1
|
Liposome-Tethered Gold Nanoparticles Triggered by Pulsed NIR Light for Rapid Liposome Contents Release and Endosome Escape. Pharmaceutics 2022; 14:pharmaceutics14040701. [PMID: 35456535 PMCID: PMC9025641 DOI: 10.3390/pharmaceutics14040701] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/28/2022] [Accepted: 03/03/2022] [Indexed: 12/13/2022] Open
Abstract
Remote triggering of contents release with micron spatial and sub-second temporal resolution has been a long-time goal of medical and technical applications of liposomes. Liposomes can sequester a variety of bioactive water-soluble ions, ligands and enzymes, and oligonucleotides. The bilayer that separates the liposome interior from the exterior solution provides a physical barrier to contents release and degradation. Tethering plasmon-resonant, hollow gold nanoshells to the liposomes, or growing gold nanoparticles directly on the liposome exterior, allows liposome contents to be released by nanosecond or shorter pulses of near-infrared light (NIR). Gold nanoshells or nanoparticles strongly adsorb NIR light; cells, tissues, and physiological media are transparent to NIR, allowing penetration depths of millimeters to centimeters. Nano to picosecond pulses of NIR light rapidly heat the gold nanoshells, inducing the formation of vapor nanobubbles, similar to cavitation bubbles. The collapse of the nanobubbles generates mechanical forces that rupture bilayer membranes to rapidly release liposome contents at the preferred location and time. Here, we review the syntheses, characterization, and applications of liposomes coupled to plasmon-resonant gold nanostructures for delivering a variety of biologically important contents in vitro and in vivo with sub-micron spatial control and sub-second temporal control.
Collapse
|
2
|
Luzuriaga MA, Herbert FC, Brohlin OR, Gadhvi J, Howlett T, Shahrivarkevishahi A, Wijesundara YH, Venkitapathi S, Veera K, Ehrman R, Benjamin CE, Popal S, Burton MD, Ingersoll MA, De Nisco NJ, Gassensmith JJ. Metal-Organic Framework Encapsulated Whole-Cell Vaccines Enhance Humoral Immunity against Bacterial Infection. ACS NANO 2021; 15:17426-17438. [PMID: 34546723 DOI: 10.1021/acsnano.1c03092] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The increasing rate of resistance of bacterial infection against antibiotics requires next generation approaches to fight potential pandemic spread. The development of vaccines against pathogenic bacteria has been difficult owing, in part, to the genetic diversity of bacteria. Hence, there are many potential target antigens and little a priori knowledge of which antigen/s will elicit protective immunity. The painstaking process of selecting appropriate antigens could be avoided with whole-cell bacteria; however, whole-cell formulations typically fail to produce long-term and durable immune responses. These complications are one reason why no vaccine against any type of pathogenic E. coli has been successfully clinically translated. As a proof of principle, we demonstrate a method to enhance the immunogenicity of a model pathogenic E. coli strain by forming a slow releasing depot. The E. coli strain CFT073 was biomimetically mineralized within a metal-organic framework (MOF). This process encapsulates the bacteria within 30 min in water and at ambient temperatures. Vaccination with this formulation substantially enhances antibody production and results in significantly enhanced survival in a mouse model of bacteremia compared to standard inactivated formulations.
Collapse
|
3
|
Marschall ALJ. Targeting the Inside of Cells with Biologicals: Chemicals as a Delivery Strategy. BioDrugs 2021; 35:643-671. [PMID: 34705260 PMCID: PMC8548996 DOI: 10.1007/s40259-021-00500-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2021] [Indexed: 12/17/2022]
Abstract
Delivering macromolecules into the cytosol or nucleus is possible in vitro for DNA, RNA and proteins, but translation for clinical use has been limited. Therapeutic delivery of macromolecules into cells requires overcoming substantially higher barriers compared to the use of small molecule drugs or proteins in the extracellular space. Breakthroughs like DNA delivery for approved gene therapies and RNA delivery for silencing of genes (patisiran, ONPATTRO®, Alnylam Pharmaceuticals, Cambridge, MA, USA) or for vaccination such as the RNA-based coronavirus disease 2019 (COVID-19) vaccines demonstrated the feasibility of using macromolecules inside cells for therapy. Chemical carriers are part of the reason why these novel RNA-based therapeutics possess sufficient efficacy for their clinical application. A clear advantage of synthetic chemicals as carriers for macromolecule delivery is their favourable properties with respect to production and storage compared to more bioinspired vehicles like viral vectors or more complex drugs like cellular therapies. If biologicals can be applied to intracellular targets, the druggable space is substantially broadened by circumventing the limited utility of small molecules for blocking protein–protein interactions and the limitation of protein-based drugs to the extracellular space. An in depth understanding of the macromolecular cargo types, carrier types and the cell biology of delivery is crucial for optimal application and further development of biologicals inside cells. Basic mechanistic principles of the molecular and cell biological aspects of cytosolic/nuclear delivery of macromolecules, with particular consideration of protein delivery, are reviewed here. The efficiency of macromolecule delivery and applications in research and therapy are highlighted.
Collapse
Affiliation(s)
- Andrea L J Marschall
- Institute of Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Brunswick, Germany.
| |
Collapse
|
4
|
Trout CJ, Clapp JA, Griepenburg JC. Plasmonic carriers responsive to pulsed laser irradiation: a review of mechanisms, design, and applications. NEW J CHEM 2021. [DOI: 10.1039/d1nj02062e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This review focuses on interactions which govern release from plasmonic carrier systems including liposomes, polymersomes, and nanodroplets under pulsed irradiation.
Collapse
Affiliation(s)
- Cory J. Trout
- Department of Physics, Rutgers University-Camden, 227 Penn Street, Camden, NJ 08102, USA
- Department of Applied Physics, Rutgers University-Newark, 101 Warren St., Newark, NJ 07102, USA
| | - Jamie A. Clapp
- Center for Computational and Integrative Biology, Rutgers University-Camden, NJ 08102, USA
| | - Julianne C. Griepenburg
- Department of Physics, Rutgers University-Camden, 227 Penn Street, Camden, NJ 08102, USA
- Center for Computational and Integrative Biology, Rutgers University-Camden, NJ 08102, USA
| |
Collapse
|
5
|
Shin JE, Ogunyankin MO, Zasadzinski JA. Near Infrared-Triggered Liposome Cages for Rapid, Localized Small Molecule Delivery. Sci Rep 2020; 10:1706. [PMID: 32015363 PMCID: PMC6997424 DOI: 10.1038/s41598-020-58764-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 01/17/2020] [Indexed: 11/09/2022] Open
Abstract
Photolabile chelating cages or protecting groups need complex chemical syntheses and require UV, visible, or two-photon NIR light to trigger release. Different cages have different solubilities, reaction rates, and energies required for triggering. Here we show that liposomes containing calcium, adenosine triphosphate, or carboxyfluorescein are tethered to plasmon-resonant hollow gold nanoshells (HGN) tuned to absorb light from 650-950 nm. Picosecond pulses of near infrared (NIR) light provided by a two-photon microscope, or by a stand-alone laser during flow through microfluidic channels, trigger contents release with spatial and temporal control. NIR light adsorption heats the HGN, inducing vapor nanobubbles that rupture the liposome, releasing cargo within milliseconds. Any water-soluble molecule can be released at essentially the same rate from the liposome-HGN. By using liposomes of different composition, or HGN of different sizes or shapes with different nanobubble threshold fluences, or irradiating on or off resonance, two different cargoes can be released simultaneously, one before the other, or in a desired ratio. Calcium release from liposome-HGN can be spatially patterned to crosslink alginate gels and trap living cells. Liposome-HGN provide stable, biocompatible isolation of the bioactive compound from its surroundings with minimal interactions with the local environment.
Collapse
Affiliation(s)
- Jeong Eun Shin
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota, 55455, USA
| | - Maria O Ogunyankin
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota, 55455, USA.,Bristol, Myers, Squibb, 1 Squibb Drive, New Brunswick, NJ, 08902, USA
| | - Joseph A Zasadzinski
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota, 55455, USA.
| |
Collapse
|
6
|
Piletska EV, Guerreiro A, Mersiyanova M, Cowen T, Canfarotta F, Piletsky S, Karim K, Piletsky S. Probing Peptide Sequences on Their Ability to Generate Affinity Sites in Molecularly Imprinted Polymers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:279-283. [PMID: 31829602 DOI: 10.1021/acs.langmuir.9b03410] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
An array of 4000 defined and addressable tripeptides on a polymer-coated glass slide is used to synthesize molecularly imprinted polymer (MIP) nanoparticles. This work is undertaken to systematically probe the impact of the peptide sequence on the ability to generate affinity MIPs. The polymer affinity is assessed by measuring the fluorescence of bound MIP nanoparticles at each peptide spot on the surface after washing the array to remove any low-affinity polymer. The generic composition commonly used in the preparation of MIPs against proteins seems to be equally suitable for imprinting hydrophobic and hydrophilic tripeptides. The amino acids frequently contributing to the formation of high-affinity MIPs include T, F, D, N, Y, W, and P. The amino acids that rarely contribute to the formation of high-affinity interactions with MIPs are G, V, A, L, I, and M. These observations are confirmed by computational modeling. The basic technique proposed here may be applicable in optimizing polymer compositions for the production of high-affinity MIPs or, more specifically, for the selection of appropriate amino acid sequences when peptide epitopes are used instead of whole protein imprinting.
Collapse
Affiliation(s)
- Elena V Piletska
- Chemistry Department , University of Leicester , Leicester LE1 7RH , United Kingdom
| | - Antonio Guerreiro
- MIP Diagnostics Ltd , University of Leicester , Fielding Johnson Building , Leicester LE1 7RH , United Kingdom
| | | | - Todd Cowen
- Chemistry Department , University of Leicester , Leicester LE1 7RH , United Kingdom
| | - Francesco Canfarotta
- MIP Diagnostics Ltd , University of Leicester , Fielding Johnson Building , Leicester LE1 7RH , United Kingdom
| | - Stanislav Piletsky
- Department of Chemistry , Imperial College , London SW7 2AZ , United Kingdom
| | - Kal Karim
- Chemistry Department , University of Leicester , Leicester LE1 7RH , United Kingdom
| | - Sergey Piletsky
- Chemistry Department , University of Leicester , Leicester LE1 7RH , United Kingdom
| |
Collapse
|
7
|
Qin X, Yu C, Wei J, Li L, Zhang C, Wu Q, Liu J, Yao SQ, Huang W. Rational Design of Nanocarriers for Intracellular Protein Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1902791. [PMID: 31496027 DOI: 10.1002/adma.201902791] [Citation(s) in RCA: 141] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 07/04/2019] [Indexed: 06/10/2023]
Abstract
Protein/antibody therapeutics have exhibited the advantages of high specificity and activity even at an extremely low concentration compared to small molecule drugs. However, they are accompanied by unfavorable physicochemical properties such as fragile tertiary structure, large molecular size, and poor penetration of the membrane, and thus the clinical use of protein drugs is hindered by inefficient delivery of proteins into the host cells. To overcome the challenges associated with protein therapeutics and enhance their biopharmaceutical applications, various protein-loaded nanocarriers with desired functions, such as lipid nanocapsules, polymeric nanoparticles, inorganic nanoparticles, and peptides, are developed. In this review, the different strategies for intracellular delivery of proteins are comprehensively summarized. Their designed routes, mechanisms of action, and potential therapeutics in live cells or in vivo are discussed in detail. Furthermore, the perspective on the new generation of delivery systems toward the emerging area of protein-based therapeutics is presented as well.
Collapse
Affiliation(s)
- Xiaofei Qin
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, P. R. China
| | - Changmin Yu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, P. R. China
| | - Jing Wei
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, P. R. China
| | - Lin Li
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, P. R. China
| | - Chengwu Zhang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, P. R. China
| | - Qiong Wu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, P. R. China
| | - Jinhua Liu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, P. R. China
| | - Shao Q Yao
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, P. R. China
- Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, P. R. China
| |
Collapse
|
8
|
Morgan E, Doh J, Beatty K, Reich N. VIPER nano: Improved Live Cell Intracellular Protein Tracking. ACS APPLIED MATERIALS & INTERFACES 2019; 11:36383-36390. [PMID: 31545582 PMCID: PMC7351371 DOI: 10.1021/acsami.9b12679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Tracking intracellular proteins in live cells has many challenges. The most widely used method, fluorescent protein fusions, can track proteins in their native cellular environment and has led to significant discoveries in cell biology. Fusion proteins add steric bulk to the target protein and can negatively affect native protein function. The use of exogenous probes such as antibodies or protein labels is problematic because these cannot cross the plasma membrane on their own and thus cannot label intracellular targets in cells. We developed a labeling platform, VIPERnano, for live cell imaging of intracellular proteins using a peptide fusion tag (CoilE) to the protein of interest and delivery of a fluorescently labeled probe peptide (CoilR). CoilR and CoilE form an α-helical heterodimer with the protein of interest, rendering a labeled protein. Delivery of CoilR into the cell uses hollow gold nanoshells (HGNs) as the primary delivery vehicle. The technology relies on the conjugation and light-activated release of the CoilR peptide on the surface of the HGNs. We demonstrate light-activated VIPERnano delivery and labeling with two intracellular proteins, localized either in the mitochondria or the nucleus. This technology has the ability to study intracellular protein dynamics and spatial tracking while lessening the steric bulk of tags associated with the protein of interest.
Collapse
Affiliation(s)
- Erin Morgan
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93117, United States
| | - Julia Doh
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - Kimberly Beatty
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon 97239, United States
- OHSU Center for Spatial Systems Biomedicine, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - Norbert Reich
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93117, United States
| |
Collapse
|
9
|
Man T, Zhu X, Chow YT, Dawson ER, Wen X, Patananan AN, Liu TL, Zhao C, Wu C, Hong JS, Chung PS, Clemens DL, Lee BY, Weiss PS, Teitell MA, Chiou PY. Intracellular Photothermal Delivery for Suspension Cells Using Sharp Nanoscale Tips in Microwells. ACS NANO 2019; 13:10835-10844. [PMID: 31487464 DOI: 10.1021/acsnano.9b06025] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Efficient intracellular delivery of biomolecules into cells that grow in suspension is of great interest for biomedical research, such as for applications in cancer immunotherapy. Although tremendous effort has been expended, it remains challenging for existing transfer platforms to deliver materials efficiently into suspension cells. Here, we demonstrate a high-efficiency photothermal delivery approach for suspension cells using sharp nanoscale metal-coated tips positioned at the edge of microwells, which provide controllable membrane disruption for each cell in an array. Self-aligned microfabrication generates a uniform microwell array with three-dimensional nanoscale metallic sharp tip structures. Suspension cells self-position by gravity within each microwell in direct contact with eight sharp tips, where laser-induced cavitation bubbles generate transient pores in the cell membrane to facilitate intracellular delivery of extracellular cargo. A range of cargo sizes were tested on this platform using Ramos suspension B cells with an efficiency of >84% for Calcein green (0.6 kDa) and >45% for FITC-dextran (2000 kDa), with retained viability of >96% and a throughput of >100 000 cells delivered per minute. The bacterial enzyme β-lactamase (29 kDa) was delivered into Ramos B cells and retained its biological activity, whereas a green fluorescence protein expression plasmid was delivered into Ramos B cells with a transfection efficiency of >58%, and a viability of >89% achieved.
Collapse
Affiliation(s)
- Tianxing Man
- Department of Mechanical and Aerospace Engineering , University of California, Los Angeles , Los Angeles , California 90095 , United States
| | - Xiongfeng Zhu
- Department of Mechanical and Aerospace Engineering , University of California, Los Angeles , Los Angeles , California 90095 , United States
| | - Yu Ting Chow
- Department of Mechanical and Aerospace Engineering , University of California, Los Angeles , Los Angeles , California 90095 , United States
| | - Emma R Dawson
- Department of Pathology and Laboratory Medicine , University of California, Los Angeles , Los Angeles , California 90095 , United States
| | - Ximiao Wen
- Department of Mechanical and Aerospace Engineering , University of California, Los Angeles , Los Angeles , California 90095 , United States
| | - Alexander N Patananan
- Department of Pathology and Laboratory Medicine , University of California, Los Angeles , Los Angeles , California 90095 , United States
| | - Tingyi Leo Liu
- Department of Mechanical and Aerospace Engineering , University of California, Los Angeles , Los Angeles , California 90095 , United States
| | - Chuanzhen Zhao
- California NanoSystems Institute , University of California, Los Angeles , Los Angeles , California 90095 , United States
- Department of Chemistry and Biochemistry , University of California, Los Angeles , Los Angeles , California 90095 , United States
| | - Cong Wu
- Department of Mechanical and Aerospace Engineering , University of California, Los Angeles , Los Angeles , California 90095 , United States
| | - Jason S Hong
- Department of Pathology and Laboratory Medicine , University of California, Los Angeles , Los Angeles , California 90095 , United States
| | - Pei-Shan Chung
- Department of Bioengineering , University of California, Los Angeles , Los Angeles , California 90095 , United States
| | - Daniel L Clemens
- Division of Infectious Diseases, Department of Medicine , University of California, Los Angeles , Los Angeles , California 90095 , United States
| | - Bai-Yu Lee
- Division of Infectious Diseases, Department of Medicine , University of California, Los Angeles , Los Angeles , California 90095 , United States
| | - Paul S Weiss
- California NanoSystems Institute , University of California, Los Angeles , Los Angeles , California 90095 , United States
- Department of Chemistry and Biochemistry , University of California, Los Angeles , Los Angeles , California 90095 , United States
- Department of Materials Science and Engineering , University of California, Los Angeles , Los Angeles , California 90095 , United States
| | - Michael A Teitell
- Department of Pathology and Laboratory Medicine , University of California, Los Angeles , Los Angeles , California 90095 , United States
- Department of Bioengineering , University of California, Los Angeles , Los Angeles , California 90095 , United States
- California NanoSystems Institute , University of California, Los Angeles , Los Angeles , California 90095 , United States
- Molecular Biology Institute, Department of Pathology and Laboratory Medicine, Department of Pediatrics, Jonsson Comprehensive Cancer Center, Broad Center of Regenerative Medicine and Stem Cell Research , University of California, Los Angeles , Los Angeles , California 90095 , United States
| | - Pei-Yu Chiou
- Department of Mechanical and Aerospace Engineering , University of California, Los Angeles , Los Angeles , California 90095 , United States
- Department of Bioengineering , University of California, Los Angeles , Los Angeles , California 90095 , United States
- California NanoSystems Institute , University of California, Los Angeles , Los Angeles , California 90095 , United States
| |
Collapse
|
10
|
Morgan E, Wupperfeld D, Morales D, Reich N. Shape Matters: Gold Nanoparticle Shape Impacts the Biological Activity of siRNA Delivery. Bioconjug Chem 2019; 30:853-860. [DOI: 10.1021/acs.bioconjchem.9b00004] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Erin Morgan
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Dominik Wupperfeld
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Demosthenes Morales
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Norbert Reich
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
11
|
Shin JE, Ogunyankin MO, Zasadzinski JA. Perfluoroheptane-Loaded Hollow Gold Nanoshells Reduce Nanobubble Threshold Flux. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1804476. [PMID: 30653279 PMCID: PMC8908779 DOI: 10.1002/smll.201804476] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/21/2018] [Indexed: 05/09/2023]
Abstract
The threshold flux for nanobubble formation and liposome rupture is reduced by 50-60% by adding a liquid mixture of tetradecanol and perfluoroheptane to the interior cavity of 40 nm diameter hollow gold nanoshells (HGN), and allowing the tetradecanol to solidify to hold the perfluoroheptane in place. On absorption of picosecond pulses of near-infrared light, the perfluoroheptane vaporizes to initiate cavitation-like nanobubbles as the HGN temperature increases. The lower spinodal temperature and heat capacity of perfluoroheptane relative to water causes the threshold flux for nanobubble formation to decrease. The perfluoroheptane-containing HGN can be linked via thiol-PEG-lipid tethers to carboxyfluorescein-containing liposomes and shows a similar decreased flux necessary for liposome contents release.
Collapse
Affiliation(s)
| | | | - Joseph A. Zasadzinski
- to whom correspondence should be addressed: Dr. Joseph A. Zasadzinski, 380 Amundson Hall, 421 Washington Ave SE, Minneapolis, Minnesota 55455, ,
| |
Collapse
|
12
|
Metal complex strategies for photo-uncaging the small molecule bioregulators nitric oxide and carbon monoxide. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.07.018] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
13
|
Vermeulen LMP, Fraire JC, Raes L, De Meester E, De Keulenaer S, Van Nieuwerburgh F, De Smedt S, Remaut K, Braeckmans K. Photothermally Triggered Endosomal Escape and Its Influence on Transfection Efficiency of Gold-Functionalized JetPEI/pDNA Nanoparticles. Int J Mol Sci 2018; 19:E2400. [PMID: 30110965 PMCID: PMC6121899 DOI: 10.3390/ijms19082400] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 08/11/2018] [Indexed: 12/22/2022] Open
Abstract
Plasmonic nanoparticles for drug delivery have attracted increasing interest over the last few years. Their localized surface plasmon resonance causes photothermal effects on laser irradiation, which allows for delivering drugs in a spatio-temporally controlled manner. Here, we explore the use of gold nanoparticles (AuNP) as carriers for pDNA in combination with pulsed laser irradiation to induce endosomal escape, which is currently considered to be one of the major bottlenecks in macromolecular drug delivery on the intracellular level. In particular, we evaluate nanocomplexes composed of JetPEI (polyethylenimine)pDNA and 10 nm AuNP, which do not exhibit endosomal escape by themselves. After incubating HeLa cells with these complexes, we evaluated endosomal escape and transfection efficiency using low- and high-energy laser pulses. At low laser energy heat is produced by the nanocomplexes, while, at higher laser energy, explosive vapour nanobubbles (VNB) are formed. We investigated the ability of heat transfer and VNB formation to induce endosomal escape and we examine the integrity of pDNA cargo after inducing both photothermal effects. We conclude that JetPEI/pDNA/AuNP complexes are unable to induce meaningful transfection efficiencies because laser treatment causes either dysfunctionality of the cargo when VNB are formed or forms too small pores in the endosomal membrane to allow pDNA to escape in case of heating. We conclude that laser-induced VNB is the most suitable to induce effective pDNA endosomal escape, but a different nanocomplex structure will be required to keep the pDNA intact.
Collapse
Affiliation(s)
- Lotte M P Vermeulen
- Laboratory of General Biochemistry & Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
- Centre for Nano- and Biophotonics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Juan C Fraire
- Laboratory of General Biochemistry & Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
- Centre for Nano- and Biophotonics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Laurens Raes
- Laboratory of General Biochemistry & Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
- Centre for Nano- and Biophotonics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Ellen De Meester
- Laboratory of Pharmaceutical Biotechnology, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Sarah De Keulenaer
- Laboratory of Pharmaceutical Biotechnology, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Filip Van Nieuwerburgh
- Laboratory of Pharmaceutical Biotechnology, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Stefaan De Smedt
- Laboratory of General Biochemistry & Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Katrien Remaut
- Laboratory of General Biochemistry & Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Kevin Braeckmans
- Laboratory of General Biochemistry & Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
- Centre for Nano- and Biophotonics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
- IEMN UMR 8520 and Laboratoire de Physique des Lasers, Atomes et Molécules. UMR 8523, Université de Lille, F-59655 Villeneuve d'Ascq CEDEX, France.
| |
Collapse
|
14
|
Morales DP, Morgan EN, McAdams M, Chron AB, Shin JE, Zasadzinski JA, Reich NO. Light-Triggered Genome Editing: Cre Recombinase Mediated Gene Editing with Near-Infrared Light. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1800543. [PMID: 29968382 PMCID: PMC10350682 DOI: 10.1002/smll.201800543] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 05/09/2018] [Indexed: 06/08/2023]
Abstract
A light-activated genome editing platform based on the release of enzymes from a plasmonic nanoparticle carrier when exposed to biocompatible near-infrared light pulses is described. The platform relies on the robust affinity of polyhistidine tags to nitrilotriacetic acid in the presence of copper which is attached to double-stranded nucleic acids self-assembled on the gold nanoparticle surface. A protein fusion of the Cre recombinase containing a TAT internalization peptide sequence to achieve endosomal localization is also employed. High-resolution gene knock-in of a red fluorescent reporter is observed using a commercial two-photon microscope. High-throughput irradiation is described to generate useful quantities of edited cells.
Collapse
Affiliation(s)
- Demosthenes P Morales
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, 93106, USA
| | - Erin N Morgan
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, 93106, USA
| | - Meghan McAdams
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, 93106, USA
| | - Amanda B Chron
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, 93106, USA
| | - Jeong Eun Shin
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Joseph A Zasadzinski
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Norbert O Reich
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, 93106, USA
| |
Collapse
|
15
|
Lino MM, Ferreira L. Light-triggerable formulations for the intracellular controlled release of biomolecules. Drug Discov Today 2018; 23:1062-1070. [DOI: 10.1016/j.drudis.2018.01.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 12/03/2017] [Accepted: 01/04/2018] [Indexed: 12/22/2022]
|
16
|
Ogunyankin MO, Shin JE, Lapotko DO, Ferry VE, Zasadzinski JA. Optimizing the NIR Fluence Threshold for Nanobubble Generation by Controlled Synthesis of 10 - 40 nm Hollow Gold Nanoshells. ADVANCED FUNCTIONAL MATERIALS 2018; 28:1705272. [PMID: 31467502 DOI: 10.1002/adfm.v28.10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The laser fluence to trigger nanobubbles around hollow gold nanoshells (HGN) with near infrared light was examined through systematic modification of HGN size, localized surface plasmon resonance (LSPR), HGN concentration, and surface coverage. Improved temperature control during silver template synthesis provided monodisperse, silver templates as small as 9 nm. 10 nm HGN with < 2 nm shell thickness were prepared from these templates with a range of surface plasmon resonances from 600 - 900 nm. The fluence of picosecond near infrared (NIR) pulses to induce transient vapor nanobubbles decreased with HGN size at a fixed LSPR wavelength, unlike solid gold nanoparticles of similar dimensions that require an increased fluence with decreasing size. Nanobubble generation causes the HGN to melt with a blue shift of the LSPR. The nanobubble threshold fluence increases as the irradiation wavelength moves off the nanoshell LSPR. Surface treatment did not influence the threshold fluence. The threshold fluence increased with decreasing HGN concentration, suggesting that light localization through multiple scattering plays a role. The nanobubble threshold to rupture liposomes is 4 times smaller for 10 nm than for 40 nm HGN at a given LSPR, allowing us to use HGN size, LSPR, laser wavelength and fluence to control nanobubble generation.
Collapse
Affiliation(s)
- Maria O Ogunyankin
- Department of Chemical Engineering and Materials Science University of Minnesota Minneapolis, Minnesota 55455
| | - Jeong Eun Shin
- Department of Chemical Engineering and Materials Science University of Minnesota Minneapolis, Minnesota 55455
| | - Dmitri O Lapotko
- Department of Chemical Engineering and Materials Science University of Minnesota Minneapolis, Minnesota 55455
| | - Vivian E Ferry
- Department of Chemical Engineering and Materials Science University of Minnesota Minneapolis, Minnesota 55455
| | - Joseph A Zasadzinski
- Department of Chemical Engineering and Materials Science University of Minnesota Minneapolis, Minnesota 55455
| |
Collapse
|
17
|
Ogunyankin MO, Shin JE, Lapotko DO, Ferry VE, Zasadzinski JA. Optimizing the NIR Fluence Threshold for Nanobubble Generation by Controlled Synthesis of 10 - 40 nm Hollow Gold Nanoshells. ADVANCED FUNCTIONAL MATERIALS 2018; 28:1705272. [PMID: 31467502 PMCID: PMC6715300 DOI: 10.1002/adfm.201705272] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The laser fluence to trigger nanobubbles around hollow gold nanoshells (HGN) with near infrared light was examined through systematic modification of HGN size, localized surface plasmon resonance (LSPR), HGN concentration, and surface coverage. Improved temperature control during silver template synthesis provided monodisperse, silver templates as small as 9 nm. 10 nm HGN with < 2 nm shell thickness were prepared from these templates with a range of surface plasmon resonances from 600 - 900 nm. The fluence of picosecond near infrared (NIR) pulses to induce transient vapor nanobubbles decreased with HGN size at a fixed LSPR wavelength, unlike solid gold nanoparticles of similar dimensions that require an increased fluence with decreasing size. Nanobubble generation causes the HGN to melt with a blue shift of the LSPR. The nanobubble threshold fluence increases as the irradiation wavelength moves off the nanoshell LSPR. Surface treatment did not influence the threshold fluence. The threshold fluence increased with decreasing HGN concentration, suggesting that light localization through multiple scattering plays a role. The nanobubble threshold to rupture liposomes is 4 times smaller for 10 nm than for 40 nm HGN at a given LSPR, allowing us to use HGN size, LSPR, laser wavelength and fluence to control nanobubble generation.
Collapse
Affiliation(s)
- Maria O Ogunyankin
- Department of Chemical Engineering and Materials Science University of Minnesota Minneapolis, Minnesota 55455
| | - Jeong Eun Shin
- Department of Chemical Engineering and Materials Science University of Minnesota Minneapolis, Minnesota 55455
| | - Dmitri O Lapotko
- Department of Chemical Engineering and Materials Science University of Minnesota Minneapolis, Minnesota 55455
| | - Vivian E Ferry
- Department of Chemical Engineering and Materials Science University of Minnesota Minneapolis, Minnesota 55455
| | - Joseph A Zasadzinski
- Department of Chemical Engineering and Materials Science University of Minnesota Minneapolis, Minnesota 55455
| |
Collapse
|
18
|
Chiper M, Niederreither K, Zuber G. Transduction Methods for Cytosolic Delivery of Proteins and Bioconjugates into Living Cells. Adv Healthc Mater 2018; 7:e1701040. [PMID: 29205903 DOI: 10.1002/adhm.201701040] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/13/2017] [Indexed: 01/05/2023]
Abstract
The human organism and its constituting cells rely on interplay between multiple proteins exerting specific functions. Progress in molecular biotechnologies has facilitated the production of recombinant proteins. When administrated to patients, recombinant proteins can provide important healthcare benefits. To date, most therapeutic proteins must act from the extracellular environment, with their targets being secreted modulators or extracellular receptors. This is because proteins cannot passively diffuse across the plasma membrane into the cytosol. To expand the scope of action of proteins for cytosolic targets (representing more than 40% of the genome) effective methods assisting protein cytosolic entry are being developed. To date, direct protein delivery is extremely tedious and inefficient in cultured cells, even more so in animal models of pathology. Novel techniques are changing this limitation, as recently developed in vitro methods can robustly convey large amount of proteins into cell cultures. Moreover, advances in protein formulation or protein conjugates are slowly, but surely demonstrating efficiency for targeted cytosolic entry of functional protein in vivo in tumor xenograft models. In this review, various methods and recently developed techniques for protein transport into cells are summarized. They are put into perspective to address the challenges encountered during delivery.
Collapse
Affiliation(s)
- Manuela Chiper
- Molecular and Pharmaceutical Engineering of Biologics CNRS—Université de Strasbourg UMR 7242 Boulevard Sebastien Brant F‐67412 Illkirch France
- Faculté de Pharmacie—Université de Strasbourg 74 Route du Rhin F‐67400 Illkirch France
| | - Karen Niederreither
- Developmental Biology and Stem Cells Department Institute of Genetics and Molecular and Cellular Biology (IGBMC) F‐67412 Illkirch France
- Faculté de Chirurgie Dentaire Université de Strasbourg CNRS UMR 7104, INSERM U 964 F‐67000 Strasbourg France
| | - Guy Zuber
- Molecular and Pharmaceutical Engineering of Biologics CNRS—Université de Strasbourg UMR 7242 Boulevard Sebastien Brant F‐67412 Illkirch France
| |
Collapse
|
19
|
Lino MM, Simões S, Pinho S, Ferreira L. Intracellular delivery of more than one protein with spatio-temporal control. NANOSCALE 2017; 9:18668-18680. [PMID: 29165472 DOI: 10.1039/c7nr02414b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Transient, non-integrative modulation of cell function by intracellular delivery of proteins has high potential in cellular reprogramming, gene editing and therapeutic medicine applications. Unfortunately, the capacity to deliver multiple proteins intracellularly with temporal and spatial control has not been demonstrated. Here, we report a near infrared (NIR) laser-activatable nanomaterial that allows for precise control over the release of two proteins from a single nanomaterial. The nanomaterial is formed by gold nanorods (AuNRs) modified with single stranded DNA (ssDNA) to which complementary DNA-conjugated proteins are hybridized. Using DNA strands with distinct melting temperatures we are able to control independently the release of each protein with a laser using the same wavelength but with different powers. Studies in mammalian cells show that AuNRs conjugated with proteins are internalized by endocytosis and NIR laser irradiation promotes endosomal escape and the release of the proteins from the AuNRs simultaneously. Our results further demonstrate the feasibility of protein release from a carrier that has been accumulated within the cell up to 1 day while maintaining its activity.
Collapse
Affiliation(s)
- Miguel M Lino
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal.
| | | | | | | |
Collapse
|
20
|
Wang X, Li Y, Li Q, Neufeld CI, Pouli D, Sun S, Yang L, Deng P, Wang M, Georgakoudi I, Tang S, Xu Q. Hyaluronic acid modification of RNase A and its intracellular delivery using lipid-like nanoparticles. J Control Release 2017; 263:39-45. [DOI: 10.1016/j.jconrel.2017.01.037] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 01/19/2017] [Accepted: 01/27/2017] [Indexed: 11/28/2022]
|
21
|
Morales DP, Wonderly WR, Huang X, McAdams M, Chron AB, Reich NO. Affinity-Based Assembly of Peptides on Plasmonic Nanoparticles Delivered Intracellularly with Light Activated Control. Bioconjug Chem 2017; 28:1816-1820. [DOI: 10.1021/acs.bioconjchem.7b00276] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Demosthenes P. Morales
- Department of Chemistry and
Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - William R. Wonderly
- Department of Chemistry and
Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Xiao Huang
- Department of Chemistry and
Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Meghan McAdams
- Department of Chemistry and
Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Amanda B. Chron
- Department of Chemistry and
Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Norbert O. Reich
- Department of Chemistry and
Biochemistry, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
22
|
Kim WJ, Kim BS, Cho YD, Yoon WJ, Baek JH, Woo KM, Ryoo HM. Fibroin particle-supported cationic lipid layers for highly efficient intracellular protein delivery. Biomaterials 2017; 122:154-162. [DOI: 10.1016/j.biomaterials.2017.01.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Revised: 01/10/2017] [Accepted: 01/13/2017] [Indexed: 12/31/2022]
|
23
|
Ouyang M, Hill W, Lee JH, Hur SC. Microscale Symmetrical Electroporator Array as a Versatile Molecular Delivery System. Sci Rep 2017; 7:44757. [PMID: 28317836 PMCID: PMC5357946 DOI: 10.1038/srep44757] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 02/13/2017] [Indexed: 12/13/2022] Open
Abstract
Successful developments of new therapeutic strategies often rely on the ability to deliver exogenous molecules into cytosol. We have developed a versatile on-chip vortex-assisted electroporation system, engineered to conduct sequential intracellular delivery of multiple molecules into various cell types at low voltage in a dosage-controlled manner. Micro-patterned planar electrodes permit substantial reduction in operational voltages and seamless integration with an existing microfluidic technology. Equipped with real-time process visualization functionality, the system enables on-chip optimization of electroporation parameters for cells with varying properties. Moreover, the system’s dosage control and multi-molecular delivery capabilities facilitate intracellular delivery of various molecules as a single agent or in combination and its utility in biological research has been demonstrated by conducting RNA interference assays. We envision the system to be a powerful tool, aiding a wide range of applications, requiring single-cell level co-administrations of multiple molecules with controlled dosages.
Collapse
Affiliation(s)
- Mengxing Ouyang
- Rowland Institute at Harvard University, 100 Edwin H. Land Blvd., Cambridge, MA 02142, USA
| | - Winfield Hill
- Rowland Institute at Harvard University, 100 Edwin H. Land Blvd., Cambridge, MA 02142, USA
| | - Jung Hyun Lee
- Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Soojung Claire Hur
- Rowland Institute at Harvard University, 100 Edwin H. Land Blvd., Cambridge, MA 02142, USA
| |
Collapse
|
24
|
Shakiba A, Zenasni O, D. Marquez M, Randall Lee T. Advanced drug delivery via self-assembled monolayer-coated nanoparticles. AIMS BIOENGINEERING 2017. [DOI: 10.3934/bioeng.2017.2.275] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
25
|
Huang X, Hu Q, Lai Y, Morales DP, Clegg DO, Reich NO. Light-Patterned RNA Interference of 3D-Cultured Human Embryonic Stem Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:10732-10737. [PMID: 27787919 DOI: 10.1002/adma.201603318] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 09/15/2016] [Indexed: 06/06/2023]
Abstract
A new method of spatially controlled gene regulation in 3D-cultured human embryonic stem cells is developed using hollow gold nanoshells (HGNs) and near-infrared (NIR) light. Targeted cell(s) are discriminated from neighboring cell(s) by focusing NIR light emitted from a two-photon microscope. Irradiation of cells that have internalized HGNs releases surface attached siRNAs and leads to concomitant gene downregulation.
Collapse
Affiliation(s)
- Xiao Huang
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, 93106, USA
| | - Qirui Hu
- Center for Stem Cell Biology and Engineering, Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, 93106, USA
| | - Yifan Lai
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, 93106, USA
| | - Demosthenes P Morales
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, 93106, USA
| | - Dennis O Clegg
- Center for Stem Cell Biology and Engineering, Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, 93106, USA
| | - Norbert O Reich
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, 93106, USA
| |
Collapse
|
26
|
Zhang Y, Zhang J, Xing C, Zhang M, Wang L, Zhao H. Protein Nanogels with Temperature-Induced Reversible Structures and Redox Responsiveness. ACS Biomater Sci Eng 2016; 2:2266-2275. [DOI: 10.1021/acsbiomaterials.6b00490] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Yue Zhang
- Key
Laboratory of Functional Polymer Materials, Ministry of Education,
College of Chemistry, Nankai University, Tianjin 300071, China
- Collaborative
Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China
| | - Jiamin Zhang
- The
Key Laboratory of Bioactive Materials, Ministry of Education, College
of Life Sciences, Nankai University, Tianjin 300071, China
| | - Cheng Xing
- The
Key Laboratory of Bioactive Materials, Ministry of Education, College
of Life Sciences, Nankai University, Tianjin 300071, China
| | - Mingming Zhang
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Lianyong Wang
- The
Key Laboratory of Bioactive Materials, Ministry of Education, College
of Life Sciences, Nankai University, Tianjin 300071, China
| | - Hanying Zhao
- Key
Laboratory of Functional Polymer Materials, Ministry of Education,
College of Chemistry, Nankai University, Tianjin 300071, China
- Collaborative
Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China
| |
Collapse
|
27
|
Abstract
If the isolation, production, and clinical use of insulin marked the inception of the age of biologics as therapeutics, the convergence of molecular biology and combinatorial engineering techniques marked its coming of age. The first wave of recombinant protein-based drugs in the 1980s demonstrated emphatically that proteins could be engineered, formulated, and employed for clinical advantage. Yet despite the successes of protein-based drugs such as antibodies, enzymes, and cytokines, the druggable target space for biologics is currently restricted to targets outside the cell. Insofar as estimates place the number of proteins either secreted or with extracellular domains in the range of 8000 to 9000, this represents only one-third of the proteome and circumscribes the pathways that can be targeted for therapeutic intervention. Clearly, a major objective for this field to reach maturity is to access, interrogate, and modulate the majority of proteins found inside the cell. However, owing to the large size, complex architecture, and general cellular impermeability of existing protein-based drugs, this poses a daunting challenge. In recent years, though, advances on the two related fronts of protein engineering and drug delivery are beginning to bring this goal within reach. First, prompted by the restrictions that limit the applicability of antibodies, intense efforts have been applied to identifying and engineering smaller alternative protein scaffolds for the modulation of intracellular targets. In parallel, innovative solutions for delivering proteins to the intracellular space while maintaining their stability and functional activity have begun to yield successes. This review provides an overview of bioactive intrabodies and alternative protein scaffolds amenable to engineering for intracellular targeting and also outlines advances in protein engineering and formulation for delivery of functional proteins to the interior of the cell to achieve therapeutic action.
Collapse
Affiliation(s)
- Shane Miersch
- Banting and Best Department of Medical Research, Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Sachdev S Sidhu
- Banting and Best Department of Medical Research, Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
28
|
Misra SK, Mukherjee P, Ohoka A, Schwartz-Duval AS, Tiwari S, Bhargava R, Pan D. Vibrational spectroscopy and imaging for concurrent cellular trafficking of co-localized doxorubicin and deuterated phospholipid vesicles. NANOSCALE 2016; 8:2826-31. [PMID: 26763407 PMCID: PMC4868062 DOI: 10.1039/c5nr07975f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Simultaneous tracking of nanoparticles and encapsulated payload is of great importance and visualizing their activity is arduous. Here we use vibrational spectroscopy to study the in vitro tracking of co-localized lipid nanoparticles and encapsulated drug employing a model system derived from doxorubicin-encapsulated deuterated phospholipid (dodecyl phosphocholine-d38) single tailed phospholipid vesicles.
Collapse
Affiliation(s)
- S K Misra
- Departments of Bioengineering and Materials Science and Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Carle Foundation Hospital, 502 N. Busey St., Urbana, IL 61801, USA.
| | - P Mukherjee
- Department of Bioengineering, Electrical and Computer Engineering, Chemical and Biomolecular Engineering, Chemistry, and Mechanical Science and Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 1304 W. Springfield Ave, Urbana, IL 61801, USA.
| | - A Ohoka
- Departments of Bioengineering and Materials Science and Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Carle Foundation Hospital, 502 N. Busey St., Urbana, IL 61801, USA.
| | - A S Schwartz-Duval
- Departments of Bioengineering and Materials Science and Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Carle Foundation Hospital, 502 N. Busey St., Urbana, IL 61801, USA.
| | - S Tiwari
- Department of Bioengineering, Electrical and Computer Engineering, Chemical and Biomolecular Engineering, Chemistry, and Mechanical Science and Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 1304 W. Springfield Ave, Urbana, IL 61801, USA.
| | - R Bhargava
- Department of Bioengineering, Electrical and Computer Engineering, Chemical and Biomolecular Engineering, Chemistry, and Mechanical Science and Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 1304 W. Springfield Ave, Urbana, IL 61801, USA.
| | - D Pan
- Departments of Bioengineering and Materials Science and Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Carle Foundation Hospital, 502 N. Busey St., Urbana, IL 61801, USA.
| |
Collapse
|
29
|
Li H, Fan X, Chen X. Near-Infrared Light Activation of Proteins Inside Living Cells Enabled by Carbon Nanotube-Mediated Intracellular Delivery. ACS APPLIED MATERIALS & INTERFACES 2016; 8:4500-4507. [PMID: 26859435 DOI: 10.1021/acsami.6b00323] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Light-responsive proteins have been delivered into the cells for controlling intracellular events with high spatial and temporal resolution. However, the choice of wavelength is limited to the UV and visible range; activation of proteins inside the cells using near-infrared (NIR) light, which has better tissue penetration and biocompatibility, remains elusive. Here, we report the development of a single-walled carbon nanotube (SWCNT)-based bifunctional system that enables protein intracellular delivery, followed by NIR activation of the delivered proteins inside the cells. Proteins of interest are conjugated onto SWCNTs via a streptavidin-desthiobiotin (SA-DTB) linkage, where the protein activity is blocked. SWCNTs serve as both a nanocarrier for carrying proteins into the cells and subsequently a NIR sensitizer to photothermally cleave the linkage and release the proteins. The released proteins become active and exert their functions inside the cells. We demonstrated this strategy by intracellular delivery and NIR-triggered nuclear translocation of enhanced green fluorescent protein, and by intracellular delivery and NIR-activation of a therapeutic protein, saporin, in living cells. Furthermore, we showed that proteins conjugated onto SWCNTs via the SA-DTB linkage could be delivered to the tumors, and optically released and activated by using NIR light in living mice.
Collapse
Affiliation(s)
- He Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, Peking-Tsinghua Center for Life Sciences, Peking University , Beijing 100871, China
| | - Xinqi Fan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, Peking-Tsinghua Center for Life Sciences, Peking University , Beijing 100871, China
| | - Xing Chen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, Peking-Tsinghua Center for Life Sciences, Peking University , Beijing 100871, China
| |
Collapse
|
30
|
Mirzaei A, Miroshnichenko AE, Shadrivov IV, Kivshar YS. Optical Metacages. PHYSICAL REVIEW LETTERS 2015; 115:215501. [PMID: 26636859 DOI: 10.1103/physrevlett.115.215501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Indexed: 06/05/2023]
Abstract
We suggest a novel strategy for spectrally selective optical shielding of arbitrary shaped volumes by arranging specifically designed two- or three-layer nanowires around an area that needs to be protected. We show that such nanowire shields preserve their functionality for almost arbitrary geometry, and we term such structures optical metacages. We analyze several designs of such optical metacages made from either metallic or dielectric materials with experimentally measured parameters. We employ a semianalytical approach and also verify our results by numerical simulations. We further study optical properties of the introduced metacages in both near- and far-field regions, as well as analyze their frequency selectivity and the vanishing backscattering regime.
Collapse
Affiliation(s)
- Ali Mirzaei
- Nonlinear Physics Centre, Research School of Physics and Engineering, Australian National University, ACT 2601, Australia
| | - Andrey E Miroshnichenko
- Nonlinear Physics Centre, Research School of Physics and Engineering, Australian National University, ACT 2601, Australia
| | - Ilya V Shadrivov
- Nonlinear Physics Centre, Research School of Physics and Engineering, Australian National University, ACT 2601, Australia
| | - Yuri S Kivshar
- Nonlinear Physics Centre, Research School of Physics and Engineering, Australian National University, ACT 2601, Australia
| |
Collapse
|
31
|
Levy ES, Morales DP, Garcia JV, Reich NO, Ford PC. Near-IR mediated intracellular uncaging of NO from cell targeted hollow gold nanoparticles. Chem Commun (Camb) 2015; 51:17692-5. [DOI: 10.1039/c5cc07989f] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
NIR light triggers NO delivery with unprecedented spatio-temporal control inside prostate cancer cells from surface-modified hollow gold nanoshells.
Collapse
Affiliation(s)
- Elizabeth S. Levy
- Department of Chemistry and Biochemistry
- University of California
- Santa Barbara
- 93106-9510 USA
| | - Demosthenes P. Morales
- Department of Chemistry and Biochemistry
- University of California
- Santa Barbara
- 93106-9510 USA
| | - John V. Garcia
- Department of Chemistry and Biochemistry
- University of California
- Santa Barbara
- 93106-9510 USA
| | - Norbert O. Reich
- Department of Chemistry and Biochemistry
- University of California
- Santa Barbara
- 93106-9510 USA
| | - Peter C. Ford
- Department of Chemistry and Biochemistry
- University of California
- Santa Barbara
- 93106-9510 USA
| |
Collapse
|
32
|
Huang X, Pallaoro A, Braun GB, Morales D, Ogunyankin MO, Zasadzinski J, Reich NO. Modular plasmonic nanocarriers for efficient and targeted delivery of cancer-therapeutic siRNA. NANO LETTERS 2014; 14:2046-51. [PMID: 24597503 PMCID: PMC3985716 DOI: 10.1021/nl500214e] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 03/01/2014] [Indexed: 05/23/2023]
Abstract
We have combined a versatile and powerful route to deliver nucleic acids with peptide-based cell-specific targeting. siRNA targeting the polo-like kinase gene is in clinical trials for cancer treatment, and here we deliver this RNA selectively to cancer cells displaying the neuropilin-1 epitope using gold nanoshells. Release of the siRNA from the nanoparticles results from irradiation with a pulsed near-infrared laser, which also provides efficient endosomal escape within the cell. As a result, our approach requires 10-fold less material than standard nucleic acid transduction materials and is significantly more efficient than other particle-based methods. We also describe a particle-nucleic acid design that does not rely on modified RNA, thereby making the preparation of these materials more efficient and much less expensive. These improvements, when combined with control over when and where the siRNA is released, could provide the basis for diverse cell biological studies.
Collapse
Affiliation(s)
- Xiao Huang
- Department
of Chemistry and Biochemistry, University
of California, Santa Barbara, California 93106, United States
| | - Alessia Pallaoro
- Department
of Chemistry and Biochemistry, University
of California, Santa Barbara, California 93106, United States
| | - Gary B. Braun
- Cancer
Research Center, Sanford-Burnham Medical
Research Institute, La Jolla, California 92037, United States
| | - Demosthenes
P. Morales
- Department
of Chemistry and Biochemistry, University
of California, Santa Barbara, California 93106, United States
| | - Maria O. Ogunyankin
- Department
of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Joseph Zasadzinski
- Department
of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Norbert O. Reich
- Department
of Chemistry and Biochemistry, University
of California, Santa Barbara, California 93106, United States
| |
Collapse
|