1
|
Samsoen S, Dudognon É, Le Fer G, Fournier D, Woisel P, Affouard F. Impact of the polymer dispersity on the properties of curcumin/polyvinylpyrrolidone amorphous solid dispersions. Int J Pharm 2024; 653:123895. [PMID: 38346598 DOI: 10.1016/j.ijpharm.2024.123895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/20/2024] [Accepted: 02/07/2024] [Indexed: 02/19/2024]
Abstract
Amorphous solid dispersions (ASD) are known to enhance the absorption of poorly water-soluble drugs. In this work we synthesise well-defined Polyvinylpyrrolidone (PVP) to establish the impact of dispersity and chain-end functionality on the physical properties of Curcumin (CUR)/PVP ASD. Thermodynamic characterisation of synthesised PVP emphasises a strong effect of the dispersity on the glass transition temperature (Tg), 50 °C higher for synthesised PVP than for commercial PVP K12 of same molar mass. This increase of Tg affects the thermodynamic properties of CUR/PVP ASD successfully formulated up to 70 wt% of CUR by milling or solvent evaporation. The evolution of both the Tg and CUR solubility values versus CUR content points out the development of fairly strong CUR-PVP interactions that strengthen the antiplasticising effect of PVP on the Tg of ASD. However, for ASD formulated with commercial PVP this effect is counterbalanced at low CUR content by a plasticising effect due to the shortest PVP chains. Moreover, the overlay of the phase and state diagrams highlights the strong impact of the polymer dispersity on the stability of CUR/PVP ASD. ASD formulated with low dispersity PVP are stable on larger temperature and concentration ranges than those formulated with PVP K12.
Collapse
Affiliation(s)
- Simon Samsoen
- Univ. Lille, CNRS, INRAE, Centrale Lille, UMR 8207 - UMET - Unité Matériaux et Transformations, F-59000, Lille, France
| | - Émeline Dudognon
- Univ. Lille, CNRS, INRAE, Centrale Lille, UMR 8207 - UMET - Unité Matériaux et Transformations, F-59000, Lille, France.
| | - Gaëlle Le Fer
- Univ. Lille, CNRS, INRAE, Centrale Lille, UMR 8207 - UMET - Unité Matériaux et Transformations, F-59000, Lille, France.
| | - David Fournier
- Univ. Lille, CNRS, INRAE, Centrale Lille, UMR 8207 - UMET - Unité Matériaux et Transformations, F-59000, Lille, France
| | - Patrice Woisel
- Univ. Lille, CNRS, INRAE, Centrale Lille, UMR 8207 - UMET - Unité Matériaux et Transformations, F-59000, Lille, France
| | - Frédéric Affouard
- Univ. Lille, CNRS, INRAE, Centrale Lille, UMR 8207 - UMET - Unité Matériaux et Transformations, F-59000, Lille, France
| |
Collapse
|
2
|
Minecka A, Tarnacka M, Jurkiewicz K, Hachuła B, Wrzalik R, Bródka A, Kamiński K, Kamińska E. The impact of the size of acetylated cyclodextrin on the stability of amorphous metronidazole. Int J Pharm 2022; 624:122025. [PMID: 35850185 DOI: 10.1016/j.ijpharm.2022.122025] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/01/2022] [Accepted: 07/13/2022] [Indexed: 11/27/2022]
Abstract
Modified oligosaccharides with cyclic topology seem to be promising excipients for the preparation of Amorphous Solid Dispersions (ASDs), especially with those Active Pharmaceutical Ingredients (APIs), which have a strong crystallization tendency from the amorphous/glassy state. Herein, the usefulness of two acetylated cyclodextrins (ac-α-CD and ac-β-CD) with various molecular weights (Mw) as stabilizers for the supercooled metronidazole (Met) has been discussed. X-ray diffraction (XRD) studies carried out on Met-acCDs mixtures (prepared in molar ratios from 1:2 to 5:1) showed that the system with ac-α-CD containing the highest amount of API (5:1 m/m) crystallizes immediately after preparation, whereas all Met-ac-β-CD ASDs remain stable. What is more, long-term XRD measurements confirmed that the Met-ac-α-CD 2:1 m/m system crystallizes after 100 days of storage in contrast to the same system containing ac-β-CD. The non-isothermal calorimetric data revealed that the activation barrier for crystallization (Ecr) in ASDs with the oligosaccharide having a greater Mw (i.e., composed of seven acGLU molecules) is slightly higher. Finally, to explain the differences in behavior between the mixtures with both acCDs, infrared studies, DFT calculations and Molecular Dynamics simulations were performed. All methods excluded the scenario of API incorporation inside the acCDs' core. On the other hand, obtained results suggested that in comparison to ac-α-CD, the greater amount of Met molecules might be bounded on the outside surface of ac-β-CD. Therefore, this modified saccharide is a better stabilizer of the examined API.
Collapse
Affiliation(s)
- Aldona Minecka
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland.
| | - Magdalena Tarnacka
- A. Chelkowski Institute of Physics, University of Silesia in Katowice, 41-500 Chorzow, Poland
| | - Karolina Jurkiewicz
- A. Chelkowski Institute of Physics, University of Silesia in Katowice, 41-500 Chorzow, Poland
| | - Barbara Hachuła
- Institute of Chemistry, University of Silesia, 40-006 Katowice, Poland
| | - Roman Wrzalik
- A. Chelkowski Institute of Physics, University of Silesia in Katowice, 41-500 Chorzow, Poland
| | - Aleksander Bródka
- A. Chelkowski Institute of Physics, University of Silesia in Katowice, 41-500 Chorzow, Poland
| | - Kamil Kamiński
- A. Chelkowski Institute of Physics, University of Silesia in Katowice, 41-500 Chorzow, Poland
| | - Ewa Kamińska
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland.
| |
Collapse
|
3
|
Minecka A, Tarnacka M, Jurkiewicz K, Hachuła B, Wrzalik R, Kamiński K, Paluch M, Kamińska E. Impact of the Chain Length and Topology of the Acetylated Oligosaccharide on the Crystallization Tendency of Naproxen from Amorphous Binary Mixtures. Mol Pharm 2020; 18:347-358. [PMID: 33355470 PMCID: PMC7872431 DOI: 10.1021/acs.molpharmaceut.0c00982] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The impact of the chain length or
dispersity of polymers in controlling
the crystallization of amorphous active pharmaceutical ingredients
(APIs) has been discussed for a long time. However, because of the
weak control of these parameters in the majority of macromolecules
used in pharmaceutical formulations, the abovementioned topic is poorly
understood. Herein, four acetylated oligosaccharides, maltose (acMAL),
raffinose (acRAF), stachyose (acSTA), and α-cyclodextrin (ac-α-CD)
of growing chain lengths and different topologies (linear vs cyclic), mimicking the growing backbone of the polymer,
were selected to probe the influence of these structural factors on
the crystallization of naproxen (NAP)—an API that does not
vitrify regardless of the cooling rate applied in our experiment.
It was found that in equimolar systems composed of NAP and linear
acetylated oligosaccharides, the progress and activation barrier for
crystallization are dependent on the molecular weight of the excipient
despite the fact that results of Fourier transform infrared studies
indicated that there is no difference in the interaction pattern between
measured samples. On the other hand, complementary dielectric, calorimetric,
and X-ray diffraction data clearly demonstrated that NAP mixed with
ac-α-CD (cyclic saccharide) does not tend to crystallize even
in the system with a much higher content of APIs. To explain this
interesting finding, we have carried out further density functional
theory computations, which revealed that incorporation of NAP into
the cavity of ac-α-CD is hardly possible because this state
is of much higher energy (up to 80 kJ/mol) with respect to the one
where the API is located outside of the saccharide torus. Hence, although
at the moment, it is very difficult to explain the much stronger impact
of the cyclic saccharide on the suppression of crystallization and
enhanced stability of NAP with respect to the linear carbohydrates,
our studies clearly showed that the chain length and the topology
of the excipient play a significant role in controlling the crystallization
of this API.
Collapse
Affiliation(s)
- Aldona Minecka
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, ul. Jagiellonska 4, 41-200 Sosnowiec, Poland
| | - Magdalena Tarnacka
- A. Chelkowski Institute of Physics, University of Silesia in Katowice, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland.,Silesian Center for Education and Interdisciplinary Research, University of Silesia, 75 Pulku Piechoty 1a, 41-500 Chorzow, Poland
| | - Karolina Jurkiewicz
- A. Chelkowski Institute of Physics, University of Silesia in Katowice, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland.,Silesian Center for Education and Interdisciplinary Research, University of Silesia, 75 Pulku Piechoty 1a, 41-500 Chorzow, Poland
| | - Barbara Hachuła
- Institute of Chemistry, University of Silesia, Szkolna 9, 40-006 Katowice, Poland
| | - Roman Wrzalik
- A. Chelkowski Institute of Physics, University of Silesia in Katowice, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland.,Silesian Center for Education and Interdisciplinary Research, University of Silesia, 75 Pulku Piechoty 1a, 41-500 Chorzow, Poland
| | - Kamil Kamiński
- A. Chelkowski Institute of Physics, University of Silesia in Katowice, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland.,Silesian Center for Education and Interdisciplinary Research, University of Silesia, 75 Pulku Piechoty 1a, 41-500 Chorzow, Poland
| | - Marian Paluch
- A. Chelkowski Institute of Physics, University of Silesia in Katowice, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland.,Silesian Center for Education and Interdisciplinary Research, University of Silesia, 75 Pulku Piechoty 1a, 41-500 Chorzow, Poland
| | - Ewa Kamińska
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, ul. Jagiellonska 4, 41-200 Sosnowiec, Poland
| |
Collapse
|
4
|
Han J, Wei Y, Lu Y, Wang R, Zhang J, Gao Y, Qian S. Co-amorphous systems for the delivery of poorly water-soluble drugs: recent advances and an update. Expert Opin Drug Deliv 2020; 17:1411-1435. [DOI: 10.1080/17425247.2020.1796631] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jiawei Han
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| | - Yuanfeng Wei
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| | - Yan Lu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| | - Runze Wang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| | - Jianjun Zhang
- School of Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| | - Yuan Gao
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| | - Shuai Qian
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| |
Collapse
|
5
|
Minecka A, Tarnacka M, Jurkiewicz K, Hachuła B, Kamiński K, Paluch M, Kamińska E. Influence of the Internal Structure and Intermolecular Interactions on the Correlation between Structural (α) and Secondary (β-JG) Relaxation below the Glass Transition Temperature in Neat Probucol and Its Binary Mixtures with Modified Saccharides. J Phys Chem B 2020; 124:4821-4834. [PMID: 32396358 DOI: 10.1021/acs.jpcb.0c02384] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Broadband dielectric spectroscopy (BDS) has been used to study the molecular dynamics and aging process in neat probucol (PRO) as well as its binary mixtures with selected acetylated saccharides. In particular, we applied the Casalini and Roland approach to determine structural relaxation times in the glassy state of the examined systems (so-called isostructural times, τiso). Next, using the calculated τiso, primitive relaxation times of the coupling model were obtained and compared to the experimental secondary β (Johari-Goldstein (JG) type) relaxation times. Interestingly, it turned out that there is a correlation between the β-JG and the structural (α)-relaxation processes below the glass transition temperature (T < Tg) in each investigated sample. This is a new observation compared to previous studies demonstrating that such a relationship exists only in the supercooled liquid state of neat PRO. Moreover, it was revealed that the stretching parameters obtained from the aging procedure are very close to the ones determined by fitting the dielectric data above the Tg with the use of the Kohlrausch-Williams-Watts function, indicating that the aging process is governed by the α-relaxation. Complementary Fourier transform infrared and X-ray diffraction measurements allowed us to find a possible reason for these findings. It was demonstrated that although there are very weak intermolecular interactions between PRO and modified saccharides, the intra- and intermolecular structure of PRO is practically unaffected by the presence of modified saccharides.
Collapse
Affiliation(s)
- A Minecka
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, ul. Jagiellonska 4, 41-200 Sosnowiec, Poland
| | - M Tarnacka
- Institute of Physics, University of Silesia in Katowice, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland.,Silesian Center for Education and Interdisciplinary Research, 75 Pulku Piechoty 1a, 41-500 Chorzow, Poland
| | - K Jurkiewicz
- Institute of Physics, University of Silesia in Katowice, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland.,Silesian Center for Education and Interdisciplinary Research, 75 Pulku Piechoty 1a, 41-500 Chorzow, Poland
| | - B Hachuła
- Institute of Chemistry, University of Silesia in Katowice, Szkolna 9, 40-006 Katowice, Poland
| | - K Kamiński
- Institute of Physics, University of Silesia in Katowice, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland.,Silesian Center for Education and Interdisciplinary Research, 75 Pulku Piechoty 1a, 41-500 Chorzow, Poland
| | - M Paluch
- Institute of Physics, University of Silesia in Katowice, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland.,Silesian Center for Education and Interdisciplinary Research, 75 Pulku Piechoty 1a, 41-500 Chorzow, Poland
| | - E Kamińska
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, ul. Jagiellonska 4, 41-200 Sosnowiec, Poland
| |
Collapse
|
6
|
Minecka A, Kamińska E, Tarnacka M, Jurkiewicz K, Talik A, Wolnica K, Dulski M, Kasprzycka A, Spychalska P, Garbacz G, Kamiński K, Paluch M. Does the molecular mobility and flexibility of the saccharide ring affect the glass-forming ability of naproxen in binary mixtures? Eur J Pharm Sci 2020; 141:105091. [PMID: 31655208 DOI: 10.1016/j.ejps.2019.105091] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 09/23/2019] [Accepted: 09/25/2019] [Indexed: 12/15/2022]
Abstract
In this paper, we studied the impact of saccharides having a similar backbone but differing in the degree of freedom, local molecular mobility, flexibility of the ring and intermolecular interactions on the glass-forming ability (GFA) of naproxen (NAP) in binary mixtures. For this purpose, a series of methyl and acetyl derivatives of glucose (GLS) and anhydroglucose (anhGLS), as well as neat anhGLS have been used to produce homogeneous solid dispersions (SDs) of varying molar concentration of examined active pharmaceutical ingredient (API). Systematic measurements with the use of Differential Scanning Calorimetry (DSC) and Broadband Dielectric Spectroscopy (BDS) enabled us to determine the phase transitions, homogeneity and molecular mobility of the investigated binary mixtures as well as the impact of excipient on the crystallization tendency of NAP. It turned out that acetylated glucose (acGLS), one of the most mobile and flexible saccharides of all examined herein materials, is the best excipient enhancing the GFA of studied API. Although, it should be noted that upon storage at room temperature, we observed the recrystallization of NAP from binary mixtures. Interestingly, API always crystallized to the initial polymorphic form, as shown by X-ray diffraction (XRD) investigations. Finally, since additional measurements with the use of Fourier Transform Infrared (FTIR) Spectroscopy clearly indicated that there are no significant differences in the intermolecular interactions in the systems composed of NAP and all examined saccharides, one can postulate that the mobility and ring flexibility of the matrix have, , the most important impact on the crystallization tendency of NAP upon cooling. Consequently, it seems that in some cases, more mobile/flexible matrices can be a much better choice to enhance the glass-forming ability of studied pharmaceutical.
Collapse
Affiliation(s)
- A Minecka
- Department of Pharmacognosy and Phytochemistry, Medical University of Silesia in Katowice, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Jagiellonska 4, 41-200 Sosnowiec, Poland.
| | - E Kamińska
- Department of Pharmacognosy and Phytochemistry, Medical University of Silesia in Katowice, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Jagiellonska 4, 41-200 Sosnowiec, Poland.
| | - M Tarnacka
- Institute of Physics, University of Silesia, 75 Pulku Piechoty 1a, 41-500 Chorzow, Poland; Silesian Center for Education and Interdisciplinary Research, University of Silesia, 75 Pulku Piechoty 1a, 41-500 Chorzow, Poland
| | - K Jurkiewicz
- Institute of Physics, University of Silesia, 75 Pulku Piechoty 1a, 41-500 Chorzow, Poland; Silesian Center for Education and Interdisciplinary Research, University of Silesia, 75 Pulku Piechoty 1a, 41-500 Chorzow, Poland
| | - A Talik
- Institute of Physics, University of Silesia, 75 Pulku Piechoty 1a, 41-500 Chorzow, Poland; Silesian Center for Education and Interdisciplinary Research, University of Silesia, 75 Pulku Piechoty 1a, 41-500 Chorzow, Poland
| | - K Wolnica
- Institute of Physics, University of Silesia, 75 Pulku Piechoty 1a, 41-500 Chorzow, Poland; Silesian Center for Education and Interdisciplinary Research, University of Silesia, 75 Pulku Piechoty 1a, 41-500 Chorzow, Poland
| | - M Dulski
- Silesian Center for Education and Interdisciplinary Research, University of Silesia, 75 Pulku Piechoty 1a, 41-500 Chorzow, Poland; Institute of Material Sciences, University of Silesia, 75 Pulku Piechoty 1a, 41-500 Chorzow, Poland
| | - A Kasprzycka
- Department of Chemistry, Silesian Technical University of Technology, Krzywoustego 4, 44-100 Gliwice, Poland; Biotechnology Centre, Silesian Technical University of Technology, Krzywoustego 8, 44-100 Gliwice, Poland
| | - P Spychalska
- Biotechnology Centre, Silesian Technical University of Technology, Krzywoustego 8, 44-100 Gliwice, Poland
| | - G Garbacz
- Physiolution GmbH, Walther-Rathenau-Str. 49a, 17489 Greifswald, Germany
| | - K Kamiński
- Institute of Physics, University of Silesia, 75 Pulku Piechoty 1a, 41-500 Chorzow, Poland; Silesian Center for Education and Interdisciplinary Research, University of Silesia, 75 Pulku Piechoty 1a, 41-500 Chorzow, Poland
| | - M Paluch
- Institute of Physics, University of Silesia, 75 Pulku Piechoty 1a, 41-500 Chorzow, Poland; Silesian Center for Education and Interdisciplinary Research, University of Silesia, 75 Pulku Piechoty 1a, 41-500 Chorzow, Poland
| |
Collapse
|
7
|
|
8
|
Heczko D, Kamińska E, Minecka A, Tarnacka M, Waliłko P, Kasprzycka A, Kamiński K, Paluch M. Studies on the molecular dynamics of acetylated oligosaccharides of different topologies (linear versus cyclic). Carbohydr Polym 2018; 206:273-280. [PMID: 30553322 DOI: 10.1016/j.carbpol.2018.10.118] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/12/2018] [Accepted: 10/31/2018] [Indexed: 10/27/2022]
Abstract
In this paper, the molecular dynamics and thermal properties of representative acetylated linear and cyclic oligosaccharides: acTRE, acRAF, acSTA, ac-α-CD, ac-β-CD, ac-γ-CD, have been investigated by using broadband dielectric spectroscopy and differential scanning calorimetry. We found that there are marked differences in the dynamics of the structural and secondary relaxation processes in both groups of materials. Just to mention a variation in the distribution of the structural relaxation times as well as different evolutions of the glass transition temperature (Tg) and fragility (m) versus molecular weight (Mw), which seem to be affected by the shape of the molecule, strain in the carbohydrate ring and mobility of side acetyl moieties.
Collapse
Affiliation(s)
- Dawid Heczko
- Department of Pharmacognosy and Phytochemistry, Medical University of Silesia in Katowice, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, ul. Jagiellonska 4, 41-200 Sosnowiec, Poland.
| | - Ewa Kamińska
- Department of Pharmacognosy and Phytochemistry, Medical University of Silesia in Katowice, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, ul. Jagiellonska 4, 41-200 Sosnowiec, Poland.
| | - Aldona Minecka
- Department of Pharmacognosy and Phytochemistry, Medical University of Silesia in Katowice, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, ul. Jagiellonska 4, 41-200 Sosnowiec, Poland
| | - Magdalena Tarnacka
- Silesian Center for Education and Interdisciplinary Research, University of Silesia, ul. 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland; Institute of Physics, University of Silesia, ul. 75 Pulku Piechoty 1, 41-500 Chorzow, Poland
| | - Patrycja Waliłko
- Silesian Technical University of Technology, Department of Chemistry, ul. Krzywoustego 4, 44-100 Gliwice, Poland; Biotechnology Centre, Silesian Technical University of Technology, ul. Krzywoustego 8, 44-100 Gliwice, Poland
| | - Anna Kasprzycka
- Silesian Technical University of Technology, Department of Chemistry, ul. Krzywoustego 4, 44-100 Gliwice, Poland; Biotechnology Centre, Silesian Technical University of Technology, ul. Krzywoustego 8, 44-100 Gliwice, Poland
| | - Kamil Kamiński
- Silesian Center for Education and Interdisciplinary Research, University of Silesia, ul. 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland; Institute of Physics, University of Silesia, ul. 75 Pulku Piechoty 1, 41-500 Chorzow, Poland
| | - Marian Paluch
- Silesian Center for Education and Interdisciplinary Research, University of Silesia, ul. 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland; Institute of Physics, University of Silesia, ul. 75 Pulku Piechoty 1, 41-500 Chorzow, Poland
| |
Collapse
|
9
|
Wang H, Zhang X, Zhu W, Jiang Y, Zhang Z. Self-Assembly of Zein-Based Microcarrier System for Colon-Targeted Oral Drug Delivery. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b02092] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Hongdi Wang
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xiaotong Zhang
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Wei Zhu
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yanbin Jiang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Zhibing Zhang
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
10
|
Haznar-Garbacz D, Kaminska E, Zakowiecki D, Lachmann M, Kaminski K, Garbacz G, Dorożyński P, Kulinowski P. Melts of Octaacetyl Sucrose as Oral-Modified Release Dosage Forms for Delivery of Poorly Soluble Compound in Stable Amorphous Form. AAPS PharmSciTech 2018; 19:951-960. [PMID: 29098644 DOI: 10.1208/s12249-017-0912-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 10/23/2017] [Indexed: 02/01/2023] Open
Abstract
The presented work describes the formulation and characterization of modified release glassy solid dosage forms (GSDFs) containing an amorphous nifedipine, as a model BCS (Biopharmaceutical Classification System) class II drug. The GSDFs were prepared by melting nifedipine together with octaacetyl sucrose. Dissolution profiles, measured under standard and biorelevant conditions, were compared to those obtained from commercially available formulations containing nifedipine such as modified release (MR) tablets and osmotic release oral system (OROS). The results indicate that the dissolution profiles of the GSDFs with nifedipine are neither affected by the pH of the dissolution media, type and concentration of surfactants, nor by simulated mechanical stress of biorelevant intensity. Furthermore, it was found that the dissolution profiles of the novel dosage forms were similar to the profiles obtained from the nifedipine OROS. The formulation of GSDFs is relatively simple, and the dosage forms were found to have favorable dissolution characteristics.
Collapse
|
11
|
Schammé B, Couvrat N, Tognetti V, Delbreilh L, Dupray V, Dargent É, Coquerel G. Investigation of Drug-Excipient Interactions in Biclotymol Amorphous Solid Dispersions. Mol Pharm 2018; 15:1112-1125. [PMID: 29328661 DOI: 10.1021/acs.molpharmaceut.7b00993] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The effect of low molecular weight excipients on drug-excipient interactions, molecular mobility, and propensity to recrystallization of an amorphous active pharmaceutical ingredient is investigated. Two structurally related excipients (α-pentaacetylglucose and β-pentaacetylglucose), five different drug:excipient ratios (1:5, 1:2, 1:1, 2:1, and 5:1, w/w), and three different solid state characterization tools (differential scanning calorimetry, X-ray powder diffraction, and dielectric relaxation spectroscopy) were selected for the present research. Our investigation has shown that the excipient concentration and its molecular structure reveal quasi-identical molecular dynamic behavior of solid dispersions above and below the glass transition temperature. Across to complementary quantum mechanical simulations, we point out a clear indication of a strong interaction between biclotymol and the acetylated saccharides. Moreover, the thermodynamic study on these amorphous solid dispersions highlighted a stabilizing effect of α-pentaacetylglucose regardless of its quantity while an excessive concentration of β-pentaacetylglucose revealed a poor crystallization inhibition. Finally, through long-term stability studies, we also showed the limiting excipient concentration needed to stabilize our amorphous API. Herewith, the developed procedure in this paper appears to be a promising tool for solid-state characterization of complex pharmaceutical formulations.
Collapse
Affiliation(s)
- Benjamin Schammé
- Sciences et Méthodes Séparatives, UNIROUEN , Normandie Université , 76000 Rouen , France.,Groupe de Physique des Matériaux, CNRS, INSA Rouen, UNIROUEN , Normandie Université , 76000 Rouen , France
| | - Nicolas Couvrat
- Sciences et Méthodes Séparatives, UNIROUEN , Normandie Université , 76000 Rouen , France
| | - Vincent Tognetti
- COBRA UMR 6014, CNRS, INSA Rouen, UNIROUEN , Normandie Université , 76821 Mont-Saint-Aignan , France
| | - Laurent Delbreilh
- Groupe de Physique des Matériaux, CNRS, INSA Rouen, UNIROUEN , Normandie Université , 76000 Rouen , France
| | - Valérie Dupray
- Sciences et Méthodes Séparatives, UNIROUEN , Normandie Université , 76000 Rouen , France
| | - Éric Dargent
- Groupe de Physique des Matériaux, CNRS, INSA Rouen, UNIROUEN , Normandie Université , 76000 Rouen , France
| | - Gérard Coquerel
- Sciences et Méthodes Séparatives, UNIROUEN , Normandie Université , 76000 Rouen , France
| |
Collapse
|
12
|
Madejczyk O, Kaminska E, Tarnacka M, Dulski M, Jurkiewicz K, Kaminski K, Paluch M. Studying the Crystallization of Various Polymorphic Forms of Nifedipine from Binary Mixtures with the Use of Different Experimental Techniques. Mol Pharm 2017; 14:2116-2125. [DOI: 10.1021/acs.molpharmaceut.7b00228] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- O. Madejczyk
- Institute
of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice, Poland
- Silesian
Center for Education and Interdisciplinary Research, University of Silesia, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
| | - E. Kaminska
- Department
of Pharmacognosy and Phytochemistry, Medical University of Silesia in Katowice, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Jagiellonska 4, 41-200 Sosnowiec, Poland
| | - M. Tarnacka
- Institute
of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice, Poland
- Silesian
Center for Education and Interdisciplinary Research, University of Silesia, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
| | - M. Dulski
- Silesian
Center for Education and Interdisciplinary Research, University of Silesia, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
- Institute
of Material Science, University of Silesia, 75 Pulku Piechoty 1a, 41-500 Chorzow, Poland
| | - K. Jurkiewicz
- Institute
of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice, Poland
- Silesian
Center for Education and Interdisciplinary Research, University of Silesia, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
| | - K. Kaminski
- Institute
of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice, Poland
- Silesian
Center for Education and Interdisciplinary Research, University of Silesia, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
| | - M. Paluch
- Institute
of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice, Poland
- Silesian
Center for Education and Interdisciplinary Research, University of Silesia, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
| |
Collapse
|
13
|
Ohyagi N, Ueda K, Higashi K, Yamamoto K, Kawakami K, Moribe K. Synergetic Role of Hypromellose and Methacrylic Acid Copolymer in the Dissolution Improvement of Amorphous Solid Dispersions. J Pharm Sci 2017; 106:1042-1050. [DOI: 10.1016/j.xphs.2016.12.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Revised: 10/10/2016] [Accepted: 12/07/2016] [Indexed: 11/16/2022]
|
14
|
Szczurek J, Rams-Baron M, Knapik-Kowalczuk J, Antosik A, Szafraniec J, Jamróz W, Dulski M, Jachowicz R, Paluch M. Molecular Dynamics, Recrystallization Behavior, and Water Solubility of the Amorphous Anticancer Agent Bicalutamide and Its Polyvinylpyrrolidone Mixtures. Mol Pharm 2017; 14:1071-1081. [PMID: 28231007 DOI: 10.1021/acs.molpharmaceut.6b01007] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this paper, we investigated the molecular mobility and physical stability of amorphous bicalutamide, a poorly water-soluble drug widely used in prostate cancer treatment. Our broadband dielectric spectroscopy measurements and differential scanning calorimetry studies revealed that amorphous BIC is a moderately fragile material with a strong tendency to recrystallize from the amorphous state. However, mixing the drug with polymer polyvinylpyrrolidone results in a substantial improvement of physical stability attributed to the antiplasticizing effect governed by the polymer additive. Furthermore, IR study demonstrated the existence of specific interactions between the drug and excipient. We found out that preparation of bicalutamide-polyvinylpyrrolidone mixture in a 2-1 weight ratio completely hinder material recrystallization. Moreover, we determined the time-scale of structural relaxation in the glassy state for investigated materials. Because molecular mobility is considered an important factor governing crystallization behavior, such information was used to approximate the long-term physical stability of an amorphous drug and drug-polymer systems upon their storage at room temperature. Moreover, we found that such systems have distinctly higher water solubility and dissolution rate in comparison to the pure amorphous form, indicating the genuine formulation potential of the proposed approach.
Collapse
Affiliation(s)
- Justyna Szczurek
- Institute of Physics, University of Silesia , Uniwersytecka 4, 40-007 Katowice, Poland.,Silesian Center for Education and Interdisciplinary Research , 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
| | - Marzena Rams-Baron
- Institute of Physics, University of Silesia , Uniwersytecka 4, 40-007 Katowice, Poland.,Silesian Center for Education and Interdisciplinary Research , 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
| | - Justyna Knapik-Kowalczuk
- Institute of Physics, University of Silesia , Uniwersytecka 4, 40-007 Katowice, Poland.,Silesian Center for Education and Interdisciplinary Research , 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
| | - Agata Antosik
- Jagiellonian University , Faculty of Pharmacy, Department of Pharmaceutical Technology and Biopharmaceutics, Medyczna 9, 30-688 Kraków, Poland
| | - Joanna Szafraniec
- Jagiellonian University , Faculty of Pharmacy, Department of Pharmaceutical Technology and Biopharmaceutics, Medyczna 9, 30-688 Kraków, Poland
| | - Witold Jamróz
- Jagiellonian University , Faculty of Pharmacy, Department of Pharmaceutical Technology and Biopharmaceutics, Medyczna 9, 30-688 Kraków, Poland
| | - Mateusz Dulski
- Silesian Center for Education and Interdisciplinary Research , 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland.,Institute of Materials Science, University of Silesia , 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
| | - Renata Jachowicz
- Jagiellonian University , Faculty of Pharmacy, Department of Pharmaceutical Technology and Biopharmaceutics, Medyczna 9, 30-688 Kraków, Poland
| | - Marian Paluch
- Institute of Physics, University of Silesia , Uniwersytecka 4, 40-007 Katowice, Poland.,Silesian Center for Education and Interdisciplinary Research , 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
| |
Collapse
|
15
|
Grzybowska K, Capaccioli S, Paluch M. Recent developments in the experimental investigations of relaxations in pharmaceuticals by dielectric techniques at ambient and elevated pressure. Adv Drug Deliv Rev 2016; 100:158-82. [PMID: 26705851 DOI: 10.1016/j.addr.2015.12.008] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 12/05/2015] [Accepted: 12/09/2015] [Indexed: 10/22/2022]
Abstract
In recent years, there is a growing interest in improving the physicochemical stability of amorphous pharmaceutical solids due to their very promising applications to manufacture medicines characterized by a better water solubility, and consequently by a higher dissolution rate than those of their crystalline counterparts. In this review article, we show that the molecular mobility investigated both in the supercooled liquid and glassy states is the crucial factor required to understand molecular mechanisms that govern the physical stability of amorphous drugs. We demonstrate that pharmaceuticals can be thoroughly examined by means of the broadband dielectric spectroscopy, which is a very useful experimental technique to explore different relaxation processes and crystallization kinetics as well. Such studies conducted in the wide temperature and pressure ranges provide data needed in searching correlations between properties of molecular dynamics and crystallization process, which are aimed at developing effective and efficient methods for stabilizing amorphous drugs.
Collapse
|
16
|
Changes in dynamics of the glass-forming pharmaceutical nifedipine in binary mixtures with octaacetylmaltose. Eur J Pharm Biopharm 2015; 97:185-91. [DOI: 10.1016/j.ejpb.2015.09.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 09/17/2015] [Accepted: 09/21/2015] [Indexed: 11/20/2022]
|
17
|
Comparison of pharmaceutical formulations: ATR-FTIR spectroscopic imaging to study drug-carrier interactions. Int J Pharm 2015; 495:112-121. [DOI: 10.1016/j.ijpharm.2015.08.068] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 08/20/2015] [Accepted: 08/21/2015] [Indexed: 11/22/2022]
|
18
|
Knapik J, Wojnarowska Z, Grzybowska K, Jurkiewicz K, Tajber L, Paluch M. Molecular Dynamics and Physical Stability of Coamorphous Ezetimib and Indapamide Mixtures. Mol Pharm 2015; 12:3610-9. [PMID: 26301858 DOI: 10.1021/acs.molpharmaceut.5b00334] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Low physical stability is the main reason limiting the widespread use of amorphous pharmaceuticals. One approach to overcome this problem is to mix these drugs with various excipients. In this study coamorphous drug-drug compositions of different molar ratios of ezetimib and indapamid (i.e., EZB 10:1 IDP, EZB 5:1 IDP, EZB 2:1 IDP, EZB 1:1 IDP and EZB 1:2 IDP) were prepared and investigated using differential scanning calorimetry (DSC), broadband dielectric spectroscopy (BDS), and X-ray diffraction (XRD). Our studies have shown that the easily recrystallizing ezetimib drug can be significantly stabilized in its amorphous form by using even a small amount of indapamid (8.8 wt %). DSC experiments indicate that the glass transition temperature (Tg) of the tested mixtures changes with the drug concentration in accordance with the Gordon-Taylor equation. We also investigated the effect of indapamid on the molecular dynamics of the ezetimib. As a result it was found that, with increasing indapamid content, the molecular mobility of the binary drug-drug system is slowed down. Finally, using the XRD technique we examined the long-term physical stability of the investigated binary systems stored at room temperature. These measurements prove that low-molecular-weight compounds are able to significantly improve the physical stability of amorphous APIs.
Collapse
Affiliation(s)
- J Knapik
- Institute of Physics, University of Silesia , ul. Uniwersytecka 4, 40-007 Katowice, Poland.,SMCEBI , ul. 75 Pułku Piechoty 1a, 41-500 Chorzów, Poland
| | - Z Wojnarowska
- Institute of Physics, University of Silesia , ul. Uniwersytecka 4, 40-007 Katowice, Poland.,SMCEBI , ul. 75 Pułku Piechoty 1a, 41-500 Chorzów, Poland
| | - K Grzybowska
- Institute of Physics, University of Silesia , ul. Uniwersytecka 4, 40-007 Katowice, Poland.,SMCEBI , ul. 75 Pułku Piechoty 1a, 41-500 Chorzów, Poland
| | - K Jurkiewicz
- Institute of Physics, University of Silesia , ul. Uniwersytecka 4, 40-007 Katowice, Poland.,SMCEBI , ul. 75 Pułku Piechoty 1a, 41-500 Chorzów, Poland
| | - L Tajber
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin , College Green, Dublin 2, Ireland
| | - M Paluch
- Institute of Physics, University of Silesia , ul. Uniwersytecka 4, 40-007 Katowice, Poland.,SMCEBI , ul. 75 Pułku Piechoty 1a, 41-500 Chorzów, Poland
| |
Collapse
|
19
|
Kaminska E, Tarnacka M, Wlodarczyk P, Jurkiewicz K, Kolodziejczyk K, Dulski M, Haznar-Garbacz D, Hawelek L, Kaminski K, Wlodarczyk A, Paluch M. Studying the Impact of Modified Saccharides on the Molecular Dynamics and Crystallization Tendencies of Model API Nifedipine. Mol Pharm 2015; 12:3007-19. [DOI: 10.1021/acs.molpharmaceut.5b00271] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- E. Kaminska
- Department
of Pharmacognosy and Phytochemistry, Medical University of Silesia in Katowice, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, ul. Jagiellonska 4, 41-200 Sosnowiec, Poland
| | - M. Tarnacka
- Institute
of Physics, University of Silesia, ul. Uniwersytecka 4, 40-007 Katowice, Poland
- Silesian
Center of Education and Interdisciplinary Research, University of Silesia, ul. 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
| | - P. Wlodarczyk
- Institute of Non-Ferrous Metals, ul. Sowinskiego 5, 44-100 Gliwice, Poland
| | - K. Jurkiewicz
- Institute
of Physics, University of Silesia, ul. Uniwersytecka 4, 40-007 Katowice, Poland
- Silesian
Center of Education and Interdisciplinary Research, University of Silesia, ul. 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
| | - K. Kolodziejczyk
- Institute
of Physics, University of Silesia, ul. Uniwersytecka 4, 40-007 Katowice, Poland
- Silesian
Center of Education and Interdisciplinary Research, University of Silesia, ul. 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
| | - M. Dulski
- Institute
of Material Science, University of Silesia, 75 Pulku Piechoty 1a, 41-500 Chorzow, Poland
| | - D. Haznar-Garbacz
- Institute
of Pharmacy, Center of Drug Absorption and Targeting, Felix-Hausdorff-Strasse
3a, 17489 Greifswald, Germany
| | - L. Hawelek
- Institute of Non-Ferrous Metals, ul. Sowinskiego 5, 44-100 Gliwice, Poland
| | - K. Kaminski
- Institute
of Physics, University of Silesia, ul. Uniwersytecka 4, 40-007 Katowice, Poland
- Silesian
Center of Education and Interdisciplinary Research, University of Silesia, ul. 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
| | - A. Wlodarczyk
- Department
of Animal Histology and Embryology, University of Silesia, ul. Bankowa
9, 40-007 Katowice, Poland
| | - M. Paluch
- Institute
of Physics, University of Silesia, ul. Uniwersytecka 4, 40-007 Katowice, Poland
- Silesian
Center of Education and Interdisciplinary Research, University of Silesia, ul. 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
| |
Collapse
|
20
|
Kaminska E, Tarnacka M, Kolodziejczyk K, Dulski M, Zakowiecki D, Hawelek L, Adrjanowicz K, Zych M, Garbacz G, Kaminski K. Impact of low molecular weight excipient octaacetylmaltose on the liquid crystalline ordering and molecular dynamics in the supercooled liquid and glassy state of itraconazole. Eur J Pharm Biopharm 2014; 88:1094-104. [DOI: 10.1016/j.ejpb.2014.10.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 10/09/2014] [Accepted: 10/12/2014] [Indexed: 10/24/2022]
|