1
|
Darrigues E, Nima ZA, Griffin RJ, Anderson JM, Biris AS, Rodriguez A. 3D cultures for modeling nanomaterial-based photothermal therapy. NANOSCALE HORIZONS 2020; 5:400-430. [PMID: 32118219 DOI: 10.1039/c9nh00628a] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Photothermal therapy (PTT) is one of the most promising techniques for cancer tumor ablation. Nanoparticles are increasingly being investigated for use with PTT and can serve as theranostic agents. Based on the ability of near-infrared nano-photo-absorbers to generate heat under laser irradiation, PTT could prove advantageous in certain situations over more classical cancer therapies. To analyze the efficacy of nanoparticle-based PTT, preclinical in vitro studies typically use 2D cultures, but this method cannot completely mimic the complex tumor organization, bioactivity, and physiology that all control the complex penetration depth, biodistribution, and tissue diffusion parameters of nanomaterials in vivo. To fill this knowledge gap, 3D culture systems have been explored for PTT analysis. These models provide more realistic microenvironments that allow spatiotemporal oxygen gradients and cancer cell adaptations to be considered. This review highlights the work that has been done to advance 3D models for cancer microenvironment modeling, specifically in the context of advanced, functionalized nanoparticle-directed PTT.
Collapse
Affiliation(s)
- Emilie Darrigues
- Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, 2801 S University Avenue, Little Rock, AR 72204, USA.
| | | | | | | | | | | |
Collapse
|
2
|
Conci C, Bennati L, Bregoli C, Buccino F, Danielli F, Gallan M, Gjini E, Raimondi MT. Tissue engineering and regenerative medicine strategies for the female breast. J Tissue Eng Regen Med 2019; 14:369-387. [PMID: 31825164 PMCID: PMC7065113 DOI: 10.1002/term.2999] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 11/06/2019] [Accepted: 11/11/2019] [Indexed: 12/16/2022]
Abstract
The complexity of mammary tissue and the variety of cells involved make tissue regeneration an ambitious goal. This review, supported by both detailed macro and micro anatomy, illustrates the potential of regenerative medicine in terms of mammary gland reconstruction to restore breast physiology and morphology, damaged by mastectomy. Despite the widespread use of conventional therapies, many critical issues have been solved using the potential of stem cells resident in adipose tissue, leading to commercial products. in vitro research has reported that adipose stem cells are the principal cellular source for reconstructing adipose tissue, ductal epithelium, and nipple structures. In addition to simple cell injection, construct made by cells seeded on a suitable biodegradable scaffold is a viable alternative from a long‐term perspective. Preclinical studies on mice and clinical studies, most of which have reached Phase II, are essential in the commercialization of cellular therapy products. Recent studies have revealed that the enrichment of fat grafting with stromal vascular fraction cells is a viable alternative to breast reconstruction. Although in the future, organ‐on‐a‐chip can be envisioned, for the moment researchers are still focusing on therapies that are a long way from regenerating the whole organ, but which nevertheless prevent complications, such as relapse and loss in terms of morphology.
Collapse
Affiliation(s)
- Claudio Conci
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| | - Lorenzo Bennati
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| | - Chiara Bregoli
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| | - Federica Buccino
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| | - Francesca Danielli
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| | - Michela Gallan
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| | - Ereza Gjini
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| | - Manuela T Raimondi
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| |
Collapse
|
3
|
Recapitulating spatiotemporal tumor heterogeneity in vitro through engineered breast cancer microtissues. Acta Biomater 2018; 73:236-249. [PMID: 29679778 DOI: 10.1016/j.actbio.2018.04.028] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 04/13/2018] [Accepted: 04/16/2018] [Indexed: 01/14/2023]
Abstract
Tumor and microenvironmental heterogeneity hinders the study of breast cancer biology and the assessment of therapeutic strategies, being associated with high variability and drug resistance. In this context, it is mandatory to develop three-dimensional breast tumor models able to reproduce this heterogeneity and the dynamic interaction occurring between tumor cells and microenvironment. Here we show a new breast cancer microtissue model (T-µTP) uniquely able to present intra-tumor morphological heterogeneity in a dynamic and responsive endogenous matrix. T-µTP consists of adenocarcinoma cells, endothelial cells and stromal fibroblasts. These three kinds of cells are totally embedded into an endogenous matrix which is rich in collagen and hyaluronic acid and it is directly produced by human fibroblasts. In this highly physiologically relevant environment, tumor cells evolve in different cluster morphologies recapitulating tumor spatiotemporal heterogeneity. Moreover they activate the desmoplastic and vascular reaction with affected collagen content, assembly and organization and the presence of aberrant capillary-like structures (CLS). Thus, T-µTP allows to outline main crucial events involved in breast cancer progression into a single model overcoming the limit of artificial extra cellular matrix surrogates. We strongly believe that T-µTP is a suitable model for the study of breast cancer and for drug screening assays following key parameters of clinical interest. STATEMENT OF SIGNIFICANCE Tumor and microenvironmental heterogeneity makes very hurdle to find a way to study and treat breast cancer. Here we develop an innovative 3D tumor microtissue model recapitulating in vitro tumor heterogeneity. Tumor microtissues are characterized by the activation of the stromal and vascular reaction too. We underline the importance to mimic different microenvironmental tumor features in the same time and in a single tissue in order to obtain a model of spatiotemporal tumor genesis and progression, suitable for the study of tumor treatment and resistance.
Collapse
|
4
|
Lloyd CC, Boyce MW, Lockett MR. Paper-based Invasion Assays for Quantifying Cellular Movement in Three-dimensional Tissue-like Structures. ACTA ACUST UNITED AC 2017. [PMID: 28628202 DOI: 10.1002/cpch.22] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
To elucidate the chemical and environmental conditions that promote invasion of cancer cells, an assay is needed in which the chemical landscape of a tumor-like environment can be experimentally manipulated and probed. The three-dimensional paper-based invasion assays described here simulate poorly vascularized tissue and allow the invasion of cancerous cells to be visualized and quantified. These cultures are easy to assemble and allow multiple invasion assays to be performed in parallel. By using different materials to control gradients formed across the culture, the chemotactic potential of small molecules can be evaluated in a more representative tissue microenvironment. © 2017 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- C Chad Lloyd
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Matthew W Boyce
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Matthew R Lockett
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
5
|
Halfter K, Hoffmann O, Ditsch N, Ahne M, Arnold F, Paepke S, Grab D, Bauerfeind I, Mayer B. Testing chemotherapy efficacy in HER2 negative breast cancer using patient-derived spheroids. J Transl Med 2016; 14:112. [PMID: 27142386 PMCID: PMC4855689 DOI: 10.1186/s12967-016-0855-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 04/06/2016] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Targeted anti-HER2 therapy has greatly improved the prognosis for many breast cancer patients. However, treatment for HER2 negative disease is currently still selected from a multitude of untargeted chemotherapeutic treatment options. A predictive test was developed using patient-derived spheroids to identify the most effective therapy for patients with HER2 negative breast cancer of all stages, for clinically relevant subgroups, as well as individual patients. METHODS Tumor samples from 120 HER2 negative patients obtained through biopsy or surgical excision were tested in the breast cancer spheroid model using scaffold-free cell culture. Similarly, spheroids were also generated from established HER2 negative breast cancer cell lines T-47D, MCF7, HCC1143, and HCC1937 to compare treatment efficacy of heterogeneous cell populations from patient tumor tissue with homogeneous cell lines. Spheroids were treated in vitro with guideline-recommended compounds. Treatment mediated impact on cell survival was subsequently quantified using an ATP assay. RESULTS Differences were observed in the metabolic activity of the untreated spheroids, whereby cell lines consistently achieved higher values compared to tissue spheroids (p < 0.001). A higher number of cells per spheroid correlated with a higher basal metabolic activity in tissue-derived spheroids (p < 0.01), while the opposite was observed for cell line spheroids (p < 0.01). Recurrent tumors showed a higher mean vitality (p < 0.01) compared to primary tumors. Except for taxanes, treatment efficacy for most tested compounds differed significantly between breast cancer tissue spheroids and breast cancer cell lines. Overall a high variability in treatment response in vitro was seen in the tissue spheroids regardless of the tested substances. A greater response to anthracycline/docetaxel was observed for hormone receptor negative samples (p < 0.01). A higher response to 5-FU (p < 0.01) and anthracycline (p < 0.05) was seen in high grade tumors. Smaller tumor size and negative lymph node status were both associated with a higher treatment efficacy to anthracycline treatment combined with 5-FU (cT1/2 vs cT3/4, p = 0.035, cN+ vs cN-, p < 0.05). CONCLUSIONS The tissue spheroid model reflects current guideline treatment recommendations for HER2 negative breast cancer, whereas tested cell lines did not. This model represents a unique diagnostic method to select the most effective therapy out of several equivalent treatment options.
Collapse
Affiliation(s)
- Kathrin Halfter
- />SpheroTec GmbH, Am Klopferspitz 19, 82152 Martinsried, Germany
| | - Oliver Hoffmann
- />SpheroTec GmbH, Am Klopferspitz 19, 82152 Martinsried, Germany
| | - Nina Ditsch
- />Department of Obstetrics and Gynecology, Hospital of the University of Munich, Marchioninistr. 15, 81377 Munich, Germany
| | - Mareike Ahne
- />SpheroTec GmbH, Am Klopferspitz 19, 82152 Martinsried, Germany
| | - Frank Arnold
- />Department of General, Visceral, and Transplantation Surgery, Hospital of the LMU Munich, Marchioninistr. 15, 81377 Munich, Germany
| | - Stefan Paepke
- />Department of Gynecology and Obstetrics, Technical University Munich, Ismaninger Str. 22, 81675 Munich, Germany
| | - Dieter Grab
- />Klinikum Harlaching, Sanatoriumsplatz 2, 81545 Munich, Germany
| | - Ingo Bauerfeind
- />Klinikum Landshut, Robert-Koch-Str. 1, 8434 Landshut, Germany
| | - Barbara Mayer
- />SpheroTec GmbH, Am Klopferspitz 19, 82152 Martinsried, Germany
- />Department of General, Visceral, and Transplantation Surgery, Hospital of the LMU Munich, Marchioninistr. 15, 81377 Munich, Germany
| |
Collapse
|
6
|
Morrissey B, Blyth K, Carter P, Chelala C, Holen I, Jones L, Speirs V. SEARCHBreast Workshop Proceedings: 3D Modelling of Breast Cancer. Altern Lab Anim 2016; 43:367-75. [PMID: 26753939 DOI: 10.1177/026119291504300604] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
SEARCHBreast, a UK initiative supported by the NC3Rs, organised a workshop entitled 3D Modelling of Breast Cancer. The workshop focused on providing researchers with solutions to overcome some of the perceived barriers to working with human-derived tumour cells, cell lines and tissues, namely: a) the limited access to human-derived material; and b) the difficulty in working with these samples. The workshop presentations provided constructive advice and information on how to best prepare human cells or tissues for further downstream applications. Techniques in developing primary cultures from patient samples, and considerations when preserving tissue slices, were discussed. A common theme throughout the workshop was the importance of ensuring that the cells are grown in conditions as similar to the in vivo microenvironment as possible. Comparisons of the advantages of several in vitro options, such as primary cell cultures, cell line cultures, explants or tissue slices, suggest that all offer great potential applications for breast cancer research, and highlight that it need not be a case of choosing one over the other. The workshop also offered cutting-edge examples of on-chip technologies and 3-D tumour modelling by using virtual pathology, which can contribute to clinically relevant studies and provide insights into breast cancer metastatic mechanisms.
Collapse
Affiliation(s)
- Bethny Morrissey
- Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| | - Karen Blyth
- Cancer Research UK Beatson Institute, Glasgow, UK
| | | | | | | | | | - Valerie Speirs
- Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| |
Collapse
|
7
|
Truong AS, Lochbaum CA, Boyce MW, Lockett MR. Tracking the Invasion of Small Numbers of Cells in Paper-Based Assays with Quantitative PCR. Anal Chem 2015; 87:11263-70. [PMID: 26507077 DOI: 10.1021/acs.analchem.5b02362] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Paper-based scaffolds are an attractive material for culturing mammalian cells in a three-dimensional environment. There are a number of previously published studies, which utilize these scaffolds to generate models of aortic valves, cardiac ischemia and reperfusion, and solid tumors. These models have largely relied on fluorescence imaging and microscopy to quantify cells in the scaffolds. We present here a polymerase chain reaction (PCR)-based method, capable of quantifying multiple cell types in a single culture with the aid of DNA barcodes: unique sequences of DNA introduced to the genome of individual cells or cell types through lentiviral transduction. PCR-based methods are highly specific and are amenable to high-throughput and multiplexed analyses. To validate this method, we engineered two different breast cancer lines to constitutively express either a green or red fluorescent protein. These cells lines allowed us to directly compare the ability of fluorescence imaging (of the fluorescent proteins) and qPCR (of the unique DNA sequences of the fluorescent proteins) to quantify known numbers of cells in the paper based-scaffolds. We also used both methods to quantify the distribution of these breast cell lines in homotypic and heterotypic invasion assays. In the paper-based invasion assays, a single sheet of paper containing cells suspended in a hydrogel was sandwiched between sheets of paper containing only hydrogel. The stack was incubated, and the cells invaded the adjacent layers. The individual sheets of the invasion assay were then destacked and the number of cells in each layer quantified. Our results show both methods can accurately detect cell populations of greater than 500 cells. The qPCR method can repeatedly and accurately detect as few as 50 cells, allowing small populations of highly invasive cells to be detected and differentiated from other cell types.
Collapse
Affiliation(s)
- Andrew S Truong
- Department of Chemistry, University of North Carolina at Chapel Hill , Kenan and Caudill Laboratories, 125 South Road, Chapel Hill, North Carolina 27599-3290, United States
| | - Christian A Lochbaum
- Department of Chemistry, University of North Carolina at Chapel Hill , Kenan and Caudill Laboratories, 125 South Road, Chapel Hill, North Carolina 27599-3290, United States
| | - Matthew W Boyce
- Department of Chemistry, University of North Carolina at Chapel Hill , Kenan and Caudill Laboratories, 125 South Road, Chapel Hill, North Carolina 27599-3290, United States
| | - Matthew R Lockett
- Department of Chemistry, University of North Carolina at Chapel Hill , Kenan and Caudill Laboratories, 125 South Road, Chapel Hill, North Carolina 27599-3290, United States.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill , 450 West Drive, Chapel Hill, North Carolina 27599-7295, United States
| |
Collapse
|