1
|
Sarrami N, Nelson B, Leier S, Wilson J, Chan C, Meens J, Komal T, Ailles L, Wuest M, Schultz M, Lavasanifar A, Reilly RM, Wuest F. SPECT/CT imaging of EGFR-positive head and neck squamous cell carcinoma patient-derived xenografts with 203Pb-PSC-panitumumab in NRG mice. EJNMMI Radiopharm Chem 2024; 9:79. [PMID: 39589608 PMCID: PMC11599518 DOI: 10.1186/s41181-024-00313-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/20/2024] [Accepted: 11/15/2024] [Indexed: 11/27/2024] Open
Abstract
BACKGROUND The objective of this research was the development and evaluation of 203Pb-labelled panitumumab (203Pb-PSC-panitumumab) as an immuno-SPECT radioligand for the detection of EGFR + head and neck squamous cell carcinoma (HNSCC) in a patient-derived xenograft (PDX) mouse model. The 51.9 h physical half-life and favourable γ-emission (279 keV; 81%) of 203Pb offer an excellent opportunity for developing immuno-SPECT radioligands. Moreover, 203Pb has a complementary therapeutic radionuclide (212Pb), making 203Pb and 212Pb an ideal matched radiotheranostic pair. RESULTS Radiolabeling of panitumumab was performed at a pH of 5.0 and room temperature for 5-10 min with [203Pb]Pb(OAc)2, and the incorporation efficiency was determined using radio-TLC. 203Pb-PSC-panitumumab (~ 10 MBq, 140 μl of saline) was injected into the tail vein of NRG mice bearing subcutaneous (s.c.) HNSCC patient-derived xenografts (PDX). SPECT/CT images were acquired at 48 and 120 h post-injection. For biodistribution studies, mice were euthanized five days after 203Pb-panitumumab injection. The tumour and normal tissues were collected and weighed, and uptake of 203Pb was measured in a γ-counter. The uptake was calculated as the percent injected dose per gram of each tissue (ID%/g). Blocking experiments were performed by pretreating a group of mice (n = 5) with 1 mg of panitumumab 1 h before administering 203Pb-PSC-panitumumab. 4-5 chelators of a new lead-specific chelator (PSC) were attached per antibody; radiolabeling efficiency was 99.2 ± 0.7%. The isolated radiochemical yield of 203Pb-PSC-panitumumab was 41.4 ± 8% (n = 5), and the molar activity was 1.2 ± 0.35 GB/mg. SPECT imaging and biodistribution confirmed high accumulation and retention of 203Pb-PSC-panitumumab in the tumour (26% ID/g) at 120 h post-injection (p.i.), which could be reduced to 6.2%ID/g at 120 h p.i. by predosing with panitumumab (1 mg) confirming EGFR specificity of 203Pb-PSC-panitumumab uptake. CONCLUSIONS Panitumumab was successfully and reproducibly labelled with 203Pb in high radiochemical purity using the chelator PSC-NCS. 203Pb-PSC-panitumumab was specifically accumulated and retained in EGFR + tumours in NRG mice with s.c. HNSCC PDX. 203Pb-PSC-panitumumab is a suitable immuno-SPECT radioligand for imaging EGFR + tumours and has great potential for combining with 212Pb-PSC-panitumumab in a radiotheranostic strategy for imaging and treating HNSCC.
Collapse
Affiliation(s)
- Nasim Sarrami
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada
| | - Bryce Nelson
- Department of Oncology, Cross Cancer Institute, University of Alberta, 11560- University Avenue, Edmonton, AB, T6G 1Z2, Canada
| | - Samantha Leier
- Department of Oncology, Cross Cancer Institute, University of Alberta, 11560- University Avenue, Edmonton, AB, T6G 1Z2, Canada
| | - John Wilson
- Department of Oncology, Cross Cancer Institute, University of Alberta, 11560- University Avenue, Edmonton, AB, T6G 1Z2, Canada
| | - Conrad Chan
- Leslie Dan Faculty of Pharmacy and Department of Pharmaceutical Sciences, University of Toronto, Toronto, Canada
| | - Jalna Meens
- Princess Margaret Cancer Centre, Toronto, Canada
| | - Teesha Komal
- STTARR Innovation Centre, University Health Network, Toronto, Canada
| | - Laurie Ailles
- Princess Margaret Cancer Centre, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Melinda Wuest
- Department of Oncology, Cross Cancer Institute, University of Alberta, 11560- University Avenue, Edmonton, AB, T6G 1Z2, Canada
| | | | - Afsaneh Lavasanifar
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada
| | - Raymond M Reilly
- Leslie Dan Faculty of Pharmacy and Department of Pharmaceutical Sciences, University of Toronto, Toronto, Canada
- Princess Margaret Cancer Centre, Toronto, Canada
| | - Frank Wuest
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada.
- Department of Oncology, Cross Cancer Institute, University of Alberta, 11560- University Avenue, Edmonton, AB, T6G 1Z2, Canada.
- Department of Chemistry, University of Alberta, Edmonton, Canada.
- Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, Canada.
| |
Collapse
|
2
|
Sarrami N, Wuest M, Paiva IMD, Leier S, Lavasanifar A, Wuest F. Immuno-PET Imaging of EGFR with 64Cu-NOTA Panitumumab in Subcutaneous and Metastatic Nonsmall Cell Lung Cancer Xenografts. Mol Pharm 2024; 21:5797-5806. [PMID: 39402973 PMCID: PMC11539060 DOI: 10.1021/acs.molpharmaceut.4c00823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/24/2024] [Revised: 10/06/2024] [Accepted: 10/07/2024] [Indexed: 11/05/2024]
Abstract
Objective: About 65-90% of nonsmall cell lung cancer (NSCLC) express the epithelial growth factor receptor (EGFR) as a transmembrane protein that is activated by binding of specific ligands, including epidermal growth factor and transforming growth factor α (TGFα). Identifying EGFR as an oncogene has led to the development of anticancer therapeutics directed against EGFR, including the full-length human IgG2 monoclonal antibody panitumumab. The main goal of the present study was to investigate 64Cu-labeled panitumumab with immuno-PET in subcutaneous and metastatic EGFR-positive NSCLC xenografts. Methods: Bifunctional chelating agent 2-S-(4-isothiocyanatobenzyl)-1,4,7-triazacyclo-nonane-1,4,7-triacetic acid (NOTA-NCS) was attached to panitumumab. The number of chelators per panitumumab was determined using matrix-assisted laser desorption/ionization (MALDI) mass spectroscopy. The incorporation efficiency of 64Cu into NOTA-panitumumab was measured by using radio-TLC. EGFR-expressing epithelial-like H1299-luc+ NSCLC cells were used for in vitro and in vivo experiments. Cell uptake of [64Cu]Cu-NOTA-panitumumab was measured in the presence and absence of panitumumab. Subcutaneous and metastatic H1299-luc tumor models were grown in male NSG mice. The presence of tumors at lung and metastatic sites was analyzed by [18F]FLT PET. Immuno-PET with [64Cu]Cu-NOTA-panitumumab was performed as static PET imaging at 2, 24, and 48 h postinjection in both tumor models. Proof-of-target was confirmed by blocking experiments with panitumumab. Detailed ex vivo biodistribution experiments were performed in both animal tumor models to confirm biodistribution profiles obtained by immuno-PET imaging. Results: MALDI analysis confirmed the attachment of ∼1.5 NOTA per antibody. Radiolabeling efficiency with [64Cu]CuCl2 was 93.8 ± 5.7% and a molar activity of 0.65 MBq/μg. Cellular uptake studies with [64Cu]Cu-NOTA-panitumumab in H1299 cells demonstrated increasing uptake over time, reaching 29.1 ± 2.9% radioactivity(Bq)/mg protein (n = 3) and plateauing at 45 min. Addition of 25 μg of panitumumab reduced radioligand uptake to 1.22 ± 0.06% radioactivity/mg protein (n = 3). PET imaging revealed high uptake of [64Cu]Cu-NOTA-panitumumab in subcutaneous tumors: Standardized uptake values (SUV)mean reached 4.70 ± 0.42 and 5.37 ± 0.40 (n = 5) after 24 and 48 h postinjection, respectively. Administration of 1 mg panitumumab reduced tumor uptake significantly to 1.94 ± 0.22 and 1.66 ± 0.08 (n = 4; p < 0.001). In the metastatic model, the following SUVmean were analyzed from liver and lung lesions: 5.55 ± 0.34 and 6.28 ± 0.46 (both n = 23 lesions from 6 mice) after 24 and 48 h postinjection, which was also significantly reduced to 2.53 ± 0.39 and 2.31 ± 0.15 (both n = 16 lesions from 4 mice; p < 0.001) after injection of 1 mg panitumumab. Detailed ex vivo biodistribution confirmed immuno-PET analysis in both models. Panitumumab reduced radioactivity uptake into subcutaneous tumors from 11.01 ± 0.72 (n = 4) to 3.67 ± 0.33% ID/g (n = 5; p < 0.001), and in metastatic liver lesions from 29.44 ± 8.14 (n = 4) to 8.35 ± 1.30% ID/g (n = 5; p < 0.001), respectively. Conclusions: [64Cu]Cu-NOTA-panitumumab was successfully used for immuno-PET imaging of EGFR-expressing subcutaneous and metastatic NSCLC tumors. This result represents the basis for developing radiotheranostics for targeting EGFR in cancers and for selecting the right patients for the right treatment at the right time.
Collapse
Affiliation(s)
- Nasim Sarrami
- Faculty
of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2H1, Canada
| | - Melinda Wuest
- Department
of Oncology, University of Alberta, Edmonton, Alberta T6G 1Z2, Canada
| | - Igor Moura de Paiva
- Faculty
of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2H1, Canada
| | - Samantha Leier
- Department
of Oncology, University of Alberta, Edmonton, Alberta T6G 1Z2, Canada
| | - Afsaneh Lavasanifar
- Faculty
of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2H1, Canada
| | - Frank Wuest
- Faculty
of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2H1, Canada
- Department
of Oncology, University of Alberta, Edmonton, Alberta T6G 1Z2, Canada
| |
Collapse
|
3
|
Ramonaheng K, Qebetu M, Ndlovu H, Swanepoel C, Smith L, Mdanda S, Mdlophane A, Sathekge M. Activity quantification and dosimetry in radiopharmaceutical therapy with reference to 177Lutetium. FRONTIERS IN NUCLEAR MEDICINE (LAUSANNE, SWITZERLAND) 2024; 4:1355912. [PMID: 39355215 PMCID: PMC11440950 DOI: 10.3389/fnume.2024.1355912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Academic Contribution Register] [Received: 12/14/2023] [Accepted: 03/12/2024] [Indexed: 10/03/2024]
Abstract
Radiopharmaceutical therapy has been widely adopted owing primarily to the development of novel radiopharmaceuticals. To fully utilize the potential of these RPTs in the era of precision medicine, therapy must be optimized to the patient's tumor characteristics. The vastly disparate dosimetry methodologies need to be harmonized as the first step towards this. Multiple factors play a crucial role in the shift from empirical activity administration to patient-specific dosimetry-based administrations from RPT. Factors such as variable responses seen in patients with presumably similar clinical characteristics underscore the need to standardize and validate dosimetry calculations. These efforts combined with ongoing initiatives to streamline the dosimetry process facilitate the implementation of radiomolecular precision oncology. However, various challenges hinder the widespread adoption of personalized dosimetry-based activity administration, particularly when compared to the more convenient and resource-efficient approach of empiric activity administration. This review outlines the fundamental principles, procedures, and methodologies related to image activity quantification and dosimetry with a specific focus on 177Lutetium-based radiopharmaceuticals.
Collapse
Affiliation(s)
- Keamogetswe Ramonaheng
- Department of Medical Physics and Radiobiology, Nuclear Medicine Research, Infrastructure (NuMeRI) NPC, Pretoria, South Africa
- Department of Nuclear Medicine, Steve Biko Academic Hospital, Pretoria, South Africa
- Department of Nuclear Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Milani Qebetu
- Department of Medical Physics and Radiobiology, Nuclear Medicine Research, Infrastructure (NuMeRI) NPC, Pretoria, South Africa
- Department of Nuclear Medicine, Steve Biko Academic Hospital, Pretoria, South Africa
| | - Honest Ndlovu
- Department of Medical Physics and Radiobiology, Nuclear Medicine Research, Infrastructure (NuMeRI) NPC, Pretoria, South Africa
- Department of Nuclear Medicine, Steve Biko Academic Hospital, Pretoria, South Africa
- Department of Nuclear Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Cecile Swanepoel
- Department of Medical Physics and Radiobiology, Nuclear Medicine Research, Infrastructure (NuMeRI) NPC, Pretoria, South Africa
- Department of Nuclear Medicine, Steve Biko Academic Hospital, Pretoria, South Africa
| | - Liani Smith
- Department of Medical Physics and Radiobiology, Nuclear Medicine Research, Infrastructure (NuMeRI) NPC, Pretoria, South Africa
- Department of Nuclear Medicine, Steve Biko Academic Hospital, Pretoria, South Africa
| | - Sipho Mdanda
- Department of Medical Physics and Radiobiology, Nuclear Medicine Research, Infrastructure (NuMeRI) NPC, Pretoria, South Africa
- Department of Nuclear Medicine, Steve Biko Academic Hospital, Pretoria, South Africa
- Department of Nuclear Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Amanda Mdlophane
- Department of Medical Physics and Radiobiology, Nuclear Medicine Research, Infrastructure (NuMeRI) NPC, Pretoria, South Africa
- Department of Nuclear Medicine, Steve Biko Academic Hospital, Pretoria, South Africa
- Department of Nuclear Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Mike Sathekge
- Department of Medical Physics and Radiobiology, Nuclear Medicine Research, Infrastructure (NuMeRI) NPC, Pretoria, South Africa
- Department of Nuclear Medicine, Steve Biko Academic Hospital, Pretoria, South Africa
- Department of Nuclear Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
4
|
Hosseini SM, Mohammadnejad J, Yousefnia H, Alirezapour B, Rezayan AH. Development of 177Lu-Cetuximab-PAMAM dendrimeric nanosystem: a novel theranostic radioimmunoconjugate. J Cancer Res Clin Oncol 2023; 149:7779-7791. [PMID: 37029816 DOI: 10.1007/s00432-023-04724-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/28/2023] [Accepted: 03/22/2023] [Indexed: 04/09/2023]
Abstract
PURPOSE Epidermal growth factor receptors (EGFRs) are overexpressed in a wide range of tumors and are attractive candidates to target in targeted therapies. This study aimed to introduce a novel radiolabeled compound, 177Lu-cetuximab-PAMAM G4, for the treatment of EGFR-expressing tumors. METHODS In this study, the cetuximab mAb was bound to PAMAM G4 and labeled with 177Lu via DTPA-CHX chelator. The synthesized nanosystem was confirmed by different analyses such as DLS, FT-IR, TEM, and RT-LC. Cell viability of the radioimmunoconjugate was assessed over the EGFR-expressing cell line of SW480. The biodistribution of 177Lu-Cetuximab-PAMAMG4 was determined in different intervals after injection of the radiolabeled compound in normal and tumoral nude mice via scarification and SPECT images. RESULTS The average size of PAMAM G4 and PAMAM-Cetuximab-DTPA-CHX nanoparticles were 2 and 70 nm, respectively. 177Lu-Cetuximab-PAMAMG4 was prepared with radiochemical purity of more than 98%. The survival rates of SW480 cells at 24, 48, and 72 h post-treatment with177Lu-Cetuximab-PAMAMG4 (500 nM) were 18%, 15%, and 14%, respectively. The biodistribution studies showed a significant accumulation of 177Lu-Cetuximab-PAMAM in the EGFR-expressing tumor. CONCLUSION According to the results, this new agent can be considered as an efficient therapeutic complex for tumors expressing EGFR receptors.
Collapse
Affiliation(s)
- Seyed Mohammad Hosseini
- Department of Life Science Engineering, Faculty of Modern Science and Technology, Nano Biotechnology Group, University of Tehran, Tehran, 1439957131, Iran
- Radiation Application Research School, Nuclear Science and Technology Research Institute (NSTRI), Tehran, 14155-1339, Iran
| | - Javad Mohammadnejad
- Department of Life Science Engineering, Faculty of Modern Science and Technology, Nano Biotechnology Group, University of Tehran, Tehran, 1439957131, Iran
| | - Hassan Yousefnia
- Radiation Application Research School, Nuclear Science and Technology Research Institute (NSTRI), Tehran, 14155-1339, Iran.
| | - Behrouz Alirezapour
- Radiation Application Research School, Nuclear Science and Technology Research Institute (NSTRI), Tehran, 14155-1339, Iran
| | - Ali Hossein Rezayan
- Department of Life Science Engineering, Faculty of Modern Science and Technology, Nano Biotechnology Group, University of Tehran, Tehran, 1439957131, Iran
| |
Collapse
|
5
|
Liu W, Li K, Deng H, Wang J, Zhao P, Liao W, Zhuo L, Wei H, Yang X, Chen Y. In vitro and in vivo evaluation of a novel anti-EGFR antibody labeled with 89Zr and 177Lu. J Radioanal Nucl Chem 2022. [DOI: 10.1007/s10967-021-08174-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/02/2023]
|
6
|
Current status and future perspective of radiopharmaceuticals in China. Eur J Nucl Med Mol Imaging 2021; 49:2514-2530. [PMID: 34767047 PMCID: PMC8586637 DOI: 10.1007/s00259-021-05615-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/04/2021] [Accepted: 11/02/2021] [Indexed: 12/17/2022]
Abstract
Radiopharmaceuticals are essential components of nuclear medicine and serve as one of the cornerstones of molecular imaging and precision medicine. They provide new means and approaches for early diagnosis and treatment of diseases. After decades of development and hard efforts, a relatively matured radiopharmaceutical production and management system has been established in China with high-quality facilities. This review provides an overview of the current status of radiopharmaceuticals on production and distribution, clinical application, and regulatory supervision and also describes some important advances in research and development and clinical translation of radiopharmaceuticals in the past 10 years. Moreover, some prospects of research and development of radiopharmaceuticals in the near future are discussed.
Collapse
|
7
|
Ku A, Kondo M, Cai Z, Meens J, Li MR, Ailles L, Reilly RM. Dose predictions for [ 177Lu]Lu-DOTA-panitumumab F(ab') 2 in NRG mice with HNSCC patient-derived tumour xenografts based on [ 64Cu]Cu-DOTA-panitumumab F(ab') 2 - implications for a PET theranostic strategy. EJNMMI Radiopharm Chem 2021; 6:25. [PMID: 34383182 PMCID: PMC8360260 DOI: 10.1186/s41181-021-00140-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/16/2021] [Accepted: 07/06/2021] [Indexed: 12/24/2022] Open
Abstract
Background Epidermal growth factor receptors (EGFR) are overexpressed on many head and neck squamous cell carcinoma (HNSCC). Radioimmunotherapy (RIT) with F(ab')2 of the anti-EGFR monoclonal antibody panitumumab labeled with the β-particle emitter, 177Lu may be a promising treatment for HNSCC. Our aim was to assess the feasibility of a theranostic strategy that combines positron emission tomography (PET) with [64Cu]Cu-DOTA-panitumumab F(ab')2 to image HNSCC and predict the radiation equivalent doses to the tumour and normal organs from RIT with [177Lu]Lu-DOTA-panitumumab F(ab')2. Results Panitumumab F(ab')2 were conjugated to DOTA and complexed to 64Cu or 177Lu in high radiochemical purity (95.6 ± 2.1% and 96.7 ± 3.5%, respectively) and exhibited high affinity EGFR binding (Kd = 2.9 ± 0.7 × 10− 9 mol/L). Biodistribution (BOD) studies at 6, 24 or 48 h post-injection (p.i.) of [64Cu]Cu-DOTA-panitumumab F(ab')2 (5.5–14.0 MBq; 50 μg) or [177Lu]Lu-DOTA-panitumumab F(ab')2 (6.5 MBq; 50 μg) in NRG mice with s.c. HNSCC patient-derived xenografts (PDX) overall showed no significant differences in tumour uptake but modest differences in normal organ uptake were noted at certain time points. Tumours were imaged by microPET/CT with [64Cu]Cu-DOTA-panitumumab F(ab')2 or microSPECT/CT with [177Lu]Lu-DOTA-panitumumab F(ab')2 but not with irrelevant [177Lu]Lu-DOTA-trastuzumab F(ab')2. Tumour uptake at 24 h p.i. of [64Cu]Cu-DOTA-panitumumab F(ab')2 [14.9 ± 1.1% injected dose/gram (%ID/g) and [177Lu]Lu-DOTA-panitumumab F(ab')2 (18.0 ± 0.4%ID/g) were significantly higher (P < 0.05) than [177Lu]Lu-DOTA-trastuzumab F(ab')2 (2.6 ± 0.5%ID/g), demonstrating EGFR-mediated tumour uptake. There were no significant differences in the radiation equivalent doses in the tumour and most normal organs estimated for [177Lu]Lu-DOTA-panitumumab F(ab')2 based on the BOD of [64Cu]Cu-DOTA-panitumumab F(ab')2 compared to those estimated directly from the BOD of [177Lu]Lu-DOTA-panitumumab F(ab')2 except for the liver and whole body which were modestly underestimated by [64Cu]Cu-DOTA-panitumumab F(ab')2. Region-of-interest (ROI) analysis of microPET/CT images provided dose estimates for the tumour and liver that were not significantly different for the two radioimmunoconjugates. Human doses from administration of [177Lu]Lu-DOTA-panitumumab F(ab')2 predicted that a 2 cm diameter HNSCC tumour in a patient would receive 1.1–1.5 mSv/MBq and the whole body dose would be 0.15–0.22 mSv/MBq. Conclusion A PET theranostic strategy combining [64Cu]Cu-DOTA-panitumumab F(ab')2 to image HNSCC tumours and predict the equivalent radiation doses in the tumour and normal organs from RIT with [177Lu]Lu-DOTA-panitumumab F(ab')2 is feasible. RIT with [177Lu]Lu-DOTA-panitumumab F(ab')2 may be a promising approach to treatment of HNSCC due to frequent overexpression of EGFR. Supplementary Information The online version contains supplementary material available at 10.1186/s41181-021-00140-1.
Collapse
Affiliation(s)
- Anthony Ku
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, Canada
| | - Misaki Kondo
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, Canada
| | - Zhongli Cai
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, Canada
| | - Jalna Meens
- Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Min Rong Li
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, Canada
| | - Laurie Ailles
- Princess Margaret Cancer Centre, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Raymond M Reilly
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, Canada. .,Princess Margaret Cancer Centre, Toronto, ON, Canada. .,Department of Medical Imaging, University of Toronto, Toronto, ON, Canada. .,Joint Department of Medical Imaging, University Health Network, Toronto, ON, Canada.
| |
Collapse
|
8
|
White JM, Escorcia FE, Viola NT. Perspectives on metals-based radioimmunotherapy (RIT): moving forward. Theranostics 2021; 11:6293-6314. [PMID: 33995659 PMCID: PMC8120204 DOI: 10.7150/thno.57177] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/15/2020] [Accepted: 03/22/2021] [Indexed: 12/18/2022] Open
Abstract
Radioimmunotherapy (RIT) is FDA-approved for the clinical management of liquid malignancies, however, its use for solid malignancies remains a challenge. The putative benefit of RIT lies in selective targeting of antigens expressed on the tumor surface using monoclonal antibodies, to systemically deliver cytotoxic radionuclides. The past several decades yielded dramatic improvements in the quality, quantity, recent commercial availability of alpha-, beta- and Auger Electron-emitting therapeutic radiometals. Investigators have created new or improved existing bifunctional chelators. These bifunctional chelators bind radiometals and can be coupled to antigen-specific antibodies. In this review, we discuss approaches to develop radiometal-based RITs, including the selection of radiometals, chelators and antibody platforms (i.e. full-length, F(ab')2, Fab, minibodies, diabodies, scFv-Fc and nanobodies). We cite examples of the performance of RIT in the clinic, describe challenges to its implementation, and offer insights to address gaps toward translation.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/administration & dosage
- Antibodies, Monoclonal/therapeutic use
- Antigens, Neoplasm/immunology
- Antineoplastic Agents, Immunological/administration & dosage
- Antineoplastic Agents, Immunological/metabolism
- Antineoplastic Agents, Immunological/therapeutic use
- Chelating Agents/administration & dosage
- Chelating Agents/metabolism
- Click Chemistry
- Clinical Trials as Topic
- Dose Fractionation, Radiation
- Drug Delivery Systems
- Forecasting
- Humans
- Immunoglobulin Fab Fragments/administration & dosage
- Immunoglobulin Fab Fragments/therapeutic use
- Lymphoma, Non-Hodgkin/radiotherapy
- Mice
- Molecular Targeted Therapy
- Neoplasm Proteins/antagonists & inhibitors
- Neoplasms, Experimental/diagnostic imaging
- Neoplasms, Experimental/radiotherapy
- Organ Specificity
- Precision Medicine
- Radiation Tolerance
- Radioimmunotherapy/methods
- Radiopharmaceuticals/administration & dosage
- Radiopharmaceuticals/therapeutic use
- Receptor Protein-Tyrosine Kinases/antagonists & inhibitors
- Single-Chain Antibodies/administration & dosage
- Single-Chain Antibodies/therapeutic use
- Single-Domain Antibodies/administration & dosage
- Single-Domain Antibodies/therapeutic use
- Yttrium Radioisotopes/administration & dosage
- Yttrium Radioisotopes/therapeutic use
Collapse
Affiliation(s)
- Jordan M. White
- Cancer Biology Graduate Program, Wayne State University School of Medicine, Detroit, MI 48201
- Department of Oncology, Karmanos Cancer Institute, Detroit, MI 48201
| | - Freddy E. Escorcia
- Molecular Imaging Branch, Radiation Oncology Branch, National Cancer Institute, Bethesda, MD 20814
| | - Nerissa T. Viola
- Department of Oncology, Karmanos Cancer Institute, Detroit, MI 48201
| |
Collapse
|
9
|
Huang Y, Yang Z, Li F, Zhao H, Li C, Yu N, Hamilton DJ, Li Z. 64Cu/ 177Lu-DOTA-diZD, a Small-Molecule-Based Theranostic Pair for Triple-Negative Breast Cancer. J Med Chem 2021; 64:2705-2713. [PMID: 33646782 DOI: 10.1021/acs.jmedchem.0c01957] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/11/2022]
Abstract
Despite advances in targeted therapies, the prognosis for patients with triple-negative breast cancer (TNBC) is poor because there are few actionable molecular targets. The dependence of solid tumor growth on angiogenesis prompted our development of angiogenic-receptor-targeted radionuclide therapy (TRT) to treat TNBC by targeted delivery of therapeutic doses of ionizing radiation to tumors. A high-affinity vascular endothelial growth factor receptor (VEGFR)-targeted agent, diZD, was synthesized and labeled with 177Lu and 64Cu by 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) chelator giving the TRT agent, 177Lu-DOTA-diZD, and PET imaging agent, 64Cu-DOTA-diZD. We showed that "64Cu/177Lu"-DOTA-diZD radiotracers are a promising theranostic pair for TNBC. 4T1-bearing mice treated with 177Lu-DOTA-diZD-based TRT survived with a median of 28 days, which was significantly longer than that of control mice as 18 days. Anti-PD1 immunotherapy resulted in a shorter median survival of 16 days. This work presents for the first time that small-molecule VEGFR-oriented TRT is a promising therapeutic option to treat "immunogenic cold" TNBC.
Collapse
Affiliation(s)
- Yuqian Huang
- Center for Bioenergetics, Houston Methodist Research Institute, Houston, Texas 77030, United States
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Zhen Yang
- Center for Bioenergetics, Houston Methodist Research Institute, Houston, Texas 77030, United States
| | - Feng Li
- Center for Bioenergetics, Houston Methodist Research Institute, Houston, Texas 77030, United States
| | - Hong Zhao
- Cancer Center, Houston Methodist Hospital, Houston, Texas 77030, United States
| | - Chun Li
- Departments of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Nam Yu
- Houston Radiology Associates and Department of Radiology, Houston Methodist Hospital, Houston, Texas 77030, United States
| | - Dale J Hamilton
- Center for Bioenergetics, Houston Methodist Research Institute, Houston, Texas 77030, United States
| | - Zheng Li
- Center for Bioenergetics, Houston Methodist Research Institute, Houston, Texas 77030, United States
| |
Collapse
|
10
|
Nguyen TT, Ho AS, Nguyen TKG, Nguyen TN, Bui VC, Nguyen TB, Dang HHQ, Nguyen DK, Nguyen TN, Nguyen LT. Efficacy of nimotuzumab (hR3) conjugated with 131I or 90Y in laryngeal carcinoma xenograft mouse model. Int J Radiat Biol 2021; 97:704-713. [PMID: 33617414 DOI: 10.1080/09553002.2021.1889703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/17/2020] [Revised: 01/06/2021] [Accepted: 01/29/2021] [Indexed: 10/22/2022]
Abstract
PURPOSE The humanized monoclonal antibody hR3, both alone and in combination with other chemotherapeutic agents and radiotherapy, can be used to treat head and neck cancers. Substantial progress has been made in the development of targeted radioimmunotherapy using iodine-131 (131I) and yttrium-90 (90Y) radioisotopes in recent years. In the present study, we examined the efficacy of hR3 conjugated with 131I or 90Y to inhibit tumor growth in a laryngeal carcinoma xenograft tumor model. METHODS hR3 was labeled with 131I or 90Y to generate the conjugates 131I-hR3 or 90Y-hR3. The conjugates were incubated with HEp-2 laryngeal carcinoma cells to evaluate binding capacity. The efficacy of the labeled hR3 conjugates to treat laryngeal cancer was also evaluated in nude mice inoculated with HEp-2 tumors. RESULTS The purified radioimmunoconjugates with specific activities of 187-191 MBq/mg had radiochemical purity >98% and >80% immunoreactivity with HEp-2 cells. Mice with HEp-2 xenografts treated with 131I-hR3 or 90Y-hR3 showed reduced tumor volume and improved survival rates compared to the untreated control group and the group treated with unlabeled hR3. At equivalent doses, radioimmunotherapeutic hR3 labeled with 90Y had increased tumor inhibition activity compared to hR3 labeled with 131I. CONCLUSIONS 131I-hR3 and 90Y-hR3 are promising targeted radiopharmaceuticals for treatment of head and neck cancers, especially laryngeal cancers.
Collapse
Affiliation(s)
| | - Anh-Son Ho
- Institute of Biomedicine and Pharmacy, Vietnam Military Medical University, Hanoi, Vietnam
- Department of Pathophysiology, Vietnam Military Medical University, Hanoi, Vietnam
| | | | | | | | | | | | | | | | - Linh-Toan Nguyen
- Department of Pathophysiology, Vietnam Military Medical University, Hanoi, Vietnam
| |
Collapse
|
11
|
Aghevlian S, Cai Z, Hedley D, Winnik MA, Reilly RM. Radioimmunotherapy of PANC-1 human pancreatic cancer xenografts in NOD/SCID or NRG mice with Panitumumab labeled with Auger electron emitting, 111In or β-particle emitting, 177Lu. EJNMMI Radiopharm Chem 2020; 5:22. [PMID: 33169241 PMCID: PMC7652961 DOI: 10.1186/s41181-020-00111-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/04/2020] [Accepted: 10/19/2020] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Epidermal growth factor receptors (EGFR) are overexpressed on > 90% of pancreatic cancers (PnCa) and represent an attractive target for the development of novel therapies, including radioimmunotherapy (RIT). Our aim was to study RIT of subcutaneous (s.c.) PANC-1 human PnCa xenografts in mice using the anti-EGFR monoclonal antibody, panitumumab labeled with Auger electron (AE)-emitting, 111In or β-particle emitting, 177Lu at amounts that were non-toxic to normal tissues. RESULTS Panitumumab was conjugated to DOTA chelators for complexing 111In or 177Lu (panitumumab-DOTA-[111In]In and panitumumab-DOTA-[177Lu]Lu) or to a metal-chelating polymer (MCP) with multiple DOTA to bind 111In (panitumumab-MCP-[111In]In). Panitumumab-DOTA-[177Lu]Lu was more effective per MBq exposure at reducing the clonogenic survival in vitro of PANC-1 cells than panitumumab-DOTA-[111In]In or panitumumab-MCP-[111In]In. Panitumumab-DOTA-[177Lu]Lu caused the greatest density of DNA double-strand breaks (DSBs) in the nucleus measured by immunofluorescence for γ-H2AX. The absorbed dose in the nucleus was 3.9-fold higher for panitumumab-DOTA-[177Lu]Lu than panitumumab-DOTA-[111In]In and 7.7-fold greater than panitumumab-MCP-[111In]In. No normal tissue toxicity was observed in NOD/SCID mice injected intravenously (i.v.) with 10.0 MBq (10 μg; ~ 0.07 nmoles) of panitumumab-DOTA-[111In]In or panitumumab-MCP-[111In]In or in NRG mice injected i.v. with 6.0 MBq (10 μg; ~ 0.07 nmoles) of panitumumab-DOTA-[177Lu]Lu. There was no decrease in complete blood cell counts (CBC) or increased serum alanine aminotransferase (ALT) or creatinine (Cr) or decreased body weight. RIT inhibited the growth of PANC-1 tumours but a 5-fold greater total amount of panitumumab-DOTA-[111In]In or panitumumab-MCP-[111In]In (30 MBq; 30 μg; ~ 0.21 nmoles) administered in three fractionated amounts every three weeks was required to achieve greater or equivalent tumour growth inhibition, respectively, compared to a single amount of panitumumab-DOTA-[177Lu]Lu (6 MBq; 10 μg; ~ 0.07 nmoles). The tumour doubling time (TDT) for NOD/SCID mice with s.c. PANC-1 tumours treated with panitumumab-DOTA-[111In]In or panitumumab-MCP-[111In]In was 51.8 days and 28.1 days, respectively. Panitumumab was ineffective yielding a TDT of 15.3 days vs. 15.6 days for normal saline treated mice. RIT of NRG mice with s.c. PANC-1 tumours with 6.0 MBq (10 μg; ~ 0.07 nmoles) of panitumumab-DOTA-[177Lu]Lu increased the TDT to 20.9 days vs. 11.5 days for panitumumab and 9.1 days for normal saline. The absorbed doses in PANC-1 tumours were 8.8 ± 3.0 Gy and 2.6 ± 0.3 Gy for panitumumab-DOTA-[111In]In and panitumumab-MCP-[111In]In, respectively, and 11.6 ± 4.9 Gy for panitumumab-DOTA-[177Lu]Lu. CONCLUSION RIT with panitumumab labeled with Auger electron-emitting, 111In or β-particle-emitting, 177Lu inhibited the growth of s.c. PANC-1 tumours in NOD/SCID or NRG mice, at administered amounts that caused no normal tissue toxicity. We conclude that EGFR-targeted RIT is a promising approach to treatment of PnCa.
Collapse
Affiliation(s)
- Sadaf Aghevlian
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario, M5S 3M2, Canada
| | - Zhongli Cai
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario, M5S 3M2, Canada
| | - David Hedley
- Department of Medical Oncology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Mitchell A Winnik
- Department of Chemistry, University of Toronto, 80 St. George St, Toronto, Ontario, M5S 3H6, Canada.
| | - Raymond M Reilly
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario, M5S 3M2, Canada.
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
12
|
Liu J, Bian D, Zheng Y, Chu X, Lin Y, Wang M, Lin Z, Li M, Zhang Y, Guan S. Comparative in vitro study on binary Mg-RE (Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu) alloy systems. Acta Biomater 2020; 102:508-528. [PMID: 31722254 DOI: 10.1016/j.actbio.2019.11.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/17/2019] [Revised: 11/03/2019] [Accepted: 11/06/2019] [Indexed: 12/21/2022]
Abstract
Correct selection of alloying elements is important for developing novel biodegradable magnesium alloys with superior mechanical and biological performances. In contrast to various reports on nutrient elements (Ca, Zn, Sr, etc.) as alloying elements of biomedical magnesium alloys, there is limited information about how to choose the right rare earth elements (REEs) as alloying elements of magnesium. In this work, 16 kinds of REEs were individually added into Mg, including Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Du, Ho, Er, Tm, Yb and Lu, to fabricate binary Mg-RE model alloys with different composition points. Under the same working history, comparative studies were undertaken and the impact of each kind of rare earth element on the microstructure, mechanical property, corrosion behavior and biocompatibility of Mg were investigated. The corresponding influence level for the 16 kinds of REEs were ranked. The results showed that the second phases were detected in some Mg-RE alloys, which were mainly composed of Mg12RE. By adding different REEs into Mg with proper contents, the mechanical properties of resulting Mg-RE binary alloys could be adjusted in wide range. The corrosion resistance of Mg-light REE alloys was generally better than Mg-heavy REE alloys. As for biocompatibility, Mg-RE model alloys showed no cytotoxic effect on MC3T3-E1 cells. The hemolysis rates of all experimental Mg-RE model alloys were lower than 5% except for Mg-Lu alloy model. In general, the addition of different REEs into Mg could improve its performance from different aspects. This work provides a better understanding on suitable REEs as alloying elements for magnesium, and the future R&D direction on biomedical Mg-RE alloys was proposed. STATEMENT OF SIGNIFICANCE: In contrast to various reports on nutrient elements (Ca, Zn, Sr, etc.) as alloying elements of biomedical magnesium alloys, until now there is limited information about how to choose the right rare earth elements (REEs) as alloying elements of magnesium. In this work, comparative studies were undertaken by individually adding 16 kinds of REEs, including Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Du, Ho, Er, Tm, Yb and Lu, into Mg to fabricate binary Mg-RE model alloys, with different composition points, then the impact of each kind of rare earth element on the microstructure, mechanical property, corrosion behavior and biocompatibility of Mg under the same working history were investigated, and the corresponding influence level for the 16 kinds of REEs were ranked. This work provides a better understanding on suitable REEs as alloying elements for magnesium, and the future R&D direction on biomedical Mg-RE alloys was proposed.
Collapse
|
13
|
Abstract
Molecular imaging enables both spatial and temporal understanding of the complex biologic systems underlying carcinogenesis and malignant spread. Single-photon emission tomography (SPECT) is a versatile nuclear imaging-based technique with ideal properties to study these processes in vivo in small animal models, as well as to identify potential drug candidates and characterize their antitumor action and potential adverse effects. Small animal SPECT and SPECT-CT (single-photon emission tomography combined with computer tomography) systems continue to evolve, as do the numerous SPECT radiopharmaceutical agents, allowing unprecedented sensitivity and quantitative molecular imaging capabilities. Several of these advances, their specific applications in oncology as well as new areas of exploration are highlighted in this chapter.
Collapse
Affiliation(s)
- Benjamin L Franc
- Department of Radiology, Stanford University School of Medicine, 300 Pasteur Drive, H2232, MC 5281, Stanford, CA, 94305-5105, USA.
| | - Youngho Seo
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, USA
| | - Robert Flavell
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, USA
| | - Carina Mari Aparici
- Department of Radiology, Stanford University School of Medicine, 300 Pasteur Drive, H2232, MC 5281, Stanford, CA, 94305-5105, USA
| |
Collapse
|
14
|
Hee C, Ho D, Karton A, Nealon G, Kretzmann JA, Norret M, Iyer KS. Macromolecular approach for targeted radioimmunotherapy in non-Hodgkin's lymphoma. Chem Commun (Camb) 2019; 55:14506-14509. [PMID: 31735949 DOI: 10.1039/c9cc06603a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/21/2022]
Abstract
Polymers are an attractive anchoring platform for the synthesis of radioimmunoconjugates. They enable independent control over the amount of radioisotope loading and antibody attachment, which is pivotal in developing tailorable formulations for personalised medicine. Herein, we report the synthesis of p(HEMA-ran-GMA) for the conjugation of lutetium ions and rituximab as a functional platform for radioimmunotherapy. We demonstrate the suitability of this platform using non-Hodgkin's lymphoma cells.
Collapse
Affiliation(s)
- Charmaine Hee
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009, Australia.
| | | | | | | | | | | | | |
Collapse
|
15
|
Mishiro K, Hanaoka H, Yamaguchi A, Ogawa K. Radiotheranostics with radiolanthanides: Design, development strategies, and medical applications. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2018.12.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/30/2022]
|
16
|
Pandey U, Kameswaran M, Gamre N, Dash A. Preparation of 177 Lu-labeled Nimotuzumab for radioimmunotherapy of EGFR-positive cancers: Comparison of DOTA and CHX-A″-DTPA as bifunctional chelators. J Labelled Comp Radiopharm 2019; 62:158-165. [PMID: 30663095 DOI: 10.1002/jlcr.3707] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/22/2018] [Accepted: 01/11/2019] [Indexed: 11/05/2022]
Abstract
This study was aimed at evaluating the role of bifunctional chelators DOTA-NCS and CHX-A″-DTPA-NCS used for conjugating 177 Lu with Nimotuzumab on the radiochemical yields, purity, in vitro stability, and specificity of the radioimmunoconjugates to EGFR. Two immunoconjugates were prepared wherein Nimotuzumab was conjugated with the acyclic ligand p-NCS-Bn-CHX-A″-DTPA and macrocyclic ligand p-NCS-Bn-DOTA. These were radiolabeled with 177 Lu, purified on PD-10 column, and characterized by SE-HPLC. In vitro stability was determined up to 4 days post preparation. Specificity of the radioimmunoconjugates was ascertained by in vitro studies in A431 cells while the biodistribution patterns were studied in normal Swiss mice up to 96 hours post injection. Four to five molecules of CHX-A″-DTPA/DOTA were attached to one molecule of Nimotuzumab. Radiochemical purity of both 177 Lu-CHX-A″-DTPA-Nimotuzumab and 177 Lu-DOTA-Nimotuzumab was determined to be greater than 98%. Both the radioimmunoconjugates exhibited good in vitro stability at 37°C up to 4 days post preparation in saline, and their clearance was largely by the hepatobiliary route. The DOTA- and CHX-A″-DTPA-based radioimmunoconjugates could be prepared with good radiochemical purity, in vitro stability, and specificity to EGFR. Further studies in EGFR-positive cancers would pave way for them for use in the clinics.
Collapse
Affiliation(s)
- Usha Pandey
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai, India.,Bhabha Atomic Research Centre, Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Mythili Kameswaran
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Naresh Gamre
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Ashutosh Dash
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai, India.,Bhabha Atomic Research Centre, Homi Bhabha National Institute (HBNI), Mumbai, India
| |
Collapse
|
17
|
Liu X, Wang C, Liu Z. Protein-Engineered Biomaterials for Cancer Theranostics. Adv Healthc Mater 2018; 7:e1800913. [PMID: 30260583 DOI: 10.1002/adhm.201800913] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/30/2018] [Revised: 08/19/2018] [Indexed: 12/18/2022]
Abstract
Proteins are an important class of biomaterials promising a variety of applications such as drug delivery, and imaging or therapy, owing to their biodegradability, biocompatibility, as well as inherent biological activities acting as enzymes, recognizing molecules, or therapeutics by themselves. Over the few past decades, different types of proteins with desired properties have been widely explored for biomedical applications. Many therapeutic proteins have now entered clinical use. This review therefore summarizes various strategies in the engineering of biomaterials for delivery of therapeutic proteins, as well as the recent development of protein-based biomaterials for cancer theranostics.
Collapse
Affiliation(s)
- Xiaowen Liu
- Pharmacology; Department of Basic Medical Sciences; Faculty of Medical Science; Jinan University; Guangzhou Guangdong 510632 China
| | - Chao Wang
- Institute of Functional Nano & Soft Materials (FUNSOM); Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices; Soochow University; Suzhou Jiangsu 215123 China
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM); Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices; Soochow University; Suzhou Jiangsu 215123 China
| |
Collapse
|
18
|
Melzig C, Golestaneh AF, Mier W, Schwager C, Das S, Schlegel J, Lasitschka F, Kauczor HU, Debus J, Haberkorn U, Abdollahi A. Combined external beam radiotherapy with carbon ions and tumor targeting endoradiotherapy. Oncotarget 2018; 9:29985-30004. [PMID: 30042828 PMCID: PMC6057461 DOI: 10.18632/oncotarget.25695] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/28/2018] [Accepted: 06/04/2018] [Indexed: 01/05/2023] Open
Abstract
External beam radiotherapy (EBRT) with carbon ions and endoradiotherapy using radiolabeled tumor targeting agents are emerging concepts in precision cancer therapy. We report on combination effects of these two promising strategies. Tumor targeting 131I-labelled anti-EGFR-antibody (Cetuximab) was used in the prototypic EGFR-expressing A431 human squamous cell carcinoma xenograft model. A 131I-labelled melanin-binding benzamide derivative was utilized targeting B16F10 melanoma in an orthotopic syngeneic C57bl6 model. Fractionated EBRT was performed using carbon ions in direct comparison with conventional photon irradiation. Tumor uptake of 131I-Cetuximab and 131I-Benzamide was enhanced by fractionated EBRT as determined by biodistribution studies. This effect was independent of radiation quality and significant for the small molecule 131I-Benzamide, i.e., >30% more uptake in irradiated vs. non-irradiated melanoma was found (p<0.05). Compared to each monotherapy, dual combination with 131I-Cetuximab and EBRT was most effective in inhibiting A431 tumor growth. A similar trend was seen for 131I-Benzamide and EBRT in B16F10 melanoma model. Addition of 131I-Benzamide endoradiotherapy to EBRT altered expression of genes related to DNA-repair, cell cycle and cell death. In contrast, immune-response related pathways such as type 1 interferon response genes (ISG15, MX1) were predominantly upregulated after combined 131I-Cetuximab and EBRT. The beneficial effects of combined 131I-Cetuximab and EBRT was further attributed to a reduced microvascular density (CD31) and decreased proliferation index (Ki-67). Fractionated EBRT could be favorably combined with endoradiotherapy. 131I-Benzamide endoradiotherapy accelerated EBRT induced cytotoxic effects. Activation of immune-response by carbon ions markedly enhanced anti-EGFR based endoradiotherapy suggesting further evaluation of this novel and promising radioimmunotherapy concept.
Collapse
Affiliation(s)
- Claudius Melzig
- German Cancer Consortium, Heidelberg, Germany.,Translational Radiation Oncology, National Center for Tumor Diseases, German Cancer Research Center, Heidelberg, Germany.,Division of Molecular and Translational Radiation Oncology, Heidelberg Institute of Radiation Oncology, National Center for Radiation Research in Oncology, Heidelberg, Germany.,Heidelberg Ion-Beam Therapy Center, Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Diagnostic and Interventional Radiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Azadeh Fahim Golestaneh
- German Cancer Consortium, Heidelberg, Germany.,Translational Radiation Oncology, National Center for Tumor Diseases, German Cancer Research Center, Heidelberg, Germany.,Division of Molecular and Translational Radiation Oncology, Heidelberg Institute of Radiation Oncology, National Center for Radiation Research in Oncology, Heidelberg, Germany.,Heidelberg Ion-Beam Therapy Center, Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Walter Mier
- Department of Nuclear Medicine, Heidelberg University Hospital, Heidelberg, Germany.,Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center, Heidelberg, Germany
| | - Christian Schwager
- German Cancer Consortium, Heidelberg, Germany.,Translational Radiation Oncology, National Center for Tumor Diseases, German Cancer Research Center, Heidelberg, Germany.,Division of Molecular and Translational Radiation Oncology, Heidelberg Institute of Radiation Oncology, National Center for Radiation Research in Oncology, Heidelberg, Germany.,Heidelberg Ion-Beam Therapy Center, Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Samayita Das
- German Cancer Consortium, Heidelberg, Germany.,Translational Radiation Oncology, National Center for Tumor Diseases, German Cancer Research Center, Heidelberg, Germany.,Division of Molecular and Translational Radiation Oncology, Heidelberg Institute of Radiation Oncology, National Center for Radiation Research in Oncology, Heidelberg, Germany.,Heidelberg Ion-Beam Therapy Center, Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Julian Schlegel
- German Cancer Consortium, Heidelberg, Germany.,Translational Radiation Oncology, National Center for Tumor Diseases, German Cancer Research Center, Heidelberg, Germany.,Division of Molecular and Translational Radiation Oncology, Heidelberg Institute of Radiation Oncology, National Center for Radiation Research in Oncology, Heidelberg, Germany.,Heidelberg Ion-Beam Therapy Center, Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Felix Lasitschka
- Department of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Hans-Ulrich Kauczor
- Diagnostic and Interventional Radiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Jürgen Debus
- German Cancer Consortium, Heidelberg, Germany.,Heidelberg Ion-Beam Therapy Center, Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Uwe Haberkorn
- Department of Nuclear Medicine, Heidelberg University Hospital, Heidelberg, Germany.,Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center, Heidelberg, Germany
| | - Amir Abdollahi
- German Cancer Consortium, Heidelberg, Germany.,Translational Radiation Oncology, National Center for Tumor Diseases, German Cancer Research Center, Heidelberg, Germany.,Division of Molecular and Translational Radiation Oncology, Heidelberg Institute of Radiation Oncology, National Center for Radiation Research in Oncology, Heidelberg, Germany.,Heidelberg Ion-Beam Therapy Center, Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
19
|
Evaluation of 99mTc-HYNIC-VCAM-1 scFv as a Potential Qualitative and Semiquantitative Probe Targeting Various Tumors. CONTRAST MEDIA & MOLECULAR IMAGING 2018; 2018:7832805. [PMID: 29853809 PMCID: PMC5960529 DOI: 10.1155/2018/7832805] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 01/15/2018] [Accepted: 03/25/2018] [Indexed: 12/19/2022]
Abstract
Vascular cell adhesion molecule 1 (VCAM-1) is overexpressed in varieties of cancers. This study aimed to evaluate the application of a single chain variable fragment (scFv) of anti-VCAM-1 antibody labeled with 99mTc as a possible imaging agent in several tumors. VCAM-1 scFv was labeled with 99mTc using succinimidyl 6-hydrazinium nicotinate hydrochloride, and 99mTc-HYNIC-VCAM-1scFv was successfully synthesized with a high radiolabeling yield. VCAM-1 expression was evaluated in six cell lines by immunofluorescence staining. In vitro binding assays showed different binding affinities of 99mTc-HYNIC-VCAM-1scFv in different tumor cell lines, with high uptake in B16F10 melanoma and HT1080 fibrosarcoma cells, which was consistent with immunofluorescence staining results. In vivo SPECT planar imaging demonstrated that B16F10 and HT1080 tumors could be clearly visualized. Less intense uptake was observed in human SKOV3.ip ovarian tumor, and weak uptake was observed in human A375m melanoma, MDA-MB-231 breast cancer, and 786-O renal tumors. These findings were confirmed by biodistribution and immunofluorescence studies. High uptake by B16F10 tumors was inhibited by excess unlabeled VCAM-1scFv. 99mTc-HYNIC-VCAM-1scFv, which selectively binds to VCAM-1, can provide a qualitative and semiquantitative method for noninvasive evaluation of VCAM-1 expression by tumors.
Collapse
|
20
|
Bellaye PS, Moreau M, Raguin O, Oudot A, Bernhard C, Vrigneaud JM, Dumont L, Vandroux D, Denat F, Cochet A, Brunotte F, Collin B. Radiolabeled F(ab') 2-cetuximab for theranostic purposes in colorectal and skin tumor-bearing mice models. Clin Transl Oncol 2018; 20:1557-1570. [PMID: 29777377 PMCID: PMC6223717 DOI: 10.1007/s12094-018-1886-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/15/2018] [Accepted: 04/26/2018] [Indexed: 12/14/2022]
Abstract
PURPOSE This study aimed to investigate theranostic strategies in colorectal and skin cancer based on fragments of cetuximab, an anti-EGFR mAb, labeled with radionuclide with imaging and therapeutic properties, 111In and 177Lu, respectively. METHODS We designed F(ab')2-fragments of cetuximab radiolabeled with 111In and 177Lu. 111In-F(ab')2-cetuximab tumor targeting and biodistribution were evaluated by SPECT in BalbC nude mice bearing primary colorectal tumors. The efficacy of 111In-F(ab')2-cetuximab to assess therapy efficacy was performed on BalbC nude mice bearing colorectal tumors receiving 17-DMAG, an HSP90 inhibitor. Therapeutic efficacy of the radioimmunotherapy based on 177Lu-F(ab')2-cetuximab was evaluated in SWISS nude mice bearing A431 tumors. RESULTS Radiolabeling procedure did not change F(ab')2-cetuximab and cetuximab immunoreactivity nor affinity for HER1 in vitro. 111In-DOTAGA-F(ab')2-cetuximab exhibited a peak tumor uptake at 24 h post-injection and showed a high tumor specificity determined by a significant decrease in tumor uptake after the addition of an excess of unlabeled-DOTAGA-F(ab')2-cetuximab. SPECT imaging of 111In-DOTAGA-F(ab')2-cetuximab allowed an accurate evaluation of tumor growth and successfully predicted the decrease in tumor growth induced by 17-DMAG. Finally, 177Lu-DOTAGA-F(ab')2-cetuximab radioimmunotherapy showed a significant reduction of tumor growth at 4 and 8 MBq doses. CONCLUSIONS 111In-DOTAGA-F(ab')2-cetuximab is a reliable and stable tool for specific in vivo tumor targeting and is suitable for therapy efficacy assessment. 177Lu-DOTAGA-F(ab')2-cetuximab is an interesting theranostic tool allowing therapy and imaging.
Collapse
Affiliation(s)
- P-S Bellaye
- Service de médecine nucléaire, Centre Georges-François Leclerc, 1 rue du professeur Marion, 21000, Dijon, France.
| | - M Moreau
- Institut de Chimie Moléculaire de l'Université de Bourgogne, UMR CNRS 6302, Université de Bourgogne Franche-Comté, 21078, Dijon Cedex, France
| | - O Raguin
- Oncodesign, 21076, Dijon Cedex, France
| | - A Oudot
- Service de médecine nucléaire, Centre Georges-François Leclerc, 1 rue du professeur Marion, 21000, Dijon, France
| | - C Bernhard
- Institut de Chimie Moléculaire de l'Université de Bourgogne, UMR CNRS 6302, Université de Bourgogne Franche-Comté, 21078, Dijon Cedex, France
| | - J-M Vrigneaud
- Service de médecine nucléaire, Centre Georges-François Leclerc, 1 rue du professeur Marion, 21000, Dijon, France
| | - L Dumont
- NVH Medicinal, 64 rue Sully, 21000, Dijon, France
| | - D Vandroux
- NVH Medicinal, 64 rue Sully, 21000, Dijon, France
| | - F Denat
- Institut de Chimie Moléculaire de l'Université de Bourgogne, UMR CNRS 6302, Université de Bourgogne Franche-Comté, 21078, Dijon Cedex, France
| | - A Cochet
- Service de médecine nucléaire, Centre Georges-François Leclerc, 1 rue du professeur Marion, 21000, Dijon, France
| | - F Brunotte
- Service de médecine nucléaire, Centre Georges-François Leclerc, 1 rue du professeur Marion, 21000, Dijon, France
| | - B Collin
- Service de médecine nucléaire, Centre Georges-François Leclerc, 1 rue du professeur Marion, 21000, Dijon, France.,Institut de Chimie Moléculaire de l'Université de Bourgogne, UMR CNRS 6302, Université de Bourgogne Franche-Comté, 21078, Dijon Cedex, France
| |
Collapse
|
21
|
Eppard E, de la Fuente A, Mohr N, Allmeroth M, Zentel R, Miederer M, Pektor S, Rösch F. Labeling of DOTA-conjugated HPMA-based polymers with trivalent metallic radionuclides for molecular imaging. EJNMMI Res 2018; 8:16. [PMID: 29488030 PMCID: PMC5829281 DOI: 10.1186/s13550-018-0372-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/08/2017] [Accepted: 02/19/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND In this work, the in vitro and in vivo stabilities and the pharmacology of HPMA-made homopolymers were studied by means of radiometal-labeled derivatives. Aiming to identify the fewer amount and the optimal DOTA-linker structure that provides quantitative labeling yields, diverse DOTA-linker systems were conjugated in different amounts to HPMA homopolymers to coordinate trivalent radiometals Me(III)* = gallium-68, scandium-44, and lutetium-177. RESULTS Short linkers and as low as 1.6% DOTA were enough to obtain labeling yields > 90%. Alkoxy linkers generally exhibited lower labeling yields than alkane analogues despite of similar chain length and DOTA incorporation rate. High stability of the radiolabel in all examined solutions was observed for all conjugates. Labeling with scandium-44 allowed for in vivo PET imaging and ex vivo measurements of organ distribution for up to 24 h. CONCLUSIONS This study confirms the principle applicability of DOTA-HPMA conjugates for labeling with different trivalent metallic radionuclides allowing for diagnosis and therapy.
Collapse
Affiliation(s)
- Elisabeth Eppard
- Clinic for Nuclear Medicine, University Medical Center Bonn, Bonn, Germany
| | - Ana de la Fuente
- Institute of Nuclear Chemistry, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Nicole Mohr
- Institute of Organic Chemistry, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Mareli Allmeroth
- Institute of Organic Chemistry, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Rudolf Zentel
- Institute of Organic Chemistry, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Matthias Miederer
- Clinic for Nuclear Medicine, University Medical Center Mainz, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Stefanie Pektor
- Clinic for Nuclear Medicine, University Medical Center Mainz, Langenbeckstraße 1, 55131, Mainz, Germany.
| | - Frank Rösch
- Institute of Nuclear Chemistry, Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
22
|
Clinically Relevant Radioactive Dose Formulation of 177
Lu-Labeled Cetuximab-Fab Fragment for Potential Use in Cancer Theranostics. ChemistrySelect 2018. [DOI: 10.1002/slct.201702224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/20/2022]
|
23
|
Pyo A, Yun M, Kim HS, Kim TY, Lee JJ, Kim JY, Lee S, Kwon SY, Bom HS, Kim HS, Kim DY, Min JJ. 64Cu-Labeled Repebody Molecules for Imaging of Epidermal Growth Factor Receptor–Expressing Tumors. J Nucl Med 2017; 59:340-346. [DOI: 10.2967/jnumed.117.197020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/11/2017] [Accepted: 08/24/2017] [Indexed: 01/12/2023] Open
|
24
|
Immuno-PET imaging based radioimmunotherapy in head and neck squamous cell carcinoma model. Oncotarget 2017; 8:92090-92105. [PMID: 29190900 PMCID: PMC5696166 DOI: 10.18632/oncotarget.20760] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/16/2017] [Accepted: 08/04/2017] [Indexed: 11/25/2022] Open
Abstract
The epidermal growth factor receptor (EGFR) is one of the most comprehensively studied molecular targets in head and neck squamous cell carcinoma (HNSCC). However, inherent and acquired resistance are serious problems and are responsible for limited clinical efficacy and tumor recurrence. In this study, we evaluated the feasibility of immuno-positron emission tomography (PET) imaging and radioimmunotherapy (RIT) with 64Cu-/177Lu-PCTA-cetuximab in cetuximab-resistant SNU-1066 HNSCC xenografted model. The cellular uptake of 64Cu/177Lu-3,6,9,15-tetraazabicyclo[9.3.1]-pentadeca-1(15),11,13-triene-3,6,9,-triacetic acid (PCTA)-cetuximab showed good correlation with western blot and flow cytometry analysis in EGFR expression level of various HNSCC cells. 177Lu-PCTA-cetuximab selectively killed cetuximab-resistant SNU-1066 cells in vitro. 64Cu-/177Lu-PCTA-cetuximab specifically accumulated in SNU-1066 tumor and those uptakes were peaked at 48 h and 7 day, respectively in biodistribution, PET and single-photon emission computed tomography/computed tomography (SPECT/CT) imaging. RIT with single dose of 177Lu-PCTA-cetuximab exhibited significant tumor regression and markedly reduced 2-[18F]fluoro-2-deoxy-D-glucose (18F-FDG) uptake, compared to other groups. Proliferation index were dramatically decreased and apoptotic index increased in RIT group. These results suggest that a diagnostic and therapeutic convergence radiopharmaceutical, 64Cu-/177Lu-PCTA-cetuximab has the potential of target selection using immuno-PET imaging and targeted therapy by RIT in EGFR expressing cetuximab-resistant HNSCC tumors.
Collapse
|
25
|
Targeted α-Particle Radiation Therapy of HER1-Positive Disseminated Intraperitoneal Disease: An Investigation of the Human Anti-EGFR Monoclonal Antibody, Panitumumab. Transl Oncol 2017; 10:535-545. [PMID: 28577439 PMCID: PMC5458064 DOI: 10.1016/j.tranon.2017.04.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/28/2017] [Revised: 04/13/2017] [Accepted: 04/17/2017] [Indexed: 11/29/2022] Open
Abstract
Identifying molecular targets and an appropriate targeting vehicle, i.e., monoclonal antibodies (mAb) and their various forms, for radioimmunotherapy (RIT) remains an active area of research. Panitumumab, a fully human and less immunogenic mAb that binds to the epidermal growth factor receptor (Erb1; HER1), was evaluated for targeted α-particle radiation therapy using 212Pb, an in vivo α generator. A single dose of 212Pb-panitumumab administered to athymic mice bearing LS-174T intraperitoneal (i.p.) tumor xenografts was found to have greater therapeutic efficacy when directly compared with 212Pb-trastuzumab, which binds to HER2. A dose escalation study determined a maximum effective working dose of 212Pb-panitumumab to be 20 μCi with a median survival of 35 days versus 25 days for the untreated controls. Pretreatment of tumor-bearing mice with paclitaxel and gemcitabine 24 hours prior to injection of 212Pb-pantiumumab at 10 or 20 μCi resulted in the greatest enhanced therapeutic response at the higher dose with median survivals of 106 versus 192 days, respectively. The greatest therapeutic impact, however, was observed in the animals that were treated with topotecan 24 hours prior to RIT and then again 24 hours after RIT; the best response from this combination was also obtained with the lower 10-μCi dose of 212Pb-panitumumab (median survival >280 days). In summary, 212Pb-panitumumab is an excellent candidate for the treatment of HER1-positive disseminated i.p. disease. Furthermore, the potentiation of the therapeutic impact of 212Pb-pantiumumab by chemotherapeutics confirms and validates the importance of developing a multimodal therapy regimen.
Collapse
|
26
|
Yazdani A, Bilton H, Vito A, Genady AR, Rathmann SM, Ahmad Z, Janzen N, Czorny S, Zeglis BM, Francesconi LC, Valliant JF. A Bone-Seeking trans-Cyclooctene for Pretargeting and Bioorthogonal Chemistry: A Proof of Concept Study Using 99mTc- and 177Lu-Labeled Tetrazines. J Med Chem 2016; 59:9381-9389. [PMID: 27676258 DOI: 10.1021/acs.jmedchem.6b00938] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/14/2023]
Abstract
A high yield synthesis of a novel, small molecule, bisphosphonate-modified trans-cyclooctene (TCO-BP, 2) that binds to regions of active bone metabolism and captures functionalized tetrazines in vivo, via the bioorthogonal inverse electron demand Diels-Alder (IEDDA) cycloaddition, was developed. A 99mTc-labeled derivative of 2 demonstrated selective localization to shoulder and knee joints in a biodistribution study in normal mice. Compound 2 reacted rapidly with a 177Lu-labeled tetrazine in vitro, and pretargeting experiments in mice, using 2 and the 177Lu-labeled tetrazine, yielded high activity concentrations in shoulder and knee joints, with minimal uptake in other tissues. Pretargeting experiments with 2 and a novel 99mTc-labeled tetrazine also produced high activity concentrations in the knees and shoulders. Critically, both radiolabeled tetrazines showed negligible uptake in the skeleton and joints when administered in the absence of 2. Compound 2 can be utilized to target functionalized tetrazines to bone and represents a convenient reagent to test novel tetrazines for use with in vivo bioorthogonal pretargeting strategies.
Collapse
Affiliation(s)
- Abdolreza Yazdani
- Department of Chemistry and Chemical Biology, McMaster University , 1280 Main Street West, Hamilton, Ontario L8S 4M1, Canada
| | - Holly Bilton
- Department of Chemistry and Chemical Biology, McMaster University , 1280 Main Street West, Hamilton, Ontario L8S 4M1, Canada
| | - Alyssa Vito
- Department of Chemistry and Chemical Biology, McMaster University , 1280 Main Street West, Hamilton, Ontario L8S 4M1, Canada
| | - Afaf R Genady
- Department of Chemistry and Chemical Biology, McMaster University , 1280 Main Street West, Hamilton, Ontario L8S 4M1, Canada
| | - Stephanie M Rathmann
- Department of Chemistry and Chemical Biology, McMaster University , 1280 Main Street West, Hamilton, Ontario L8S 4M1, Canada
| | - Zainab Ahmad
- Department of Chemistry and Chemical Biology, McMaster University , 1280 Main Street West, Hamilton, Ontario L8S 4M1, Canada
| | - Nancy Janzen
- Department of Chemistry and Chemical Biology, McMaster University , 1280 Main Street West, Hamilton, Ontario L8S 4M1, Canada
| | - Shannon Czorny
- Department of Chemistry and Chemical Biology, McMaster University , 1280 Main Street West, Hamilton, Ontario L8S 4M1, Canada
| | - Brian M Zeglis
- Department of Chemistry, Hunter College , 695 Park Avenue New York, New York 10065, United States.,Ph.D. Program in Chemistry, The Graduate Center of the City University of New York , 365 Fifth Avenue, New York, New York 10016, United States
| | - Lynn C Francesconi
- Department of Chemistry, Hunter College , 695 Park Avenue New York, New York 10065, United States.,Ph.D. Program in Chemistry, The Graduate Center of the City University of New York , 365 Fifth Avenue, New York, New York 10016, United States
| | - John F Valliant
- Department of Chemistry and Chemical Biology, McMaster University , 1280 Main Street West, Hamilton, Ontario L8S 4M1, Canada
| |
Collapse
|
27
|
Chakravarty R, Chakraborty S, Sarma HD, Nair KVV, Rajeswari A, Dash A. (90) Y/(177) Lu-labelled Cetuximab immunoconjugates: radiochemistry optimization to clinical dose formulation. J Labelled Comp Radiopharm 2016; 59:354-63. [PMID: 27264196 DOI: 10.1002/jlcr.3413] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/09/2016] [Revised: 05/05/2016] [Accepted: 05/10/2016] [Indexed: 11/06/2022]
Abstract
Radiolabelled monoclonal antibodies (mAbs) are increasingly being utilized in cancer theranostics, which is a significant move toward tailored treatment for individual patients. Cetuximab is a recombinant, human-mouse chimeric IgG1 mAb that binds to the epidermal growth factor receptor with high affinity. We have optimized a protocol for formulation of clinically relevant doses (~2.22 GBq) of (90) Y-labelled Cetuximab and (177) Lu-labelled Cetuximab by conjugation of the mAb with a suitable bifunctional chelator, N-[(R)-2-amino-3-(paraisothiocyanato-phenyl)propyl]-trans-(S,S)-cyclohexane-1,2-diamine-N,N,N',N″,N″-pentaacetic acid (CHX-A″-DTPA). The radioimmunoconjugates demonstrated reasonably high specific activity (1.26 ± 0.27 GBq/mg for (90) Y-CHX-A″-DTPA-Cetuximab and 1.14 ± 0.15 GBq/mg for (177) Lu-CHX-A″-DTPA-Cetuximab), high radiochemical purity (>95%) and appreciable in vitro stability under physiological conditions. Preliminary biodistribution studies with both (90) Y-CHX-A″-DTPA-Cetuximab and (177) Lu-CHX-A″-DTPA-Cetuximab in Swiss mice bearing fibrosarcoma tumours demonstrated significant tumour uptake at 24-h post-injection (p.i.) (~16%ID/g) with good tumour-to-background contrast. The results of the biodistribution studies were further corroborated by ex vivo Cerenkov luminescence imaging after administration of (90) Y-CHX-A″-DTPA-Cetuximab in tumour-bearing mice. The tumour uptake at 24 h p.i. was significantly reduced with excess unlabelled Cetuximab, suggesting that the uptake was receptor mediated. The results of this study hold promise, and this strategy should be further explored for clinical translation.
Collapse
Affiliation(s)
- Rubel Chakravarty
- Isotope Production and Applications Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| | - Sudipta Chakraborty
- Isotope Production and Applications Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| | - Haladhar Dev Sarma
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| | - K V Vimalnath Nair
- Isotope Production and Applications Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| | - Ardhi Rajeswari
- Isotope Production and Applications Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| | - Ashutosh Dash
- Isotope Production and Applications Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| |
Collapse
|
28
|
Zhang C, Gao L, Cai Y, Liu H, Gao D, Lai J, Jia B, Wang F, Liu Z. Inhibition of tumor growth and metastasis by photoimmunotherapy targeting tumor-associated macrophage in a sorafenib-resistant tumor model. Biomaterials 2016; 84:1-12. [DOI: 10.1016/j.biomaterials.2016.01.027] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/28/2015] [Revised: 01/11/2016] [Accepted: 01/12/2016] [Indexed: 01/13/2023]
|
29
|
Song IH, Lee TS, Park YS, Lee JS, Lee BC, Moon BS, An GI, Lee HW, Kim KI, Lee YJ, Kang JH, Lim SM. Immuno-PET Imaging and Radioimmunotherapy of 64Cu-/177Lu-Labeled Anti-EGFR Antibody in Esophageal Squamous Cell Carcinoma Model. J Nucl Med 2016; 57:1105-11. [PMID: 26917708 DOI: 10.2967/jnumed.115.167155] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/30/2015] [Accepted: 02/10/2016] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED Immuno-PET provides valuable information about tumor location, phenotype, susceptibility to therapy, and treatment response, especially to targeted radioimmunotherapy. In this study, we prepared antiepidermal growth factor receptor (EGFR) antibody via identical chelator, 3,6,9,15-tetraazabicyclo[9.3.1]-pentadeca-1(15),11,13-trience-3,6,9,-triacetic acid (PCTA), labeled with (64)Cu or (177)Lu to evaluate the EGFR expression levels using immuno-PET and the feasibility of radioimmunotherapy in an esophageal squamous cell carcinoma (ESCC) model. METHODS Cetuximab was conjugated with p-SCN-Bn-PCTA and radiolabeled with (64)Cu or (177)Lu. In vitro EGFR expression levels were determined and compared using flow cytometry and cell binding assay. In vivo EGFR expression levels were evaluated via immuno-PET imaging of (64)Cu-cetuximab and biodistribution analysis. Micro-SPECT/CT imaging, biodistribution, and radioimmunotherapy studies of (177)Lu-cetuximab were performed in the ESCC model. Therapeutic responses were monitored using (18)F-FDG PET and immunohistochemical staining. RESULTS (64)Cu- or (177)Lu-labeled antibodies showed high radiolabeling yield (>98%), stability (>90%), and favorable immunoreactivity. In vitro EGFR status measured by cell binding assay was correlated with the flow cytometry data. Immuno-PET, micro-SPECT/CT, and biodistribution demonstrated specific uptake in ESCC tumors depending on the EGFR expression levels. Tumor accumulation of (64)Cu- and (177)Lu-cetuximab was peaked at 48 and 120 h, respectively. Radioimmunotherapy with (177)Lu-cetuximab showed significant inhibition of tumor growth (P < 0.01) and marked reduction of (18)F-FDG SUV compared with that of control (P < 0.05). Terminal deoxynucleotidyl transferase dUTP nick-end labeling positivity and Ki-67 staining indices increased and decreased, respectively, in the radioimmunotherapy group compared with other groups (P < 0.01). CONCLUSION (64)Cu-cetuximab immuno-PET represented EGFR expression levels in ESCC tumors, and (177)Lu-cetuximab radioimmunotherapy effectively inhibited the tumor growth. The diagnostic and therapeutic convergence radiopharmaceutical (64)Cu-/(177)Lu-PCTA-cetuximab may be useful as a diagnostic tool in patient selection and a potent radioimmunotherapy agent in EGFR-positive ESCC tumors.
Collapse
Affiliation(s)
- In Ho Song
- Molecular Imaging Research Center, Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul, South Korea Department of Biomedical Laboratory Science, Yonsei University, Wonju, South Korea
| | - Tae Sup Lee
- Molecular Imaging Research Center, Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul, South Korea
| | - Yong Serk Park
- Department of Biomedical Laboratory Science, Yonsei University, Wonju, South Korea
| | - Jin Sook Lee
- Department of Anatomy, Yonsei University Wonju Collage of Medicine, Wonju, South Korea
| | - Byung Chul Lee
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, South Korea
| | - Byung Seok Moon
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, South Korea
| | - Gwang Il An
- Molecular Imaging Research Center, Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul, South Korea
| | - Hae Won Lee
- Department of Thoracic Surgery, KIRAMS, Seoul, South Korea; and
| | - Kwang Il Kim
- Molecular Imaging Research Center, Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul, South Korea
| | - Yong Jin Lee
- Molecular Imaging Research Center, Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul, South Korea
| | - Joo Hyun Kang
- Molecular Imaging Research Center, Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul, South Korea
| | - Sang Moo Lim
- Molecular Imaging Research Center, Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul, South Korea Department of Nuclear Medicine, KIRAMS, Seoul, South Korea
| |
Collapse
|
30
|
Panosa C, Fonge H, Ferrer-Batallé M, Menéndez JA, Massaguer A, De Llorens R, Reilly RM. A comparison of non-biologically active truncated EGF (EGFt) and full-length hEGF for delivery of Auger electron-emitting 111 In to EGFR-positive breast cancer cells and tumor xenografts in athymic mice. Nucl Med Biol 2015; 42:931-8. [DOI: 10.1016/j.nucmedbio.2015.08.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/01/2015] [Accepted: 08/15/2015] [Indexed: 11/17/2022]
|
31
|
Lo L, Patel D, Townsend AR, Price TJ. Pharmacokinetic and pharmacodynamic evaluation of panitumumab in the treatment of colorectal cancer. Expert Opin Drug Metab Toxicol 2015; 11:1907-24. [PMID: 26572750 DOI: 10.1517/17425255.2015.1112787] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/29/2023]
Abstract
INTRODUCTION Integration of targeted therapy and additional chemotherapy options has improved median overall survival (OS) in patients with unresectable metastatic colorectal cancer (mCRC). Cetuximab and panitumumab are examples of targeted therapies, specifically against the epidermal growth factor receptor (EGFR). This review focuses on Panitumumab, a fully human IgG2 monoclonal antibody, which inhibits key oncogenic downstream cell signalling pathways. Panitumumab and cetuximab have improved tumour response rate, progression-free survival, and OS in mCRC patients in whom the RAS (Rat Sarcoma) gene is of Wild Type (WT) status. AREAS COVERED The EGFR signalling pathway and preclinical, Phase I and Phase II clinical studies on the pharmacokinetic, pharmacodynamic and safety evaluation of panitumumab are presented. Phase III studies utilising panitumumab in the first, second and third line setting in mCRC are also described. EXPERT OPINION Panitumumab exhibits excellent pharmacokinetics and pharmacodynamics by way of uncomplicated dosing, non-existent drug interactions, minimal infusion reactions and manageable side effects, making it a suitable target for combination treatments. However, innate and acquired resistances are still obstacles. To overcome this, experimented strategies are ongoing, particularly in patients with Her-2 and BRAF gene alterations. Novel biomarkers to improve patient selection and second-generation targeted antibodies are in development.
Collapse
Affiliation(s)
- Louisa Lo
- a Department of Medical Oncology , The Queen Elizabeth Hospital , Woodville , 5011 , SA , Australia
| | - Dainik Patel
- a Department of Medical Oncology , The Queen Elizabeth Hospital , Woodville , 5011 , SA , Australia
| | - Amanda R Townsend
- a Department of Medical Oncology , The Queen Elizabeth Hospital , Woodville , 5011 , SA , Australia.,b School of Medicine , University of Adelaide , Adelaide , 5000 , SA , Australia
| | - Timothy J Price
- a Department of Medical Oncology , The Queen Elizabeth Hospital , Woodville , 5011 , SA , Australia.,b School of Medicine , University of Adelaide , Adelaide , 5000 , SA , Australia
| |
Collapse
|
32
|
Milenic DE, Baidoo KE, Kim YS, Brechbiel MW. Evaluation of cetuximab as a candidate for targeted α-particle radiation therapy of HER1-positive disseminated intraperitoneal disease. MAbs 2015; 7:255-64. [PMID: 25587678 DOI: 10.4161/19420862.2014.985160] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/19/2022] Open
Abstract
Although the epidermal growth factor receptor (EGFR), also known as HER1, has been studied for over a decade, it continues to be a molecule of great interest and focus of investigators for development of targeted therapies. The marketed monoclonal antibody cetuximab binds to HER1, and thus might serve as the basis for creation of imaging or therapies that target this receptor. The potential of cetuximab as a vehicle for the delivery of α-particle radiation was investigated in an intraperitoneal tumor mouse model. The effective working dose of 10 μCi of (212)Pb-cetuximab was determined from a dose (10-50 μCi) escalation study. Toxicity, as indicated by the lack of animal weight loss, was not evident at the 10 μCi dose of (212)Pb-cetuximab. A subsequent study demonstrated (212)Pb-cetuximab had a therapeutic efficacy similar to that of (212)Pb-trastuzumab (p = 0.588). Gemcitabine given 24 h prior to (212)Pb-cetuximab increased the median survival from 174 d to 283 d, but carboplatin suppressed the effectiveness of (212)Pb-cetuximab. Notably, concurrent treatment of tumor-bearing mice with (212)Pb-labeled cetuximab and trastuzumab provided therapeutic benefit that was greater than either antibody alone. In conclusion, cetuximab proved to be an effective vehicle for targeting HER1-expressing tumors with α-radiation for the treatment of disseminated intraperitoneal disease. These studies provide further evidence that the multimodality therapy regimens may have greater efficacy and benefit in the treatment of cancer patients.
Collapse
Key Words
- %ID/g, percent injected dose per gram
- 212Pb
- BSA, bovine serum albumin
- EGFR, epidermal growth factor receptor
- HER1
- HulgG, human immunoglobulin
- MS, median survival
- PBS, phosphate-buffered saline
- PET, positron emission tomography
- RIT, radioimmunotherapy
- TCMC, 1,4,7,10-tetraaza-1,4,7,10-tetra-(2-carbamoyl methyl)-cyclododecane
- cetuximab
- i.p., intraperitoneal
- mAb, monoclonal antibody
- radioimmunotherapy
- s.c, subcutaneous
- α-particle
Collapse
Affiliation(s)
- Diane E Milenic
- a Radioimmune & Inorganic Chemistry Section; Radiation Oncology Branch; Center for Cancer Research; National Cancer Institute; National Institutes of Health ; Bethesda MD USA
| | | | | | | |
Collapse
|
33
|
Dietrich A, Koi L, Zöphel K, Sihver W, Kotzerke J, Baumann M, Krause M. Improving external beam radiotherapy by combination with internal irradiation. Br J Radiol 2015; 88:20150042. [PMID: 25782328 DOI: 10.1259/bjr.20150042] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/06/2023] Open
Abstract
The efficacy of external beam radiotherapy (EBRT) is dose dependent, but the dose that can be applied to solid tumour lesions is limited by the sensitivity of the surrounding tissue. The combination of EBRT with systemically applied radioimmunotherapy (RIT) is a promising approach to increase efficacy of radiotherapy. Toxicities of both treatment modalities of this combination of internal and external radiotherapy (CIERT) are not additive, as different organs at risk are in target. However, advantages of both single treatments are combined, for example, precise high dose delivery to the bulk tumour via standard EBRT, which can be increased by addition of RIT, and potential targeting of micrometastases by RIT. Eventually, theragnostic radionuclide pairs can be used to predict uptake of the radiotherapeutic drug prior to and during therapy and find individual patients who may benefit from this treatment. This review aims to highlight the outcome of pre-clinical studies on CIERT and resultant questions for translation into the clinic. Few clinical data are available until now and reasons as well as challenges for clinical implementation are discussed.
Collapse
Affiliation(s)
- A Dietrich
- 1 German Cancer Consortium (DKTK) Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany.,2 OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - L Koi
- 2 OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany.,3 Department of Radiation Oncology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - K Zöphel
- 1 German Cancer Consortium (DKTK) Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany.,2 OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany.,4 Clinic and Policlinic for Nuclear Medicine, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - W Sihver
- 5 Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - J Kotzerke
- 1 German Cancer Consortium (DKTK) Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany.,2 OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany.,4 Clinic and Policlinic for Nuclear Medicine, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - M Baumann
- 1 German Cancer Consortium (DKTK) Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany.,2 OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany.,3 Department of Radiation Oncology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,6 Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiooncology, Dresden, Germany
| | - M Krause
- 1 German Cancer Consortium (DKTK) Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany.,2 OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany.,3 Department of Radiation Oncology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,6 Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiooncology, Dresden, Germany
| |
Collapse
|
34
|
Chellan P, Sadler PJ. The elements of life and medicines. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2015; 373:20140182. [PMID: 25666066 PMCID: PMC4342972 DOI: 10.1098/rsta.2014.0182] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 05/05/2023]
Abstract
Which elements are essential for human life? Here we make an element-by-element journey through the periodic table and attempt to assess whether elements are essential or not, and if they are, whether there is a relevant code for them in the human genome. There are many difficulties such as the human biochemistry of several so-called essential elements is not well understood, and it is not clear how we should classify elements that are involved in the destruction of invading microorganisms, or elements which are essential for microorganisms with which we live in symbiosis. In general, genes do not code for the elements themselves, but for specific chemical species, i.e. for the element, its oxidation state, type and number of coordinated ligands, and the coordination geometry. Today, the biological periodic table is in a position somewhat similar to Mendeleev's chemical periodic table of 1869: there are gaps and we need to do more research to fill them. The periodic table also offers potential for novel therapeutic and diagnostic agents, based on not only essential elements, but also non-essential elements, and on radionuclides. Although the potential for inorganic chemistry in medicine was realized more than 2000 years ago, this area of research is still in its infancy. Future advances in the design of inorganic drugs require more knowledge of their mechanism of action, including target sites and metabolism. Temporal speciation of elements in their biological environments at the atomic level is a major challenge, for which new methods are urgently needed.
Collapse
Affiliation(s)
- Prinessa Chellan
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK
| | - Peter J Sadler
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK
| |
Collapse
|
35
|
Dash A, Pillai MRA, Knapp FF. Production of (177)Lu for Targeted Radionuclide Therapy: Available Options. Nucl Med Mol Imaging 2015; 49:85-107. [PMID: 26085854 DOI: 10.1007/s13139-014-0315-z] [Citation(s) in RCA: 154] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/22/2014] [Revised: 12/20/2014] [Accepted: 12/23/2014] [Indexed: 10/24/2022] Open
Abstract
BACKGROUND This review provides a comprehensive summary of the production of (177)Lu to meet expected future research and clinical demands. Availability of options represents the cornerstone for sustainable growth for the routine production of adequate activity levels of (177)Lu having the required quality for preparation of a variety of (177)Lu-labeled radiopharmaceuticals. The tremendous prospects associated with production of (177)Lu for use in targeted radionuclide therapy (TRT) dictate that a holistic consideration should evaluate all governing factors that determine its success. METHODS While both "direct" and "indirect" reactor production routes offer the possibility for sustainable (177)Lu availability, there are several issues and challenges that must be considered to realize the full potential of these production strategies. RESULTS This article presents a mini review on the latest developments, current status, key challenges and possibilities for the near future. CONCLUSION A broad understanding and discussion of the issues associated with (177)Lu production and processing approaches would not only ensure sustained growth and future expansion for the availability and use of (177)Lu-labeled radiopharmaceuticals, but also help future developments.
Collapse
Affiliation(s)
- Ashutosh Dash
- Isotope Production and Applications Division, Bhabha Atomic Research Centre (BARC), Trombay, Mumbai 400 085 India
| | | | - Furn F Knapp
- Medical Isotopes Program, Isotope Development Group, Oak Ridge National Laboratory (ORNL), P.O. Box 2008, MS 6229, Bldg, 4501, 1 Bethel Valley Road,, Oak Ridge, TN 37831-6229 USA
| |
Collapse
|