1
|
O'Neill N, Schran C, Cox SJ, Michaelides A. Crumbling crystals: on the dissolution mechanism of NaCl in water. Phys Chem Chem Phys 2024; 26:26933-26942. [PMID: 39417378 PMCID: PMC11483817 DOI: 10.1039/d4cp03115f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/10/2024] [Indexed: 10/19/2024]
Abstract
Dissolution of ionic salts in water is ubiquitous, particularly for NaCl. However, an atomistic scale understanding of the process remains elusive. Simulations lend themselves conveniently to studying dissolution since they provide the spatio-temporal resolution that can be difficult to obtain experimentally. Nevertheless, the complexity of various inter- and intra-molecular interactions require careful treatment and long time scale simulations, both of which are typically hindered by computational expense. Here, we use advances in machine learning potential methodology to resolve at an ab initio level of theory the dissolution mechanism of NaCl in water. The picture that emerges is that of a steady ion-wise unwrapping of the crystal preceding its rapid disintegration, reminiscent of crumbling. The onset of crumbling can be explained by a strong increase in the ratio of the surface area to volume of the crystal. Overall, dissolution comprises a series of highly dynamical microscopic sub-processes, resulting in an inherently stochastic mechanism. These atomistic level insights contribute to the general understanding of dissolution mechanisms in other crystals, and the methodology is primed for more complex systems of recent interest such as water/salt interfaces under flow and salt crystals under confinement.
Collapse
Affiliation(s)
- Niamh O'Neill
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, CB3 0HE, UK.
- Lennard-Jones Centre, University of Cambridge, Trinity Ln, Cambridge, CB2 1TN, UK
| | - Christoph Schran
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, CB3 0HE, UK.
- Lennard-Jones Centre, University of Cambridge, Trinity Ln, Cambridge, CB2 1TN, UK
| | - Stephen J Cox
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
- Lennard-Jones Centre, University of Cambridge, Trinity Ln, Cambridge, CB2 1TN, UK
| | - Angelos Michaelides
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
- Lennard-Jones Centre, University of Cambridge, Trinity Ln, Cambridge, CB2 1TN, UK
| |
Collapse
|
2
|
Casalini T, Mann J, Pepin X. Predicting Surface pH in Unbuffered Conditions for Acids, Bases, and Their Salts - A Review of Modeling Approaches and Their Performance. Mol Pharm 2024; 21:513-534. [PMID: 38127789 DOI: 10.1021/acs.molpharmaceut.3c00661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Dissolution of ionizable drugs and their salts is a function of drug surface solubility driven by the surface pH, i.e., the microenvironmental pH at the solid/liquid interface, which will deviate from bulk pH when there is an acid-base reaction occurring at the solid/liquid interface. In this work, we first present a brief overview of the modeling approaches available in the literature, classified according to the rate-determining step assumed in the dissolution process. In the second part, we present and evaluate the prediction performance of two different modeling approaches for surface pH. The first method relies only on thermodynamic equilibria, while the second method accounts for transport phenomena of charged compounds through the diffusional boundary layer using the Nernst - Planck equation. Model outcomes are compared with experimental data taken from the literature and obtained during this work. In terms of surface pH predictions, the models provide identical values for weak acids or weak bases. The models' outcomes for bases are in good agreement with experimental data in acidic conditions (bulk pH 1-4), while overpredictions are observed in the 5-7 bulk pH range in a system-dependent manner. Deviations can be related to the effect of surface dissolution (also referred to as surface reaction), which may become a controlling mechanism and slow the replenishment of the unionized drug at the surface of the crystal. Surface pH predictions for acids are generally in good agreement with experiments, with a slight underestimation for some drug examples, which could be related to errors in intrinsic solubility determination or to the assumption of thermodynamic equilibrium at the surface of the drug. A good agreement is also observed for salts with the thermodynamic model except for mesylate salts, suggesting that other phenomena, not currently included in the thermodynamic equilibrium model, may determine the surface pH.
Collapse
Affiliation(s)
- Tommaso Casalini
- Oral Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Gothenburg 431 50, Sweden
| | - James Mann
- Oral Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield SK10 2NA, U.K
| | - Xavier Pepin
- New Modalities & Parenteral Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield SK10 2NA, U.K
| |
Collapse
|
3
|
Wang N, Zhang Y, Wang W, Ye Z, Chen H, Hu G, Ouyang D. How can machine learning and multiscale modeling benefit ocular drug development? Adv Drug Deliv Rev 2023; 196:114772. [PMID: 36906232 DOI: 10.1016/j.addr.2023.114772] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/06/2023] [Accepted: 03/05/2023] [Indexed: 03/12/2023]
Abstract
The eyes possess sophisticated physiological structures, diverse disease targets, limited drug delivery space, distinctive barriers, and complicated biomechanical processes, requiring a more in-depth understanding of the interactions between drug delivery systems and biological systems for ocular formulation development. However, the tiny size of the eyes makes sampling difficult and invasive studies costly and ethically constrained. Developing ocular formulations following conventional trial-and-error formulation and manufacturing process screening procedures is inefficient. Along with the popularity of computational pharmaceutics, non-invasive in silico modeling & simulation offer new opportunities for the paradigm shift of ocular formulation development. The current work first systematically reviews the theoretical underpinnings, advanced applications, and unique advantages of data-driven machine learning and multiscale simulation approaches represented by molecular simulation, mathematical modeling, and pharmacokinetic (PK)/pharmacodynamic (PD) modeling for ocular drug development. Following this, a new computer-driven framework for rational pharmaceutical formulation design is proposed, inspired by the potential of in silico explorations in understanding drug delivery details and facilitating drug formulation design. Lastly, to promote the paradigm shift, integrated in silico methodologies were highlighted, and discussions on data challenges, model practicality, personalized modeling, regulatory science, interdisciplinary collaboration, and talent training were conducted in detail with a view to achieving more efficient objective-oriented pharmaceutical formulation design.
Collapse
Affiliation(s)
- Nannan Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences (ICMS), University of Macau, Macau, China
| | - Yunsen Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences (ICMS), University of Macau, Macau, China
| | - Wei Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences (ICMS), University of Macau, Macau, China
| | - Zhuyifan Ye
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences (ICMS), University of Macau, Macau, China
| | - Hongyu Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences (ICMS), University of Macau, Macau, China; Faculty of Science and Technology (FST), University of Macau, Macau, China
| | - Guanghui Hu
- Faculty of Science and Technology (FST), University of Macau, Macau, China
| | - Defang Ouyang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences (ICMS), University of Macau, Macau, China; Department of Public Health and Medicinal Administration, Faculty of Health Sciences (FHS), University of Macau, Macau, China.
| |
Collapse
|
4
|
Tanaka S, Yamamoto N, Kasahara K, Ishii Y, Matubayasi N. Crystal Growth of Urea and Its Modulation by Additives as Analyzed by All-Atom MD Simulation and Solution Theory. J Phys Chem B 2022; 126:5274-5290. [DOI: 10.1021/acs.jpcb.2c01764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Senri Tanaka
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Naoki Yamamoto
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Kento Kasahara
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Yoshiki Ishii
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Nobuyuki Matubayasi
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| |
Collapse
|
5
|
Shan X, Luo L, Yu Z, You J. Recent advances in versatile inverse lyotropic liquid crystals. J Control Release 2022; 348:1-21. [PMID: 35636617 DOI: 10.1016/j.jconrel.2022.05.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/19/2022] [Accepted: 05/21/2022] [Indexed: 01/01/2023]
Abstract
Owing to the rapid and significant progress in advanced materials and life sciences, nanotechnology is increasingly gaining in popularity. Among numerous bio-mimicking carriers, inverse lyotropic liquid crystals are known for their unique properties. These carriers make accommodation of molecules with varied characteristics achievable due to their complicated topologies. Besides, versatile symmetries of inverse LCNPs (lyotropic crystalline nanoparticles) and their aggregating bulk phases allow them to be applied in a wide range of fields including drug delivery, food, cosmetics, material sciences etc. In this review, in-depth summary, discussion and outlook for inverse lyotropic liquid crystals are provided.
Collapse
Affiliation(s)
- Xinyu Shan
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Lihua Luo
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Zhixin Yu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Jian You
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
6
|
Thakore SD, Sirvi A, Joshi VC, Panigrahi SS, Manna A, Singh R, Sangamwar AT, Bansal AK. Biorelevant dissolution testing and physiologically based absorption modeling to predict in vivo performance of supersaturating drug delivery systems. Int J Pharm 2021; 607:120958. [PMID: 34332060 DOI: 10.1016/j.ijpharm.2021.120958] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 07/08/2021] [Accepted: 07/26/2021] [Indexed: 11/29/2022]
Abstract
Supersaturating drug delivery systems (SDDS) enhance the oral absorption of poorly water-soluble drugs by achieving a supersaturated state in the gastrointestinal tract. The maintenance of a supersaturated state is decided by the complex interplay among inherent properties of drug, excipients and physiological conditions of gastrointestinal tract. The biopharmaceutical advantage through SDDS can be mechanistically investigated by coupling biopredictive dissolution testing with physiologically based absorption modeling (PBAM). However, the development of biopredictive dissolution methods possess challenges due to concurrent dissolution, supersaturation, precipitation, and possible redissolution of precipitates during gastrointestinal transit of SDDS. In this comprehensive review, our effort is to critically assess the current state-of-knowledge and provide future directions for PBAM of SDDS. The review outlines various methods used to retrieve physiologically relevant values for input parameters like solubility, dissolution, precipitation, lipid-digestion and permeability of SDDS. SDDS-specific parameterization includes solubility values corresponding to apparent physical form, dissolution in physiologically relevant volumes with biorelevant media, and transfer experiments to incorporate precipitation kinetics. Interestingly, the lack of experimental permeability values and modification of absorption flux through SDDS possess the additional challenge for its PBAM. Supersaturation triggered permeability modifications are reported to fit the observed plasma concentration-time profile. Hence, the experimental insights on good fitting with modified permeability can be potential area of future research for the development of in vitro methods to reliably predict oral absorption of SDDS.
Collapse
Affiliation(s)
- Samarth D Thakore
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Mohali, Punjab 160062, India
| | - Arvind Sirvi
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Mohali, Punjab 160062, India
| | - Vikram C Joshi
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Mohali, Punjab 160062, India
| | - Sanjali S Panigrahi
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Mohali, Punjab 160062, India
| | - Arijita Manna
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Mohali, Punjab 160062, India
| | - Ridhima Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Mohali, Punjab 160062, India
| | - Abhay T Sangamwar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Mohali, Punjab 160062, India
| | - Arvind K Bansal
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Mohali, Punjab 160062, India.
| |
Collapse
|
7
|
Civati F, O’Malley C, Erxleben A, McArdle P. Factors Controlling Persistent Needle Crystal Growth: The Importance of Dominant One-Dimensional Secondary Bonding, Stacked Structures, and van der Waals Contact. CRYSTAL GROWTH & DESIGN 2021; 21:3449-3460. [PMID: 34267600 PMCID: PMC8273860 DOI: 10.1021/acs.cgd.1c00217] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/11/2021] [Indexed: 05/25/2023]
Abstract
Needle crystals can cause filtering and handling problems in industrial settings, and the factors leading to a needle crystal morphology have been investigated. The crystal growth of the amide and methyl, ethyl, isopropyl, and t-butyl esters of diflunisal have been examined, and needle growth has been observed for all except the t-butyl ester. Their crystal structures show that the t-butyl ester is the only structure that does not contain molecular stacking. A second polymorph of a persistent needle forming phenylsulfonamide with a block like habit has been isolated. The structure analysis has been extended to known needle forming systems from the literature. The intermolecular interactions in needle forming structures have been analyzed using the PIXEL program, and the properties driving needle crystal growth were found to include a 1D motif with interaction energy greater than -30 kJ/mol, at least 50% vdW contact between the motif neighbors, and a filled unit cell which is a monolayer. Crystal structures are classified into persistent and controllable needle formers. Needle growth in the latter class can be controlled by choice of solvent. The factors shown here to be drivers of needle growth will help in the design of processes for the production of less problematic crystal products.
Collapse
Affiliation(s)
- Francesco Civati
- School
of Chemistry, National University of Ireland, Galway H91TK33, Ireland
- Synthesis
and Solid State Pharmaceutical Centre (SSPC), Limerick V94T9PX, Ireland
| | - Ciaran O’Malley
- School
of Chemistry, National University of Ireland, Galway H91TK33, Ireland
| | - Andrea Erxleben
- School
of Chemistry, National University of Ireland, Galway H91TK33, Ireland
- Synthesis
and Solid State Pharmaceutical Centre (SSPC), Limerick V94T9PX, Ireland
| | - Patrick McArdle
- School
of Chemistry, National University of Ireland, Galway H91TK33, Ireland
| |
Collapse
|
8
|
Wang K, Li Z, Huang Y, YaotianTao, Liang X, Chu X, He N, Gui S, Li Z. Additives-directed lyotropic liquid crystals architecture: Simulations and experiments. Int J Pharm 2021; 600:120353. [PMID: 33549811 DOI: 10.1016/j.ijpharm.2021.120353] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 01/17/2021] [Accepted: 01/29/2021] [Indexed: 10/22/2022]
Abstract
In this study, alkanes and sucrose esters are employed to investigate the influence of additives on lyotropic liquid crystal architecture. After molecular dynamic simulations and experiment characterization, we showed how the additives control the structure of LLCs. By controlling the polarity of additives, the phase behavior of LLCs can be engineered to form the required structure. Dissipative particle dynamics (DPD) is introduced for simulating the self-assembly of phytantriol (PT), providing intuitionistic images and structure information, which shows that additives with low-polarity complicate the internal structure of liquid crystal systems. Then the ternary phase diagrams of additives, PT, and water are constructed to systematically study the effects of additives on the phase behavior of LLCs. Consistent with DPD simulation results, there is a certain regularity in the effects of additives on the structure of liquid crystals. The difference in the structure of LLCs is due to the variability in the critical packing parameter (CPP) obtained by changing the polarity of additives. Our findings demonstrate that additives polarity is a key factor in LLCs structure, and may pave a promising avenue for novel LLCs development and translation, determining the self-assembly process and the resulting phase of LLCs.
Collapse
Affiliation(s)
- Kang Wang
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Zhi Li
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Yiming Huang
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - YaotianTao
- Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, China; Engineering Technology Research Center of Modernized Pharmaceutics Anhui Education Department (AUCM), China; Anhui Province Key Laboratory of Pharmaceutical Technology and Application (Anhui University of Chinese Medicine), Hefei, China
| | - Xiao Liang
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Xiaoqin Chu
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China; Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, China; Engineering Technology Research Center of Modernized Pharmaceutics Anhui Education Department (AUCM), China; Anhui Province Key Laboratory of Pharmaceutical Technology and Application (Anhui University of Chinese Medicine), Hefei, China
| | - Ning He
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China; Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, China; Engineering Technology Research Center of Modernized Pharmaceutics Anhui Education Department (AUCM), China; Anhui Province Key Laboratory of Pharmaceutical Technology and Application (Anhui University of Chinese Medicine), Hefei, China
| | - Shuangying Gui
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China; Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, China; Engineering Technology Research Center of Modernized Pharmaceutics Anhui Education Department (AUCM), China; Anhui Province Key Laboratory of Pharmaceutical Technology and Application (Anhui University of Chinese Medicine), Hefei, China.
| | - Zhenbao Li
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China; Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, China; Engineering Technology Research Center of Modernized Pharmaceutics Anhui Education Department (AUCM), China; Anhui Province Key Laboratory of Pharmaceutical Technology and Application (Anhui University of Chinese Medicine), Hefei, China
| |
Collapse
|
9
|
Li A, Si Z, Yan Y, Zhang X. Solubility and thermodynamic properties of hydrate lenalidomide in phosphoric acid solution. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
10
|
Elts E, Briesen H. Capturing Crystal Shape Evolution from Molecular Simulations. J Chem Inf Model 2020; 60:6109-6119. [PMID: 33284626 DOI: 10.1021/acs.jcim.0c00944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A simple and efficient algorithm for tracking shape evolution of small-molecule organic crystals during molecular simulations is described. It is based on the reconstruction of a crystal surface from molecular coordinates using an alpha-shape triangulation algorithm followed by the DBSCAN clustering of neighboring triangles with similar normal vectors to crystal faces. No information except the unit cell parameters is needed beforehand, enabling the user to automatically detect not only existing but also new forming crystal faces and edges, which is valuable for prediction of growth and dissolution kinetics. The results are demonstrated for aspirin and paracetamol crystals.
Collapse
Affiliation(s)
- Ekaterina Elts
- Chair for Process Systems Engineering, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Heiko Briesen
- Chair for Process Systems Engineering, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| |
Collapse
|
11
|
Gobbo D, Ballone P, Decherchi S, Cavalli A. Solubility Advantage of Amorphous Ketoprofen. Thermodynamic and Kinetic Aspects by Molecular Dynamics and Free Energy Approaches. J Chem Theory Comput 2020; 16:4126-4140. [PMID: 32463689 DOI: 10.1021/acs.jctc.0c00166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Thermodynamic and kinetic aspects of crystalline (c-KTP) and amorphous (a-KTP) ketoprofen dissolution in water have been investigated by molecular dynamics simulation focusing on free energy properties. Absolute free energies of all relevant species and phases have been determined by thermodynamic integration on a novel path, first connecting the harmonic to the anharmonic system Hamiltonian at low T and then extending the result to the temperature of interest. The free energy required to transfer one ketoprofen molecule from the crystal to the solution is in fair agreement with the experimental value. The absolute free energy of the amorphous form is 19.58 kJ/mol higher than for the crystal, greatly enhancing the ketoprofen concentration in water, although as a metastable species in supersaturated solution. The kinetics of the dissolution process has been analyzed by computing the free energy profile along a reaction coordinate bringing one ketoprofen molecule from the crystal or amorphous phase to the solvated state. This computation confirms that, compared to the crystal form, the dissolution rate is nearly 7 orders of magnitude faster for the amorphous form, providing one further advantage to the latter in terms of bioavailability. The problem of drug solubility, of great practical importance, is used here as a test bed for a refined method to compute absolute free energies, which could be of great interest in biophysics and drug discovery in particular.
Collapse
Affiliation(s)
- D Gobbo
- Computational and Chemical Biology, Fondazione Istituto Italiano di Tecnologia, Genova 16163, Italy
| | - P Ballone
- Computational and Chemical Biology, Fondazione Istituto Italiano di Tecnologia, Genova 16163, Italy.,School of Physics, University College Dublin, Dublin, Ireland.,Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - S Decherchi
- Computational and Chemical Biology, Fondazione Istituto Italiano di Tecnologia, Genova 16163, Italy
| | - A Cavalli
- Computational and Chemical Biology, Fondazione Istituto Italiano di Tecnologia, Genova 16163, Italy.,University of Bologna, Bologna 40126, Italy
| |
Collapse
|
12
|
Hutchins KM, Rupasinghe TP, Oburn SM, Ray KK, Tivanski AV, MacGillivray LR. Remarkable decrease in stiffness of aspirin crystals upon reducing crystal size to nanoscale dimensions via sonochemistry. CrystEngComm 2019. [DOI: 10.1039/c8ce00764k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nano-dimensional crystals of aspirin generated through sonochemistry exhibit Young's modulus values an order of magnitude softer than macro-dimensional crystals.
Collapse
Affiliation(s)
| | | | - Shalisa M. Oburn
- Department of Chemistry
- University of Iowa
- Iowa City
- 52242-1294 USA
| | - Kamal K. Ray
- Department of Chemistry
- University of Iowa
- Iowa City
- 52242-1294 USA
| | | | | |
Collapse
|
13
|
|
14
|
Karmakar T, Piaggi PM, Perego C, Parrinello M. A Cannibalistic Approach to Grand Canonical Crystal Growth. J Chem Theory Comput 2018; 14:2678-2683. [DOI: 10.1021/acs.jctc.8b00191] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tarak Karmakar
- Department of Chemistry and Applied Biosciences, ETH Zurich, c/o USI Campus, Via Giuseppe Buffi 13, CH-6900, Lugano, Ticino, Switzerland
- Facoltià di Informatica, Instituto di Scienze Computationali, Università della Svizzera Italiana (USI), Via Giuseppe Buffi 13, CH-6900, Lugano, Ticino, Switzerland
| | - Pablo M. Piaggi
- Theory and Simulation of Materials (THEOS), École Polytechnique Fiédérale de Lausanne, CH-1015 Lausanne, Switzerland
- Facoltià di Informatica, Instituto di Scienze Computationali, Università della Svizzera Italiana (USI), Via Giuseppe Buffi 13, CH-6900, Lugano, Ticino, Switzerland
| | - Claudio Perego
- Department of Chemistry and Applied Biosciences, ETH Zurich, c/o USI Campus, Via Giuseppe Buffi 13, CH-6900, Lugano, Ticino, Switzerland
- Facoltià di Informatica, Instituto di Scienze Computationali, Università della Svizzera Italiana (USI), Via Giuseppe Buffi 13, CH-6900, Lugano, Ticino, Switzerland
- Polymer Theory Department, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Michele Parrinello
- Department of Chemistry and Applied Biosciences, ETH Zurich, c/o USI Campus, Via Giuseppe Buffi 13, CH-6900, Lugano, Ticino, Switzerland
- Facoltià di Informatica, Instituto di Scienze Computationali, Università della Svizzera Italiana (USI), Via Giuseppe Buffi 13, CH-6900, Lugano, Ticino, Switzerland
| |
Collapse
|
15
|
Katiyar RS, Jha PK. Molecular simulations in drug delivery: Opportunities and challenges. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2018. [DOI: 10.1002/wcms.1358] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
| | - Prateek K. Jha
- Department of Chemical EngineeringIIT RoorkeeUttarakhandIndia
| |
Collapse
|
16
|
In Silico Prediction of Growth and Dissolution Rates for Organic Molecular Crystals: A Multiscale Approach. CRYSTALS 2017. [DOI: 10.3390/cryst7100288] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
17
|
Parks C, Koswara A, Tung HH, Nere NK, Bordawekar S, Nagy ZK, Ramkrishna D. Nanocrystal Dissolution Kinetics and Solubility Increase Prediction from Molecular Dynamics: The Case of α-, β-, and γ-Glycine. Mol Pharm 2017; 14:1023-1032. [PMID: 28271901 DOI: 10.1021/acs.molpharmaceut.6b00882] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Conor Parks
- School
of Chemical Engineering, Purdue University, 480 West Stadium Mall, West Lafayette, Indiana 47907, United States
| | - Andy Koswara
- School
of Chemical Engineering, Purdue University, 480 West Stadium Mall, West Lafayette, Indiana 47907, United States
| | - Hsien-Hsin Tung
- Process Research & Development, AbbVie, Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Nandkishor K. Nere
- Process Research & Development, AbbVie, Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Shailendra Bordawekar
- Process Research & Development, AbbVie, Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Zoltan K. Nagy
- School
of Chemical Engineering, Purdue University, 480 West Stadium Mall, West Lafayette, Indiana 47907, United States
| | - Doraiswami Ramkrishna
- School
of Chemical Engineering, Purdue University, 480 West Stadium Mall, West Lafayette, Indiana 47907, United States
| |
Collapse
|
18
|
|
19
|
Greiner M, Choscz C, Eder C, Elts E, Briesen H. Multiscale modeling of aspirin dissolution: from molecular resolution to experimental scales of time and size. CrystEngComm 2016. [DOI: 10.1039/c6ce00710d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Predicted absolute and face-specific rate constants of aspirin dissolution are incorporated in a simulation based on the equations of classical mass transfer to reproduce kinetic dissolution in experiment using a Jamin-type interferometer.
Collapse
Affiliation(s)
- Maximilian Greiner
- Chair for Process Systems Engineering
- Technische Universität München
- Freising 85354, Germany
| | - Carsten Choscz
- Chair for Process Systems Engineering
- Technische Universität München
- Freising 85354, Germany
| | - Cornelia Eder
- Chair for Process Systems Engineering
- Technische Universität München
- Freising 85354, Germany
| | - Ekaterina Elts
- Chair for Process Systems Engineering
- Technische Universität München
- Freising 85354, Germany
| | - Heiko Briesen
- Chair for Process Systems Engineering
- Technische Universität München
- Freising 85354, Germany
| |
Collapse
|