer Immunology, Department of Inflammation Biology, School of Immunology & Microbial Sciences, King’s College London, London, UK
| | - Anca Catrina
- Rheumatology Unit, Department of Medicine (Solna), Karolinska Institute, Stockholm, Sweden
| | - Bruce W Kirkham
- Department of Rheumatology, Guy’s Hospital, Guy’s and St. Thomas’ NHS Foundation Trust Hospital, London, UK
| | - Leonie S Taams
- Centre for Inflammation Biology and Cancer Immunology, Department of Inflammation Biology, School of Immunology & Microbial Sciences, King’s College London, London, UK
| |
Collapse
|
2
|
Hipp AV, Bengsch B, Globig AM. Friend or Foe - Tc17 cell generation and current evidence for their importance in human disease. DISCOVERY IMMUNOLOGY 2023; 2:kyad010. [PMID: 38567057 PMCID: PMC10917240 DOI: 10.1093/discim/kyad010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/12/2023] [Accepted: 07/19/2023] [Indexed: 04/04/2024]
Abstract
The term Tc17 cells refers to interleukin 17 (IL-17)-producing CD8+ T cells. While IL-17 is an important mediator of mucosal defense, it is also centrally involved in driving the inflammatory response in immune-mediated diseases, such as psoriasis, multiple sclerosis, and inflammatory bowel disease. In this review, we aim to gather the current knowledge on the phenotypic and transcriptional profile, the in vitro and in vivo generation of Tc17 cells, and the evidence pointing towards a relevant role of Tc17 cells in human diseases such as infectious diseases, cancer, and immune-mediated diseases.
Collapse
Affiliation(s)
- Anna Veronika Hipp
- Clinic for Internal Medicine II, Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases, University Medical Center Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Bertram Bengsch
- Clinic for Internal Medicine II, Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases, University Medical Center Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Anna-Maria Globig
- Clinic for Internal Medicine II, Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases, University Medical Center Freiburg, Faculty of Medicine, Freiburg, Germany
| |
Collapse
|
3
|
Effects of Cationic Dendrimers and Their Complexes with microRNAs on Immunocompetent Cells. Pharmaceutics 2022; 15:pharmaceutics15010148. [PMID: 36678776 PMCID: PMC9862986 DOI: 10.3390/pharmaceutics15010148] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/19/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
Short regulatory oligonucleotides are considered prospective tools for immunotherapy. However, they require an adequate carrier to deliver potential therapeutics into immune cells. Herein, we explore the potential of polycationic dendrimers as carriers for microRNAs in peripheral blood mononuclear cells of healthy donors. As an oligonucleotide cargo, we use a synthetic mimic and an inhibitor of miR-155, an important factor in the development and functioning of immunocompetent cells. Dendrimers bind microRNAs into low-cytotoxic polyelectrolyte complexes that are efficiently uptaken by immunocompetent cells. We have shown these complexes to affect the number of T-regulatory cells, CD14+ and CD19+ cell subpopulations in non-activated mononuclear cells. The treatment affected the expression of HLA-DR on T-cells and PD-1 expression on T- and B-lymphocytes. It also affected the production of IL-4 and IL-10, but not the perforin and granzyme B production. Our findings suggest the potential of dendrimer-mediated microRNA-155 treatment for immunotherapy, though the activity of microRNA-dendrimer constructions on distinct immune cell subsets can be further improved.
Collapse
|
4
|
Abstract
ABSTRACT Multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE), a pathologically similar disease used to model MS in rodents, are typical CD4+ T cell-dominated autoimmune diseases. CD4+ interleukin (IL)17+ T cells (Th17 cells) have been well studied and have shown that they play a critical role in the pathogenesis of MS/EAE. However, studies have suggested that CD8+IL17+ T cells (Tc17 cells) have a similar phenotype and cytokine and transcription factor profiles to those of Th17 cells and have been found to be crucial in the pathogenesis of autoimmune diseases, including MS/EAE, psoriasis, type I diabetes, rheumatoid arthritis, and systemic lupus erythematosus. However, the evidence for this is indirect and insufficient. Therefore, we searched for related publications and attempted to summarize the current knowledge on the role of Tc17 cells in the pathogenesis of MS/EAE, as well as in the pathogenesis of other autoimmune diseases, and to find out whether Tc17 cells or Th17 cells play a more critical role in autoimmune disease, especially in MS and EAE pathogenesis, or whether the interaction between these two cell types plays a critical role in the development of the disease.
Collapse
Affiliation(s)
- Yong Peng
- Department of Neurology, Affiliated First Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan 412000, China
| | - Xiang Deng
- Department of Neurology, Affiliated First Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan 412000, China
| | - Qiuming Zeng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yandan Tang
- Department of Neurology, Affiliated First Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan 412000, China
| |
Collapse
|
5
|
Yi JS, Russo MA, Raja S, Massey JM, Juel VC, Shin J, Hobson-Webb LD, Gable K, Guptill JT. Inhibition of the transcription factor ROR-γ reduces pathogenic Th17 cells in acetylcholine receptor antibody positive myasthenia gravis. Exp Neurol 2019; 325:113146. [PMID: 31838097 DOI: 10.1016/j.expneurol.2019.113146] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 11/27/2019] [Accepted: 12/10/2019] [Indexed: 12/25/2022]
Abstract
IL-17 producing CD4 T cells (Th17) cells increase significantly with disease severity in myasthenia gravis (MG) patients. To suppress the generation of Th17 cells, we examined the effect of inhibiting retinoic acid receptor-related-orphan-receptor-C (RORγ), a Th17-specific transcription factor critical for differentiation. RORγ inhibition profoundly reduced Th17 cell frequencies, including IFN-γ and IL-17 co-producing pathogenic Th17 cells. Other T helper subsets were not affected. In parallel, CD8 T cell subsets producing IL-17 and IL-17/IFN-γ were increased in MG patients and inhibited by the RORγ inhibitor. These findings provide rationale for exploration of targeted Th17 therapies, including ROR-γ inhibitors, to treat MG patients.
Collapse
Affiliation(s)
- John S Yi
- Division of Surgical Sciences, Department of Surgery, Duke University Medical Center, 915 S., LaSalle Street, Box 2926, Durham, NC 27710, USA.
| | - Melissa A Russo
- Neuromuscular Section, Department of Neurology, Duke University Medical Center, Box 3403, Durham, NC 27710, USA
| | - Shruti Raja
- Neuromuscular Section, Department of Neurology, Duke University Medical Center, Box 3403, Durham, NC 27710, USA
| | - Janice M Massey
- Neuromuscular Section, Department of Neurology, Duke University Medical Center, Box 3403, Durham, NC 27710, USA
| | - Vern C Juel
- Neuromuscular Section, Department of Neurology, Duke University Medical Center, Box 3403, Durham, NC 27710, USA
| | - Jay Shin
- Duke University, Durham, NC 27710, USA
| | - Lisa D Hobson-Webb
- Neuromuscular Section, Department of Neurology, Duke University Medical Center, Box 3403, Durham, NC 27710, USA
| | - Karissa Gable
- Neuromuscular Section, Department of Neurology, Duke University Medical Center, Box 3403, Durham, NC 27710, USA
| | - Jeffrey T Guptill
- Neuromuscular Section, Department of Neurology, Duke University Medical Center, Box 3403, Durham, NC 27710, USA
| |
Collapse
|
6
|
IL-17+ CD8+ T cells: Differentiation, phenotype and role in inflammatory disease. Immunol Lett 2016; 178:20-6. [PMID: 27173097 PMCID: PMC5046976 DOI: 10.1016/j.imlet.2016.05.001] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 05/06/2016] [Indexed: 01/01/2023]
Abstract
IL-17A (IL-17) is produced by multiple cell subsets, including CD8+ T cells. The presence of IL-17+ CD8+ T cells in human inflammatory diseases suggests these cells may contribute to immunopathology. Increased knowledge of human IL-17+ CD8+ T cells will enhance our overall understanding of their role in human disease.
The pro-inflammatory cytokine interleukin-17A (IL-17) has been the subject of research by many groups worldwide. IL-17 expression is often associated with a specific subset of CD4+ T cells (the so-called Th17 cells); however various other immune cell subsets can also synthesise and express IL-17, including CD8+ T cells. Here we review recent data regarding the presence of IL-17+ CD8+ T cells (also known as Tc17 cells) in human inflammatory disease, discuss current knowledge regarding the culture conditions required for the differentiation of these cells in humans and mice, and describe key phenotypic and functional features. Collectively, this information may shed light on the potential pathogenic role that IL-17+ CD8+ T cells may play in human inflammatory disease.
Collapse
|
7
|
Maroto-Díaz M, Elie BT, Gómez-Sal P, Pérez-Serrano J, Gómez R, Contel M, Javier de la Mata F. Synthesis and anticancer activity of carbosilane metallodendrimers based on arene ruthenium(ii) complexes. Dalton Trans 2016; 45:7049-66. [PMID: 26990859 PMCID: PMC4863959 DOI: 10.1039/c6dt00465b] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A series of new organometallic carbosilane dendrimers (first and second generation) and the corresponding non-dendritic mononuclear based on ruthenium arene fragments are described. The metallodendrimers were prepared by reactions of the precursor [Ru(η(6)-p-cymene)Cl2]2 with carbosilane dendrimers functionalized with N-donor monodentate ligands such as NH2- and pyridine, or with N,O-, N,N-chelating imine ligands. While the dendrimer precursors are insoluble in DMSO or water, novel metallodendrimers are soluble in DMSO and some of them are even highly soluble in water. The molecular structure of the "Ru-NH2" mononuclear compound (zero generation) was determined by single-crystal X-ray crystallography. The cytotoxicity activity of these dendritic structures was evaluated in several human cancer cell lines and compared with that of the corresponding mononuclear ruthenium complexes. Most compounds display significant cytotoxic activities in the low micromolar range with the first generation ruthenium dendrimers being the most active compounds. The cell death type for selected compounds has been studied as well as their reactivity towards relevant biomolecules such as DNA, Human Serum Albumin (HSA) and Cathepsin-B. All the data point to a mode of action different from that of cisplatin for most complexes. First generation ruthenium dendrimers inhibit Cathepsin-B, which may suggest potential antimetastatic properties of these compounds.
Collapse
Affiliation(s)
- Marta Maroto-Díaz
- Departamento de Química Orgánica y Química Inorgánica, Universidad de Alcalá, Campus Universitario, E-28871 Alcalá de Henares, Spain. and Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain
| | - Benelita T Elie
- Department of Chemistry, Brooklyn College and The Graduate Center, The City University of New York, Brooklyn, New York 11210, USA. and Biology PhD Program, The Graduate Center, The City University of New York, 365 Fifth Avenue, New York, NY 10016, USA
| | - Pilar Gómez-Sal
- Departamento de Química Orgánica y Química Inorgánica, Universidad de Alcalá, Campus Universitario, E-28871 Alcalá de Henares, Spain.
| | - Jorge Pérez-Serrano
- Departamento de Biomedicina y Biotecnología, Universidad de Alcalá, Campus Universitario, E-28871 Alcalá de Henares, Spain
| | - Rafael Gómez
- Departamento de Química Orgánica y Química Inorgánica, Universidad de Alcalá, Campus Universitario, E-28871 Alcalá de Henares, Spain. and Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain
| | - María Contel
- Department of Chemistry, Brooklyn College and The Graduate Center, The City University of New York, Brooklyn, New York 11210, USA. and Biology PhD Program, The Graduate Center, The City University of New York, 365 Fifth Avenue, New York, NY 10016, USA
| | - F Javier de la Mata
- Departamento de Química Orgánica y Química Inorgánica, Universidad de Alcalá, Campus Universitario, E-28871 Alcalá de Henares, Spain. and Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain
| |
Collapse
|
8
|
Fuentes-Paniagua E, Peña-González CE, Galán M, Gómez R, de la Mata FJ, Sánchez-Nieves J. Thiol-Ene Synthesis of Cationic Carbosilane Dendrons: a New Family of Synthons. Organometallics 2013. [DOI: 10.1021/om301217g] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Elena Fuentes-Paniagua
- Departamento de Quı́mica Orgánica
y Quı́mica
Inorgánica and ‡Networking Research Center for Bioengineering,
Biomaterials and Nanomedicine (CIBER-BBN), Universidad de Alcalá, Campus Universitario,
E-28871 Alcalá de Henares (Madrid), Spain
| | - Cornelia E. Peña-González
- Departamento de Quı́mica Orgánica
y Quı́mica
Inorgánica and ‡Networking Research Center for Bioengineering,
Biomaterials and Nanomedicine (CIBER-BBN), Universidad de Alcalá, Campus Universitario,
E-28871 Alcalá de Henares (Madrid), Spain
| | - Marta Galán
- Departamento de Quı́mica Orgánica
y Quı́mica
Inorgánica and ‡Networking Research Center for Bioengineering,
Biomaterials and Nanomedicine (CIBER-BBN), Universidad de Alcalá, Campus Universitario,
E-28871 Alcalá de Henares (Madrid), Spain
| | - Rafael Gómez
- Departamento de Quı́mica Orgánica
y Quı́mica
Inorgánica and ‡Networking Research Center for Bioengineering,
Biomaterials and Nanomedicine (CIBER-BBN), Universidad de Alcalá, Campus Universitario,
E-28871 Alcalá de Henares (Madrid), Spain
| | - F. Javier de la Mata
- Departamento de Quı́mica Orgánica
y Quı́mica
Inorgánica and ‡Networking Research Center for Bioengineering,
Biomaterials and Nanomedicine (CIBER-BBN), Universidad de Alcalá, Campus Universitario,
E-28871 Alcalá de Henares (Madrid), Spain
| | - Javier Sánchez-Nieves
- Departamento de Quı́mica Orgánica
y Quı́mica
Inorgánica and ‡Networking Research Center for Bioengineering,
Biomaterials and Nanomedicine (CIBER-BBN), Universidad de Alcalá, Campus Universitario,
E-28871 Alcalá de Henares (Madrid), Spain
| |
Collapse
|
9
|
Sánchez-Nieves J, Perisé-Barrios AJ, Ortega P, Corbí ÁL, Domínguez-Soto Á, Muñoz-Fernández MÁ, Gómez R, Javier de la Mata F. Study of cationic carbosilane dendrimers as potential activating stimuli in macrophages. RSC Adv 2013. [DOI: 10.1039/c3ra43338b] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|