1
|
Cheal SM, Patel M, Yang G, Veach D, Xu H, Guo HF, Zanzonico PB, Axworthy DB, Cheung NKV, Ouerfelli O, Larson SM. An N-Acetylgalactosamino Dendron-Clearing Agent for High-Therapeutic-Index DOTA-Hapten Pretargeted Radioimmunotherapy. Bioconjug Chem 2020; 31:501-506. [PMID: 31891487 DOI: 10.1021/acs.bioconjchem.9b00736] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Clearing agents (CAs) can rapidly remove nonlocalized targeting biomolecules from circulation for hepatic catabolism, thereby enhancing the therapeutic index (TI), especially for blood (marrow), of the subsequently administered radioisotope in any multistep pretargeting strategy. Herein we describe the synthesis and in vivo evaluation of a fully synthetic glycodendrimer-based CA for DOTA-based pretargeted radioimmunotherapy (DOTA-PRIT). The novel dendron-CA consists of a nonradioactive yttrium-DOTA-Bn molecule attached via a linker to a glycodendron displaying 16 terminal α-thio-N-acetylgalactosamine (α-SGalNAc) units (CCA α-16-DOTA-Y3+; molecular weight: 9059 Da). Pretargeting [177Lu]LuDOTA-Bn with CCA α-16-DOTA-Y3+ to GPA33-expressing SW1222 human colorectal xenografts was highly effective, leading to absorbed doses of [177Lu]LuDOTA-Bn for blood, tumor, liver, spleen, and kidneys of 11.7, 468, 9.97, 5.49, and 13.3 cGy/MBq, respectively. Tumor-to-normal tissues absorbed-dose ratios (i.e., TIs) ranged from 40 (e.g., for blood and kidney) to about 550 for stomach.
Collapse
Affiliation(s)
- Sarah M Cheal
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Mitesh Patel
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Guangbin Yang
- Organic Synthesis Core Facility, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Darren Veach
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Hong Xu
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Hong-Fen Guo
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Pat B Zanzonico
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | | | - Nai-Kong V Cheung
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Ouathek Ouerfelli
- Organic Synthesis Core Facility, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Steven M Larson
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States.,Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| |
Collapse
|
2
|
Liu G. A Revisit to the Pretargeting Concept-A Target Conversion. Front Pharmacol 2018; 9:1476. [PMID: 30618765 PMCID: PMC6304396 DOI: 10.3389/fphar.2018.01476] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 12/03/2018] [Indexed: 01/22/2023] Open
Abstract
Pretargeting is often used as a tumor targeting strategy that provides much higher tumor to non-tumor ratios than direct-targeting using radiolabeled antibody. Due to the multiple injections, pretargeting is investigated less than direct targeting, but the high T/NT ratios have rendered it more useful for therapy. While the progress in using this strategy for tumor therapy has been regularly reviewed in the literature, this review focuses on the nature and quantitative understanding of the pretargeting concept. By doing so, it is the goal of this review to accelerate pretargeting development and translation to the clinic and to prepare the researchers who are not familiar with the pretargeting concept but are interested in applying it. The quantitative understanding is presented in a way understandable to the average researchers in the areas of drug development and clinical translation who have the basic concept of calculus and general chemistry.
Collapse
Affiliation(s)
- Guozheng Liu
- Department of Radiology, University of Massachusetts Medical School Worcester, MA, United States
| |
Collapse
|
4
|
Evaluation of a Pretargeting Strategy for Molecular Imaging of the Prostate Stem Cell Antigen with a Single Chain Antibody. Sci Rep 2018; 8:3755. [PMID: 29491468 PMCID: PMC5830539 DOI: 10.1038/s41598-018-22179-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 02/19/2018] [Indexed: 01/09/2023] Open
Abstract
In pretargeted radio-immunotherapy, the gradual administration of a non-radioactive tumor antigen-addressing antibody-construct and the subsequent application of a radioactive labeled, low molecular weight substance enable a highly effective and selective targeting of tumor tissue. We evaluated this concept in prostate stem cell antigen (PSCA)-positive cancers using the antigen-specific, biotinylated single chain antibody scFv(AM1)-P-BAP conjugated with tetrameric neutravidin. To visualize the systemic biodistribution, a radiolabeled biotin was injected to interact with scFv(AM1)-P-BAP/neutravidin conjugate. Biotin derivatives conjugated with different chelators for complexation of radioactive metal ions and a polyethylene glycol linker (n = 45) were successfully synthesized and evaluated in vitro and in a mouse xenograft model. In vivo, the scFv(AM1)-P-BAP showed highly PSCA-specific tumor retention with a PSCA+ tumor/PSCA- tumor accumulation ratio of ten. PEGylation of radiolabeled biotin resulted in lower liver uptake improving the tumor to background ratio.
Collapse
|
5
|
Abstract
Differing from the conventional direct-targeting strategy in which a probe or payload is directly loaded onto a targeting molecule that binds to the native target, pretargeting is an improved targeting strategy. It converts the native target to an artificial target specific for a secondary targeting molecule loaded with the probe or payload (effector). The effector is small and does not accumulate in normal tissues, which accelerates the targeting process and generates high target to nontarget ratios. DNA/cDNA analogs can serve as the recognition pair, i.e., the artificial target and the secondary targeting effector. Morpholino oligomers are so far the most investigated and the most successful DNA/cDNA analog recognition pairs for pretargeting. Herein, we describe the pretargeting principles, the pretargeting strategy using Morpholino oligomers, and the preclinical success so far achieved.
Collapse
Affiliation(s)
- Guozheng Liu
- Department of Radiology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA, 01655, USA.
| |
Collapse
|
6
|
Dou S, Virostko J, Greiner DL, Powers AC, Liu G. Quantitative Correlation of in Vivo Properties with in Vitro Assay Results: The in Vitro Binding of a Biotin-DNA Analogue Modifier with Streptavidin Predicts the in Vivo Avidin-Induced Clearability of the Analogue-Modified Antibody. Mol Pharm 2015; 12:3097-103. [PMID: 26103429 DOI: 10.1021/mp5008579] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Quantitative prediction of in vivo behavior using an in vitro assay would dramatically accelerate pharmaceutical development. However, studies quantitatively correlating in vivo properties with in vitro assay results are rare because of the difficulty in quantitatively understanding the in vivo behavior of an agent. We now demonstrate such a correlation as a case study based on our quantitative understanding of the in vivo chemistry. In an ongoing pretargeting project, we designed a trifunctional antibody (Ab) that concomitantly carried a biotin and a DNA analogue (hereafter termed MORF). The biotin and the MORF were fused into one structure prior to conjugation to the Ab for the concomitant attachment. Because it was known that avidin-bound Ab molecules leave the circulation rapidly, this design would theoretically allow complete clearance by avidin. The clearability of the trifunctional Ab was determined by calculating the blood MORF concentration ratio of avidin-treated Ab to non-avidin-treated Ab using mice injected with these compounds. In theory, any compromised clearability should be due to the presence of impurities. In vitro, we measured the biotinylated percentage of the Ab-reacting (MORF-biotin)⊃-NH2 modifier, by addition of streptavidin to the radiolabeled (MORF-biotin)⊃-NH2 samples and subsequent high-performance liquid chromatography (HPLC) analysis. On the basis of our previous quantitative understanding, we predicted that the clearability of the Ab would be equal to the biotinylation percentage measured via HPLC. We validated this prediction within a 3% difference. In addition to the high avidin-induced clearability of the trifunctional Ab (up to ∼95%) achieved by the design, we were able to predict the required quality of the (MORF-biotin)⊃-NH2 modifier for any given in vivo clearability. This approach may greatly reduce the steps and time currently required in pharmaceutical development in the process of synthesis, chemical analysis, in vitro cell study, and in vivo validation.
Collapse
Affiliation(s)
- Shuping Dou
- †Department of Radiology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, United States
| | - John Virostko
- ‡Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Dale L Greiner
- §Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01655, United States
| | - Alvin C Powers
- ∥Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States.,⊥Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States.,@Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee 37232, United States
| | - Guozheng Liu
- †Department of Radiology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, United States
| |
Collapse
|