1
|
Palekar S, Mamidi HK, Guo Y, Vartak R, Patel K. Corroborating various material-sparing techniques with hot melt extrusion for the preparation of triclabendazole amorphous solid dispersions. Int J Pharm 2023; 640:122989. [PMID: 37120123 DOI: 10.1016/j.ijpharm.2023.122989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 04/18/2023] [Accepted: 04/23/2023] [Indexed: 05/01/2023]
Abstract
Amorphous solid dispersions (ASD) are one of the most adopted technologies for improving the solubility of novel molecules. Formulation of ASDs using solvent free methods such as hot melt extrusion (HME) has been in the spotlight off-lately. However, early-stage formulation development is tricky and a difficult bridge to pass due to limited drug availability. Material-sparing techniques (theoretical & practical) have been used for selecting suitable polymeric carriers for formulating ASDs. However, these techniques have limitations in predicting the effect of process parameters. The objective of this study is to use both theoretical and practical material-sparing techniques to optimize a polymer for the developing Triclabendazole (TBZ) ASDs. Initial screening by theoretical approaches suggested that TBZ is highly miscible with Kollidon®VA64 (VA64) and poorly miscible with Parteck®MXP (PVA). However, results from ASDs prepared using SCFe were opposite to these predictions. ASDs prepared using either technique and both VA64 and PVA showed >200x increase in solubility. Each formulation released >85% of drug in less than 15 mins. Although the thermodynamic phase diagram suggested that VA64 was the ideal polymer for TBZ-ASDs, it has certain limitations in factoring the different elements during melt-processing and hence, practical approaches like SCFe could help in predicting the drug-polymer miscibility for HME processing.
Collapse
Affiliation(s)
- Siddhant Palekar
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA
| | - Hemanth K Mamidi
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA; Continuus Pharmaceuticals Inc, Woburn, MA, USA
| | - Yi Guo
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA
| | - Richa Vartak
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA
| | - Ketan Patel
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA.
| |
Collapse
|
2
|
Neuwirth M, Kappes SK, Hartig MU, Wagner KG. Amorphous Solid Dispersions Layered onto Pellets—An Alternative to Spray Drying? Pharmaceutics 2023; 15:pharmaceutics15030764. [PMID: 36986625 PMCID: PMC10054131 DOI: 10.3390/pharmaceutics15030764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/13/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
Spray drying is one of the most frequently used solvent-based processes for manufacturing amorphous solid dispersions (ASDs). However, the resulting fine powders usually require further downstream processing when intended for solid oral dosage forms. In this study, we compare properties and performance of spray-dried ASDs with ASDs coated onto neutral starter pellets in mini-scale. We successfully prepared binary ASDs with a drug load of 20% Ketoconazole (KCZ) or Loratadine (LRD) as weakly basic model drugs and hydroxypropyl-methyl-cellulose acetate succinate or methacrylic acid ethacrylate copolymer as pH-dependent soluble polymers. All KCZ/ and LRD/polymer mixtures formed single-phased ASDs, as indicated by differential scanning calorimetry, X-ray powder diffraction and infrared spectroscopy. All ASDs showed physical stability for 6 months at 25 °C/65% rH and 40 °C/0% rH. Normalized to their initial surface area available to the dissolution medium, all ASDs showed a linear relationship of surface area and solubility enhancement, both in terms of supersaturation of solubility and initial dissolution rate, regardless of the manufacturing process. With similar performance and stability, processing of ASD pellets showed the advantages of a superior yield (>98%), ready to use for subsequent processing into multiple unit pellet systems. Therefore, ASD-layered pellets are an attractive alternative in ASD-formulation, especially in early formulation development at limited availability of drug substance.
Collapse
|
3
|
Supercritical solvent impregnation of sodium valproate nanoparticles on polymers: Characterization and optimization of the operational parameters. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
4
|
Supercritical CO2-assisted Impregnation/Deposition of Polymeric Materials With Pharmaceutical, Nutraceutical, and Biomedical Applications: A Review (2015-2021). J Supercrit Fluids 2022. [DOI: 10.1016/j.supflu.2022.105763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Fathi M, Sodeifian G, Sajadian SA. Experimental study of ketoconazole impregnation into polyvinyl pyrrolidone and hydroxyl propyl methyl cellulose using supercritical carbon dioxide: Process optimization. J Supercrit Fluids 2022. [DOI: 10.1016/j.supflu.2022.105674] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
6
|
Preparation of Solid Dispersions of Simvastatin and Soluplus Using a Single-Step Organic Solvent-Free Supercritical Fluid Process for the Drug Solubility and Dissolution Rate Enhancement. Pharmaceuticals (Basel) 2021; 14:ph14090846. [PMID: 34577546 PMCID: PMC8468910 DOI: 10.3390/ph14090846] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/18/2021] [Accepted: 08/23/2021] [Indexed: 11/17/2022] Open
Abstract
The study was designed to investigate the feasibility of supercritical carbon dioxide (scCO2) processing for the preparation of simvastatin (SIM) solid dispersions (SDs) in Soluplus® (SOL) at temperatures below polymer’s glass transition. The SIM content in the SDs experimental design was kept at 10, 20 and 30% to study the effect of the drug–polymer ratio on the successful preparation of SDs. The SIM–SOL formulations, physical mixtures (PMs) and SDs were evaluated using X-ray diffraction (XRD), differential scanning calorimetry (DSC), attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), scanning electron microscopy (SEM), and dissolution studies. The scCO2 processing conditions and drug–polymer ratio were found to influence the physicochemical properties of the drug in formulated SDs. SIM is a highly crystalline drug; however, physicochemical characterisation carried out by SEM, DSC, and XRD demonstrated the presence of SIM in amorphous nature within the SDs. The SIM–SOL SDs showed enhanced drug dissolution rates, with 100% being released within 45 min. Moreover, the drug dissolution from SDs was faster and higher in comparison to PMs. In conclusion, this study shows that SIM–SOL dispersions can be successfully prepared using a solvent-free supercritical fluid process to enhance dissolution rate of the drug.
Collapse
|
7
|
Bhujbal SV, Mitra B, Jain U, Gong Y, Agrawal A, Karki S, Taylor LS, Kumar S, (Tony) Zhou Q. Pharmaceutical amorphous solid dispersion: A review of manufacturing strategies. Acta Pharm Sin B 2021; 11:2505-2536. [PMID: 34522596 PMCID: PMC8424289 DOI: 10.1016/j.apsb.2021.05.014] [Citation(s) in RCA: 191] [Impact Index Per Article: 63.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 04/05/2021] [Accepted: 04/13/2021] [Indexed: 12/15/2022] Open
Abstract
Amorphous solid dispersions (ASDs) are popular for enhancing the solubility and bioavailability of poorly water-soluble drugs. Various approaches have been employed to produce ASDs and novel techniques are emerging. This review provides an updated overview of manufacturing techniques for preparing ASDs. As physical stability is a critical quality attribute for ASD, the impact of formulation, equipment, and process variables, together with the downstream processing on physical stability of ASDs have been discussed. Selection strategies are proposed to identify suitable manufacturing methods, which may aid in the development of ASDs with satisfactory physical stability.
Collapse
Key Words
- 3DP, three-dimensional printing
- ASDs, amorphous solid dispersions
- ASES, aerosol solvent extraction system
- Amorphous solid dispersions
- CAP, cellulose acetate phthalate
- CO2, carbon dioxide
- CSG, continuous-spray granulation
- Co-precipitation
- Downstream processing
- Drug delivery
- EPAS, evaporative aqueous solution precipitation
- Eudragit®, polymethacrylates derivatives
- FDM, fused deposition modeling
- GAS, gas antisolvent
- HME, hot-melt extrusion
- HPC, hydroxypropyl cellulose
- HPMC, hydroxypropyl methylcellulose
- HPMCAS, hydroxypropyl methylcellulose acetate succinate
- HPMCP, hypromellose phthalate
- Manufacturing
- Melting process
- PCA, precipitation with compressed fluid antisolvent
- PGSS, precipitation from gas-saturated solutions
- PLGA, poly(lactic-co-glycolic acid
- PVP, polyvinylpyrrolidone
- PVPVA, polyvinylpyrrolidone/vinyl acetate
- RESS, rapid expansion of a supercritical solution
- SAS, supercritical antisolvent
- SCFs, supercritical fluids
- SEDS, solution-enhanced dispersion by SCF
- SLS, selective laser sintering
- Selection criteria
- Soluplus®, polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol graft copolymer
- Solvent evaporation
- Stability
- Tg, glass transition temperature
- USC, ultrasound compaction
- scCO2, supercritical CO2
Collapse
Affiliation(s)
- Sonal V. Bhujbal
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA
| | - Biplob Mitra
- Oral Product Development, Bristol Myers Squibb, Summit, NJ 07901, USA
| | - Uday Jain
- Material Science and Engineering, Bristol Myers Squibb, Summit, NJ 07901, USA
| | - Yuchuan Gong
- Oral Product Development, Bristol Myers Squibb, Summit, NJ 07901, USA
| | - Anjali Agrawal
- Oral Product Development, Bristol Myers Squibb, Summit, NJ 07901, USA
| | - Shyam Karki
- Oral Product Development, Bristol Myers Squibb, Summit, NJ 07901, USA
| | - Lynne S. Taylor
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA
| | - Sumit Kumar
- Oral Product Development, Bristol Myers Squibb, Summit, NJ 07901, USA
| | - Qi (Tony) Zhou
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
8
|
Lansoprazole loading of polymers by supercritical carbon dioxide impregnation: Impacts of process parameters. J Supercrit Fluids 2020. [DOI: 10.1016/j.supflu.2020.104892] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
9
|
Formulation technologies and advances for oral delivery of novel nitroimidazoles and antimicrobial peptides. J Control Release 2020; 324:728-749. [PMID: 32380201 DOI: 10.1016/j.jconrel.2020.05.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/01/2020] [Accepted: 05/02/2020] [Indexed: 02/06/2023]
Abstract
Antibiotic resistance has become a global crisis, driving the exploration for novel antibiotics and novel treatment approaches. Among these research efforts two classes of antibiotics, bicyclic nitroimidazoles and antimicrobial peptides, have recently shown promise as novel antimicrobial agents with the possibility to treat multi-drug resistant infections. However, they suffer from the issue of poor oral bioavailability due to disparate factors: low solubility in the case of nitroimidazoles (BCS class II drugs), and low permeability in the case of peptides (BCS class III drugs). Moreover, antimicrobial peptides present another challenge as they are susceptible to chemical and enzymatic degradation, which can present an additional pharmacokinetic hurdle for their oral bioavailability. Formulation technologies offer a potential means for improving the oral bioavailability of poorly permeable and poorly soluble drugs, but there are still drawbacks and limitations associated with this approach. This review discusses in depth the challenges associated with oral delivery of nitroimidazoles and antimicrobial peptides and the formulation technologies that have been used to overcome these problems, including an assessment of the drawbacks and limitations associated with the technologies that have been applied. Furthermore, the potential for supercritical fluid technology to overcome the shortcomings associated with conventional drug formulation methods is reviewed.
Collapse
|
10
|
Hurley D, Davis M, Walker GM, Lyons JG, Higginbotham CL. The Effect of Cooling on the Degree of Crystallinity, Solid-State Properties, and Dissolution Rate of Multi-Component Hot-Melt Extruded Solid Dispersions. Pharmaceutics 2020; 12:pharmaceutics12030212. [PMID: 32121578 PMCID: PMC7150909 DOI: 10.3390/pharmaceutics12030212] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/11/2020] [Accepted: 02/17/2020] [Indexed: 11/16/2022] Open
Abstract
: The effect of cooling on the degree of crystallinity, solid-state and dissolution properties of multi-component hot-melt extruded solid dispersions [SD] is of great interest for the successful formulation of amorphous SDs and is an area that is unreported, especially in the context of improving the stability of these specific systems. The thermal solid-state properties, degree of crystallinity, drug-polymer interactions, solubility and physical stability over time were investigated. X-ray powder diffraction [XRPD] and hyper differential scanning calorimetry [DSC] confirmed that indomethacin [INM] was converted to the amorphous state; however, the addition of poloxamer 407 [P407] had a significant effect on the degree of crystallinity and the solubility of the SD formulations. Spectroscopy studies identified the mechanism of interaction and solubility studies, showing a higher dissolution rate compared to amorphous and pure INM in pH 1.2 with a kinetic solubility of 20.63 µg/mL and 34.7 µg/mL after 3 and 24 h. XRPD confirmed that INM remained amorphous after 5 months stability testing in solid solutions with Poly(vinylpyrrolidone-co-vinyl acetate) [PVP VA64] and Plasdone S-630 [PL-S630]. Although cooling had a significant effect on the degree of crystallinity and on solubility of INM, the cooling method used did not have any significant effect on the amorphous stability of INM over time.
Collapse
Affiliation(s)
- Dean Hurley
- Materials Research Institute, Athlone Institute of Technology, Athlone N37 F6D7, Ireland; (D.H.); (J.G.L.)
- Synthesis and Solid State Pharmaceutical Centre (SSPC), Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland; (M.D.); (G.M.W.)
| | - Mark Davis
- Synthesis and Solid State Pharmaceutical Centre (SSPC), Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland; (M.D.); (G.M.W.)
| | - Gavin M. Walker
- Synthesis and Solid State Pharmaceutical Centre (SSPC), Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland; (M.D.); (G.M.W.)
| | - John G. Lyons
- Materials Research Institute, Athlone Institute of Technology, Athlone N37 F6D7, Ireland; (D.H.); (J.G.L.)
| | - Clement L. Higginbotham
- Materials Research Institute, Athlone Institute of Technology, Athlone N37 F6D7, Ireland; (D.H.); (J.G.L.)
- Synthesis and Solid State Pharmaceutical Centre (SSPC), Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland; (M.D.); (G.M.W.)
- Correspondence: ; Tel.: +353-(0)-90-6468050
| |
Collapse
|
11
|
Veryasova NN, Lazhko AE, Isaev DE, Grebenik EA, Timashev PS. Supercritical Carbon Dioxide—A Powerful Tool for Green Biomaterial Chemistry. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B 2020. [DOI: 10.1134/s1990793119070236] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Wenzel JE, Moorman V, Wang L, Spencer‐Williams I, Hall M, Samaniego CS, Ammerman ML. In-situ extraction and impregnation of black walnut husk into polyethylene film using supercritical carbon dioxide with an ethanol modifier. Food Sci Nutr 2020; 8:612-619. [PMID: 31993184 PMCID: PMC6977517 DOI: 10.1002/fsn3.1348] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 11/14/2019] [Indexed: 01/02/2023] Open
Abstract
Walnuts are commonly cultivated for their kernel, which is a rich source of antioxidant phenolic compounds. The husk likewise contains antioxidant and antimicrobial compounds, but is typically discarded without further processing. Antioxidant compounds are useful in creating active packaging films, but typically decompose at melt extrusion temperatures in polymer processing. Due to carbon dioxide's low critical point and ability to swell polymer films, supercritical carbon dioxide may be used to impregnate phenolic compounds into polymers. For this study, a novel technique is used to simultaneously produce walnut husk extracts and impregnate the extract into polymer films in the same batch extractor using supercritical carbon dioxide with a 15 wt-% ethanol modifier at 60°C at 19.4 MPa. The effect of varying the loading of walnut husk in the extractor upon impregnation mass was evaluated with the impregnation mass of the film increasing with walnut husk loading. It was determined by FTIR, as well as the reduction of the protein cytochrome c, that antioxidant compounds may be extracted from walnut husks and impregnated into low-density polyethylene film (LDPE) by this technique.
Collapse
|
13
|
Hurley D, Carter D, Foong Ng LY, Davis M, Walker GM, Lyons JG, Higginbotham CL. An investigation of the inter-molecular interaction, solid-state properties and dissolution properties of mixed copovidone hot-melt extruded solid dispersions. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101132] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Long B, Ryan KM, Padrela L. From batch to continuous — New opportunities for supercritical CO2 technology in pharmaceutical manufacturing. Eur J Pharm Sci 2019; 137:104971. [DOI: 10.1016/j.ejps.2019.104971] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 05/24/2019] [Accepted: 06/23/2019] [Indexed: 12/28/2022]
|
15
|
Zhu W, Huang H, Dong Y, Han C, Sui X, Jian B. Multi-walled carbon nanotube-based systems for improving the controlled release of insoluble drug dipyridamole. Exp Ther Med 2019; 17:4610-4616. [PMID: 31105789 PMCID: PMC6507520 DOI: 10.3892/etm.2019.7510] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 04/08/2019] [Indexed: 12/13/2022] Open
Abstract
Applicability of multi-walled carbon nanotubes (MWCNTs) in loading dipyridamole (DDM), a poorly soluble drug, was evaluated. Additionally, the effect of drug-loading efficiency on the release behavior of the MWCNT-DDM system was also investigated. DDM as a model drug was incorporated into MWCNTs with different drug-loading rates (10, 25 and 50%) using the solvent deposition method. The MWCNT-DDM system was successfully established and characterized using common solid-state characterization methods. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), nitrogen adsorption analysis and Fourier transform-infrared (FT-IR) spectroscopy were carried out to observe the progress of drug loading. X-ray diffraction (XRD) and differential scanning calorimetry (DSC) were used to systematically assess the crystalline state of the DDM after being loaded into the MWCNTs. Improvements in dissolution rate were evaluated by the dissolution test. The results revealed that with the increase of drug loading, the form of DDM in the MWCNTs changed from amorphous to crystalline state. Also, the release rate of DDM decreased upon increasing the drug-loading rate of carriers. In conclusion, MWCNTs are proven to be promising carriers for loading DDM.
Collapse
Affiliation(s)
- Wenquan Zhu
- College of Pharmacy, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Haitao Huang
- College of Pharmacy, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Yan Dong
- College of Pharmacy, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Cuiyan Han
- College of Pharmacy, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Xiaoyu Sui
- College of Pharmacy, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Baiyu Jian
- College of Pharmacy, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| |
Collapse
|
16
|
Selection of the suitable polymer for supercritical fluid assisted preparation of carvedilol solid dispersions. Int J Pharm 2019; 554:190-200. [DOI: 10.1016/j.ijpharm.2018.11.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 11/05/2018] [Accepted: 11/07/2018] [Indexed: 11/18/2022]
|
17
|
Improvements of theobromine pharmaceutical properties using solid dispersions prepared with newfound technologies. Chem Eng Res Des 2018. [DOI: 10.1016/j.cherd.2017.10.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
18
|
Hurley D, Potter CB, Walker GM, Higginbotham CL. Investigation of Ethylene Oxide-co-propylene Oxide for Dissolution Enhancement of Hot-Melt Extruded Solid Dispersions. J Pharm Sci 2018; 107:1372-1382. [PMID: 29410037 DOI: 10.1016/j.xphs.2018.01.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 01/11/2018] [Accepted: 01/12/2018] [Indexed: 11/18/2022]
Abstract
The optimal design of amorphous solid dispersion formulations requires the use of excipients to maintain supersaturation and improve physical stability to ensure shelf-life stability and better absorption during intestinal transit, respectively. Blends of excipients (surfactants and polymers) are often used within pharmaceutical products to improve the oral delivery of Biopharmaceutical Classification System class II drugs. Therefore, in this study, a dissolution enhancer, poloxamer 407 (P407), was investigated to determine its effect on the dissolution properties and on the amorphous nature of the active pharmaceutical ingredient contained in the formulation. Phase solubility studies of indomethacin (INM) in aqueous solutions of P407 and poly(vinylpyrrolidone-vinyl acetate copolymer) showed an increase in the kinetic solubility of INM compared with the pure drug at 37°C with a Ka value of 0.041 μg/mL. The solid dispersions showed a higher dissolution rate when compared to pure and amorphous drugs when performed in pH buffer 1.2 with a kinetic solubility of 21 μg/mL. The stability data showed that the amorphous drug in solid solutions with poly(vinylpyrrolidone-vinyl acetate copolymer) and P407 remained amorphous, and the %P407 loading had no effect on the amorphous stability of INM. This study concluded that the amorphous solid dispersion contributed to the increased solubility of INM.
Collapse
Affiliation(s)
- Dean Hurley
- Materials Research Institute, Athlone Institute of Technology, Westmeath, Ireland
| | - Catherine B Potter
- Synthesis and Solid State Pharmaceutical Centre (SSPC), Bernal Institute, University of Limerick, Limerick, Ireland
| | - Gavin M Walker
- Synthesis and Solid State Pharmaceutical Centre (SSPC), Bernal Institute, University of Limerick, Limerick, Ireland
| | | |
Collapse
|
19
|
Mazzoni C, Tentor F, Strindberg SA, Nielsen LH, Keller SS, Alstrøm TS, Gundlach C, Müllertz A, Marizza P, Boisen A. From concept to in vivo testing: Microcontainers for oral drug delivery. J Control Release 2017; 268:343-351. [DOI: 10.1016/j.jconrel.2017.10.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 10/11/2017] [Accepted: 10/12/2017] [Indexed: 11/16/2022]
|
20
|
Yang R, Li Y, Li J, Liu C, Du P, Zhang T. Application of scCO2 technology for preparing CoQ10 solid dispersion and SFC-MS/MS for analyzing in vivo bioavailability. Drug Dev Ind Pharm 2017; 44:289-295. [DOI: 10.1080/03639045.2017.1391833] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Rujie Yang
- Department of Pharmaceutical Analysis, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, PR China
| | - Yingchao Li
- Department of Pharmaceutical Analysis, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, PR China
| | - Jing Li
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, PR China
| | - Cuiru Liu
- Department of Pharmaceutical Analysis, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, PR China
| | - Ping Du
- Department of Pharmaceutical Analysis, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, PR China
| | - Tianhong Zhang
- Department of Pharmaceutical Analysis, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, PR China
| |
Collapse
|
21
|
Edueng K, Mahlin D, Bergström CAS. The Need for Restructuring the Disordered Science of Amorphous Drug Formulations. Pharm Res 2017; 34:1754-1772. [PMID: 28523384 PMCID: PMC5533858 DOI: 10.1007/s11095-017-2174-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 05/01/2017] [Indexed: 11/25/2022]
Abstract
The alarming numbers of poorly soluble discovery compounds have centered the efforts towards finding strategies to improve the solubility. One of the attractive approaches to enhance solubility is via amorphization despite the stability issue associated with it. Although the number of amorphous-based research reports has increased tremendously after year 2000, little is known on the current research practice in designing amorphous formulation and how it has changed after the concept of solid dispersion was first introduced decades ago. In this review we try to answer the following questions: What model compounds and excipients have been used in amorphous-based research? How were these two components selected and prepared? What methods have been used to assess the performance of amorphous formulation? What methodology have evolved and/or been standardized since amorphous-based formulation was first introduced and to what extent have we embraced on new methods? Is the extent of research mirrored in the number of marketed amorphous drug products? We have summarized the history and evolution of amorphous formulation and discuss the current status of amorphous formulation-related research practice. We also explore the potential uses of old experimental methods and how they can be used in tandem with computational tools in designing amorphous formulation more efficiently than the traditional trial-and-error approach.
Collapse
Affiliation(s)
- Khadijah Edueng
- Department of Pharmacy, Uppsala University, Uppsala Biomedical Centre, P.O. Box 580, SE-75123, Uppsala, Sweden
- Kulliyyah of Pharmacy,, International Islamic University Malaysia, Jalan Istana, 25200, Bandar Indera Mahkota, Pahang, Malaysia
| | - Denny Mahlin
- Department of Pharmacy, Uppsala University, Uppsala Biomedical Centre, P.O. Box 580, SE-75123, Uppsala, Sweden
| | - Christel A S Bergström
- Department of Pharmacy, Uppsala University, Uppsala Biomedical Centre, P.O. Box 580, SE-75123, Uppsala, Sweden.
| |
Collapse
|
22
|
Thenmozhi K, Yoo YJ. Enhanced solubility of piperine using hydrophilic carrier-based potent solid dispersion systems. Drug Dev Ind Pharm 2017; 43:1501-1509. [PMID: 28425323 DOI: 10.1080/03639045.2017.1321658] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
CONTEXT Piperine alkaloid, an important constituent of black pepper, exhibits numerous therapeutic properties, whereas its usage as a drug is limited due to its poor solubility in aqueous medium, which leads to poor bioavailability. OBJECTIVE Herein, a new method has been developed to improve the solubility of this drug based on the development of solid dispersions with improved dissolution rate using hydrophilic carriers such as sorbitol (Sor), polyethylene glycol (PEG) and polyvinyl pyrrolidone K30 (PVP) by solvent method. Physical mixtures of piperine and carriers were also prepared for comparison. METHODS The physicochemical properties of the prepared solid dispersions were examined using SEM, TEM, DSC, XRD and FT-IR. In vitro dissolution profile of the solid dispersions was recorded and compared with that of the pure piperine and physical mixtures. The effect of these carriers on the aqueous solubility of piperine has been investigated. RESULTS The solid dispersions of piperine with Sor, PEG and PVP exhibited superior performance for the dissolution of piperine with a drug release of 70%, 76% and 89%, respectively after 2 h compared to physical mixtures and pure piperine, which could be due to its transformation from crystalline to amorphous form as well as the attachment of hydrophilic carriers to the surface of poorly water-soluble piperine. CONCLUSION Results suggest that the piperine solid dispersions prepared with improved in vitro release exhibit potential advantage in delivering poorly water-soluble piperine as an oral supplement.
Collapse
Affiliation(s)
- Kathavarayan Thenmozhi
- a Department of Chemistry , School of Advanced Sciences, VIT University , Vellore , Tamil Nadu , India
| | - Young Je Yoo
- b School of Chemical and Biological Engineering, Seoul National University , Seoul , Republic of Korea
| |
Collapse
|
23
|
Obaidat R, Alnaief M, Jaeger P. Significant solubility of carbon dioxide in Soluplus ® facilitates impregnation of ibuprofen using supercritical fluid technology. Pharm Dev Technol 2017; 23:697-705. [PMID: 28375669 DOI: 10.1080/10837450.2017.1315135] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Treatment of Soluplus® with supercritical carbon dioxide allows promising applications in preparing dispersions of amorphous solids. Several characterization techniques were employed to reveal this effect, including CO2 gas sorption under high pressure and physicochemical characterizations techniques. A gravimetric method was used to determine the solubility of carbon dioxide in the polymer at elevated pressure. The following physicochemical characterizations were used: thermal analysis, X-ray diffraction, Fourier transform, infrared spectroscopy and scanning electron microscopy. Drug loading of the polymer with ibuprofen as a model drug was also investigated. The proposed treatment with supercritical carbon dioxide allows to prepare solid solutions of Soluplus® in less than two hours at temperatures that do not exceed 45 °C, which is a great advantage to be used for thermolabile drugs. The advantages of using this technology for Soluplus® formulations lies behind the high sorption capability of carbon dioxide inside the polymer. This will ensure rapid diffusion of the dissolved/dispersed drug inside the polymer under process conditions and rapid precipitation of the drug in the amorphous form during depressurization accompanied by foaming of the polymer.
Collapse
Affiliation(s)
- Rana Obaidat
- a Pharmaceutical Technology , Jordan University of Science and Technology , Irbid , Jordan
| | | | - Philip Jaeger
- c Technische Universitat Hamburg-Harburg , Hamburg , Germany
| |
Collapse
|
24
|
Szafraniec J, Antosik A, Knapik-Kowalczuk J, Kurek M, Syrek K, Chmiel K, Paluch M, Jachowicz R. Planetary ball milling and supercritical fluid technology as a way to enhance dissolution of bicalutamide. Int J Pharm 2017; 533:470-479. [PMID: 28363855 DOI: 10.1016/j.ijpharm.2017.03.078] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 03/23/2017] [Accepted: 03/28/2017] [Indexed: 12/17/2022]
Abstract
Dissolution of bicalutamide processed with polyvinylpyrrolidone by either supercritical carbon dioxide or ball milling has been investigated. Various compositions as well as process parameters were used to obtain binary systems of the drug with the carrier. Thermal analysis and powder X-ray diffractometry confirmed amorphization of bicalutamide mechanically activated by ball milling and the decrease in crystallinity of the supercritical carbon dioxide-treated drug. Both methods led to reduction of particles size what was confirmed by scanning electron microscopy and laser diffraction measurements. Moreover, the effect of micronisation was found to depend on the parameters of applied process. Fourier transform infrared spectroscopy revealed the appearance of intermolecular interactions between drug and carrier molecules that play an important role in the stabilization of amorphous form of the active compound. Changes in crystal structure combined with reduced size of particles of bicalutamide dispersed within polymer matrix were found to improve dissolution of bicalutamide by 4 to 10-fold in comparison to untreated drug. It is of particular importance as poor dissolution profiles are considered to be the major limitation in bioavailability of the drug.
Collapse
Affiliation(s)
- Joanna Szafraniec
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland; Department of Physical Chemistry and Electrochemistry, Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow, Poland.
| | - Agata Antosik
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland
| | - Justyna Knapik-Kowalczuk
- Division of Biophysics and Molecular Physics, Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice, Poland; Silesian Center for Education and Interdisciplinary Research, 75 Pulku Piechoty 1a, 41-500 Chorzow, Poland
| | - Mateusz Kurek
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland
| | - Karolina Syrek
- Department of Physical Chemistry and Electrochemistry, Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow, Poland
| | - Krzysztof Chmiel
- Division of Biophysics and Molecular Physics, Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice, Poland; Silesian Center for Education and Interdisciplinary Research, 75 Pulku Piechoty 1a, 41-500 Chorzow, Poland
| | - Marian Paluch
- Division of Biophysics and Molecular Physics, Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice, Poland; Silesian Center for Education and Interdisciplinary Research, 75 Pulku Piechoty 1a, 41-500 Chorzow, Poland
| | - Renata Jachowicz
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland
| |
Collapse
|
25
|
Zeng YC, Li S, Liu C, Gong T, Sun X, Fu Y, Zhang ZR. Soluplus micelles for improving the oral bioavailability of scopoletin and their hypouricemic effect in vivo. Acta Pharmacol Sin 2017; 38:424-433. [PMID: 28112183 DOI: 10.1038/aps.2016.126] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 10/12/2016] [Indexed: 11/09/2022] Open
Abstract
Scopoletin is an active coumarin possessing a variety of pharmacological activities, including anti-hyperuricemic effect, but with poor solubility. To improve its oral bioavailability, we attempted to encapsulate scopoletin into Soluplus micelles (Soluplus-based scopoletin micelles, Sco-Ms) and evaluated the hypouricemic action of Sco-Ms. Sco-Ms were prepared using a thin-film hydration method. Sco-Ms displayed near spherical shapes with an average size of 59.4±2.4 nm (PDI=0.08±0.02). The encapsulation efficiency of scopoletin was 87.3%±1.5% with a loading capacity of 5.5%±0.1%. Sco-Ms were further characterized using transmission electron microscopy, powder X-ray diffraction, Fourier transform infrared techniques and scanning electron microscopy. After oral administration in rats, Sco-Ms exhibited significantly improved absorption in each intestinal segment compared to free scopoletin, with the duodenum and jejunum being the main absorption regions. In rats administered Sco-Ms (at an equivalent dose of free scopoletin of 100 mg/kg, po), the AUC0-∞ and Cmax of Sco-Ms were 4.38- and 8.43-fold, respectively, as large as those obtained following administration of free scopoletin. After oral administration in rats, Sco-Ms did not alter the tissue distributions of scopoletin, but significantly increased the scopoletin levels in the liver. In potassium oxonate-induced hyperuricemic mice, oral administration of Sco-Ms (at an equivalent dose of free scopoletin of 300 mg/kg) reduced the serum uric acid concentration to the normal level. The results suggest that Soluplus-based micelle system greatly improves the bioavailability of poorly water-soluble drugs, such as scopoletin, and represents a promising strategy for their oral delivery.
Collapse
|
26
|
Krupa A, Descamps M, Willart JF, Jachowicz R, Danède F. High energy ball milling and supercritical carbon dioxide impregnation as co-processing methods to improve dissolution of tadalafil. Eur J Pharm Sci 2016; 95:130-137. [DOI: 10.1016/j.ejps.2016.05.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Revised: 04/12/2016] [Accepted: 05/03/2016] [Indexed: 11/25/2022]
|
27
|
Continuous production of itraconazole-based solid dispersions by hot melt extrusion: Preformulation, optimization and design space determination. Int J Pharm 2016; 515:114-124. [DOI: 10.1016/j.ijpharm.2016.10.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 09/30/2016] [Accepted: 10/01/2016] [Indexed: 11/19/2022]
|
28
|
Polymeric Amorphous Solid Dispersions: A Review of Amorphization, Crystallization, Stabilization, Solid-State Characterization, and Aqueous Solubilization of Biopharmaceutical Classification System Class II Drugs. J Pharm Sci 2016; 105:2527-2544. [DOI: 10.1016/j.xphs.2015.10.008] [Citation(s) in RCA: 557] [Impact Index Per Article: 69.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
29
|
Maniruzzaman M, Farias S, Slipper IJ, Boateng JS, Chowdhry BZ, Nair A, Douroumis D. Development and optimization of ketoconazole oral strips by means of continuous hot-melt extrusion processing. J Pharm Pharmacol 2016; 68:890-900. [DOI: 10.1111/jphp.12569] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 04/10/2016] [Indexed: 11/30/2022]
Abstract
Abstract
Objectives
The aim of this study was to develop mucoadhesive oral strips using hot-melt extrusion as a continuous manufacturing process.
Methods
Powder blends of ketoconazole, a water-insoluble drug – either hydroxypropyl methylcellulose (HPMC) or soluplus (SOL), sorbitol (SRB) and magnesium aluminometasilicate (MAS) were extruded to manufacture thin strips with 0.5-mm thickness. The presence of the inorganic metasilicate facilitated smooth processing of the extruded strips as it worked as an absorbent directly impacting on the extensive mixing of the drug/excipients inside the extruder barrel.
Key findings
The use of MAS also favoured the rapid hydration, swelling and eventual disintegration of the strips. Differential scanning calorimetry and transmission X-ray diffraction analysis revealed the existence of the amorphous drug within the extruded strips. Scanning electron microscopy and energy dispersive X-ray undertaken on the formulations showed a homogeneous drug distribution within the extruded strips.
Conclusion
The strips produced via continuous hot-melt extrusion processing showed significantly faster release of ketoconazole compared to the bulk drug substance.
Collapse
Affiliation(s)
- Mohammed Maniruzzaman
- Department of Pharmacy (Chemistry), School of Life Sciences, University of Sussex, Brighton, UK
| | - Smirna Farias
- Faculty of Engineering and Science, School of Science, University of Greenwich, Chatham, Chatham Maritime, Kent, UK
| | - Ian J Slipper
- Faculty of Engineering and Science, School of Science, University of Greenwich, Chatham, Chatham Maritime, Kent, UK
| | - Joshua S Boateng
- Faculty of Engineering and Science, School of Science, University of Greenwich, Chatham, Chatham Maritime, Kent, UK
| | - Babur Z Chowdhry
- Faculty of Engineering and Science, School of Science, University of Greenwich, Chatham, Chatham Maritime, Kent, UK
| | - Arun Nair
- Fuji Chemical Industry Co., Ltd., Minato-ku, Tokyo, Japan
| | - Dennis Douroumis
- Faculty of Engineering and Science, School of Science, University of Greenwich, Chatham, Chatham Maritime, Kent, UK
| |
Collapse
|
30
|
Vasconcelos T, Marques S, das Neves J, Sarmento B. Amorphous solid dispersions: Rational selection of a manufacturing process. Adv Drug Deliv Rev 2016; 100:85-101. [PMID: 26826438 DOI: 10.1016/j.addr.2016.01.012] [Citation(s) in RCA: 236] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 12/21/2015] [Accepted: 01/19/2016] [Indexed: 11/19/2022]
Abstract
Amorphous products and particularly amorphous solid dispersions are currently one of the most exciting areas in the pharmaceutical field. This approach presents huge potential and advantageous features concerning the overall improvement of drug bioavailability. Currently, different manufacturing processes are being developed to produce amorphous solid dispersions with suitable robustness and reproducibility, ranging from solvent evaporation to melting processes. In the present paper, laboratorial and industrial scale processes were reviewed, and guidelines for a rationale selection of manufacturing processes were proposed. This would ensure an adequate development (laboratorial scale) and production according to the good manufacturing practices (GMP) (industrial scale) of amorphous solid dispersions, with further implications on the process validations and drug development pipeline.
Collapse
Affiliation(s)
- Teófilo Vasconcelos
- BIAL-Portela & Cª, S.A., Avenida da Siderugia Nacional, 4745-457 Trofa, Portugal; Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua do Campo Alegre, 823, 4150-180 Porto, Portugal; INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Rua do Campo Alegre, 823, 4150-180 Porto, Portugal
| | - Sara Marques
- CIBIO/InBIO-UP-Research Centre in Biodiversity and Genetic Resources, University of Porto, Rua Padre Armando Quintas, n° 7, 4485-661 Vairão, Portugal
| | - José das Neves
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua do Campo Alegre, 823, 4150-180 Porto, Portugal; INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Rua do Campo Alegre, 823, 4150-180 Porto, Portugal
| | - Bruno Sarmento
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua do Campo Alegre, 823, 4150-180 Porto, Portugal; INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Rua do Campo Alegre, 823, 4150-180 Porto, Portugal; Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde and Instituto Universitário de Ciências da Saúde, CESPU, Rua Central de Gandra 1317, 4585-116 Gandra, Portugal.
| |
Collapse
|
31
|
Thiry J, Broze G, Pestieau A, Tatton AS, Baumans F, Damblon C, Krier F, Evrard B. Investigation of a suitable in vitro dissolution test for itraconazole-based solid dispersions. Eur J Pharm Sci 2016; 85:94-105. [PMID: 26850682 DOI: 10.1016/j.ejps.2016.02.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 01/20/2016] [Accepted: 02/01/2016] [Indexed: 11/28/2022]
Abstract
The difficulty to find a relevant in vitro dissolution test to evaluate poorly soluble drugs is a well-known issue. One way to enhance their aqueous solubility is to formulate them as amorphous solid dispersions. In this study, three formulations containing itraconazole (ITZ), a model drug, were tested in seven different conditions (different USP apparatuses and different media). Two of the formulations were amorphous solid dispersions namely Sporanox®, the marketed product, and extrudates composed of Soluplus® and ITZ produced by hot melt extrusion; and the last one was pure crystalline ITZ capsules. After each test, a ranking of the formulations was established. Surprisingly, the two amorphous solid dispersions exhibited very different behavior depending primarily on the dissolution media. Indeed, the extrudates showed a better release profile than Sporanox® in non-sink and in biphasic conditions, whilst Sporanox® showed a higher release profile than the extrudates in sink and fasted simulated gastric conditions. The disintegration, dynamic light scattering and nuclear magnetic resonance results highlighted the presence of interaction between the surfactants and Soluplus®, which slowed down the erosion of the polymer matrix. Indeed, the negative charge of sodium dodecyl sulfate (SDS) and bile salts interacted with the surface of the extrudates that formed a barrier through which the water hardly diffused. Moreover, Soluplus® and SDS formed mixed micelles in solution in which ITZ interacts with SDS, but no longer with Soluplus®. Regarding the biphasic dissolution test, the interactions between the octanol dissolved in the aqueous media disrupted the polymer--ITZ system leading to a reduced release of ITZ from Sporanox®, whilst it had no influence on the extrudates. All together these results pointed out the difficulty of finding a suitable in vitro dissolution test due to interactions between the excipients that complicates the prediction of the behavior of these solid dispersions in vivo.
Collapse
Affiliation(s)
- Justine Thiry
- Laboratory of Pharmaceutical Technology and Biopharmacy, Department of Pharmacy, Center for Interdisciplinary Research on Medicines (CIRM), University of Liege, 4000, Liege, Belgium.
| | - Guy Broze
- Center for Education and Research on Macromolecules, University of Liege, Chemistry Department, B6a, Sart-Tilman, Liege, Belgium
| | - Aude Pestieau
- Laboratory of Pharmaceutical Technology and Biopharmacy, Department of Pharmacy, Center for Interdisciplinary Research on Medicines (CIRM), University of Liege, 4000, Liege, Belgium
| | - Andrew S Tatton
- Center of Nuclear Magnetic Resonance (CREMAN), Department of Chemistry, University of Liege, 4000, Liege, Belgium
| | - France Baumans
- Center of Nuclear Magnetic Resonance (CREMAN), Department of Chemistry, University of Liege, 4000, Liege, Belgium
| | - Christian Damblon
- Center of Nuclear Magnetic Resonance (CREMAN), Department of Chemistry, University of Liege, 4000, Liege, Belgium
| | - Fabrice Krier
- Laboratory of Pharmaceutical Technology and Biopharmacy, Department of Pharmacy, Center for Interdisciplinary Research on Medicines (CIRM), University of Liege, 4000, Liege, Belgium
| | - Brigitte Evrard
- Laboratory of Pharmaceutical Technology and Biopharmacy, Department of Pharmacy, Center for Interdisciplinary Research on Medicines (CIRM), University of Liege, 4000, Liege, Belgium
| |
Collapse
|