1
|
Yoshinaga N, Numata K. Poly(A) Tail Length of Messenger RNA Regulates Translational Efficiency of the Mitochondria-Targeting Delivery System. ACS Biomater Sci Eng 2024; 10:6344-6351. [PMID: 39231264 DOI: 10.1021/acsbiomaterials.4c01169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Mitochondria are essential for cellular functions, such as energy production. Human mitochondrial DNA (mtDNA), encoding 13 distinct genes, two rRNA, and 22 tRNA, is crucial for maintaining vital functions, along with nuclear-encoded mitochondrial proteins. However, mtDNA is prone to somatic mutations due to replication errors and reactive oxygen species exposure. These mutations can accumulate, leading to heteroplasmic conditions associated with severe metabolic diseases. Therefore, developing methodologies to improve mitochondrial health is highly demanded. Introducing nucleic acids directly into mitochondria is a promising strategy to control mitochondrial gene expression. Messenger RNA (mRNA) delivery especially offers several advantages such as faster gene expression and reduced risk of genome integration if accidentally delivered to the cell nucleus. In this study, we investigated the effect of the poly(A) tail length of mRNA on the mitochondrial translation to achieve efficient expression. We used a peptide-based mitochondrial targeting system, mitoNEET-(RH)9, comprising a mitochondria-targeting sequence (MTS) and a cationic sequence, to deliver mRNA with various poly(A) tails into the mitochondria. The poly(A) tail length significantly affected translational efficiency, with a medium length of 60 nucleotides maximizing protein expression in various cell lines due to enhanced interaction with mitochondrial RNA-binding proteins. Our findings highlight the importance of optimizing poly(A) tail length for efficient mitochondrial mRNA translation, providing a potential strategy for improving mitochondrial gene therapy. These results pave the way for further exploration of the mechanisms and clinical applications of mitochondrial mRNA delivery systems.
Collapse
Affiliation(s)
- Naoto Yoshinaga
- Biomacromolecule Research Team, RIKEN Center for Sustainable Resource Science, Wako-shi, Saitama 351-0198, Japan
- Institute for Advanced Biosciences, Keio University, Tsuruoka-shi, Yamagata 997-0017, Japan
| | - Keiji Numata
- Biomacromolecule Research Team, RIKEN Center for Sustainable Resource Science, Wako-shi, Saitama 351-0198, Japan
- Institute for Advanced Biosciences, Keio University, Tsuruoka-shi, Yamagata 997-0017, Japan
- Department of Material Chemistry, Kyoto University, Kyoto-shi, Kyoto 606-8501, Japan
| |
Collapse
|
2
|
Tarwadi, Pambudi S, Sriherwanto C, Sasangka AN, Bowolaksono A, Wijayadikusumah AR, Zeng W, Rachmawati H, Kartasasmita RE, Kazi M. Inclusion of TAT and NLS sequences in lipopeptide molecules generates homogenous nanoparticles for gene delivery applications. Int J Pharm 2024; 662:124492. [PMID: 39038720 DOI: 10.1016/j.ijpharm.2024.124492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 07/24/2024]
Abstract
PURPOSES The objective of this study is to develop a versatile gene carrier based on lipopeptides capable of delivering genetic material into target cells with minimal cytotoxicity. METHODS Two lipopeptide molecules, palmitoyl-CKKHH and palmitoyl-CKKHH-YGRKKRRQRRR-PKKKRKV, were synthesized using solid phase peptide synthesis and evaluated as transfection agents. Physicochemical characterization of the lipopeptides included a DNA shift mobility assay, particle size measurement, and transmission electron microscopy (TEM) analysis. Cytotoxicity was assessed in CHO-K1 and HepG2 cells using the MTT assay, while transfection efficiency was determined by evaluating the expression of the green fluorescent protein-encoding gene. RESULTS Our findings demonstrate that the lipopeptides can bind, condense, and shield DNA from DNase degradation. The inclusion of the YGRKKRRQRRR sequence, a transcription trans activator, and the PKKKRKV sequence, a nuclear localization signal, imparts desirable properties. Lipopeptide-based TAT-NLS/DNA nanoparticles exhibited stability for up to 20 days when stored at 6-8 °C, displaying uniformity with a compact size of approximately 120 nm. Furthermore, the lipopeptides exhibited lower cytotoxicity compared to the poly-L-lysine. Transfection experiments revealed that protein expression mediated by the lipopeptide occurred at a charge ratio ranging from 4.0 to 8.0. CONCLUSION These results indicate that the lipopeptide, composed of a palmitoyl alkyl chain and TAT and NLS sequences, can efficiently condense and protect DNA, form stable and uniform nanoparticles, and exhibit promising characteristics as a potential gene carrier with minimal cytotoxicity.
Collapse
Affiliation(s)
- Tarwadi
- Research Center for Vaccines and Drugs, National Agency for Research and Innovation (BRIN), Building 610-611 Puspiptek Area, Tangerang Selatan, Banten 15314, Indonesia; PT Indomabs Biosantika Utama, Gedung Technology Business and Innovation Centre (TBIC), Pengasinan, Gunung Sindur, Kabupaten Bogor, Jawa Barat 16340, Indonesia.
| | - Sabar Pambudi
- Research Center for Vaccines and Drugs, National Agency for Research and Innovation (BRIN), Building 610-611 Puspiptek Area, Tangerang Selatan, Banten 15314, Indonesia.
| | - Catur Sriherwanto
- Research Centre for Applied Microbiology, National Agency for Research and Innovation (BRIN), Building 610-611 Puspiptek Area, Tangerang Selatan, Banten 15314, Indonesia.
| | - Ayu N Sasangka
- Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Depok, Jawa Barat 16424, Indonesia.
| | - Anom Bowolaksono
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok, Jawa Barat 16424, Indonesia.
| | - Acep R Wijayadikusumah
- Research and Development Division, PT. Bio Farma, Jl. Pasteur No 28 Bandung, Jawa Barat 40161, Indonesia.
| | - Weiguang Zeng
- Peter Doherty Institute, The University of Melbourne, 792 Elizabeth St, Melbourne, VIC 3000, Australia.
| | - Heni Rachmawati
- School of Pharmacy, Bandung Institute of Technology, Jl. Ganesa 10 Bandung, Jawa Barat 40132, Indonesia; Research Centre of Nano Sciences and Nanotechnology, Bandung Institute of Technology, Jl. Ganesa 10 Bandung 40132, Jawa Barat, Indonesia.
| | - Rahmana E Kartasasmita
- School of Pharmacy, Bandung Institute of Technology, Jl. Ganesa 10 Bandung, Jawa Barat 40132, Indonesia.
| | - Mohsin Kazi
- Department of Pharmaceutics, College of Pharmacy, POBOX-2457, King Saud University, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
3
|
Polash SA, Garlick-Trease K, Pyreddy S, Periasamy S, Bryant G, Shukla R. Amino Acid-Coated Zeolitic Imidazolate Framework for Delivery of Genetic Material in Prostate Cancer Cell. Molecules 2023; 28:4875. [PMID: 37375429 DOI: 10.3390/molecules28124875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Metal-organic frameworks (MOFs) are currently under progressive development as a tool for non-viral biomolecule delivery. Biomolecules such as proteins, lipids, carbohydrates, and nucleic acids can be encapsulated in MOFs for therapeutic purposes. The favorable physicochemical properties of MOFs make them an attractive choice for delivering a wide range of biomolecules including nucleic acids. Herein, a green fluorescence protein (GFP)-expressing plasmid DNA (pDNA) is used as a representative of a biomolecule to encapsulate within a Zn-based metal-organic framework (MOF) called a zeolitic imidazolate framework (ZIF). The synthesized biocomposites are coated with positively charged amino acids (AA) to understand the effect of surface functionalization on the delivery of pDNA to prostate cancer (PC-3) cells. FTIR and zeta potential confirm the successful preparation of positively charged amino acid-functionalized derivatives of pDNA@ZIF (i.e., pDNA@ZIFAA). Moreover, XRD and SEM data show that the functionalized derivates retain the pristine crystallinity and morphology of pDNA@ZIF. The coated biocomposites provide enhanced uptake of genetic material by PC-3 human prostate cancer cells. The AA-modulated fine-tuning of the surface charge of biocomposites results in better interaction with the cell membrane and enhances cellular uptake. These results suggest that pDNA@ZIFAA can be a promising alternative tool for non-viral gene delivery.
Collapse
Affiliation(s)
- Shakil Ahmed Polash
- School of Science, RMIT University, Melbourne, VIC 3000, Australia
- Ian Potter NanoBiosensing Facility, NanoBiotechnology Research Laboratory (NBRL), RMIT University, Melbourne, VIC 3000, Australia
| | | | - Suneela Pyreddy
- School of Science, RMIT University, Melbourne, VIC 3000, Australia
- Ian Potter NanoBiosensing Facility, NanoBiotechnology Research Laboratory (NBRL), RMIT University, Melbourne, VIC 3000, Australia
| | - Selvakannan Periasamy
- School of Science, RMIT University, Melbourne, VIC 3000, Australia
- Centre for Advanced Materials and Industrial Chemistry, RMIT University, Melbourne, VIC 3000, Australia
| | - Gary Bryant
- School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | - Ravi Shukla
- School of Science, RMIT University, Melbourne, VIC 3000, Australia
- Ian Potter NanoBiosensing Facility, NanoBiotechnology Research Laboratory (NBRL), RMIT University, Melbourne, VIC 3000, Australia
- Centre for Advanced Materials and Industrial Chemistry, RMIT University, Melbourne, VIC 3000, Australia
| |
Collapse
|
4
|
Kumari A, Pal S, G BR, Mohny FP, Gupta N, Miglani C, Pattnaik B, Pal A, Ganguli M. Surface-Engineered Mucus Penetrating Nucleic Acid Delivery Systems with Cell Penetrating Peptides for the Lungs. Mol Pharm 2022; 19:1309-1324. [PMID: 35333535 DOI: 10.1021/acs.molpharmaceut.1c00770] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nucleic acids, both DNA and small RNAs, have emerged as potential therapeutics for the treatment of various lung disorders. However, delivery of nucleic acids to the lungs is challenging due to the barrier property imposed by mucus, which is further reinforced in disease conditions such as chronic obstructive pulmonary disease and asthma. The presence of negatively charged mucins imparts the electrostatic barrier property, and the mesh network structure of mucus provides steric hindrance to the delivery system. To overcome this, the delivery system either needs to be muco-inert with a low positive charge such that the interactions with mucus are minimized or should have the ability to transiently dismantle the mucus structure for effective penetration. We have developed a mucus penetrating system for the delivery of both small RNA and plasmid DNA independently. The nucleic acid core consists of a nucleic acid (pDNA/siRNA) and a cationic/amphipathic cell penetrating peptide. The mucus penetrating coating consists of the hydrophilic biopolymer chondroitin sulfate A (CS-A) conjugated with a mucolytic agent, mannitol. We hypothesize that the hydrophilic coating of CS-A would reduce the surface charge and decrease the interaction with negatively charged mucins, while the conjugated mannitol residues would disrupt the mucin-mucin interaction or decrease the viscosity of mucus by increasing the influx of water into the mucus. Our results indicate that CS-A-mannitol-coated nanocomplexes possess reduced surface charge, reduced viscosity of artificial mucus, and increased diffusion in mucin suspension as well as increased penetration through the artificial mucus layer as compared to the non-coated ones. Further, the coated nanocomplexes showed low cytotoxicity as well as higher transfection in A-549 and BEAS-2B cells as compared to the non-coated ones.
Collapse
Affiliation(s)
- Anupama Kumari
- CSIR─Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110025, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Simanti Pal
- CSIR─Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110025, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Betsy Reshma G
- CSIR─Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110025, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Franklin Pulikkottil Mohny
- CSIR─Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110025, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Nidhi Gupta
- Chemical Biology Unit, Institute of Nanoscience and Technology, Sector 81, Mohali, Punjab 140306, India
| | - Chirag Miglani
- Chemical Biology Unit, Institute of Nanoscience and Technology, Sector 81, Mohali, Punjab 140306, India
| | - Bijay Pattnaik
- CSIR─Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110025, India.,Department of Pulmonary, Critical Care & Sleep Medicine, All Indian Institute of Medical Science (AIIMS), New Delhi 110029, India
| | - Asish Pal
- Chemical Biology Unit, Institute of Nanoscience and Technology, Sector 81, Mohali, Punjab 140306, India
| | - Munia Ganguli
- CSIR─Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110025, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
5
|
Ej M, Em M, N D, Ho M. A Peptide/MicroRNA-31 nanomedicine within an electrospun biomaterial designed to regenerate wounds in vivo. Acta Biomater 2022; 138:285-300. [PMID: 34800718 DOI: 10.1016/j.actbio.2021.11.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/09/2021] [Accepted: 11/11/2021] [Indexed: 12/20/2022]
Abstract
microRNA-31 (miR-31) has been identified to be downregulated in pathologies associated with delayed wound repair. Thus, it was proposed that the delivery of a plasmid encoding miR-31 (pmiR-31) to the skin could hold potential in promoting wound healing. Effective delivery of pmiR-31 was potentiated by encapsulation with the CHAT peptide to form nanocomplexes, this improved cellular entry and elicited a potent increase in miR-31 expression in vitro in both skin human keratinocyte cell line (HaCaT) and human microvascular endothelial cell line (HMEC-1). Transfection efficiencies with CHAT/pEFGP-N1 were significant at 15.2 ± 8.1% in HMEC-1 cells and >40% in HaCaT cells. In this study, the CHAT/pmiR-31 nanocomplexes at a N:P ratio of 10 had an average particle size of 74.2 nm with a cationic zeta potential of 9.7 mV. Delivery of CHAT/pmiR-31 to HaCaT and HMEC-1 cells resulted in significant improvements in cell migration capacity and increased angiogenesis. In vivo studies were conducted in C57BL/6 J mice were CHAT/pmiR-31 was delivered via electrospun PVA nanofibres, demonstrating a significant increase in epidermal (increase of ∼38.2 µm) and stratum corneum (increase of 8.2 µm) layers compared to controls. Furthermore, treatment in vivo with CHAT/pmiR-31 increased angiogenesis in wounds compared to controls, with a significant increase in vessel diameter by ∼20.4 µm compared against a commercial dressing control (Durafiber™). Together, these data demonstrate that the delivery of CHAT/pmiR-31 nanocomplexes from electrospun PVA nanofibres represent an innovative therapy for wound repair, eliciting a positive therapeutic response across both stromal and epithelial tissue compartments of the skin. STATEMENT OF SIGNIFICANCE: This study advances research regarding the development of our unique electrospun nanofibre patch to deliver genetic nanoparticles into wounds in vivo to promote healing. The genetic nanoparticles are comprised of: (a) plasmid micro-RNA31 that has been shown to be downregulated in pathologies with delayed wound repair and (b) a 15 amino acid linear peptide termed CHAT. The CHAT facilitates complexation of miR-31 and cellular uptake. Herein, we report for the first time on the use of CHAT to deliver a therapeutic cargo pmiR-31 for wound healing applications from a nanofibre patch. Application of the nanofibre patch resulted in the controlled delivery of the CHAT/pmiR-31 nanoparticles with a significant increase in both epidermal and stratum corneum layers compared to untreated and commercial controls.
Collapse
Affiliation(s)
- Mulholland Ej
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom; Wellcome Centre Human Genetics, University of Oxford, Oxford, United Kingdom.
| | - McErlean Em
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Dunne N
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom; School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland; Centre for Medical Engineering Research, School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland; Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin 2, Ireland; Advanced Manufacturing Research Centre (I-Form), School of Mechanical and Manufacturing Engineering, Dublin City University, Glasnevin, Dublin 9, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland; Advanced Processing Technology Research Centre, Dublin City University, Dublin 9, Ireland; Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - McCarthy Ho
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom; School of Chemical Sciences, Dublin City University, Dublin 9, Ireland.
| |
Collapse
|
6
|
Chen M, Wang H, Guo H, Zhang Y, Chen L. Systematic Investigation of Biocompatible Cationic Polymeric Nucleic Acid Carriers for Immunotherapy of Hepatocellular Carcinoma. Cancers (Basel) 2021; 14:85. [PMID: 35008249 PMCID: PMC8750096 DOI: 10.3390/cancers14010085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 01/27/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the third-largest cause of cancer death worldwide, while immunotherapy is rapidly being developed to fight HCC with great potential. Nucleic acid drugs are the most important modulators in HCC immunotherapy. To boost the efficacy of therapeutics and amplify the efficiency of genetic materials, biocompatible polymers are commonly used. However, under the strong need of a summary for current developments of biocompatible polymeric nucleic acid carriers for immunotherapy of HCC, there is rare review article specific to this topic to our best knowledge. In this article, we will discuss the current progress of immunotherapy for HCC, biocompatible cationic polymers (BCPs) as nucleic acid carriers used (or potential) to fight HCC, the roles of biocompatible polymeric carriers for nucleic acid delivery, and nucleic acid delivery by biocompatible polymers for immunotherapy. At the end, we will conclude the review and discuss future perspectives. This article discusses biocompatible polymeric nucleic acid carriers for immunotherapy of HCC from multidiscipline perspectives and provides a new insight in this domain. We believe this review will be interesting to polymer chemists, pharmacists, clinic doctors, and PhD students in related disciplines.
Collapse
Affiliation(s)
- Mingsheng Chen
- Shanghai Public Health Clinic Center, Fudan University, Shanghai 201508, China; (M.C.); (H.W.); (H.G.)
| | - Hao Wang
- Shanghai Public Health Clinic Center, Fudan University, Shanghai 201508, China; (M.C.); (H.W.); (H.G.)
| | - Hongying Guo
- Shanghai Public Health Clinic Center, Fudan University, Shanghai 201508, China; (M.C.); (H.W.); (H.G.)
| | - Ying Zhang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Liang Chen
- Shanghai Public Health Clinic Center, Fudan University, Shanghai 201508, China; (M.C.); (H.W.); (H.G.)
| |
Collapse
|
7
|
Huang S, Zhu Z, Jia B, Zhang W, Song J. Design of acid-activated cell-penetrating peptides with nuclear localization capacity for anticancer drug delivery. J Pept Sci 2021; 27:e3354. [PMID: 34101293 DOI: 10.1002/psc.3354] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 01/27/2023]
Abstract
Camptothecin (CPT), a DNA-toxin drug, exerts anticancer activity by inhibiting topoisomerase I. Targeted delivery of CPT into the cancer cell nucleus is important for enhancing its therapeutic efficiency. In this study, a new type of acid-activated cell-penetrating peptide (CPP) with nuclear localization capacity was constructed by conjugating six histidine residues and a hydrophobic peptide sequence, PFVYLI, to the nuclear localization sequence (NLS). Our results indicated that HNLS-3 displayed significant pH-dependent cellular uptake efficiency, endosomal escape ability, and nuclear localization activity. More importantly, the HNLS-3-CPT conjugate showed obviously enhanced cytotoxicity and selectivity compared with CPT. Taken together, our findings provide an effective approach to develop efficient CPPs with both cancer- and nucleus-targeting properties.
Collapse
Affiliation(s)
- Sujie Huang
- School of Life Sciences, Lanzhou University, Lanzhou, China.,Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Zhongwen Zhu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Bo Jia
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Wei Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Jingjing Song
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| |
Collapse
|
8
|
Mulholland EJ, McErlean EM, Dunne N, McCarthy HO. Design of a novel electrospun PVA platform for gene therapy applications using the CHAT peptide. Int J Pharm 2021; 598:120366. [PMID: 33561501 DOI: 10.1016/j.ijpharm.2021.120366] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 01/02/2023]
Abstract
The electrospinning of polymers has previously shown excellent potential for localised gene therapy. Thus, it was proposed that for the first time, the cell-penetrating CHAT peptide could be utilised to deliver DNA via electrospun nanofibres for localised gene therapy treatment. CHAT is an effective delivery system that encapsulates pDNA to form nanoparticles with the physicochemical characteristics for cellular uptake and protein generation. In this study, the production of smooth, bead-free PVA nanofibres by electrospinning was optimised through a Design of Experiments approach. Bead-free PVA nanofibres were consistently produced using the optimised parameters as follows: applied voltage (8 kV); collector-emitter distance (8 cm); polymer flow rate (4 µL/min); polymer concentration (9 wt% polymer); PVA MW (146-180 kDa). PVA nanofibres were subsequently crosslinked in 1 vol% glutaraldehyde in methanol to confer stability under aqueous conditions with minimal change to morphology, and no compromise to biocompatibility. Nanoparticles of CHAT/pDNA were synthesised and incorporated into the crosslinked nanofibres via soak-loading. Evaluation studies indicated that 100% of the loaded cargo was released within 48 h from the nanofibres. Furthermore, the released pDNA retained structural integrity and functionality as confirmed by gel electrophoresis and transfection studies in NCTC-929 fibroblast cells. Taken together, this data demonstrates that delivery of CHAT/pDNA nanoparticles from electrospun PVA nanofibres represents a solution for localised gene therapy.
Collapse
Affiliation(s)
- E J Mulholland
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - E M McErlean
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - N Dunne
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland; Centre for Medical Engineering Research, School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland; Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin 2, Ireland; Advanced Manufacturing Research Centre (I-Form), School of Mechanical and Manufacturing Engineering, Dublin City University, Glasnevin, Dublin 9, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland; Advanced Processing Technology Research Centre, Dublin City University, Dublin 9, Ireland; Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - H O McCarthy
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; School of Chemical Sciences, Dublin City University, Dublin 9, Ireland.
| |
Collapse
|
9
|
Miyamoto T, Tsuchiya K, Numata K. Endosome-escaping micelle complexes dually equipped with cell-penetrating and endosome-disrupting peptides for efficient DNA delivery into intact plants. NANOSCALE 2021; 13:5679-5692. [PMID: 33595040 DOI: 10.1039/d0nr08183c] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The delivery of DNA to plants is crucial for enhancing their ability to produce valuable compounds and adapt to climate change. Peptides can provide a versatile tool for delivering DNA to a specific target organelle in various plant species without the use of specialized equipment. However, peptide-mediated DNA delivery suffers from endosomal entrapment and subsequent vacuolar degradation of the DNA cargo, which leads to poor transfection efficiency. To overcome the lack of a reliable approach for bypassing vacuolar degradation in plants, we herein present an endosome-escaping micelle. The micelle surface is dually modified with cell-penetrating (CPP) and endosome-disrupting peptides (EDP) and the core is composed of plasmid DNA condensed with cationic peptides. Due to the functions of CPP and EDP, the dual peptide-modified micelles efficiently undergo endocytic internalization and escape from endosomes to the cytosol, thereby achieving significantly enhanced transfection of intact plants with negligible cytotoxicity. The present study offers a robust strategy for efficient intracellular DNA delivery to plants without vacuolar degradation, and can facilitate plant bioengineering for diverse biotechnological applications.
Collapse
Affiliation(s)
- Takaaki Miyamoto
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan.
| | | | | |
Collapse
|
10
|
McErlean EM, Ziminska M, McCrudden CM, McBride JW, Loughran SP, Cole G, Mulholland EJ, Kett V, Buckley NE, Robson T, Dunne NJ, McCarthy HO. Rational design and characterisation of a linear cell penetrating peptide for non-viral gene delivery. J Control Release 2020; 330:1288-1299. [PMID: 33227336 DOI: 10.1016/j.jconrel.2020.11.037] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 11/16/2020] [Accepted: 11/19/2020] [Indexed: 01/19/2023]
Abstract
The design of a non-viral gene delivery system that can release a functional nucleic acid at the intracellular destination site is an exciting but also challenging proposition. The ideal gene delivery vector must be non-toxic, non-immunogenic, overcome extra- and intra-cellular barriers, protect the nucleic acid cargo from degradation with stability over a range of temperatures. A new 15 amino acid linear peptide termed CHAT was designed in this study with the goal of delivering DNA with high efficiency into cells in vitro and tissues in vivo. Rational design involved incorporation of key amino acids including arginine for nucleic acid complexation and cellular uptake, tryptophan to enhance hydrophobic interaction with cell membranes, histidine to facilitate endosomal escape and cysteine for stability and controlled cargo release. Six linear peptides were synthesised with strategic sequences and amino acid substitutions. Data demonstrated that all six peptides complexed pDNA to produce cationic nanoparticles less than 200 nm in diameter, but not all peptides resulted in successful transfection; indicating the influence of peptide design for endosomal escape. Peptide 4, now termed CHAT, was non-cytotoxic, traversed the plasma membrane of breast and prostate cancer cell lines, and elicited reporter-gene expression following intra-tumoural and intravenous delivery in vivo. CHAT presents an exciting new peptide for the delivery of nucleic acid therapeutics.
Collapse
Affiliation(s)
- Emma M McErlean
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Monika Ziminska
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Cian M McCrudden
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - John W McBride
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Stephen P Loughran
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Grace Cole
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Eoghan J Mulholland
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Vicky Kett
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Niamh E Buckley
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Tracy Robson
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons Ireland, 111 St Stephen's Green, Dublin 2, Ireland
| | - Nicholas J Dunne
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland; Centre for Medical Engineering Research, School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland; Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin 2, Ireland; Advanced Manufacturing Research Centre (I-Form), School of Mechanical and Manufacturing Engineering, Dublin City University, Glasnevin, Dublin 9, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin 2, Ireland; Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Helen O McCarthy
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; School of Chemical Sciences, Dublin City University, Dublin 9, Ireland.
| |
Collapse
|
11
|
Peptides as a material platform for gene delivery: Emerging concepts and converging technologies. Acta Biomater 2020; 117:40-59. [PMID: 32966922 DOI: 10.1016/j.actbio.2020.09.027] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/27/2020] [Accepted: 09/16/2020] [Indexed: 02/06/2023]
Abstract
Successful gene therapies rely on methods that safely introduce DNA into target cells and enable subsequent expression of proteins. To that end, peptides are an attractive materials platform for DNA delivery, facilitating condensation into nanoparticles, delivery into cells, and subcellular release to enable protein expression. Peptides are programmable materials that can be designed to address biocompatibility, stability, and subcellular barriers that limit efficiency of non-viral gene delivery systems. This review focuses on fundamental structure-function relationships regarding peptide design and their impact on nanoparticle physical properties, biologic activity, and biocompatibility. Recent peptide technologies utilize multi-dimensional structures, non-natural chemistries, and combinations of peptides with lipids to achieve desired properties and efficient transfection. Advances in DNA cargo design are also presented to highlight further opportunities for peptide-based gene delivery. Modern DNA designs enable prolonged expression compared to traditional plasmids, providing an additional component that can be synergized with peptide carriers for improved transfection. Peptide transfection systems are poised to become a flexible and efficient platform incorporating new chemistries, functionalities, and improved DNA cargos to usher in a new era of gene therapy.
Collapse
|
12
|
Huwaitat R, Coulter SM, Porter SL, Pentlavalli S, Laverty G. Antibacterial and antibiofilm efficacy of synthetic polymyxin‐mimetic lipopeptides. Pept Sci (Hoboken) 2020. [DOI: 10.1002/pep2.24188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Rawan Huwaitat
- Biofunctional Nanomaterials Group School of Pharmacy, Queen's University Belfast, Medical Biology Centre Belfast N. Ireland UK
- Department of Pharmacy Al‐Zaytoonah University of Jordan Amman Jordan
| | - Sophie M. Coulter
- Biofunctional Nanomaterials Group School of Pharmacy, Queen's University Belfast, Medical Biology Centre Belfast N. Ireland UK
| | - Simon L. Porter
- Biofunctional Nanomaterials Group School of Pharmacy, Queen's University Belfast, Medical Biology Centre Belfast N. Ireland UK
| | - Sreekanth Pentlavalli
- Biofunctional Nanomaterials Group School of Pharmacy, Queen's University Belfast, Medical Biology Centre Belfast N. Ireland UK
| | - Garry Laverty
- Biofunctional Nanomaterials Group School of Pharmacy, Queen's University Belfast, Medical Biology Centre Belfast N. Ireland UK
| |
Collapse
|
13
|
Yamada Y, Fukuda Y, Sasaki D, Maruyama M, Harashima H. Development of a nanoparticle that releases nucleic acids in response to a mitochondrial environment. Mitochondrion 2020; 52:67-74. [PMID: 32097722 DOI: 10.1016/j.mito.2020.02.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 02/06/2020] [Accepted: 02/21/2020] [Indexed: 12/16/2022]
Abstract
The delivery of nucleic acids targeting mutant mtDNA represent a potential strategy for addressing a variety of mitochondria-related diseases. We previously developed a MITO-Porter, a nano carrier that is capable of delivering nanoparticles of nucleic acids to mitochondria of human cells. Here, we report on an investigation of a series of nanoparticles formed with various poly cationic peptides that can release nucleic acids in response to a mitochondrial environment. A significant relationship was found between the number of and the location of arginine and histidine residues in the peptide sequence and the release of nucleic acids in a mitochondrial environment.
Collapse
Affiliation(s)
- Yuma Yamada
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan.
| | - Yutaka Fukuda
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Daisuke Sasaki
- Department of Pediatrics, Hokkaido University Hospital, Kita-15, Nishi-7, Kita-ku, Sapporo 060-8638, Japan
| | - Minako Maruyama
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Hideyoshi Harashima
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan.
| |
Collapse
|
14
|
Gomes Dos Reis L, Lee WH, Svolos M, Moir LM, Jaber R, Engel A, Windhab N, Young PM, Traini D. Delivery of pDNA to lung epithelial cells using PLGA nanoparticles formulated with a cell-penetrating peptide: understanding the intracellular fate. Drug Dev Ind Pharm 2020; 46:427-442. [PMID: 32070151 DOI: 10.1080/03639045.2020.1724134] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The combination of nanoparticles (NPs) and cell-penetrating peptide (CPP) represents a new opportunity to develop plasmid DNA (pDNA) delivery systems with desirable properties for lung delivery. In this study, poly(lactide-co-glycolide) (PLGA) NPs containing pDNA were formulated with and without CPP using a double-emulsion technique. NPs were characterized in regards of size, surface charge, release profile, pDNA encapsulation efficiency and pDNA integrity. Cellular uptake, intracellular trafficking, uptake mechanism and pDNA expression were assessed in both A549 and Beas-2B cells. Manufactured PLGA-NPs efficiently encapsulated pDNA with approximately 50% released in the first 24 h of incubation. Addition of CPP was essential to promote NP internalization in both cell lines, with 83.85 ± 1.2% and 96.76 ± 1.7% of Beas-2B and A549 cells, respectively, with internalized NP-DNA-CPP after 3 h of incubation. Internalization appears to occur mainly via clathrin-mediated endocytosis, with other pathways also being used by the different cell lines. An endosomal-escape mechanism seems to happen in both cell lines, and eGFP expression was observed in Beas-2B after 96 h of incubation. In summary, the NP-DNA-CPP delivery system efficiently encapsulated and protected pDNA structure and is being investigated as a promising tool for gene delivery to the lungs.
Collapse
Affiliation(s)
- Larissa Gomes Dos Reis
- Department of Respiratory Technology, Faculty of Medicine and Health, Woolcock Institute of Medical Research and Discipline of Pharmacology, The University of Sydney, Glebe, NSW, Australia
| | - Wing-Hin Lee
- Department of Respiratory Technology, Faculty of Medicine and Health, Woolcock Institute of Medical Research and Discipline of Pharmacology, The University of Sydney, Glebe, NSW, Australia
| | - Maree Svolos
- Department of Respiratory Technology, Faculty of Medicine and Health, Woolcock Institute of Medical Research and Discipline of Pharmacology, The University of Sydney, Glebe, NSW, Australia
| | - Lyn M Moir
- Department of Respiratory Technology, Faculty of Medicine and Health, Woolcock Institute of Medical Research and Discipline of Pharmacology, The University of Sydney, Glebe, NSW, Australia
| | - Rima Jaber
- Evonik Industries AG, Darmstadt, Germany
| | | | | | - Paul M Young
- Department of Respiratory Technology, Faculty of Medicine and Health, Woolcock Institute of Medical Research and Discipline of Pharmacology, The University of Sydney, Glebe, NSW, Australia
| | - Daniela Traini
- Department of Respiratory Technology, Faculty of Medicine and Health, Woolcock Institute of Medical Research and Discipline of Pharmacology, The University of Sydney, Glebe, NSW, Australia
| |
Collapse
|
15
|
Design and in vitro delivery of HIV-1 multi-epitope DNA and peptide constructs using novel cell-penetrating peptides. Biotechnol Lett 2019; 41:1283-1298. [PMID: 31531750 DOI: 10.1007/s10529-019-02734-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 09/15/2019] [Indexed: 12/15/2022]
Abstract
OBJECTIVES Developing an effective HIV vaccine that stimulates the humoral and cellular immune responses is still challenging because of the diversity of HIV-1 virus, polymorphism of human HLA and lack of a suitable delivery system. RESULTS Using bioinformatics tools, we designed a DNA construct encoding multiple epitopes. These epitopes were highly conserved within prevalent HIV-1 subtypes and interacted with prevalent class I and II HLAs in Iran and the world. The designed DNA construct included Nef60-84, Nef126-144, Vpr34-47, Vpr60-75, Gp16030-53, Gp160308-323 and P248-151 epitopes (i.e., nef-vpr-gp160-p24 DNA) which was cloned into pET-24a(+) and pEGFP-N1 vectors. The recombinant polyepitope peptide (rNef-Vpr-Gp160-P24; ~ 32 kDa) was successfully generated in E. coli expression system. The pEGFP-nef-vpr-gp160-p24 and rNef-Vpr-Gp160-P24 polyepitope peptide were delivered into HEK-293 T cells using cell-penetrating peptides (CPPs). The MPG and HR9 CPPs, as well as the novel LDP-NLS and CyLoP-1 CPPs, were utilized for DNA and peptide delivery into the cells, respectively. SEM results confirmed the formation of stable MPG/pEGFP-N1-nef-vpr-gp160-p24, HR9/pEGFP-N1-nef-vpr-gp160-p24, LDP-NLS/rNef-Vpr-Gp160-P24 and CyLoP-1/rNef-Vpr-Gp160-P24 nanoparticles with a diameter of < 200 nm through non-covalent bonds. MTT assay results indicated that these nanoparticles did not have any major toxicity in vitro. Fluorescence microscopy, flow cytometry and western blot data demonstrated that these CPPs could significantly deliver the DNA and peptide constructs into HEK-293 T cells. CONCLUSION The use of these CPPs can be considered as an approach in HIV vaccine development for in vitro and in vivo delivery of DNA and peptide constructs into mammalian cells.
Collapse
|
16
|
Killian T, Buntz A, Herlet T, Seul H, Mundigl O, Längst G, Brinkmann U. Antibody-targeted chromatin enables effective intracellular delivery and functionality of CRISPR/Cas9 expression plasmids. Nucleic Acids Res 2019; 47:e55. [PMID: 30809660 PMCID: PMC6547418 DOI: 10.1093/nar/gkz137] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 01/21/2019] [Accepted: 02/20/2019] [Indexed: 01/01/2023] Open
Abstract
We report a novel system for efficient and specific targeted delivery of large nucleic acids to and into cells. Plasmid DNA and core histones were assembled to chromatin by salt gradient dialysis and subsequently connected to bispecific antibody derivatives (bsAbs) via a nucleic acid binding peptide bridge. The resulting reconstituted vehicles termed 'plasmid-chromatin' deliver packaged nucleic acids to and into cells expressing antigens that are recognized by the bsAb, enabling intracellular functionality without detectable cytotoxicity. High efficiency of intracellular nucleic acid delivery is revealed by intracellular expression of plasmid encoded genes in most (∼90%) target cells to which the vehicles were applied under normal growth/medium conditions in nanomolar concentrations. Specific targeting, uptake and transgene expression depends on antibody-mediated cell surface binding: plasmid chromatin of identical composition but with non-targeting bsAbs or without bsAbs is ineffective. Examples that demonstrate applicability, specificity and efficacy of antibody-targeted plasmid chromatin include reporter gene constructs as well as plasmids that enable CRISPR/Cas9 mediated genome editing of target cells.
Collapse
Affiliation(s)
- Tobias Killian
- Roche Pharma Research and Early Development (pRED), Therapeutic Modalities - Large Molecule Research, Roche Innovation Center Munich, Nonnenwald 2, D-82377 Penzberg, Germany
| | - Annette Buntz
- Roche Pharma Research and Early Development (pRED), Therapeutic Modalities - Large Molecule Research, Roche Innovation Center Munich, Nonnenwald 2, D-82377 Penzberg, Germany
| | - Teresa Herlet
- Roche Pharma Research and Early Development (pRED), Therapeutic Modalities - Large Molecule Research, Roche Innovation Center Munich, Nonnenwald 2, D-82377 Penzberg, Germany
| | - Heike Seul
- Roche Pharma Research and Early Development (pRED), Therapeutic Modalities - Large Molecule Research, Roche Innovation Center Munich, Nonnenwald 2, D-82377 Penzberg, Germany
| | - Olaf Mundigl
- Roche Pharma Research and Early Development (pRED), Therapeutic Modalities - Large Molecule Research, Roche Innovation Center Munich, Nonnenwald 2, D-82377 Penzberg, Germany
| | - Gernot Längst
- Biochemistry III; Biochemistry Centre Regensburg (BCR), University of Regensburg, Regensburg, Germany
| | - Ulrich Brinkmann
- Roche Pharma Research and Early Development (pRED), Therapeutic Modalities - Large Molecule Research, Roche Innovation Center Munich, Nonnenwald 2, D-82377 Penzberg, Germany
| |
Collapse
|
17
|
Subia B, Reinisalo M, Dey N, Tavakoli S, Subrizi A, Ganguli M, Ruponen M. Nucleic acid delivery to differentiated retinal pigment epithelial cells using cell-penetrating peptide as a carrier. Eur J Pharm Biopharm 2019; 140:91-99. [PMID: 31085311 DOI: 10.1016/j.ejpb.2019.05.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 04/16/2019] [Accepted: 05/08/2019] [Indexed: 10/26/2022]
Abstract
Nucleic acid delivery to the eye is a promising treatment strategy for many retinal disorders. In this manuscript, retinal gene delivery with non-coated and chondroitin sulphate (CS) coated amphipathic and cationic peptides was tested. The transfection and gene knockdown efficiencies were evaluated in different retinal pigment epithelial (RPE) cell models including both dividing and differentiated cells. In addition, the mobility of peptide-based gene delivery systems was examined in porcine vitreous by particle tracking analysis. The results indicate that amphipathic and cationic peptides are safe in vitro and are capable of high transgene expression and gene knockdown in dividing cells. We further demonstrate that incorporation of CS improves the efficiency of gene delivery of peptide-based systems. Most importantly, the transgene expression mediated by both non-coated and CS coated peptides was high in differentiated as well as in human primary RPE cells which are typically difficult to transfect. Coating of peptide-based gene delivery systems with CS improved diffusion in the vitreous and enhanced the stability of the polyplexes. The results indicate that a peptide-based system can be fine-tuned as a promising approach for retinal gene delivery.
Collapse
Affiliation(s)
- Bano Subia
- School of Pharmacy, University of Eastern Finland, Kuopio 70211, Finland.
| | - Mika Reinisalo
- School of Pharmacy, University of Eastern Finland, Kuopio 70211, Finland
| | - Namit Dey
- Delhi Technological University, Delhi 110042, India
| | | | - Astrid Subrizi
- School of Pharmacy, University of Eastern Finland, Kuopio 70211, Finland; Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C 800, Denmark
| | - Munia Ganguli
- CSIR-Institute of Genomics and Integrative Biology, New Delhi 110021, India
| | - Marika Ruponen
- School of Pharmacy, University of Eastern Finland, Kuopio 70211, Finland
| |
Collapse
|
18
|
Jiao X, Yu Y, Meng J, He M, Zhang CJ, Geng W, Ding B, Wang Z, Ding X. Dual-targeting and microenvironment-responsive micelles as a gene delivery system to improve the sensitivity of glioma to radiotherapy. Acta Pharm Sin B 2019; 9:381-396. [PMID: 30972284 PMCID: PMC6437633 DOI: 10.1016/j.apsb.2018.12.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 11/12/2018] [Accepted: 11/20/2018] [Indexed: 12/18/2022] Open
Abstract
Dbait is a small double-stranded DNA molecule that has been utilized as a radiosensitizer to enhance the sensitivity of glioma to radiotherapy (RT). However, there is no effective drug delivery system to effectively overcome the blood-brain barrier (BBB). The aim of this study was to develop a gene delivery system by using the BBB and glioma dual-targeting and microenvironment-responsive micelles (ch-Kn(s-s)R8-An) to deliver Dbait into glioma for RT. Angiopep-2 can target the low-density lipoprotein receptor-related protein-1 (LRP1) that is overexpressed on brain capillary endothelial cells (BCECs) and glioma cells. In particular, due to upregulated matrix metalloproteinase 2 (MMP-2) in the tumor microenvironment, we utilized MMP-2-responsive peptides as the enzymatically degradable linkers to conjugate angiopep-2. The results showed that ch-Kn(s-s)R8-An micelles maintained a reasonable size (80-160 nm) with a moderate distribution and a decreased mean diameter from the cross-linking as well as exhibited low critical micelle concentration (CMC) with positive surface charge, ranging from 15 to 40 mV. The ch-K5(s-s)R8-An/pEGFP showed high gene transfection efficiency in vitro, improved uptake in glioma cells and good biocompatibility in vitro and in vivo. In addition, the combination of ch-K5(s-s)R8-An/Dbait with RT significantly inhibited the growth of U251 cells in vitro. Thus, ch-K5(s-s)R8-An/Dbait may prove to be a promising gene delivery system to target glioma and enhance the efficacy of RT on U251 cells.
Collapse
Key Words
- ATCC, American Type Culture Collection
- Arg, arginine
- BBB, blood–brain barrier
- BBTB, blood—brain tumor barriers
- CMC, critical micelle concentration
- Cell-penetrating peptides
- DTSSP, 3,3′-dithiobis(sulfosuccinimidylpropionate)
- DTT, dithiothreitol
- FBS, fetal bovine serum
- GBM, glioblastoma multiforme
- GSH, glutathione
- Gene delivery
- Glioma-targeting
- KnR8, cholesterol-polylysine-polyarginine peptide, n = 3, 5, 7
- Lys, lysine
- MMP-2, matrix metalloproteinase 2
- MWCO, molecular weight cutoff
- Microenvironment-responsive micelles
- PDI, polydispersity index
- PE, plating efficiency
- PEI, polyethylenimine
- RT, radiotherapy
- Radiosensitizer
- ch-Kn(s-s)R8-An, the disulfide cross-linked cholesterol-polylysine-polyarginine peptide core-shell polymer micelles modified with angiopep-2, n = 3, 5, 7
- ch-KnR8-An, the non-cross-linked cholesterol-polylysine-polyarginine peptide core-shell polymer micelles modified with angiopep-2, n = 3, 5, 7
- pDNA, plasmid DNA
Collapse
Affiliation(s)
- Xiuxiu Jiao
- Department of Pharmaceutics, Shanghai General Hospital, Shanghai Jiao Tong University of Medicine, Shanghai 200080, China
| | - Yuan Yu
- Department of Pharmaceutical Sciences, School of Pharmacy, Second Military Medical University, Shanghai 200082, China
| | - Jianxia Meng
- Department of Pharmacy, Changhai Hospital, Second Military Medical University, Shanghai 200082, China
| | - Mei He
- Department of Pharmaceutics, Shanghai General Hospital, Shanghai Jiao Tong University of Medicine, Shanghai 200080, China
| | - Charles Jian Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA 91768, USA
| | - Wenqian Geng
- Department of Pharmaceutics, Shanghai General Hospital, Shanghai Jiao Tong University of Medicine, Shanghai 200080, China
| | - Baoyue Ding
- Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing 314000, China
| | - Zhuo Wang
- Department of Pharmacy, Changhai Hospital, Second Military Medical University, Shanghai 200082, China
| | - Xueying Ding
- Department of Pharmaceutics, Shanghai General Hospital, Shanghai Jiao Tong University of Medicine, Shanghai 200080, China
| |
Collapse
|
19
|
Davoodi S, Bolhassani A, Sadat SM, Irani S. Enhancing HIV-1 Nef Penetration into Mammalian Cells as an Antigen Candidate. JOURNAL OF MEDICAL MICROBIOLOGY AND INFECTIOUS DISEASES 2019. [DOI: 10.29252/jommid.7.1.2.37] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
20
|
Delivery of pDNA Polyplexes to Bronchial and Alveolar Epithelial Cells Using a Mesh Nebulizer. Pharm Res 2018; 36:14. [DOI: 10.1007/s11095-018-2542-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 11/07/2018] [Indexed: 12/11/2022]
|
21
|
Hu C, Gu F, Tai Z, Yao C, Gong C, Xia Q, Gao Y, Gao S. Synergistic effect of reduced polypeptide micelle for co-delivery of doxorubicin and TRAIL against drug-resistance in breast cancer. Oncotarget 2018; 7:61832-61844. [PMID: 27557520 PMCID: PMC5308694 DOI: 10.18632/oncotarget.11451] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 08/13/2016] [Indexed: 11/25/2022] Open
Abstract
Cationic peptides as a non-viral gene vector have become a hotspot of research because of their high transfection efficcacy and safety. Based on our previous study, we synthesized a cationic reduction-responsive vector based on disulfide cross-linked L-arginine, L-histidine and lipoic acid (LHRss) as the co-carrier of both doxorubicin (DOX) and the necrosis factor-related apoptosis-inducing ligand (pTRAIL). The LHRss/DOX/TRAIL construct has reduction-sensitive behavior and an enhanced endosomal escape ability to increase the cytotoxicity of DOX and the transfection efficiency. Further, the LHRss/DOX/TRAIL construct increased the accumulation of DOX and promoted the expression of pTRAIL, thus increasing cellular apoptosis by 83.7% in MCF-7/ADR cells. In addition, the in vivo biodistribution results showed that the LHRss/DOX/TRAIL construct could target tumors well. The in vivo anti-tumor effect study demonstrated that the LHRss/DOX/TRAIL construct inhibited tumor growth markedly, with a tumor inhibitory rate of 94.0%. The co-delivery system showed a significant synergistic anti-tumor effect. The LHRss/DOX/TRAIL construct may prove to be a promising co-delivery vector for the effective treatment of drug resistant breast cancer.
Collapse
Affiliation(s)
- Chuling Hu
- Department of Pharmaceutics, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Fenfen Gu
- Department of Pharmaceutics, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Zongguang Tai
- Department of Pharmaceutics, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Chong Yao
- Department of Pharmaceutics, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Chunai Gong
- Department of Pharmaceutics, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Qingming Xia
- Department of Pharmaceutics, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Yuan Gao
- Department of Pharmaceutics, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Shen Gao
- Department of Pharmaceutics, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
22
|
Yang S, Meng Z, Kang Z, Sun C, Wang T, Feng S, Meng Q, Liu K. The structure and configuration changes of multifunctional peptide vectors enhance gene delivery efficiency. RSC Adv 2018; 8:28356-28366. [PMID: 35542475 PMCID: PMC9084241 DOI: 10.1039/c8ra04101f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 07/23/2018] [Indexed: 11/25/2022] Open
Abstract
We designed a series of peptide vectors that contain functional fragments with the goal of enhancing cellular internalization and gene transfection efficiency. The functional fragments included a cell-penetrating peptide (R9), a cationic amphiphilic α-helical peptide [(LLKK)3-H6 or (LLHH)3], a stearyl moiety, and cysteine residues. Vectors were also synthesized with D-type amino acids to improve their proteolytic stability. The conformations, particle sizes, and zeta potentials for complexes of these peptides with pGL3 plasmid DNA were characterized by circular dichroism and dynamic light scattering. In addition, cellular uptake of the peptide/DNA complexes and gene transfection efficiency were investigated with fluorescence-activated cell sorting and confocal laser-scanning microscopy. Greater transfection efficiency was achieved with the vectors containing the R9 segment, and the efficiency was greater than Lipo2000. In addition, the D-type C18-c(llkk)3ch6-r9 had about 7 times and 5.5 times the transfection efficiency of Lipo2000 in 293T cells and NIH-3T3 cells at the N/P ratio of 6, respectively. Overall, the multifunctional peptide gene vectors containing the R9 segment exhibited enhanced cellular internalization, a high gene transfection efficiency, and low cytotoxicity. The R9 containing peptide vectors can improve the gene transfection efficiency.![]()
Collapse
Affiliation(s)
- Sen Yang
- State Key Laboratory of Toxicology and Medical Countermeasures
- Beijing Institute of Pharmacology and Toxicology
- Beijing
- China
| | - Zhao Meng
- State Key Laboratory of Toxicology and Medical Countermeasures
- Beijing Institute of Pharmacology and Toxicology
- Beijing
- China
| | - Ziyao Kang
- State Key Laboratory of Toxicology and Medical Countermeasures
- Beijing Institute of Pharmacology and Toxicology
- Beijing
- China
| | - Chao Sun
- State Key Laboratory of Toxicology and Medical Countermeasures
- Beijing Institute of Pharmacology and Toxicology
- Beijing
- China
| | - Taoran Wang
- State Key Laboratory of Toxicology and Medical Countermeasures
- Beijing Institute of Pharmacology and Toxicology
- Beijing
- China
| | - Siliang Feng
- State Key Laboratory of Toxicology and Medical Countermeasures
- Beijing Institute of Pharmacology and Toxicology
- Beijing
- China
| | - Qingbin Meng
- State Key Laboratory of Toxicology and Medical Countermeasures
- Beijing Institute of Pharmacology and Toxicology
- Beijing
- China
| | - Keliang Liu
- State Key Laboratory of Toxicology and Medical Countermeasures
- Beijing Institute of Pharmacology and Toxicology
- Beijing
- China
| |
Collapse
|
23
|
Begum AA, Wan Y, Toth I, Moyle PM. Bombesin/oligoarginine fusion peptides for gastrin releasing peptide receptor (GRPR) targeted gene delivery. Bioorg Med Chem 2018; 26:516-526. [DOI: 10.1016/j.bmc.2017.12.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 11/30/2017] [Accepted: 12/07/2017] [Indexed: 01/06/2023]
|
24
|
Shukla V, Dalela M, Vij M, Weichselbaum R, Kharbanda S, Ganguli M, Kufe D, Singh H. Systemic delivery of the tumor necrosis factor gene to tumors by a novel dual DNA-nanocomplex in a nanoparticle system. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 13:1833-1839. [PMID: 28343015 DOI: 10.1016/j.nano.2017.03.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 03/03/2017] [Accepted: 03/15/2017] [Indexed: 11/15/2022]
Abstract
Many cancers fail to respond to immunotherapy as a result of immune suppression by the tumor microenvironment. The exogenous expression of immune cytokines to reprogram the tumor microenvironment represents an approach to circumvent this suppression. The present studies describe the development of a novel dual nanoparticle (DNP) system for driving DNA expression vectors encoding inflammatory cytokines in tumor cells. The DNP system consists of a DNA expression vector-cationic peptide nanocomplex (NC) surrounded by a diblock polymeric NP. Tumor necrosis factor alpha (TNF) was selected as the prototype cytokine for this system, based on its pleotropic inflammatory and anti-cancer activities. Our results demonstrate that the DNP system is highly effective in driving expression of TNF in tumor cells. We also demonstrate that the DNPs are effective in inducing apoptosis and anti-tumor activity. These findings support a novel immunotherapeutic approach for the intratumoral delivery of DNA vectors that express inflammatory cytokines.
Collapse
Affiliation(s)
- Vasundhara Shukla
- Center for Biomedical Engineering, Indian Institute of Technology, Delhi, India
| | - Manu Dalela
- Center for Biomedical Engineering, Indian Institute of Technology, Delhi, India
| | - Manika Vij
- Institute of Genomics and Integrative Biology, Delhi, India
| | - Ralph Weichselbaum
- Department of Radiation and Cellular Oncology, University of Chicago Medicine, Chicago, IL, USA
| | | | - Munia Ganguli
- Institute of Genomics and Integrative Biology, Delhi, India
| | - Donald Kufe
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| | - Harpal Singh
- Center for Biomedical Engineering, Indian Institute of Technology, Delhi, India; All India Institute of Medical Science, Delhi, India.
| |
Collapse
|
25
|
Liu Y, Wu X, Gao Y, Zhang J, Zhang D, Gu S, Zhu G, Liu G, Li X. Aptamer-functionalized peptide H3CR5C as a novel nanovehicle for codelivery of fasudil and miRNA-195 targeting hepatocellular carcinoma. Int J Nanomedicine 2016; 11:3891-905. [PMID: 27574422 PMCID: PMC4990390 DOI: 10.2147/ijn.s108128] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Liver cancer is the fifth most commonly diagnosed malignancy, of which hepatocellular carcinoma (HCC) represents the dominating histological subtype. Antiangiogenic therapy aimed at vascular endothelial growth factor (VEGF) has shown promising but deficient clinical prospects on account of vasculogenic mimicry, a highly patterned vascular channel distinguished from the endothelium-dependent blood vessel, which may function as blood supply networks occurring in aggressive tumors including HCC. In this study, we used a new cationic peptide, disulfide cross-linked stearylated polyarginine peptide modified with histidine (H3R5), as a reducible vector, cell penetrating peptide-modified aptamer (ST21) with specific binding to HCC cells to conjugate to peptide H3R5 as the targeting probe, miRNA-195 (miR195) as a powerful gene drug to inhibit VEGF, and fasudil to suppress vasculogenic mimicry by blocking ROCK2, all of which were simultaneously encapsulated in the same nanoparticles. Fasudil was loaded by ammonium sulfate-induced transmembrane electrochemical gradient and miR195 was condensed through electrostatic interaction. ST21-H3R5-polyethylene glycol (PEG) exhibited excellent loading capacities for both fasudil and miR195 with adjustable dosing ratios. Western blot analysis showed that (Fasudil)ST21-H3R5-PEGmiR195 had strong silencing activity of ROCK2 and VEGF, as compared with (Fasudil)H3R5-PEGmiR195. In vitro and in vivo experiments confirmed that ST21-modified nanoparticles showed significantly higher cellular uptake and therapeutic efficacy in tumor cells or tumor tissues than the unmodified counterparts. These findings suggest that aptamer-conjugated peptide holds great promise for delivering chemical drugs and gene drugs simultaneously to overcome HCC.
Collapse
Affiliation(s)
- Ying Liu
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine
| | - Xin Wu
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine
| | - Yuan Gao
- Department of Pharmaceutics, Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Jigang Zhang
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine
| | - Dandan Zhang
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine
| | - Shengying Gu
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine
| | - Guanhua Zhu
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine
| | - Gaolin Liu
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine
| | - Xiaoyu Li
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine
| |
Collapse
|
26
|
Shirazi AN, El-Sayed NS, Mandal D, Tiwari RK, Tavakoli K, Etesham M, Parang K. Cysteine and arginine-rich peptides as molecular carriers. Bioorg Med Chem Lett 2016; 26:656-661. [PMID: 26631317 DOI: 10.1016/j.bmcl.2015.11.052] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Revised: 11/10/2015] [Accepted: 11/16/2015] [Indexed: 12/23/2022]
Abstract
A number of linear and cyclic peptides containing alternative arginine and cysteine residues, namely linear (CR)3, linear (CR)4, linear (CR)5, cyclic [CR]4, and cyclic [CR]5, were synthesized. The peptides were evaluated for their ability to deliver two molecular cargos, fluorescence-labeled cell-impermeable negatively charged phosphopeptide (F'-GpYEEI) and fluorescence-labeled lamivudine (F'-3TC), intracellularly in human leukemia cancer (CCRF-CEM) cells. We investigated the role of cyclization and the number of amino acids in improving the transporting ability of the peptides. The flow cytometry studies suggested that the synthesized peptides were able to work efficiently as transporters for both cargos. Among all compounds, cyclic [CR]4 was found to be the most efficient peptide in transporting the cargo into cells. For instance, the cellular uptake of F'-3TC (5μM) and F'-GpYEEI (5μM) was enhanced by 16- and 20-fold, respectively, in the presence of cyclic [CR]4 compared to that of the parent compound alone. The mechanism of F'-GpYEEI uptake by cells was found to be energy-independent. The results showed that the number of amino acids and their cyclic nature can impact the efficiency of the peptide in transporting the molecular cargos.
Collapse
Affiliation(s)
- Amir Nasrolahi Shirazi
- Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, United States
| | - Naglaa Salem El-Sayed
- Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, United States
| | - Dindayal Mandal
- Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, United States
| | - Rakesh K Tiwari
- Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, United States
| | - Kathy Tavakoli
- Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, United States
| | - Matthew Etesham
- Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, United States
| | - Keykavous Parang
- Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, United States.
| |
Collapse
|
27
|
Kanazawa T, Yamazaki M, Fukuda T, Takashima Y, Okada H. Versatile nuclear localization signal-based oligopeptide as a gene vector. Biol Pharm Bull 2016; 38:559-65. [PMID: 25832636 DOI: 10.1248/bpb.b14-00706] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To develop a versatile nuclear-targeted gene vector, nuclear localization signal (NLS) oligopeptides combining cysteine (C), histidine (H), and stearic acid (STR) were investigated in this study. The original SV40 sequence (SV40: Pro-Lys-Lys-Lys-Arg-Lys-Val) was selected as the NLS sequence, and physical characterizations of various NLS-based oligopeptides (CSV40C, STR-CSV40C, and STR-CH2SV40H2C), including mean diameter, zeta-potential, complex condensation, and decondensation, were evaluated. In addition, cellular and nuclear uptake of plasmid DNA (pDNA) and gene expression in COS7 and dendritic cells (JAWS II) were determined. As a result, C and STR enhanced formation of a smaller and more stable nano-complex with pDNA based on ionic interactions, the disulfide linkage and hydrophobic interactions. STR-CSV40C and STR-CH2SV40H2C had significantly higher cellular uptake ability and transfection efficiency than SV40 and CSV40C. In particular, STR-CH2SV40H2C had higher nuclear uptake and gene expression efficiency than STR-CSV40C. Furthermore, STR-CH2SV40H2C could deliver pDNA to the nuclei and had high gene expression efficiency in dendritic cells. Our results indicate that STR-CH2SV40H2C is a promising gene delivery system in non- or slow-dividing cells.
Collapse
Affiliation(s)
- Takanori Kanazawa
- Department of Pharmaceutical Science, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| | | | | | | | | |
Collapse
|
28
|
Yao C, Tai Z, Wang X, Liu J, Zhu Q, Wu X, Zhang L, Zhang W, Tian J, Gao Y, Gao S. Reduction-responsive cross-linked stearyl peptide for effective delivery of plasmid DNA. Int J Nanomedicine 2015; 10:3403-16. [PMID: 26056440 PMCID: PMC4431505 DOI: 10.2147/ijn.s82413] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Low efficiency and significant toxicity are the main obstacles to successful gene delivery. We have developed a cationic reduction-responsive vector based on a disulfide cross-linked stearylated polyarginine peptide modified with histidine (C-SHR) for DNA delivery. The structure of the C-SHR was characterized, and the in vitro and in vivo transfection efficiency and cytotoxicity of C-SHR/plasmid DNA complexes were examined. Compared with non-cross-linked stearylated polyarginine peptide (SHR), C-SHR increased the intracellular uptake and dissociation behavior of the complexes. In addition, the gene transfection efficiency of C-SHR/plasmid DNA complexes in HEK293 and HeLa cells was improved and was comparable with that of bPEI-25K/plasmid DNA complexes, and the cytotoxicity of C-SHR was significantly less than that of bPEI-25K. Importantly, the in vivo gene transfection efficiency of C-SHR/plasmid DNA complexes was five fold higher than that of SHR/plasmid DNA complexes, suggesting that C-SHR is an efficient non-viral vector for DNA delivery.
Collapse
Affiliation(s)
- Chong Yao
- Department of Pharmaceutics, Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Zongguang Tai
- Department of Pharmaceutics, Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Xiaoyu Wang
- Department of Pharmaceutics, Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Jiyong Liu
- Department of Pharmaceutics, Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Quangang Zhu
- Department of Pharmaceutics, Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China ; Department of Pharmacy, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Xin Wu
- Department of Pharmaceutics, Shanghai First People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Lijuan Zhang
- Department of Pharmaceutics, Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Wei Zhang
- Department of Pharmaceutics, Shanghai Pulmonary Hospital, Shanghai Tongji University, Shanghai, People's Republic of China
| | - Jing Tian
- Department of Pharmaceutics, Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Yuan Gao
- Department of Pharmaceutics, Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Shen Gao
- Department of Pharmaceutics, Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China
| |
Collapse
|
29
|
Zhang B, Ma XP, Sui MH, Van Kirk E, Murdoch WJ, Radosz M, Lin NM, Shen YQ. Guanidinoamidized linear polyethyleneimine for gene delivery. CHINESE JOURNAL OF POLYMER SCIENCE 2015. [DOI: 10.1007/s10118-015-1644-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
30
|
Tai Z, Wang X, Tian J, Gao Y, Zhang L, Yao C, Wu X, Zhang W, Zhu Q, Gao S. Biodegradable Stearylated Peptide with Internal Disulfide Bonds for Efficient Delivery of siRNA In Vitro and In Vivo. Biomacromolecules 2015; 16:1119-30. [PMID: 25686200 DOI: 10.1021/bm501777a] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Zongguang Tai
- Department
of Pharmaceutics, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Xiaoyu Wang
- Department
of Pharmaceutics, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Jing Tian
- Department
of Pharmaceutics, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Yuan Gao
- Department
of Pharmaceutics, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Lijuan Zhang
- Department
of Pharmaceutics, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Chong Yao
- Department
of Pharmaceutics, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Xin Wu
- Department
of Pharmaceutics, Shanghai First People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, China
| | - Wei Zhang
- Department
of Pharmaceutics, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Quangang Zhu
- Department
of Pharmaceutics, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
- Department
of Pharmacy, Yueyang Hospital of Integrated Traditional Chinese and
Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Shen Gao
- Department
of Pharmaceutics, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
31
|
Loughran SP, McCrudden CM, McCarthy HO. Designer peptide delivery systems for gene therapy. EUROPEAN JOURNAL OF NANOMEDICINE 2015. [DOI: 10.1515/ejnm-2014-0037] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
AbstractGene therapy has long been hailed as a revolutionary approach for the treatment of genetic diseases. The enthusiasm that greeted the harnessing of viruses for therapeutic DNA delivery has been tempered by concerns over safety. These concerns led to the development of alternative strategies for nucleic acid delivery to cells. One such strategy is the utilization of cationic peptides for the condensation of therapeutic DNA for delivery to its target. However, success of DNA as a therapy relies on its delivery to the nucleus of target cells, a process that is complicated by the many hurdles encountered following systemic administration. Non-viral peptide gene delivery strategies have sought inspiration from viruses in order to retain DNA delivering potency, but limit virulence. This review summarizes the progression of peptide-based DNA delivery systems, from rudimentary beginnings to the recent development of sophisticated multi-functional vectors that comprise distinct motifs with dedicated barrier evasion functions. The most promising peptides that achieve cell membrane permeabilization, endosomal escape and nuclear delivery are discussed.
Collapse
|
32
|
Sharma R, Nisakar D, Shivpuri S, Ganguli M. Contrasting effects of cysteine modification on the transfection efficiency of amphipathic peptides. Biomaterials 2014; 35:6563-75. [PMID: 24816284 DOI: 10.1016/j.biomaterials.2014.04.046] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 04/13/2014] [Indexed: 12/20/2022]
Abstract
Delivery of DNA to cells remains a key challenge towards development of gene therapy. A better understanding of the properties involved in stability and transfection efficiency of the vector could critically contribute to the improvement of delivery vehicles. In the present work we have chosen two peptides differing only in amphipathicity and explored how presence of cysteine affects DNA uptake and transfection efficiency. We report an unusual observation that addition of cysteine selectively increases transfection efficiency of secondary amphipathic peptide (Mgpe-9) and causes a drop in the primary amphipathic peptide (Mgpe-10). Our results point the effect of cysteine is dictated by the importance of physicochemical properties of the carrier peptide. We also report a DNA delivery agent Mgpe-9 exhibiting high transfection efficiency in multiple cell lines (including hard-to-transfect cell lines) with minimal cytotoxicity which can be further explored for in vivo applications.
Collapse
Affiliation(s)
- Rajpal Sharma
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110 020, India
| | - Daniel Nisakar
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110 020, India
| | - Shivangi Shivpuri
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110 020, India
| | - Munia Ganguli
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110 020, India.
| |
Collapse
|