1
|
Mesquita B, Singh A, Prats Masdeu C, Lokhorst N, Hebels ER, van Steenbergen M, Mastrobattista E, Heger M, van Nostrum CF, Oliveira S. Nanobody-mediated targeting of zinc phthalocyanine with polymer micelles as nanocarriers. Int J Pharm 2024; 655:124004. [PMID: 38492899 DOI: 10.1016/j.ijpharm.2024.124004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/11/2024] [Accepted: 03/14/2024] [Indexed: 03/18/2024]
Abstract
Photodynamic therapy (PDT) is a suitable alternative to currently employed cancer treatments. However, the hydrophobicity of most photosensitizers (e.g., zinc phthalocyanine (ZnPC)) leads to their aggregation in blood. Moreover, non-specific accumulation in skin and low clearance rate of ZnPC leads to long-lasting skin photosensitization, forcing patients with a short life expectancy to remain indoors. Consequently, the clinical implementation of these photosensitizers is limited. Here, benzyl-poly(ε-caprolactone)-b-poly(ethylene glycol) micelles encapsulating ZnPC (ZnPC-M) were investigated to increase the solubility of ZnPC and its specificity towards cancers cells. Asymmetric flow field-flow fractionation was used to characterize micelles with different ZnPC-to-polymer ratios and their stability in human plasma. The ZnPC-M with the lowest payload (0.2 and 0.4% ZnPC w/w) were the most stable in plasma, exhibiting minimal ZnPC transfer to lipoproteins, and induced the highest phototoxicity in three cancer cell lines. Nanobodies (Nbs) with binding specificity towards hepatocyte growth factor receptor (MET) or epidermal growth factor receptor (EGFR) were conjugated to ZnPC-M to facilitate cell targeting and internalization. MET- and EGFR-targeting micelles enhanced the association and the phototoxicity in cells expressing the target receptor. Altogether, these results indicate that ZnPC-M decorated with Nbs targeting overexpressed proteins on cancer cells may provide a better alternative to currently approved formulations.
Collapse
Affiliation(s)
- Bárbara Mesquita
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Arunika Singh
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Cèlia Prats Masdeu
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Nienke Lokhorst
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Erik R Hebels
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Mies van Steenbergen
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Enrico Mastrobattista
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Michal Heger
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands; Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, Jiaxing University, College of Medicine, Jiaxing, Zhejiang, PR China; Membrane Biochemistry and Biophysics, Bijvoet Center for Biomolecular Research, Department of Chemistry, Utrecht University, Utrecht, The Netherlands
| | - Cornelus F van Nostrum
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands.
| | - Sabrina Oliveira
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands; Cell Biology, Neurobiology and Biophysics, Department of Biology, Science Faculty, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
2
|
Amphiphilic Protoporphyrin IX Derivatives as New Photosensitizing Agents for the Improvement of Photodynamic Therapy. Biomedicines 2022; 10:biomedicines10020423. [PMID: 35203632 PMCID: PMC8962274 DOI: 10.3390/biomedicines10020423] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/28/2022] [Accepted: 02/04/2022] [Indexed: 11/16/2022] Open
Abstract
Photodynamic therapy (PDT) is a non-invasive therapeutic modality based on the interaction between a photosensitive molecule called photosensitizer (PS) and visible light irradiation in the presence of oxygen molecule. Protoporphyrin IX (PpIX), an efficient and widely used PS, is hampered in clinical PDT by its poor water-solubility and tendency to self-aggregate. These features are strongly related to the PS hydrophilic–lipophilic balance. In order to improve the chemical properties of PpIX, a series of amphiphilic PpIX derivatives endowed with PEG550 headgroups and hydrogenated or fluorinated tails was synthetized. Hydrophilic–lipophilic balance (HLB) and log p-values were computed for all of the prepared compounds. Their photochemical properties (spectroscopic characterization, photobleaching, and singlet oxygen quantum yield) were also evaluated followed by the in vitro studies of their cellular uptake, subcellular localization, and photocytotoxicity on three tumor cell lines (4T1, scc-U8, and WiDr cell lines). The results confirm the therapeutic potency of these new PpIX derivatives. Indeed, while all of the derivatives were perfectly water soluble, some of them exhibited an improved photodynamic effect compared to the parent PpIX.
Collapse
|
3
|
Ulfo L, Costantini PE, Di Giosia M, Danielli A, Calvaresi M. EGFR-Targeted Photodynamic Therapy. Pharmaceutics 2022; 14:241. [PMID: 35213974 PMCID: PMC8879084 DOI: 10.3390/pharmaceutics14020241] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 12/04/2022] Open
Abstract
The epidermal growth factor receptor (EGFR) plays a pivotal role in the proliferation and metastatization of cancer cells. Aberrancies in the expression and activation of EGFR are hallmarks of many human malignancies. As such, EGFR-targeted therapies hold significant potential for the cure of cancers. In recent years, photodynamic therapy (PDT) has gained increased interest as a non-invasive cancer treatment. In PDT, a photosensitizer is excited by light to produce reactive oxygen species, resulting in local cytotoxicity. One of the critical aspects of PDT is to selectively transport enough photosensitizers to the tumors environment. Accordingly, an increasing number of strategies have been devised to foster EGFR-targeted PDT. Herein, we review the recent nanobiotechnological advancements that combine the promise of PDT with EGFR-targeted molecular cancer therapy. We recapitulate the chemistry of the sensitizers and their modes of action in PDT, and summarize the advantages and pitfalls of different targeting moieties, highlighting future perspectives for EGFR-targeted photodynamic treatment of cancer.
Collapse
Affiliation(s)
- Luca Ulfo
- Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum—Università di Bologna, Via Francesco Selmi 3, 40126 Bologna, Italy; (L.U.); (P.E.C.)
| | - Paolo Emidio Costantini
- Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum—Università di Bologna, Via Francesco Selmi 3, 40126 Bologna, Italy; (L.U.); (P.E.C.)
| | - Matteo Di Giosia
- Dipartimento di Chimica “Giacomo Ciamician”, Alma Mater Studiorum—Università di Bologna, Via Francesco Selmi 2, 40126 Bologna, Italy;
| | - Alberto Danielli
- Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum—Università di Bologna, Via Francesco Selmi 3, 40126 Bologna, Italy; (L.U.); (P.E.C.)
| | - Matteo Calvaresi
- Dipartimento di Chimica “Giacomo Ciamician”, Alma Mater Studiorum—Università di Bologna, Via Francesco Selmi 2, 40126 Bologna, Italy;
| |
Collapse
|
4
|
Novel Peptide Therapeutic Approaches for Cancer Treatment. Cells 2021; 10:cells10112908. [PMID: 34831131 PMCID: PMC8616177 DOI: 10.3390/cells10112908] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/12/2021] [Accepted: 10/21/2021] [Indexed: 11/17/2022] Open
Abstract
Peptides are increasingly being developed for use as therapeutics to treat many ailments, including cancer. Therapeutic peptides have the advantages of target specificity and low toxicity. The anticancer effects of a peptide can be the direct result of the peptide binding its intended target, or the peptide may be conjugated to a chemotherapy drug or radionuclide and used to target the agent to cancer cells. Peptides can be targeted to proteins on the cell surface, where the peptide–protein interaction can initiate internalization of the complex, or the peptide can be designed to directly cross the cell membrane. Peptides can induce cell death by numerous mechanisms including membrane disruption and subsequent necrosis, apoptosis, tumor angiogenesis inhibition, immune regulation, disruption of cell signaling pathways, cell cycle regulation, DNA repair pathways, or cell death pathways. Although using peptides as therapeutics has many advantages, peptides have the disadvantage of being easily degraded by proteases once administered and, depending on the mode of administration, often have difficulty being adsorbed into the blood stream. In this review, we discuss strategies recently developed to overcome these obstacles of peptide delivery and bioavailability. In addition, we present many examples of peptides developed to fight cancer.
Collapse
|
5
|
Recent Progress in Phthalocyanine-Polymeric Nanoparticle Delivery Systems for Cancer Photodynamic Therapy. NANOMATERIALS 2021; 11:nano11092426. [PMID: 34578740 PMCID: PMC8469866 DOI: 10.3390/nano11092426] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 12/11/2022]
Abstract
This perspective article summarizes the last decade’s developments in the field of phthalocyanine (Pc)-polymeric nanoparticle (NP) delivery systems for cancer photodynamic therapy (PDT), including studies with at least in vitro data. Moreover, special attention will be paid to the various strategies for enhancing the behavior of Pc-polymeric NPs in PDT, underlining the great potential of this class of nanomaterials as advanced Pcs’ nanocarriers for cancer PDT. This review shows that there is still a lot of research to be done, opening the door to new and interesting nanodelivery systems.
Collapse
|
6
|
Lessard BH. The Rise of Silicon Phthalocyanine: From Organic Photovoltaics to Organic Thin Film Transistors. ACS APPLIED MATERIALS & INTERFACES 2021; 13:31321-31330. [PMID: 34197065 DOI: 10.1021/acsami.1c06060] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Silicon phthalocyanines are emerging n-type semiconductors for use in organic photovoltaics (OPVs) and organic thin-film transistors (OTFTs). Their low synthetic complexity paired with their versatile axial group facilitates the fine-tuning of their chemical properties, solution properties and processing characteristics without significantly affecting their frontier orbital levels or their absorption properties. The crystal engineering and film forming characteristics of silicon phthalocyanine semiconductors can be tuned through appropriate axial group functionalization, therefore facilitating their integration into both OTFTs and OPVs by solution processing or vapor deposition. This Spotlight on Applications will discuss recent advances in the integration of this exciting class of phthalocyanine into OTFTs and OPVs and highlights their promising future.
Collapse
Affiliation(s)
- Benoît H Lessard
- Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis Pasteur, Ottawa, Ontario, Canada K1N 6N5
- School of Electrical Engineering and Computer Science, University of Ottawa, 800 King Edward, Ottawa, Ontario, Canada K1N 6N5
| |
Collapse
|
7
|
Obata M, Masuda S, Takahashi M, Yazaki K, Hirohara S. Effect of the hydrophobic segment of an amphiphilic block copolymer on micelle formation, zinc phthalocyanine loading, and photodynamic activity. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110325] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
8
|
Mitra K, Hartman MCT. Silicon phthalocyanines: synthesis and resurgent applications. Org Biomol Chem 2021; 19:1168-1190. [DOI: 10.1039/d0ob02299c] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Their unique axial bonds and NIR optical properties have made silicon phthalocyanines (SiPcs) valuable compounds. Herein, we present key synthetic strategies and emerging applications of SiPcs over the past decade.
Collapse
Affiliation(s)
- Koushambi Mitra
- Department of Chemistry
- Virginia Commonwealth University
- Richmond
- USA
- Massey Cancer Center
| | - Matthew C. T. Hartman
- Department of Chemistry
- Virginia Commonwealth University
- Richmond
- USA
- Massey Cancer Center
| |
Collapse
|
9
|
Darwish W. Polymers for enhanced photodynamic cancer therapy: Phthalocyanines as a photosensitzer model. POLYM ADVAN TECHNOL 2020. [DOI: 10.1002/pat.5154] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Wael Darwish
- Laser Technology Group, Center of Excellence for Advanced Sciences; Department of Polymers and Pigments National Research Centre Giza Egypt
| |
Collapse
|
10
|
Aggarwal A, Samaroo D, Jovanovic IR, Singh S, Tuz MP, Mackiewicz MR. Porphyrinoid-based photosensitizers for diagnostic and therapeutic applications: An update. J PORPHYR PHTHALOCYA 2019. [DOI: 10.1142/s1088424619300118] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Porphyrin-based molecules are actively studied as dual function theranostics: fluorescence-based imaging for diagnostics and fluorescence-guided therapeutic treatment of cancers. The intrinsic fluorescent and photodynamic properties of the bimodal molecules allows for these theranostic approaches. Several porphyrinoids bearing both hydrophilic and/or hydrophobic units at their periphery have been developed for the aforementioned applications, but better tumor selectivity and high efficacy to destroy tumor cells is always a key setback for their use. Another issue related to their effective clinical use is that, most of these chromophores form aggregates under physiological conditions. Nanomaterials that are known to possess incredible properties that cannot be achieved from their bulk systems can serve as carriers for these chromophores. Porphyrinoids, when conjugated with nanomaterials, can be enabled to perform as multifunctional nanomedicine devices. The integrated properties of these porphyrinoid-nanomaterial conjugated systems make them useful for selective drug delivery, theranostic capabilities, and multimodal bioimaging. This review highlights the use of porphyrins, chlorins, bacteriochlorins, phthalocyanines and naphthalocyanines as well as their multifunctional nanodevices in various biomedical theranostic platforms.
Collapse
Affiliation(s)
- Amit Aggarwal
- LaGuardia Community College, 31-10 Thomson Ave., Long Island City, NY 11101, USA
| | - Diana Samaroo
- New York City College of Technology, Department of Chemistry, 285 Jay Street, Brooklyn, NY 11201, USA
- Graduate Center, 365 5th Ave, New York, NY 10016, USA
| | | | - Sunaina Singh
- LaGuardia Community College, 31-10 Thomson Ave., Long Island City, NY 11101, USA
| | - Michelle Paola Tuz
- LaGuardia Community College, 31-10 Thomson Ave., Long Island City, NY 11101, USA
| | | |
Collapse
|
11
|
Constantin C, Lupu AR, Fertig TE, Gherghiceanu M, Pop S, Ion RM, Neagu M. Unveiling Ga(III) phthalocyanine-a different photosensitizer in neuroblastoma cellular model. J Cell Mol Med 2018; 23:1086-1094. [PMID: 30451363 PMCID: PMC6349146 DOI: 10.1111/jcmm.14009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 10/10/2018] [Accepted: 10/11/2018] [Indexed: 12/16/2022] Open
Abstract
Phthalocyanines (Pc) and their metallated derivatives are strongly considered for photodynamic therapy (PDT) possessing unique properties as possible new photosensitizers (PS). We have used toxicological assessments, real-time monitoring of cellular impedance, and imagistic measurements for assessing the in vitro dark toxicity and PDT efficacy of Ga(III)-Pc in SHSy5Y neuroblastoma cells. We have established the non-toxic concentration range of Ga(III)-Pc, a compound which shows a high intracellular accumulation, with perinuclear distribution in confocal microscopy. By choosing Ga(III)Pc non-toxic dose, we performed in vitro experimental PDT hampering cellular proliferation. Our proposed Ga(III)-Pc could complete a future PS panel for neuroblastoma alternate therapy.
Collapse
Affiliation(s)
- Carolina Constantin
- Immunology Department, "Victor Babes" National Institute of Pathology, Bucharest, Romania.,Pathology Department, "Colentina" Clinical Hospital, Bucharest, Romania
| | - Andreea-Roxana Lupu
- Immunology Department, "Victor Babes" National Institute of Pathology, Bucharest, Romania
| | - Tudor Emanuel Fertig
- The Pathology Unit, "Victor Babes" National Institute of Pathology, Bucharest, Romania
| | - Mihaela Gherghiceanu
- The Pathology Unit, "Victor Babes" National Institute of Pathology, Bucharest, Romania
| | - Sevinci Pop
- Molecular and Cellular Medicine Department, "Victor Babes" National Institute of Pathology, Bucharest, Romania
| | - Rodica-Mariana Ion
- Nanomedicine Research Group, National Institute for Research & Development in Chemistry and Petrochemistry, Bucharest, Romania
| | - Monica Neagu
- Immunology Department, "Victor Babes" National Institute of Pathology, Bucharest, Romania.,Pathology Department, "Colentina" Clinical Hospital, Bucharest, Romania.,Doctoral School, Faculty of Biology, University of Bucharest, Bucharest, Romania
| |
Collapse
|
12
|
Selvarajan S, Suganthi A, Rajarajan M. A simple sonochemical approach to fabricate a urea biosensor based on zinc phthalocyanine/graphene oxide/urease bioelectrode. ULTRASONICS SONOCHEMISTRY 2018; 42:183-192. [PMID: 29429660 DOI: 10.1016/j.ultsonch.2017.11.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 11/20/2017] [Accepted: 11/21/2017] [Indexed: 06/08/2023]
Abstract
A novel zinc phthalocyanine/graphene oxide (ZnPh/GO) nanocomposite modified glassy carbon electrode (GCE) was prepared by using sonochemical approach and simple drop casting method. Urease (Urs) was used as the specific enzyme for urea detection and was physically immobilized onto the surface of ZnPh/GO nanocomposite. The fabricated ZnPh/GO/Urs matrix was successfully characterized by UV-vis-spectroscopy, FT-IR spectroscopy, scanning electron microscopy (SEM), raman spectrum, thermogravimetric analysis, cyclic voltammetric (CV) and amperometric techniques. The electrocatalytic performance of the ZnPh/GO/Urs electrode was investigated by urea biosensor. Our results demonstrate that the modified electrode has excellent electrocatalytic activity towards the sensing of urea in 0.1 M phosphate buffer solution (PBS, pH 7.2). The biosensor tolerated a wide linear concentration range for urea from 0.4 to 22 μM (R2 = 0.991), with a detection limit of 0.034 µM (S/N = 3). The ZnPh/GO/Urs bioectrode has several excellent properties, including a fast response time, high reproducibility and stability.
Collapse
Affiliation(s)
- Sekar Selvarajan
- PG & Research Department of Chemistry, Thiagarajar College, Madurai 625 009, Tamil Nadu, India
| | - Ayyadurai Suganthi
- PG & Research Department of Chemistry, Thiagarajar College, Madurai 625 009, Tamil Nadu, India; Mother Teresa Women's University, Kodaikanal 624 102, Tamil Nadu, India.
| | | |
Collapse
|
13
|
Bonardi AH, Dumur F, Grant TM, Noirbent G, Gigmes D, Lessard BH, Fouassier JP, Lalevée J. High Performance Near-Infrared (NIR) Photoinitiating Systems Operating under Low Light Intensity and in the Presence of Oxygen. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b00051] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- A. H. Bonardi
- Institut
de Science des Matériaux De Mulhouse, IS2M - UMR CNRS 7361 - UHA, 68057 Mulhouse, France
| | - F. Dumur
- Aix Marseille
Univ, CNRS, ICR, F-13397 Marseille, France
| | - T. M. Grant
- Department
of Chemical and Biological Engineering, University of Ottawa, 161 Louis Pasteur, Ottawa, Ontario K1N 6N5, Canada
| | - G. Noirbent
- Aix Marseille
Univ, CNRS, ICR, F-13397 Marseille, France
| | - D. Gigmes
- Aix Marseille
Univ, CNRS, ICR, F-13397 Marseille, France
| | - B. H. Lessard
- Department
of Chemical and Biological Engineering, University of Ottawa, 161 Louis Pasteur, Ottawa, Ontario K1N 6N5, Canada
| | - J.-P. Fouassier
- Ecole Nationale
Supérieure de Chimie de Mulhouse, Mulhouse, France
| | - J. Lalevée
- Institut
de Science des Matériaux De Mulhouse, IS2M - UMR CNRS 7361 - UHA, 68057 Mulhouse, France
| |
Collapse
|
14
|
Chen H, Bi Q, Yao Y, Tan N. Dimeric BODIPY-loaded liposomes for dual hypoxia marker imaging and activatable photodynamic therapy against tumors. J Mater Chem B 2018; 6:4351-4359. [DOI: 10.1039/c8tb00665b] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
This work reports a dimeric BODIPY (BDP)-loaded liposome with conjugation of anti-HIF antibodies for dual hypoxia marker imaging and nitroreductase (NTR)-activatable photodynamic therapy (PDT) against hypoxic tumors.
Collapse
Affiliation(s)
- Huachao Chen
- State Key Laboratory of Natural Medicines
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research
- School of Traditional Chinese Pharmacy
- China Pharmaceutical University
- Nanjing 211198
| | - Qirui Bi
- State Key Laboratory of Natural Medicines
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research
- School of Traditional Chinese Pharmacy
- China Pharmaceutical University
- Nanjing 211198
| | - Yongrong Yao
- State Key Laboratory of Natural Medicines
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research
- School of Traditional Chinese Pharmacy
- China Pharmaceutical University
- Nanjing 211198
| | - Ninghua Tan
- State Key Laboratory of Natural Medicines
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research
- School of Traditional Chinese Pharmacy
- China Pharmaceutical University
- Nanjing 211198
| |
Collapse
|
15
|
Obata M, Tanaka S, Mizukoshi H, Ishihara E, Takahashi M, Hirohara S. RAFT synthesis of polystyrene-block-poly(polyethylene glycol monomethyl ether acrylate) for zinc phthalocyanine-loaded polymeric micelles as photodynamic therapy photosensitizers. ACTA ACUST UNITED AC 2017. [DOI: 10.1002/pola.28929] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Makoto Obata
- Interdisciplinary Graduate School of Medicine and Engineering; University of Yamanashi, 4-4-37 Takeda; Kofu 400-8510 Japan
| | - Shuto Tanaka
- Interdisciplinary Graduate School of Medicine and Engineering; University of Yamanashi, 4-4-37 Takeda; Kofu 400-8510 Japan
| | - Hiroshi Mizukoshi
- Interdisciplinary Graduate School of Medicine and Engineering; University of Yamanashi, 4-4-37 Takeda; Kofu 400-8510 Japan
| | - Eika Ishihara
- Interdisciplinary Graduate School of Medicine and Engineering; University of Yamanashi, 4-4-37 Takeda; Kofu 400-8510 Japan
| | - Masaki Takahashi
- Interdisciplinary Graduate School of Medicine and Engineering; University of Yamanashi, 4-4-37 Takeda; Kofu 400-8510 Japan
| | - Shiho Hirohara
- Department of Chemical and Biological Engineering; National Institute of Technology, Ube College, 2-14-1 Tokiwadai; Ube 755-8555 Japan
| |
Collapse
|
16
|
Soler DC, Ohtola J, Sugiyama H, Rodriguez ME, Han L, Oleinick NL, Lam M, Baron ED, Cooper KD, McCormick TS. Activated T cells exhibit increased uptake of silicon phthalocyanine Pc 4 and increased susceptibility to Pc 4-photodynamic therapy-mediated cell death. Photochem Photobiol Sci 2016; 15:822-31. [PMID: 27161819 DOI: 10.1039/c6pp00058d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photodynamic therapy (PDT) is an emerging treatment for malignant and inflammatory dermal disorders. Photoirradiation of the silicon phthalocyanine (Pc) 4 photosensitizer with red light generates singlet oxygen and other reactive oxygen species to induce cell death. We previously reported that Pc 4-PDT elicited cell death in lymphoid-derived (Jurkat) and epithelial-derived (A431) cell lines in vitro, and furthermore that Jurkat cells were more sensitive than A431 cells to treatment. In this study, we examined the effectiveness of Pc 4-PDT on primary human CD3(+) T cells in vitro. Fluorometric analyses of lysed T cells confirmed the dose-dependent uptake of Pc 4 in non-stimulated and stimulated T cells. Flow cytometric analyses measuring annexin V and propidium iodide (PI) demonstrated a dose-dependent increase of T cell apoptosis (6.6-59.9%) at Pc 4 doses ranging from 0-300 nM. Following T cell stimulation through the T cell receptor using a combination of anti-CD3 and anti-CD28 antibodies, activated T cells exhibited increased susceptibility to Pc 4-PDT-induced apoptosis (10.6-81.2%) as determined by Pc 4 fluorescence in each cell, in both non-stimulated and stimulated T cells, Pc 4 uptake increased with Pc 4 dose up to 300 nM as assessed by flow cytometry. The mean fluorescence intensity (MFI) of Pc 4 uptake measured in stimulated T cells was significantly increased over the uptake of resting T cells at each dose of Pc 4 tested (50, 100, 150 and 300 nM, p < 0.001 between 50 and 150 nM, n = 8). Treg uptake was diminished relative to other T cells. Cutaneous T cell lymphoma (CTCL) T cells appeared to take up somewhat more Pc 4 than normal resting T cells at 100 and 150 nm Pc 4. Confocal imaging revealed that Pc 4 localized in cytoplasmic organelles, with approximately half of the Pc 4 co-localized with mitochondria in T cells. Thus, Pc 4-PDT exerts an enhanced apoptotic effect on activated CD3(+) T cells that may be exploited in targeting T cell-mediated skin diseases, such as cutaneous T cell lymphoma (CTCL) or psoriasis.
Collapse
Affiliation(s)
- David C Soler
- Department of Dermatology, Case Western Reserve University, University Hospitals Case Medical Center, Cleveland, OH, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Dong H, Tang S, Hao Y, Yu H, Dai W, Zhao G, Cao Y, Lu H, Zhang X, Ju H. Fluorescent MoS2 Quantum Dots: Ultrasonic Preparation, Up-Conversion and Down-Conversion Bioimaging, and Photodynamic Therapy. ACS APPLIED MATERIALS & INTERFACES 2016; 8:3107-14. [PMID: 26761391 DOI: 10.1021/acsami.5b10459] [Citation(s) in RCA: 160] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Small size molybdenum disulfide (MoS2) quantum dots (QDs) with desired optical properties were controllably synthesized by using tetrabutylammonium-assisted ultrasonication of multilayered MoS2 powder via OH-mediated chain-like Mo-S bond cleavage mode. The tunable up-bottom approach of precise fabrication of MoS2 QDs finally enables detailed experimental investigations of their optical properties. The synthesized MoS2 QDs present good down-conversion photoluminescence behaviors and exhibit remarkable up-conversion photoluminescence for bioimaging. The mechanism of the emerging photoluminescence was investigated. Furthermore, superior (1)O2 production ability of MoS2 QDs to commercial photosensitizer PpIX was demonstrated, which has great potential application for photodynamic therapy. These early affording results of tunable synthesis of MoS2 QDs with desired photo properties can lead to application in fields of biomedical and optoelectronics.
Collapse
Affiliation(s)
- Haifeng Dong
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Center for Bioengineering and Sensing Technology, School of Chemistry & Biological Engineering, University of Science & Technology Beijing , Beijing 100083, People's Republic of China
| | - Songsong Tang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Center for Bioengineering and Sensing Technology, School of Chemistry & Biological Engineering, University of Science & Technology Beijing , Beijing 100083, People's Republic of China
| | - Yansong Hao
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Center for Bioengineering and Sensing Technology, School of Chemistry & Biological Engineering, University of Science & Technology Beijing , Beijing 100083, People's Republic of China
| | - Haizhu Yu
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Center for Bioengineering and Sensing Technology, School of Chemistry & Biological Engineering, University of Science & Technology Beijing , Beijing 100083, People's Republic of China
| | - Wenhao Dai
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Center for Bioengineering and Sensing Technology, School of Chemistry & Biological Engineering, University of Science & Technology Beijing , Beijing 100083, People's Republic of China
| | - Guifeng Zhao
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Center for Bioengineering and Sensing Technology, School of Chemistry & Biological Engineering, University of Science & Technology Beijing , Beijing 100083, People's Republic of China
| | - Yu Cao
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Center for Bioengineering and Sensing Technology, School of Chemistry & Biological Engineering, University of Science & Technology Beijing , Beijing 100083, People's Republic of China
| | - Huiting Lu
- Department of Environmental Science and Engineering, School of Chemistry and Environment, Beijing University of Aeronautics and Astronautics , Beijing 100083, People's Republic of China
| | - Xueji Zhang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Center for Bioengineering and Sensing Technology, School of Chemistry & Biological Engineering, University of Science & Technology Beijing , Beijing 100083, People's Republic of China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210093, People's Republic of China
| |
Collapse
|
18
|
Abstract
In chemotherapy a fine balance between therapeutic and toxic effects needs to be found for each patient, adapting standard combination protocols each time. Nanotherapeutics has been introduced into clinical practice for treating tumors with the aim of improving the therapeutic outcome of conventional therapies and of alleviating their toxicity and overcoming multidrug resistance. Photodynamic therapy (PDT) is a clinically approved, minimally invasive procedure emerging in cancer treatment. It involves the administration of a photosensitizer (PS) which, under light irradiation and in the presence of molecular oxygen, produces cytotoxic species. Unfortunately, most PSs lack specificity for tumor cells and are poorly soluble in aqueous media, where they can form aggregates with low photoactivity. Nanotechnological approaches in PDT (nanoPDT) can offer a valid option to deliver PSs in the body and to solve at least some of these issues. Currently, polymeric nanoparticles (NPs) are emerging as nanoPDT system because their features (size, surface properties, and release rate) can be readily manipulated by selecting appropriate materials in a vast range of possible candidates commercially available and by synthesizing novel tailor-made materials. Delivery of PSs through NPs offers a great opportunity to overcome PDT drawbacks based on the concept that a nanocarrier can drive therapeutic concentrations of PS to the tumor cells without generating any harmful effect in non-target tissues. Furthermore, carriers for nanoPDT can surmount solubility issues and the tendency of PS to aggregate, which can severely affect photophysical, chemical, and biological properties. Finally, multimodal NPs carrying different drugs/bioactive species with complementary mechanisms of cancer cell killing and incorporating an imaging agent can be developed. In the following, we describe the principles of PDT use in cancer and the pillars of rational design of nanoPDT carriers dictated by tumor and PS features. Then we illustrate the main nanoPDT systems demonstrating potential in preclinical models together with emerging concepts for their advanced design.
Collapse
|
19
|
Kaspler P, Lazic S, Forward S, Arenas Y, Mandel A, Lilge L. A ruthenium(ii) based photosensitizer and transferrin complexes enhance photo-physical properties, cell uptake, and photodynamic therapy safety and efficacy. Photochem Photobiol Sci 2016; 15:481-95. [DOI: 10.1039/c5pp00450k] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mixing the novel Ru2+complex TLD1433 with transferrin prior to administration generates a photosensitizing drug with reduced dark toxicity and improved photophysical properties including NIR activation.
Collapse
Affiliation(s)
| | | | - Sarah Forward
- University Health Network
- Princess Margaret Cancer Research Tower and University of Toronto
- Department of Medical Biophysics
- Toronto
- Canada
| | | | | | - Lothar Lilge
- University Health Network
- Princess Margaret Cancer Research Tower and University of Toronto
- Department of Medical Biophysics
- Toronto
- Canada
| |
Collapse
|
20
|
Lin M, Gao Y, Hornicek F, Xu F, Lu TJ, Amiji M, Duan Z. Near-infrared light activated delivery platform for cancer therapy. Adv Colloid Interface Sci 2015; 226:123-37. [PMID: 26520243 PMCID: PMC4679704 DOI: 10.1016/j.cis.2015.10.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 09/30/2015] [Accepted: 10/04/2015] [Indexed: 12/17/2022]
Abstract
Cancer treatment using conventional drug delivery platforms may lead to fatal damage to normal cells. Among various intelligent delivery platforms, photoresponsive delivery platforms are becoming popular, as light can be easily focused and tuned in terms of power intensity, wavelength, and irradiation time, allowing remote and precise control over therapeutic payload release both spatially and temporally. This unprecedented controlled delivery manner is important to improve therapeutic efficacy while minimizing side effects. However, most of the existing photoactive delivery platforms require UV/visible excitation to initiate their function, which suffers from phototoxicity and low level of tissue penetration limiting their practical applications in biomedicine. With the advanced optical property of converting near infrared (NIR) excitation to localized UV/visible emission, upconversion nanoparticles (UCNPs) have emerged as a promising photoactive delivery platform that provides practical applications for remote spatially and temporally controlled release of therapeutic payload molecules using low phototoxic and high tissue penetration NIR light as the excitation source. This article reviews the state-of-the-art design, synthesis and therapeutic molecular payload encapsulation strategies of UCNP-based photoactive delivery platforms for cancer therapy. Challenges and promises for engineering of advanced delivery platforms are also highlighted.
Collapse
Affiliation(s)
- Min Lin
- Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital, Harvard Medical School, MA 02114, USA; The Key Laboratory of Biomedical Information Engineering, Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China.
| | - Yan Gao
- Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital, Harvard Medical School, MA 02114, USA
| | - Francis Hornicek
- Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital, Harvard Medical School, MA 02114, USA
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Tian Jian Lu
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Mansoor Amiji
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA 02115, USA
| | - Zhenfeng Duan
- Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital, Harvard Medical School, MA 02114, USA.
| |
Collapse
|
21
|
A drug carrier targeting murine uPAR for photodynamic therapy and tumor imaging. Acta Biomater 2015; 23:116-126. [PMID: 26004218 DOI: 10.1016/j.actbio.2015.05.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Revised: 05/12/2015] [Accepted: 05/17/2015] [Indexed: 12/20/2022]
Abstract
Photodynamic therapy (PDT) has been used as an effective therapeutical modality for tumors. In PDT, a photosensitizer was used to capture the light of specific wavelength, leading to the generation of reactive oxygen species and cytotoxicity surrounding the photosensitizer. Modifications of photosensitizers to enhance tumor specificity are common approaches to increase the efficacy and reduce the side effects of PDT. Previously, we developed a human serum albumin (HSA)-based drug carrier fused with the human amino-terminal fragment (hATF), which binds to a tumor surface marker (urokinase receptor, uPAR). However, hATF-HSA binds to murine uPAR much weaker (79-fold) than to human uPAR, and is not optimal for applications on murine tumor models. In this study, we developed a murine version of the drug carrier (mATF-HSA). A photosensitizer (mono-substituted β-carboxy phthalocyanine zinc, CPZ) was loaded into this carrier, giving a rather stable macromolecule (mATF-HSA:CPZ) that was shown to bind to murine uPAR in vitro. In addition, we evaluated both the photodynamic therapy efficacy and tumor retention capability of the macromolecule (at a dose of 0.05mg CPZ/kg mouse body weight) on murine hepatoma-22 (H22) tumor bearing mouse model. mATF-HSA:CPZ showed more accumulation in tumors compared to its human counterpart (hATF-HSA:CPZ) measured by quantitative fluorescence molecular tomography (FMT). Besides, mATF-HSA:CPZ exhibited a higher tumor killing efficacy than hATF-HSA:CPZ. Together, the macromolecule mATF-HSA is a promising tumor-specific drug carrier on murine tumor models and is an useful tool to study tumor biology on murine tumor models.
Collapse
|
22
|
Pena Luengas SL, Marin GH, Aviles K, Cruz Acuña R, Roque G, Rodríguez Nieto F, Sanchez F, Tarditi A, Rivera L, Mansilla E. Enhanced singlet oxygen production by photodynamic therapy and a novel method for its intracellular measurement. Cancer Biother Radiopharm 2015; 29:435-43. [PMID: 25490599 DOI: 10.1089/cbr.2014.1718] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The generation of singlet oxygen (SO) in the presence of specific photosensitizers (PSs) or semiconductor quantum dots (QDs) and its application in photodynamic therapy (PDT) is of great interest to develop cancer therapies with no need of surgery, chemotherapy, and/or radiotherapy. This work was focused on the identification of the main factors leading to the enhancement of SO production using Rose Bengal (RB), and Methylene Blue (MB) as PS species in organic and aqueous mediums. Subsequently, the capacity of zinc oxide (ZnO), zinc sulfide (ZnS), and ZnO/ZnS core-shell QDs as well as manganese (Mn(+2)) doped ZnO and ZnS nanoparticles (NPs) as potential PS was also investigated. Many variable parameters such as type of quencher, PSs, NPs, as well as its different concentrations, light source, excitation wavelength, reaction time, distance from light source, and nature of solvent were used. The degradation kinetics of the quenchers generated by SO species and the corresponding quantum yields were determined by monitoring the photo-oxidation of the chemical quencher and measuring its disappearance by fluorometry and spectrophotometry in the presence of NPs. Small intracellular changes of SO induced by these metal Zn (zinc) NPs and PDT could execute and accelerate deadly programs in these leukemic cells, providing in this way an innovative modality of treatment. In order to perform further more specific in vitro cytotoxic studies on B-chronic lymphocytic leukemia cells exposed to Zn NPs and PDT, we needed first to measure and ascertain those possible intracellular SO variations generated by this type of treatment; for this purpose, we have also developed and tested a novel method first described by us.
Collapse
|
23
|
Mehraban N, Freeman HS. Developments in PDT Sensitizers for Increased Selectivity and Singlet Oxygen Production. MATERIALS (BASEL, SWITZERLAND) 2015; 8:4421-4456. [PMID: 28793448 PMCID: PMC5455656 DOI: 10.3390/ma8074421] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 06/29/2015] [Accepted: 07/07/2015] [Indexed: 12/20/2022]
Abstract
Photodynamic therapy (PDT) is a minimally-invasive procedure that has been clinically approved for treating certain types of cancers. This procedure takes advantage of the cytotoxic activity of singlet oxygen (¹O₂) and other reactive oxygen species (ROS) produced by visible and NIR light irradiation of dye sensitizers following their accumulation in malignant cells. The main two concerns associated with certain clinically-used PDT sensitizers that have been influencing research in this arena are low selectivity toward malignant cells and low levels of ¹O₂ production in aqueous media. Solving the selectivity issue would compensate for photosensitizer concerns such as dark toxicity and aggregation in aqueous media. One main approach to enhancing dye selectivity involves taking advantage of key methods used in pharmaceutical drug delivery. This approach lies at the heart of the recent developments in PDT research and is a point of emphasis in the present review. Of particular interest has been the development of polymeric micelles as nanoparticles for delivering hydrophobic (lipophilic) and amphiphilic photosensitizers to the target cells. This review also covers methods employed to increase ¹O₂ production efficiency, including the design of two-photon absorbing sensitizers and triplet forming cyclometalated Ir(III) complexes.
Collapse
Affiliation(s)
- Nahid Mehraban
- Fiber & Polymer Science Program, North Carolina State University, Raleigh, NC 27695-8301, USA
| | - Harold S Freeman
- Fiber & Polymer Science Program, North Carolina State University, Raleigh, NC 27695-8301, USA.
| |
Collapse
|
24
|
Chen H, Tian J, He W, Guo Z. H2O2-Activatable and O2-Evolving Nanoparticles for Highly Efficient and Selective Photodynamic Therapy against Hypoxic Tumor Cells. J Am Chem Soc 2015; 137:1539-47. [DOI: 10.1021/ja511420n] [Citation(s) in RCA: 652] [Impact Index Per Article: 72.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Huachao Chen
- State Key Laboratory of Coordination
Chemistry, Coordination Chemistry Institute, School of Chemistry and
Chemical Engineering, Nanjing University, Nanjing 210093, P.R. China
| | - Jiangwei Tian
- State Key Laboratory of Coordination
Chemistry, Coordination Chemistry Institute, School of Chemistry and
Chemical Engineering, Nanjing University, Nanjing 210093, P.R. China
| | - Weijiang He
- State Key Laboratory of Coordination
Chemistry, Coordination Chemistry Institute, School of Chemistry and
Chemical Engineering, Nanjing University, Nanjing 210093, P.R. China
| | - Zijian Guo
- State Key Laboratory of Coordination
Chemistry, Coordination Chemistry Institute, School of Chemistry and
Chemical Engineering, Nanjing University, Nanjing 210093, P.R. China
| |
Collapse
|
25
|
Bai M, Bai X, Wang L. Real-Time Fluorescence Tracking of Gene Delivery via Multifunctional Nanocomposites. Anal Chem 2014; 86:11196-202. [DOI: 10.1021/ac5026489] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Min Bai
- State Key Laboratory of Chemical
Resource Engineering, Beijing Key Laboratory of Environmentally Harmful
Chemical Analysis, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Xilin Bai
- State Key Laboratory of Chemical
Resource Engineering, Beijing Key Laboratory of Environmentally Harmful
Chemical Analysis, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Leyu Wang
- State Key Laboratory of Chemical
Resource Engineering, Beijing Key Laboratory of Environmentally Harmful
Chemical Analysis, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| |
Collapse
|
26
|
He H, Cattran AW, Nguyen T, Nieminen AL, Xu P. Triple-responsive expansile nanogel for tumor and mitochondria targeted photosensitizer delivery. Biomaterials 2014; 35:9546-53. [PMID: 25154666 PMCID: PMC4157076 DOI: 10.1016/j.biomaterials.2014.08.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 08/01/2014] [Indexed: 01/16/2023]
Abstract
A pH, thermal, and redox potential triple-responsive expansile nanogel system (TRN), which swells at acidic pH, temperature higher than its transition temperature, and reducing environment, has been developed. TRN quickly expands from 108 nm to over 1200 nm (in diameter), achieving more than 1000-fold size enlargement (in volume), within 2 h in a reducing environment at body temperature. Sigma-2 receptor targeting-ligand functionalized TRN can effectively target head and neck tumor, and help Pc 4 targeting mitochondria inside cancer cells to achieve enhanced photodynamic therapy efficacy.
Collapse
Affiliation(s)
- Huacheng He
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Alexander W Cattran
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Tu Nguyen
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Anna-Liisa Nieminen
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Peisheng Xu
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA.
| |
Collapse
|
27
|
Tang H, Chen X, Rui M, Sun W, Chen J, Peng J, Xu Y. Effects of surface displayed targeting ligand GE11 on liposome distribution and extravasation in tumor. Mol Pharm 2014; 11:3242-50. [PMID: 25181533 DOI: 10.1021/mp5001718] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Targeting ligands displayed on liposome surface had been used to mediate specific interactions and drug delivery to target cells. However, they also affect liposome distribution in vivo, as well as the tissue extravasation processes after IV injection. In this study, we incorporated an EGFR targeting peptide GE11 on liposome surfaces in addition to PEG at different densities and evaluated their targeting properties and antitumor effects. We found that the densities of surface ligand and PEG were critical to target cell binding in vitro as well as pharmacokinetic profiles in vivo. The inclusion of GE11-PEG-DSPE and PEG-DSPE at 2% and 4% mol ratios in the liposome formulation mediated a rapid accumulation of liposomes within 1 h after IV injection in the tumor tissues surrounding neovascular structures. This is in addition to the EPR effect that was most prominently described for surface PEG modified liposomes. Therefore, despite the fact that the distribution of liposomes into interior tumor tissues was still limited by diffusion, GE11 targeted doxorubicin loaded liposomes showed significantly better antitumor activity in tumor bearing mice as a result of the fast active-targeting efficiency. We anticipate these understandings can benefit further optimization of targeted drug delivery systems for improving efficacy in vivo.
Collapse
Affiliation(s)
- Hailing Tang
- School of Pharmacy, Shanghai Jiao Tong University , Shanghai 200240, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
28
|
Chang JE, Yoon IS, Sun PL, Yi E, Jheon S, Shim CK. Anticancer efficacy of photodynamic therapy with hematoporphyrin-modified, doxorubicin-loaded nanoparticles in liver cancer. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2014; 140:49-56. [PMID: 25090224 DOI: 10.1016/j.jphotobiol.2014.07.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 06/23/2014] [Accepted: 07/10/2014] [Indexed: 12/16/2022]
Abstract
Photodynamic therapy (PDT) in combination with chemotherapy has great potential for cancer treatment. However, there have been very few attempts to developing cancer-targeted co-delivered systems of photosensitizers and anticancer drugs. We developed hematoporphyrin (HP)-modified doxorubicin (DOX)-loaded nanoparticles (HP-NPs) to improve the therapeutic effect of PDT in treating liver cancer. HP is not only a ligand for low density lipoprotein (LDL) receptors on the hepatoma cells but also a well-known photosensitizer for PDT. In vitro phototoxicity in HepG2 (human hepatocellular carcinoma) cells and in vivo anticancer efficacy in HepG2 tumor-bearing mice of free HP and HP-NPs were evaluated. The in vitro phototoxicity in HepG2 cells determined by MTT assay, annexin V-FITC staining and FACS analysis was enhanced in HP-NPs compared with free HP. Furthermore, compared with free HP-based PDT, in vivo anticancer efficacy in HepG2 tumor-bearing mice was markedly improved by HP-NPs-based PDT. Moreover, in both cases, the therapeutic effect was increased according to the irradiation time and number of PDT sessions. In conclusion, the HP-NPs prepared in this study represent a potentially effective co-delivery system of photosensitizer (HP) and anticancer drug (DOX) which improved the effects of PDT in liver cancer.
Collapse
Affiliation(s)
- Ji-Eun Chang
- Department of Thoracic and Cardiovascular Surgery, Seoul National University Bundang Hospital, Seongnam-Si, Gyeonggi-do, Republic of Korea
| | - In-Soo Yoon
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam, Republic of Korea
| | - Ping-Li Sun
- Department of Thoracic and Cardiovascular Surgery, Seoul National University Bundang Hospital, Seongnam-Si, Gyeonggi-do, Republic of Korea; Department of Pathology, Seoul National University Bundang Hospital, Seongnam-Si, Gyeonggi-do, Republic of Korea
| | - Eunjue Yi
- Department of Thoracic and Cardiovascular Surgery, Seoul National University Bundang Hospital, Seongnam-Si, Gyeonggi-do, Republic of Korea
| | - Sanghoon Jheon
- Department of Thoracic and Cardiovascular Surgery, Seoul National University Bundang Hospital, Seongnam-Si, Gyeonggi-do, Republic of Korea; Department of Thoracic and Cardiovascular Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Chang-Koo Shim
- Department of Pharmaceutics, College of Pharmacy, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
29
|
Wang D, Fei B, Halig LV, Qin X, Hu Z, Xu H, Wang YA, Chen Z, Kim S, Shin DM, Chen Z(G. Targeted iron-oxide nanoparticle for photodynamic therapy and imaging of head and neck cancer. ACS NANO 2014; 8:6620-32. [PMID: 24923902 PMCID: PMC4155749 DOI: 10.1021/nn501652j] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 06/12/2014] [Indexed: 05/21/2023]
Abstract
Photodynamic therapy (PDT) is a highly specific anticancer treatment modality for various cancers, particularly for recurrent cancers that no longer respond to conventional anticancer therapies. PDT has been under development for decades, but light-associated toxicity limits its clinical applications. To reduce the toxicity of PDT, we recently developed a targeted nanoparticle (NP) platform that combines a second-generation PDT drug, Pc 4, with a cancer targeting ligand, and iron oxide (IO) NPs. Carboxyl functionalized IO NPs were first conjugated with a fibronectin-mimetic peptide (Fmp), which binds integrin β1. Then the PDT drug Pc 4 was successfully encapsulated into the ligand-conjugated IO NPs to generate Fmp-IO-Pc 4. Our study indicated that both nontargeted IO-Pc 4 and targeted Fmp-IO-Pc 4 NPs accumulated in xenograft tumors with higher concentrations than nonformulated Pc 4. As expected, both IO-Pc 4 and Fmp-IO-Pc 4 reduced the size of HNSCC xenograft tumors more effectively than free Pc 4. Using a 10-fold lower dose of Pc 4 than that reported in the literature, the targeted Fmp-IO-Pc 4 NPs demonstrated significantly greater inhibition of tumor growth than nontargeted IO-Pc 4 NPs. These results suggest that the delivery of a PDT agent Pc 4 by IO NPs can enhance treatment efficacy and reduce PDT drug dose. The targeted IO-Pc 4 NPs have great potential to serve as both a magnetic resonance imaging (MRI) agent and PDT drug in the clinic.
Collapse
Affiliation(s)
- Dongsheng Wang
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Department of Radiology and Imaging Sciences, and Department of Biostatistics and Bioinformatics, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Baowei Fei
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Department of Radiology and Imaging Sciences, and Department of Biostatistics and Bioinformatics, Emory University School of Medicine, Atlanta, Georgia 30322, United States
- Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, Georgia 30322, United States
- Address correspondence to ,
| | - Luma V. Halig
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Department of Radiology and Imaging Sciences, and Department of Biostatistics and Bioinformatics, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Xulei Qin
- Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, Georgia 30322, United States
| | - Zhongliang Hu
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Department of Radiology and Imaging Sciences, and Department of Biostatistics and Bioinformatics, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Hong Xu
- Ocean NanoTech LLC, San Diego, California 92126, United States
| | | | - Zhengjia Chen
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Department of Radiology and Imaging Sciences, and Department of Biostatistics and Bioinformatics, Emory University School of Medicine, Atlanta, Georgia 30322, United States
- Biostatistics and Bioinformatics Shared Resource at Winship Cancer Institute, Emory University, Atlanta, Georgia 30322, United States
| | - Sungjin Kim
- Biostatistics and Bioinformatics Shared Resource at Winship Cancer Institute, Emory University, Atlanta, Georgia 30322, United States
| | - Dong M. Shin
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Department of Radiology and Imaging Sciences, and Department of Biostatistics and Bioinformatics, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Zhuo (Georgia) Chen
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Department of Radiology and Imaging Sciences, and Department of Biostatistics and Bioinformatics, Emory University School of Medicine, Atlanta, Georgia 30322, United States
- Address correspondence to ,
| |
Collapse
|
30
|
Setaro F, Ruiz-González R, Nonell S, Hahn U, Torres T. Synthesis, photophysical studies and 1O2 generation of carboxylate-terminated zinc phthalocyanine dendrimers. J Inorg Biochem 2014; 136:170-6. [DOI: 10.1016/j.jinorgbio.2014.02.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 02/16/2014] [Accepted: 02/18/2014] [Indexed: 11/16/2022]
|
31
|
Pernot M, Barry NP, Bastogne T, Frochot C, Barberi-Heyob M, Therrien B. Rational design of an arene ruthenium chlorin conjugate for in vivo anticancer activity. Inorganica Chim Acta 2014. [DOI: 10.1016/j.ica.2014.01.048] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
32
|
Krasia-Christoforou T, Georgiou TK. Polymeric theranostics: using polymer-based systems for simultaneous imaging and therapy. J Mater Chem B 2013; 1:3002-3025. [PMID: 32261003 DOI: 10.1039/c3tb20191k] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Polymer-based nanomedicine is a large and fast growing field. Polymer-based systems have been extensively used as therapeutic carriers as well as bioimaging agents for example in tumour diagnosis. However, fewer polymeric systems have been able to combine both therapy and imaging in a new field that is called theranostics (theragnostics). This review aims to summarise the recent developments and trends on polymeric theranostics. Four different types of therapies/treatments are examined namely drug delivery, gene delivery, photodynamic therapy and hyperthermia treatment combined with different imaging moieties like magnetic resonance imaging agents, fluorescent agents and microbubbles for ultrasound imaging.
Collapse
Affiliation(s)
- Theodora Krasia-Christoforou
- Department of Mechanical and Manufacturing Engineering, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus.
| | | |
Collapse
|
33
|
Master A, Malamas A, Solanki R, Clausen DM, Eiseman JL, Sen Gupta A. A cell-targeted photodynamic nanomedicine strategy for head and neck cancers. Mol Pharm 2013; 10:1988-97. [PMID: 23531079 DOI: 10.1021/mp400007k] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Photodynamic therapy (PDT) holds great promise for the treatment of head and neck (H&N) carcinomas where repeated loco-regional therapy often becomes necessary due to the highly aggressive and recurrent nature of the cancers. While interstitial light delivery technologies are being refined for PDT of H&N and other cancers, a parallel clinically relevant research area is the formulation of photosensitizers in nanovehicles that allow systemic administration yet preferential enhanced uptake in the tumor. This approach can render dual-selectivity of PDT, by harnessing both the drug and the light delivery within the tumor. To this end, we report on a cell-targeted nanomedicine approach for the photosensitizer silicon phthalocyanine-4 (Pc 4), by packaging it within polymeric micelles that are surface-decorated with GE11-peptides to promote enhanced cell-selective binding and receptor-mediated internalization in EGFR-overexpressing H&N cancer cells. Using fluorescence spectroscopy and confocal microscopy, we demonstrate in vitro that the EGFR-targeted Pc 4-nanoformulation undergoes faster and higher uptake in EGFR-overexpressing H&N SCC-15 cells. We further demonstrate that this enhanced Pc 4 uptake results in significant cell-killing and drastically reduced post-PDT clonogenicity. Building on this in vitro data, we demonstrate that the EGFR-targeted Pc 4-nanoformulation results in significant intratumoral drug uptake and subsequent enhanced PDT response, in vivo, in SCC-15 xenografts in mice. Altogether our results show significant promise toward a cell-targeted photodynamic nanomedicine for effective treatment of H&N carcinomas.
Collapse
Affiliation(s)
- Alyssa Master
- Department of Biomedical Engineering, Case Western Reserve University, 2071 Martin Luther King Blvd, Cleveland, Ohio 44106, United States
| | | | | | | | | | | |
Collapse
|
34
|
Master A, Livingston M, Sen Gupta A. Photodynamic nanomedicine in the treatment of solid tumors: perspectives and challenges. J Control Release 2013; 168:88-102. [PMID: 23474028 DOI: 10.1016/j.jconrel.2013.02.020] [Citation(s) in RCA: 266] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 02/16/2013] [Accepted: 02/21/2013] [Indexed: 12/13/2022]
Abstract
Photodynamic therapy (PDT) is a promising treatment strategy where activation of photosensitizer drugs with specific wavelengths of light results in energy transfer cascades that ultimately yield cytotoxic reactive oxygen species which can render apoptotic and necrotic cell death. Without light the photosensitizer drugs are minimally toxic and the photoactivating light itself is non-ionizing. Therefore, harnessing this mechanism in tumors provides a safe and novel way to selectively eradicate tumor with reduced systemic toxicity and side effects on healthy tissues. For successful PDT of solid tumors, it is necessary to ensure tumor-selective delivery of the photosensitizers, as well as, the photoactivating light and to establish dosimetric correlation of light and drug parameters to PDT-induced tumor response. To this end, the nanomedicine approach provides a promising way towards enhanced control of photosensitizer biodistribution and tumor-selective delivery. In addition, refinement of nanoparticle designs can also allow incorporation of imaging agents, light delivery components and dosimetric components. This review aims at describing the current state-of-the-art regarding nanomedicine strategies in PDT, with a comprehensive narrative of the research that has been carried out in vitro and in vivo, with a discussion of the nanoformulation design aspects and a perspective on the promise and challenges of PDT regarding successful translation into clinical application.
Collapse
Affiliation(s)
- Alyssa Master
- Department of Biomedical Engineering, Case Western Reserve University, 2071 Martin Luther King Drive, Cleveland 44106, USA
| | | | | |
Collapse
|