1
|
Gu X, Majumder J, Taratula O, Kuzmov A, Garbuzenko O, Pogrebnyak N, Minko T. Nanotechnology-Based Strategy for Enhancing Therapeutic Efficacy in Pancreatic Cancer: Receptor-Targeted Drug Delivery by Somatostatin Analog. Int J Mol Sci 2024; 25:5545. [PMID: 38791582 PMCID: PMC11122428 DOI: 10.3390/ijms25105545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/12/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024] Open
Abstract
A novel nanotechnology-based drug delivery system (DDS) targeted at pancreatic cancer cells was developed, characterized, and tested. The system consisted of liposomes as carriers, an anticancer drug (paclitaxel) as a chemotherapeutic agent, and a modified synthetic somatostatin analog, 5-pentacarbonyl-octreotide, a ligand for somatostatin receptor 2 (SSTR2), as a targeting moiety for pancreatic cancer. The cellular internalization, cytotoxicity, and antitumor activity of the DDS were tested in vitro using human pancreatic ductal adenocarcinoma (PDAC) cells with different expressions of the targeted SSTR2 receptors, and in vivo on immunodeficient mice bearing human PDAC xenografts. The targeted drug delivery system containing paclitaxel exhibited significantly enhanced cytotoxicity compared to non-targeted DDS, and this efficacy was directly related to the levels of SSTR2 expression. It was found that octreotide-targeted DDS proved exceptionally effective in suppressing the growth of PDAC tumors. This study underscores the potential of octreotide-targeted liposomal delivery systems to enhance the therapeutic outcomes for PDAC compared with non-targeted liposomal DDS and Paclitaxel-Cremophor® EL, suggesting a promising avenue for future cancer therapy innovations.
Collapse
Affiliation(s)
- Xin Gu
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08554, USA
| | - Joydeb Majumder
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08554, USA
| | - Olena Taratula
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR 97201, USA
| | - Andriy Kuzmov
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08554, USA
| | - Olga Garbuzenko
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08554, USA
| | - Natalia Pogrebnyak
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08554, USA
| | - Tamara Minko
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08554, USA
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| |
Collapse
|
2
|
Gu X, Minko T. Targeted Nanoparticle-Based Diagnostic and Treatment Options for Pancreatic Cancer. Cancers (Basel) 2024; 16:1589. [PMID: 38672671 PMCID: PMC11048786 DOI: 10.3390/cancers16081589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC), one of the deadliest cancers, presents significant challenges in diagnosis and treatment due to its aggressive, metastatic nature and lack of early detection methods. A key obstacle in PDAC treatment is the highly complex tumor environment characterized by dense stroma surrounding the tumor, which hinders effective drug delivery. Nanotechnology can offer innovative solutions to these challenges, particularly in creating novel drug delivery systems for existing anticancer drugs for PDAC, such as gemcitabine and paclitaxel. By using customization methods such as incorporating conjugated targeting ligands, tumor-penetrating peptides, and therapeutic nucleic acids, these nanoparticle-based systems enhance drug solubility, extend circulation time, improve tumor targeting, and control drug release, thereby minimizing side effects and toxicity in healthy tissues. Moreover, nanoparticles have also shown potential in precise diagnostic methods for PDAC. This literature review will delve into targeted mechanisms, pathways, and approaches in treating pancreatic cancer. Additional emphasis is placed on the study of nanoparticle-based delivery systems, with a brief mention of those in clinical trials. Overall, the overview illustrates the significant advances in nanomedicine, underscoring its role in transcending the constraints of conventional PDAC therapies and diagnostics.
Collapse
Affiliation(s)
- Xin Gu
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08554, USA
| | - Tamara Minko
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08554, USA
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| |
Collapse
|
3
|
Xu T, Jiang J, Xiang X, Jahanshahi H, Zhang Y, Chen X, Li L. Conduction and validation of a novel prognostic signature in cervical cancer based on the necroptosis characteristic genes via integrating of multiomics data. Comput Biol Med 2024; 168:107656. [PMID: 38029530 DOI: 10.1016/j.compbiomed.2023.107656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/12/2023] [Accepted: 10/31/2023] [Indexed: 12/01/2023]
Abstract
The significance of necroptosis in recurrent or metastatic cervical cancer remains unclear. In this study, we utilized various bioinformatics methods to analyze the cancer genome atlas (TCGA) data, gene chip and the single-cell RNA-sequencing (scRNA seq) data. And a necroptosis-related genes signature for prognostic assessment of patients with cervical cancer was constructed successfully. Survival analysis, receiver operating characteristic (ROC) curve, the support vector machine recursive feature elimination (SVM-RFE) algorithm and random forest analysis were performed to validate this signature. Patients in TCGA-CESC cohort were grouped into "high-necroptosis score (H-NCPS)" vs "low-necroptosis score (L-NCPS)" subgroups based on the median of necroptosis score of each patient. Analyses of the tumor microenvironment manifested "H-NCPS" patients associated with lower degree of immune infiltration. Through the utilization of survival analysis, cell communication, and Gene Set Enrichment Analysis (GSEA), PGK1 was determined to be the pivotal gene within the 9-gene signature associated with necroptosis. The high expression of PGK1 in cervical cancer cells was confirmed through the utilization of quantitative real-time polymerase chain reaction (RT-qPCR) and the human protein atlas (HPA). In the interim, PGK1 prompted the transition of M1 macrophages to M2 macrophages and influenced the occurrence and development of necroptosis. In conclusion, the 9-gene signature developed from necroptosis-related genes has shown significant predictive capabilities for the prognosis of cervical cancer, offered valuable guidance for individualized and targeted treatment approaches for patients.
Collapse
Affiliation(s)
- Tu Xu
- Department of Clinical Medicine, Medical College of Hunan Normal University, Changsha, Hunan, China.
| | - Jingwen Jiang
- Department of Clinical Medicine, Medical College of Hunan Normal University, Changsha, Hunan, China.
| | - Xiaoqing Xiang
- Department of Clinical Medicine, Medical College of Hunan Normal University, Changsha, Hunan, China.
| | - Hadi Jahanshahi
- Institute of Electrical and Electronics Engineers, Toronto, ON, Canada.
| | - Yong Zhang
- Department of Clinical Medicine, Medical College of Hunan Normal University, Changsha, Hunan, China.
| | - Xiaoyan Chen
- Department of Pathology, Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.
| | - Lesai Li
- Department of Gynecologic Oncology, Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.
| |
Collapse
|
4
|
Zhang Y, Luo J, Gui X, Zheng Y, Schaar E, Liu G, Shi J. Bioengineered nanotechnology for nucleic acid delivery. J Control Release 2023; 364:124-141. [PMID: 37879440 PMCID: PMC10838211 DOI: 10.1016/j.jconrel.2023.10.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/15/2023] [Accepted: 10/21/2023] [Indexed: 10/27/2023]
Abstract
Nucleic acid-based therapy has emerged as a promising therapeutic approach for treating various diseases, such as genetic disorders, cancers, and viral infections. Diverse nucleic acid delivery systems have been reported, and some, including lipid nanoparticles, have exhibited clinical success. In parallel, bioengineered nucleic acid delivery nanocarriers have also gained significant attention due to their flexible functional design and excellent biocompatibility. In this review, we summarize recent advances in bioengineered nucleic acid delivery nanocarriers, focusing on exosomes, cell membrane-derived nanovesicles, protein nanocages, and virus-like particles. We highlight their unique features, advantages for nucleic acid delivery, and biomedical applications. Furthermore, we discuss the challenges that bioengineered nanocarriers face towards clinical translation and the possible avenues for their further development. This review ultimately underlines the potential of bioengineered nanotechnology for the advancement of nucleic acid therapy.
Collapse
Affiliation(s)
- Yang Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China; Center for Nanomedicine and Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jing Luo
- Department of Urology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Xiran Gui
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Yating Zheng
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Eric Schaar
- Center for Nanomedicine and Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Gang Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China.
| | - Jinjun Shi
- Center for Nanomedicine and Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
5
|
João J, Prazeres DMF. Manufacturing of non-viral protein nanocages for biotechnological and biomedical applications. Front Bioeng Biotechnol 2023; 11:1200729. [PMID: 37520292 PMCID: PMC10374429 DOI: 10.3389/fbioe.2023.1200729] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/05/2023] [Indexed: 08/01/2023] Open
Abstract
Protein nanocages are highly ordered nanometer scale architectures, which are typically formed by homo- or hetero-self-assembly of multiple monomers into symmetric structures of different size and shape. The intrinsic characteristics of protein nanocages make them very attractive and promising as a biological nanomaterial. These include, among others, a high surface/volume ratio, multi-functionality, ease to modify or manipulate genetically or chemically, high stability, mono-dispersity, and biocompatibility. Since the beginning of the investigation into protein nanocages, several applications were conceived in a variety of areas such as drug delivery, vaccine development, bioimaging, biomineralization, nanomaterial synthesis and biocatalysis. The ability to generate large amounts of pure and well-folded protein assemblies is one of the keys to transform nanocages into clinically valuable products and move biomedical applications forward. This calls for the development of more efficient biomanufacturing processes and for the setting up of analytical techniques adequate for the quality control and characterization of the biological function and structure of nanocages. This review concisely covers and overviews the progress made since the emergence of protein nanocages as a new, next-generation class of biologics. A brief outline of non-viral protein nanocages is followed by a presentation of their main applications in the areas of bioengineering, biotechnology, and biomedicine. Afterwards, we focus on a description of the current processes used in the manufacturing of protein nanocages with particular emphasis on the most relevant aspects of production and purification. The state-of-the-art on current characterization techniques is then described and future alternative or complementary approaches in development are also discussed. Finally, a critical analysis of the limitations and drawbacks of the current manufacturing strategies is presented, alongside with the identification of the major challenges and bottlenecks.
Collapse
Affiliation(s)
- Jorge João
- iBB–Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory i4HB–Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Duarte Miguel F. Prazeres
- iBB–Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory i4HB–Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
6
|
Farasati Far B, Safaei M, Mokhtari F, Fallahi MS, Naimi-Jamal MR. Fundamental concepts of protein therapeutics and spacing in oncology: an updated comprehensive review. Med Oncol 2023; 40:166. [PMID: 37147486 DOI: 10.1007/s12032-023-02026-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/06/2023] [Indexed: 05/07/2023]
Abstract
Current treatment regimens in cancer cases cause significant side effects and cannot effectively eradicate the advanced disease. Hence, much effort has been expended over the past years to understand how cancer grows and responds to therapies. Meanwhile, proteins as a type of biopolymers have been under commercial development for over three decades and have been proven to improve the healthcare system as effective medicines for treating many types of progressive disease, such as cancer. Following approving the first recombinant protein therapeutics by FDA (Humulin), there have been a revolution for drawing attention toward protein-based therapeutics (PTs). Since then, the ability to tailor proteins with ideal pharmacokinetics has provided the pharmaceutical industry with an important noble path to discuss the clinical potential of proteins in oncology research. Unlike traditional chemotherapy molecules, PTs actively target cancerous cells by binding to their surface receptors and the other biomarkers particularly associated with tumorous or healthy tissue. This review analyzes the potential and limitations of protein therapeutics (PTs) in the treatment of cancer as well as highlighting the evolving strategies by addressing all possible factors, including pharmacology profile and targeted therapy approaches. This review provides a comprehensive overview of the current state of PTs in oncology, including their pharmacology profile, targeted therapy approaches, and prospects. The reviewed data show that several current and future challenges remain to make PTs a promising and effective anticancer drug, such as safety, immunogenicity, protein stability/degradation, and protein-adjuvant interactions.
Collapse
Affiliation(s)
- Bahareh Farasati Far
- Research Laboratory of Green Organic Synthesis and Polymers, Department of Chemistry, Iran University of Science and Technology, Narmak, Tehran, Iran
| | - Maryam Safaei
- Department of Pharmacology, Faculty of Pharmacy, Eastern Mediterranean University, Via Mersin 10, TR. North Cyprus, Famagusta, Turkey
| | - Fatemeh Mokhtari
- Department of Chemistry, Faculty of Basic Science, Azarbaijan Shahid Madani (ASMU), Tabriz, 53751-71379, Iran
| | | | - Mohammad Reza Naimi-Jamal
- Research Laboratory of Green Organic Synthesis and Polymers, Department of Chemistry, Iran University of Science and Technology, Narmak, Tehran, Iran.
| |
Collapse
|
7
|
Saifi MA, Sathish G, Bazaz MR, Godugu C. Exploration of tumor penetrating peptide iRGD as a potential strategy to enhance tumor penetration of cancer nanotherapeutics. Biochim Biophys Acta Rev Cancer 2023; 1878:188895. [PMID: 37037389 DOI: 10.1016/j.bbcan.2023.188895] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 04/12/2023]
Abstract
Cancer therapy continues to be a huge challenge as most chemotherapeutic agents exert serious adverse effects on healthy organs. Chemotherapeutic agents lack selective targeting and even the existing target specific therapies are failing due to poor distribution into the tumor microenvironment. Nanotechnology offers multiple advantages to address the limitations encountered by conventional therapy. However, the delivery of nanotherapeutics to tumor tissue has not improved over the years partly due to the poor and inadequate distribution of nanotherapeutics into deeper tumor regions resulting in resistance and relapse. To curb the penetration concerns, iRGD was explored and found to be highly effective in improving the delivery of cancer nanomedicine. The preclinical observations are highly encouraging; however, the clinical translation is at a nascent stage. Based on this, we have made an elaborative effort to give a detailed account of various promising applications of iRGD to increase anticancer and tumor imaging potential. Importantly, we have comprehensively discussed the shortcomings and uncertainties associated with the clinical translation of iRGD-based therapeutic approaches and future directions.
Collapse
Affiliation(s)
- Mohd Aslam Saifi
- Department of Biological Sciences (Regulatory Toxicology), National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Gauri Sathish
- Department of Biological Sciences (Regulatory Toxicology), National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Mohd Rabi Bazaz
- Department of Biological Sciences (Pharmacology and Toxicology), National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Chandraiah Godugu
- Department of Biological Sciences (Regulatory Toxicology), National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India.
| |
Collapse
|
8
|
Liu T, Li L, Cheng C, He B, Jiang T. Emerging prospects of protein/peptide-based nanoassemblies for drug delivery and vaccine development. NANO RESEARCH 2022; 15:7267-7285. [PMID: 35692441 PMCID: PMC9166156 DOI: 10.1007/s12274-022-4385-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 05/09/2023]
Abstract
Proteins have been widely used in the biomedical field because of their well-defined architecture, accurate molecular weight, excellent biocompatibility and biodegradability, and easy-to-functionalization. Inspired by the wisdom of nature, increasing proteins/peptides that possess self-assembling capabilities have been explored and designed to generate nanoassemblies with unique structure and function, including spatially organized conformation, passive and active targeting, stimuli-responsiveness, and high stability. These characteristics make protein/peptide-based nanoassembly an ideal platform for drug delivery and vaccine development. In this review, we focus on recent advances in subsistent protein/peptide-based nanoassemblies, including protein nanocages, virus-like particles, self-assemblable natural proteins, and self-assemblable artificial peptides. The origin and characteristics of various protein/peptide-based assemblies and their applications in drug delivery and vaccine development are summarized. In the end, the prospects and challenges are discussed for the further development of protein/peptide-based nanoassemblies.
Collapse
Affiliation(s)
- Taiyu Liu
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816 China
| | - Lu Li
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816 China
| | - Cheng Cheng
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816 China
| | - Bingfang He
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816 China
| | - Tianyue Jiang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816 China
| |
Collapse
|
9
|
Edwardson TGW, Levasseur MD, Tetter S, Steinauer A, Hori M, Hilvert D. Protein Cages: From Fundamentals to Advanced Applications. Chem Rev 2022; 122:9145-9197. [PMID: 35394752 DOI: 10.1021/acs.chemrev.1c00877] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Proteins that self-assemble into polyhedral shell-like structures are useful molecular containers both in nature and in the laboratory. Here we review efforts to repurpose diverse protein cages, including viral capsids, ferritins, bacterial microcompartments, and designed capsules, as vaccines, drug delivery vehicles, targeted imaging agents, nanoreactors, templates for controlled materials synthesis, building blocks for higher-order architectures, and more. A deep understanding of the principles underlying the construction, function, and evolution of natural systems has been key to tailoring selective cargo encapsulation and interactions with both biological systems and synthetic materials through protein engineering and directed evolution. The ability to adapt and design increasingly sophisticated capsid structures and functions stands to benefit the fields of catalysis, materials science, and medicine.
Collapse
Affiliation(s)
| | | | - Stephan Tetter
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Angela Steinauer
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Mao Hori
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Donald Hilvert
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
10
|
Takagishi S, Arimura K, Murata M, Iwaki K, Okuda T, Ido K, Nishimura A, Narahara S, Kawano T, Iihara K. Protein Nanoparticles Modified with PDGF-B as a Novel Therapy After Acute Cerebral Infarction. eNeuro 2021; 8:ENEURO.0098-21.2021. [PMID: 34462309 PMCID: PMC8445038 DOI: 10.1523/eneuro.0098-21.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 08/18/2021] [Accepted: 08/21/2021] [Indexed: 11/21/2022] Open
Abstract
Treatment options for cerebral infarction beyond the time window of reperfusion therapy are limited, and novel approaches are needed. PDGF-B is considered neuroprotective; however, it is difficult to administer at effective concentrations to infarct areas. Nanoparticles (NPs) are small and stable; therefore, we modified PDGF-B to the surface of naturally occurring heat shock protein NPs (HSPNPs) to examine its therapeutic effect in cerebral infarction. PDGF-B modified HSPNPs (PDGF-B HSPNPs) were injected 1 d after transient middle cerebral artery occlusion (t-MCAO) in CB-17 model mice. We analyzed the infarct volume and motor functional recovery at 3 and 7 d. PDGF-B HSPNPs were specifically distributed in the infarct area, and compared with HSPNPs alone, they significantly reduced infarct volumes and improved neurologic function 3 and 7 d after administration. PDGF-B HSPNP administration was associated with strong phosphorylation of Akt in infarct areas and significantly increased neurotrophin (NT)-3 production as well as reduced cell apoptosis compared with HSPNPs alone. Moreover, astrogliosis in peri-infarct area was significantly upregulated with PDGF-B HSPNPs compared with HSPNPs alone. Treatment with PDGF-B HSPNPs might be a novel approach for treating cerebral infarction.
Collapse
Affiliation(s)
- Soh Takagishi
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Koichi Arimura
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Masaharu Murata
- Center for Advanced Medical Innovation, Kyushu University, Fukuoka 812-8582, Japan
- Department of Advanced Medical Initiatives, Faculty of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Katsuma Iwaki
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Tomohiro Okuda
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Keisuke Ido
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Ataru Nishimura
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Sayoko Narahara
- Center for Advanced Medical Innovation, Kyushu University, Fukuoka 812-8582, Japan
| | - Takahito Kawano
- Center for Advanced Medical Innovation, Kyushu University, Fukuoka 812-8582, Japan
| | - Koji Iihara
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
- National Cerebral and Cardiovascular Center, Suita, Japan, Osaka 564-8565, Japan
| |
Collapse
|
11
|
Dong Y, Ma Y, Li X, Wang F, Zhang Y. ERK-Peptide-Inhibitor-Modified Ferritin Enhanced the Therapeutic Effects of Paclitaxel in Cancer Cells and Spheroids. Mol Pharm 2021; 18:3365-3377. [PMID: 34370483 DOI: 10.1021/acs.molpharmaceut.1c00303] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Rational design of a drug delivery system with enhanced therapeutic potency is critical for efficient tumor chemotherapy. Many protein-based drug delivery platforms have been designed to deliver drugs to target sites and improve the therapeutic efficacy. In this study, paclitaxel (PTX) molecules were encapsulated within an apoferritin nanocage-based drug delivery system with the modification of an extracellular-signal-regulated kinase (ERK) peptide inhibitor at the C-terminus of ferritin (HERK). Apoferritin is an endogenous nano-sized spherical protein which has the ability to specially bind to a majority of tumor cells via interacting with transferrin receptor 1. The ERK peptide inhibitor is a peptide which can disrupt the interaction of MEK with ERK in the mitogen-activated protein kinase/ERK pathway. By combining the targeted delivery effect of ferritin and the inhibitory effect of the ERK peptide inhibitor, the newly fabricated ferritin carrier nanoparticle HERK could still be taken up by tumor cells, and it displayed higher cell cytotoxicity than the parent ferritin. After loading with PTX, HERK-PTX displayed a favorable anticancer effect in human breast cancer cells MDA-MB-231 and lung carcinoma cells A549. The remarkable inhibitory effect on MDA-MB-231 tumor spheroids was also identified. These results indicated that the constructed HERK nanocarrier is a promising multi-functional drug delivery vehicle to enhance the therapeutic effect of drugs in cancer therapy.
Collapse
Affiliation(s)
- Yixin Dong
- College of Chemical Engineering, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Laboratory for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Laboratory of Biomass-Based Green Fuels and Chemicals, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Yuanmeng Ma
- College of Chemical Engineering, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Laboratory for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Laboratory of Biomass-Based Green Fuels and Chemicals, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Xun Li
- College of Chemical Engineering, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Laboratory for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Laboratory of Biomass-Based Green Fuels and Chemicals, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Fei Wang
- College of Chemical Engineering, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Laboratory for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Laboratory of Biomass-Based Green Fuels and Chemicals, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Yu Zhang
- College of Chemical Engineering, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Laboratory for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Laboratory of Biomass-Based Green Fuels and Chemicals, Nanjing Forestry University, Nanjing 210037, P. R. China
| |
Collapse
|
12
|
Bhaskar S, Thng S, Lim S. Engineered Protein Nanocages for Targeted and Enhanced Dermal Melanocyte Cellular Uptake. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202000115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Sathyamoorthy Bhaskar
- School of Chemical and Biomedical Engineering Nanyang Technological University 70 Nanyang Drive, Block N1.3 Singapore 637457 Singapore
| | - Steven Thng
- Dermatology Department National Skin Centre 1 Mandalay Road Singapore 308205 Singapore
- Skin Research Institute of Singapore #17-01, 11 Mandalay Road Singapore 308232 Singapore
| | - Sierin Lim
- School of Chemical and Biomedical Engineering Nanyang Technological University 70 Nanyang Drive, Block N1.3 Singapore 637457 Singapore
| |
Collapse
|
13
|
Carrion CC, Nasrollahzadeh M, Sajjadi M, Jaleh B, Soufi GJ, Iravani S. Lignin, lipid, protein, hyaluronic acid, starch, cellulose, gum, pectin, alginate and chitosan-based nanomaterials for cancer nanotherapy: Challenges and opportunities. Int J Biol Macromol 2021; 178:193-228. [PMID: 33631269 DOI: 10.1016/j.ijbiomac.2021.02.123] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 02/07/2021] [Accepted: 02/16/2021] [Indexed: 12/11/2022]
Abstract
Although nanotechnology-driven drug delivery systems are relatively new, they are rapidly evolving since the nanomaterials are deployed as effective means of diagnosis and delivery of assorted therapeutic agents to targeted intracellular sites in a controlled release manner. Nanomedicine and nanoparticulate drug delivery systems are rapidly developing as they play crucial roles in the development of therapeutic strategies for various types of cancer and malignancy. Nevertheless, high costs, associated toxicity and production of complexities are some of the critical barriers for their applications. Green nanomedicines have continually been improved as one of the viable approaches towards tumor drug delivery, thus making a notable impact on which considerably affect cancer treatment. In this regard, the utilization of natural and renewable feedstocks as a starting point for the fabrication of nanosystems can considerably contribute to the development of green nanomedicines. Nanostructures and biopolymers derived from natural and biorenewable resources such as proteins, lipids, lignin, hyaluronic acid, starch, cellulose, gum, pectin, alginate, and chitosan play vital roles in the development of cancer nanotherapy, imaging and management. This review uncovers recent investigations on diverse nanoarchitectures fabricated from natural and renewable feedstocks for the controlled/sustained and targeted drug/gene delivery systems against cancers including an outlook on some of the scientific challenges and opportunities in this field. Various important natural biopolymers and nanomaterials for cancer nanotherapy are covered and the scientific challenges and opportunities in this field are reviewed.
Collapse
Affiliation(s)
- Carolina Carrillo Carrion
- Department of Organic Chemistry, University of Córdoba, Campus de Rabanales, Edificio Marie Curie, Ctra Nnal IV-A Km. 396, E-14014 Cordoba, Spain
| | | | - Mohaddeseh Sajjadi
- Department of Chemistry, Faculty of Science, University of Qom, Qom 37185-359, Iran
| | - Babak Jaleh
- Department of Physics, Bu-Ali Sina University, 65174 Hamedan, Iran
| | | | - Siavash Iravani
- Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
14
|
Ding L, Ren C, Yang L, Wu Z, Li F, Jiang D, Zhu Y, Lu J. OSU-03012 Disrupts Akt Signaling and Prevents Endometrial Carcinoma Progression in vitro and in vivo. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:1797-1810. [PMID: 33958857 PMCID: PMC8096345 DOI: 10.2147/dddt.s304128] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/02/2021] [Indexed: 12/11/2022]
Abstract
Purpose OSU-03012 is a celecoxib derivative lacking cyclooxygenase-2 inhibitory activity and a potent PDK1 inhibitor which has been shown to inhibit tumor growth in various ways. However, the role of OSU-03012 in endometrial carcinoma (EC) in which the PI3K/Akt signaling pathway highly activated has not been studied. Here, we determined the potency of OSU-03012 in suppressing EC progression in vitro and in vivo, and studied the underlined mechanisms. Methods The human EC Ishikawa and HEC-1A cells were used as the in vitro models. CCK8 assay and flow cytometry were conducted to evaluate cell proliferation, cell cycle progression, and apoptosis. The metastatic ability was evaluated using the transwell migration assay. The Ishikawa xenograft tumor model was used to study the inhibitory effects of OSU-03012 on EC growth in vivo. Western blot analysis was performed to evaluate expressions of the cell cycle and apoptosis associated proteins. Results OSU-03012 could inhibit the progression of EC both in vitro and in vivo by disrupting Akt signaling. It reduced the metastatic ability of EC, led to G2/M cell cycle arrest and induced apoptosis via the mitochondrial apoptosis pathway. Conclusion Our data indicated that OSU-03012 could inhibit the progression of EC in vitro and in vivo. It can potentially be used as the targeted drug for the treatment of EC by inhibiting Akt signaling.
Collapse
Affiliation(s)
- Leilei Ding
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Chenchen Ren
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Li Yang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Zimeng Wu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Feiyan Li
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Dongyuan Jiang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Yuanhang Zhu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Jie Lu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| |
Collapse
|
15
|
Wang Y, Ding R, Zhang Z, Zhong C, Wang J, Wang M. Curcumin-loaded liposomes with the hepatic and lysosomal dual-targeted effects for therapy of hepatocellular carcinoma. Int J Pharm 2021; 602:120628. [PMID: 33892061 DOI: 10.1016/j.ijpharm.2021.120628] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/20/2021] [Accepted: 04/17/2021] [Indexed: 12/13/2022]
Abstract
Curcumin can induce cancer cell apoptosis through lysosomal permeabilization pathway. However, the poor selectivity of curcumin restricts its use in the therapy of hepatocellular carcinoma. Because galactose group can recognize ASGPR overexpressed on hepatoma cells and morpholine group can target to the lysosome, they are integrated into a dual-targeted lipid material with low toxicity. The corresponding galactose-morpholine modified liposomes loaded with curcumin (Gal-Mor-LPs) were prepared and evaluated in comparison with conventional liposomes (LPs) and galactose modified liposomes (Gal-LPs). The in vitro and in vivo hepatic targeting capacity of liposomes followed a trend of LPs < Gal-LPs < Gal-Mor-LPs. The endocytosis of Gal-Mor-LPs was competitively inhibited by galactose, which confirmed the galactose modified liposomes entered hepatoma cells via ASGPR-mediated pathway. Gal-Mor-LPs displayed more excellent lysosomal targeting efficacy than LPs and Gal-LPs due to the attraction of acidic lysosome on basic morpholine group of Gal-Mor-LPs. The in vivo tumor inhibition effects of formulations also followed a trend of free curcumin < LPs < Gal-LPs < Gal-Mor-LPs, confirming that hepatic and lysosomal dual-targeting vehicle can improve the antitumor efficacy of curcumin. Moreover, the curcumin-loaded liposomes modified with galactose and morpholine moieties show good biocompatibility in vivo.
Collapse
Affiliation(s)
- Yan Wang
- College of Life Science and Technology, Guangxi University, Nanning 530004, PR China
| | - Ruihua Ding
- College of Life Science and Technology, Guangxi University, Nanning 530004, PR China; Medical College, Guangxi University, Nanning 530004, PR China
| | - Zan Zhang
- Guangxi Institute for Food and Drug Control, Nanning 530021, PR China
| | - Cheng Zhong
- School of Computer, Electronics and Information, Guangxi University, Nanning 530004, PR China
| | - Jianyi Wang
- Medical College, Guangxi University, Nanning 530004, PR China.
| | - Mian Wang
- College of Life Science and Technology, Guangxi University, Nanning 530004, PR China.
| |
Collapse
|
16
|
Factors deciding the assembly and thermostability of the DmrB cage. Int J Biol Macromol 2021; 182:959-967. [PMID: 33872614 DOI: 10.1016/j.ijbiomac.2021.04.040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/07/2021] [Accepted: 04/07/2021] [Indexed: 11/20/2022]
Abstract
Dihydromethanopterin reductase (DmrB), is a naturally occurring cage protein found in various archaeal and a few bacterial species. It exists as 24mer with cubic geometry where 8 trimeric subunits are present at the corners of each cube. Each trimer is made up of three monomeric units and six FMN, where two molecules of FMN are present at the interface of each monomer. DmrB is involved in the conversion of dihydromethanopterin to tetrahydromethanopterin using FMN as a redox equivalent. In the present study, we have used spectroscopic and biochemical techniques along with complementary bio-informatic work to understand the assembly principles of the DmrB. Our results show a concentration dependant self-assembly of DmrB which is mediated by ionic interactions. The co-factor FMN stabilizes and preserves the secondary and quaternary structure of DmrB against thermal insult, indicating that the higher order assembly of DmrB is very thermostable. Our work provides an interesting piece of information regarding the role of the co-factors in the thermostability of these classes of cage proteins. The understanding of the assembly and disassembly of this thermostable cage would enable the downstream usage of this system in various nano-biotechnological applications.
Collapse
|
17
|
Fan F, Jin L, Yang L. pH-Sensitive Nanoparticles Composed Solely of Membrane-Disruptive Macromolecules for Treating Pancreatic Cancer. ACS APPLIED MATERIALS & INTERFACES 2021; 13:12824-12835. [PMID: 33689289 DOI: 10.1021/acsami.0c16576] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Pancreatic tumor is extremely lethal because its cancerous structures are sheltered by dense stromal barriers that hinder the infiltration of therapeutics. To facilitate the infiltration of therapeutics through the stromal barrier, remodeling the stroma with an adjuvant prior to or together with gemcitabine-the current chemotherapeutic standard for pancreatic cancer-is a widely studied strategy; nevertheless, the intrinsic nonuniformity in distribution (spatial and/or temporal) of the adjuvant and gemcitabine has raised the increased risk of tumor metastasis as a major concern. In this work, we propose long-circulating, pH-sensitive nanoparticles composed solely of cellular membrane-disruptive molecules as a new approach for treating pancreatic cancer. Using a micelle of a polymeric mimetic of host defense peptides as the model for such nanoparticles, we showed that this nanoparticle exhibited acid-activated cytotoxicity indiscriminately to both cancerous and fibroblast cells, and the underlying activity mode was acid-activatable disruption of cellular membrane integrity. As a result, our acid-activatable nanoparticle effectively permeabilized the stromal barrier and eradicated the otherwise sheltered pancreatic cancer cells, as demonstrated with a three-dimensional spheroid in which a shell of fibroblast NIH-3T3 cells was cultured over a core of pancreatic BxPC-3 cells. When administered intravenously into mouse models bearing xenograft pancreatic BxPC-3 tumors, our acid-activatable nanoparticle efficiently inhibited tumor growth without causing noticeable off-target adverse effects or promoting tumor metastasis. Notably, this nanoparticle permeabilized the otherwise dense pancreatic tumor tissue while significantly suppressing the expression of extracellular matrix components and activated cancer-associated fibroblasts. Although the feasibility of our approach was demonstrated with a micelle of a polymeric molecule, we trust that future research efforts in this pathway may eventually offer translational formulations for improving the therapeutic efficacy of pancreatic cancer.
Collapse
Affiliation(s)
- Feng Fan
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Lijun Jin
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Lihua Yang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
18
|
Ahmad E, Ali A, Fatima MT, Nimisha, Apurva, Kumar A, Sumi MP, Sattar RSA, Mahajan B, Saluja SS. Ligand decorated biodegradable nanomedicine in the treatment of cancer. Pharmacol Res 2021; 167:105544. [PMID: 33722711 DOI: 10.1016/j.phrs.2021.105544] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/09/2021] [Accepted: 03/09/2021] [Indexed: 12/14/2022]
Abstract
Cancer is one of the major global health problems, responsible for the second-highest number of deaths. The genetic and epigenetic changes in the oncogenes or tumor suppressor genes alter the regulatory pathways leading to its onset and progression. Conventional methods are used in appropriate combinations for the treatment. Surgery effectively treats localized tumors; however, it fails to treat metastatic tumors, leading to a spread in other organs, causing a high recurrence rate and death. Among the different strategies, the nanocarriers-based approach is highly sought for, but its nonspecific delivery can cause a profound side effect on healthy cells. Targeted nanomedicine has the advantage of targeting cancer cells specifically by interacting with the receptors overexpressed on their surface, overcoming its non-specificity to target healthy cells. Nanocarriers prepared from biodegradable and biocompatible materials are decorated with different ligands by encapsulating therapeutic or diagnostic agents or both to target cancer cells overexpressing the receptors. Scientists are now utilizing a theranostic approach to simultaneously evaluate nanocarrier bio-distribution and its effect on the treatment regime. Herein, we have summarized the recent 5-year efforts in the development of the ligands decorated biodegradable nanocarriers, as a targeted nanomedicine approach, which has been highly promising in the treatment of cancer.
Collapse
Affiliation(s)
- Ejaj Ahmad
- Central Molecular Laboratory, Govind Ballabh Pant, Postgraduate Institute of Medica, Education and Research (GIPMER), New Delhi 110002, India
| | - Asgar Ali
- Department of Biochemistry, All India Institute of Medical Science, Patna 810507, India
| | - Munazza Tamkeen Fatima
- Department of Pharmaceutical Science, College of Pharmacy, QU health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Nimisha
- Central Molecular Laboratory, Govind Ballabh Pant, Postgraduate Institute of Medica, Education and Research (GIPMER), New Delhi 110002, India
| | - Apurva
- Central Molecular Laboratory, Govind Ballabh Pant, Postgraduate Institute of Medica, Education and Research (GIPMER), New Delhi 110002, India
| | - Arun Kumar
- Central Molecular Laboratory, Govind Ballabh Pant, Postgraduate Institute of Medica, Education and Research (GIPMER), New Delhi 110002, India
| | - Mamta P Sumi
- Central Molecular Laboratory, Govind Ballabh Pant, Postgraduate Institute of Medica, Education and Research (GIPMER), New Delhi 110002, India
| | - Real Sumayya Abdul Sattar
- Central Molecular Laboratory, Govind Ballabh Pant, Postgraduate Institute of Medica, Education and Research (GIPMER), New Delhi 110002, India
| | - Bhawna Mahajan
- Department of Biochemistry, Govind Ballabh Pant, Postgraduate Institute of Medical, Education and Research (GIPMER), New Delhi 110002, India
| | - Sundeep Singh Saluja
- Central Molecular Laboratory, Govind Ballabh Pant, Postgraduate Institute of Medica, Education and Research (GIPMER), New Delhi 110002, India; Department of GI Surgery, Govind Ballabh Pant, Postgraduate Institute of Medica, Education and Research (GIPMER), New Delhi 110002, India.
| |
Collapse
|
19
|
Regulation of tumor microenvironment for pancreatic cancer therapy. Biomaterials 2021; 270:120680. [PMID: 33588140 DOI: 10.1016/j.biomaterials.2021.120680] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 01/04/2021] [Accepted: 01/14/2021] [Indexed: 02/05/2023]
Abstract
Pancreatic cancer (PC) is one kind of the most lethal malignancies worldwide, owing to its insidious symptoms, early metastases, and negative responses to current therapies. With an increasing understanding of pathology, the tumor microenvironment (TME) plays a significant role in ineffective treatment and poor prognosis of PC. Thus, a growing number of studies have focused on whether components of the TME could be effective targets for PC therapy. Biomaterials have been widely applied in cancer therapy, and numerous organic or inorganic biomaterials for TME regulation have been developed to inhibit the growth and metastasis of PC, as well as reverse therapeutic resistance. In this review, we discuss various biomaterials utilized to treat PC based on different components of the TME, including, but not limited to, extracellular matrix (ECM), abnormal tumor vascularization, and tumor-associated immune cells, as well as other unconventional therapeutic strategies. Besides, the perspectives on the underlying future of theranostic nanomedicines for PC therapy are also presented.
Collapse
|
20
|
Effects of genipin concentration on cross-linked β-casein micelles as nanocarrier of naringenin: Colloidal properties, structural characterization and controlled release. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105989] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
21
|
Lee S, Pham TC, Bae C, Choi Y, Kim YK, Yoon J. Nano theranostics platforms that utilize proteins. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213258] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
22
|
Wang D, Chen L, Wang M, Cui M, Huang L, Xia W, Guan X. Delivering Proapoptotic Peptide by HSP Nanocage for Cancer Therapy. MACROMOL CHEM PHYS 2020. [DOI: 10.1002/macp.202000003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Dongmei Wang
- College of Medical TechnologyBeihua University Jilin 132013 P. R. China
| | - Li Chen
- College of Medical TechnologyBeihua University Jilin 132013 P. R. China
| | - Mingyue Wang
- College of Medical TechnologyBeihua University Jilin 132013 P. R. China
| | - Meiying Cui
- College of Medical TechnologyBeihua University Jilin 132013 P. R. China
| | - Lili Huang
- College of Medical TechnologyBeihua University Jilin 132013 P. R. China
| | - Wei Xia
- College of Medical TechnologyBeihua University Jilin 132013 P. R. China
| | - Xingang Guan
- College of Medical TechnologyBeihua University Jilin 132013 P. R. China
| |
Collapse
|
23
|
Steinmetz NF, Lim S, Sainsbury F. Protein cages and virus-like particles: from fundamental insight to biomimetic therapeutics. Biomater Sci 2020; 8:2771-2777. [PMID: 32352101 PMCID: PMC8085892 DOI: 10.1039/d0bm00159g] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Protein cages (viral and non-viral) found in nature have evolved for a variety of purposes and are found in all kingdoms of life. The main functions of these nanoscale compartments are the protection and delivery of nucleic acids e.g. virus capsids, or the enrichment and sequestration of metabolons e.g. bacterial microcompartments. This review focuses on recent developments of protein cages for use in immunotherapy and therapeutic delivery. In doing so, we highlight the unique ways in which protein cages have informed on fundamental principles governing bio-nano interactions. With the enormous existing design space among naturally occurring protein cages, there is still much to learn from studying them as biomimetic particles.
Collapse
Affiliation(s)
- Nicole F Steinmetz
- Department of NanoEngineering, University of California, San Diego, CA 92093, USA and Department of Bioengineering, University of California, San Diego, CA 92093, USA and Department of Radiology, University of California, San Diego, CA 92093, USA and Moores Cancer Center, University of California, San Diego, CA 92093, USA and Center for Nano-ImmunoEngineering, University of California, San Diego, CA 92093, USA
| | - Sierin Lim
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637457, Singapore and NTU-Northwestern Institute for Nanomedicine, Nanyang Technological University, Singapore 637457, Singapore
| | - Frank Sainsbury
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD 4111, Australia. and Synthetic Biology Future Science Platform, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Brisbane, QLD 4001, Australia
| |
Collapse
|
24
|
Zhou W, Šmidlehner T, Jerala R. Synthetic biology principles for the design of protein with novel structures and functions. FEBS Lett 2020; 594:2199-2212. [PMID: 32324903 DOI: 10.1002/1873-3468.13796] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/29/2020] [Accepted: 04/03/2020] [Indexed: 12/14/2022]
Abstract
Nature provides a large number of functional proteins that evolved during billions of years of evolution. The diversity of natural proteins encompasses versatile functions and more than a thousand different folds, which, however, represents only a tiny fraction of all possible folds and polypeptide sequences. Recent advances in the rational design of proteins demonstrate that it is possible to design de novo protein folds unseen in nature. Novel protein topologies have been designed based on similar principles as natural proteins using advanced computational modelling or modular construction principles, such as oligomerization domains. Designed proteins exhibit several interesting features such as extreme stability, designability of 3D topologies and folding pathways. Moreover, designed protein assemblies can implement symmetry similar to the viral capsids, while, on the other hand, single-chain pseudosymmetric designs can address each position independently. Recently, the design is expanding towards the introduction of new functions into designed proteins, and we may soon be able to design molecular machines.
Collapse
Affiliation(s)
- Weijun Zhou
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Tamara Šmidlehner
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Roman Jerala
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
| |
Collapse
|
25
|
Berckman EA, Hartzell EJ, Mitkas AA, Sun Q, Chen W. Biological Assembly of Modular Protein Building Blocks as Sensing, Delivery, and Therapeutic Agents. Annu Rev Chem Biomol Eng 2020; 11:35-62. [PMID: 32155350 DOI: 10.1146/annurev-chembioeng-101519-121526] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Nature has evolved a wide range of strategies to create self-assembled protein nanostructures with structurally defined architectures that serve a myriad of highly specialized biological functions. With the advent of biological tools for site-specific protein modifications and de novo protein design, a wide range of customized protein nanocarriers have been created using both natural and synthetic biological building blocks to mimic these native designs for targeted biomedical applications. In this review, different design frameworks and synthetic decoration strategies for achieving these functional protein nanostructures are summarized. Key attributes of these designer protein nanostructures, their unique functions, and their impact on biosensing and therapeutic applications are discussed.
Collapse
Affiliation(s)
- Emily A Berckman
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, USA; .,Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| | - Emily J Hartzell
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, USA;
| | - Alexander A Mitkas
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, USA;
| | - Qing Sun
- Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, USA
| | - Wilfred Chen
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, USA;
| |
Collapse
|
26
|
Sandra F, Khaliq NU, Sunna A, Care A. Developing Protein-Based Nanoparticles as Versatile Delivery Systems for Cancer Therapy and Imaging. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1329. [PMID: 31527483 PMCID: PMC6781024 DOI: 10.3390/nano9091329] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 09/04/2019] [Accepted: 09/12/2019] [Indexed: 02/06/2023]
Abstract
In recent years, it has become apparent that cancer nanomedicine's reliance on synthetic nanoparticles as drug delivery systems has resulted in limited clinical outcomes. This is mostly due to a poor understanding of their "bio-nano" interactions. Protein-based nanoparticles (PNPs) are rapidly emerging as versatile vehicles for the delivery of therapeutic and diagnostic agents, offering a potential alternative to synthetic nanoparticles. PNPs are abundant in nature, genetically and chemically modifiable, monodisperse, biocompatible, and biodegradable. To harness their full clinical potential, it is important for PNPs to be accurately designed and engineered. In this review, we outline the recent advancements and applications of PNPs in cancer nanomedicine. We also discuss the future directions for PNP research and what challenges must be overcome to ensure their translation into the clinic.
Collapse
Affiliation(s)
- Febrina Sandra
- Department of Molecular Sciences, Macquarie University, Sydney 2109, Australia.
| | - Nisar Ul Khaliq
- College of Pharmacy, Korea University, 2511 Sejong-ro, Sejong 30019, Korea.
| | - Anwar Sunna
- Department of Molecular Sciences, Macquarie University, Sydney 2109, Australia.
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Macquarie University, Sydney, NSW 2109, Australia.
| | - Andrew Care
- Department of Molecular Sciences, Macquarie University, Sydney 2109, Australia.
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Macquarie University, Sydney, NSW 2109, Australia.
| |
Collapse
|
27
|
iRGD: A Promising Peptide for Cancer Imaging and a Potential Therapeutic Agent for Various Cancers. JOURNAL OF ONCOLOGY 2019; 2019:9367845. [PMID: 31346334 PMCID: PMC6617877 DOI: 10.1155/2019/9367845] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 06/04/2019] [Accepted: 06/11/2019] [Indexed: 12/11/2022]
Abstract
Poor penetration into the tumor parenchyma and the reduced therapeutic efficacy of anticancer drugs and other medications are the major problems in tumor treatment. A new tumor-homing and penetrating peptide, iRGD (CRGDK/RGPD/EC), can be effectively used to combine and deliver imaging agents or anticancer drugs into tumors. The different “vascular zip codes” expressed in different tissues can serve as targets for docking-based (synaptic) delivery of diagnostic and therapeutic molecules. αv-Integrins are abundantly expressed in the tumor vasculature, where they are recognized by peptides containing the RGD integrin recognition motif. The iRGD peptide follows a multistep tumor-targeting process: First, it is proteolytically cleaved to generate the CRGDK fragment by binding to the surface of cells expressing αv integrins (αvβ3 and αvβ5). Then, the fragment binds to neuropilin-1 and penetrates the tumor parenchyma more deeply. Compared with conventional RGD peptides, the affinity of iRGD for αv integrins is in the mid to low nanomolar range, and the CRGDK fragment has a stronger affinity for neuropilin-1 than that for αv integrins because of the C-terminal exposure of a conditional C-end Rule (CendR) motif (R/KXXR/K), whose receptor proved to be neuropilin-1. Consequently, these advantages facilitate the transfer of CRGDK fragments from integrins to neuropilin-1 and consequently deeper penetration into the tumor. Due to its specific binding and strong affinity, the iRGD peptide can deliver imaging agents and anticancer drugs into tumors effectively and deeply, which is useful in detecting the tumor, blocking tumor growth, and inhibiting tumor metastasis. This review aims to focus on the role of iRGD in the imaging and treatment of various cancers.
Collapse
|
28
|
Cao X, Hu Y, Luo S, Wang Y, Gong T, Sun X, Fu Y, Zhang Z. Neutrophil-mimicking therapeutic nanoparticles for targeted chemotherapy of pancreatic carcinoma. Acta Pharm Sin B 2019; 9:575-589. [PMID: 31193785 PMCID: PMC6543032 DOI: 10.1016/j.apsb.2018.12.009] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 10/26/2018] [Accepted: 12/20/2018] [Indexed: 12/20/2022] Open
Abstract
Due to the critical correlation between inflammation and carcinogenesis, a therapeutic candidate with anti-inflammatory activity may find application in cancer therapy. Here, we report the therapeutic efficacy of celastrol as a promising candidate compound for treatment of pancreatic carcinoma via naïve neutrophil membrane-coated poly(ethylene glycol) methyl ether-block-poly(lactic-co-glycolic acid) (PEG-PLGA) nanoparticles. Neutrophil membrane-coated nanoparticles (NNPs) are well demonstrated to overcome the blood pancreas barrier to achieve pancreas-specific drug delivery in vivo. Using tumor-bearing mice xenograft model, NNPs showed selective accumulations at the tumor site following systemic administration as compared to nanoparticles without neutrophil membrane coating. In both orthotopic and ectopic tumor models, celastrol-loaded NNPs demonstrated greatly enhanced tumor inhibition which significantly prolonged the survival of tumor bearing mice and minimizing liver metastases. Overall, these results suggest that celastrol-loaded NNPs represent a viable and effective treatment option for pancreatic carcinoma.
Collapse
Key Words
- 5-FU, fluorouracil
- CLT, celastrol
- Celastrol
- DAPI, 4′,6-diamidino-2-phenylindole
- DiD, 1,1′-dioctadecyl-3,3,3′,3′-tetramethylindodicarbocyanine perchlorate
- IKKα, IκB kinase α
- IKKβ, IκB kinase β
- IL-1β, interleukin 1 beta
- IL-6, interleukin 6
- Inflammation
- NF-κB, nuclear factor kappa B
- NIK, NF kappa B inducing kinase
- NNPs, neutrophil membrane-coated nanoparticles
- NPs, nanoparticles without neutrophil membrane coating
- Naïve neutrophils membrane
- PEG-PLGA nanoparticle
- PEG-PLGA, poly(ethylene glycol) methyl ether-block-poly(lactic-co-glycolic acid)
- PI, propidium iodide
- Pancreatic carcinoma
- TAK1, TGF-β-activated kinase 1
- TEM, transmission electronic microscopy
- TNF-α, tumor necrosis factor alpha
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yao Fu
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zhirong Zhang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
29
|
Ladurantie C, Coustets M, Czaplicki G, Demange P, Mazères S, Dauvillier S, Teissié J, Rols MP, Milon A, Ecochard V, Gross G, Paquereau L. A protein nanocontainer targeting epithelial cancers: rational engineering, biochemical characterization, drug loading and cell delivery. NANOSCALE 2019; 11:3248-3260. [PMID: 30706922 DOI: 10.1039/c8nr10249j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The development of drug delivery and imaging tools is a major challenge in human health, in particular in cancer pathologies. This work describes the optimization of a protein nanocontainer, belonging to the lectin protein family, for its use in epithelial cancer diagnosis and treatment. Indeed, it specifically targets a glycosidic marker, the T antigen, which is known to be characteristic of epithelial cancers. Its quaternary structure reveals a large hydrated inner cavity able to transport small therapeutic molecules. Optimization of the nanocontainer by site directed mutagenesis allowed controlling loading and release of confined drugs. Doxorubicin confinement was followed, both theoretically and experimentally, and provided a proof of concept for the use of this nanocontainer as a vectorization system. In OVCAR-3 cells, a human ovarian adenocarcinoma cell line that expresses the T antigen, the drug was observed to be delivered inside late endosomes/lysosomes. These results show that this new type of vectorization and imaging device opens new exciting perspectives in nano-theranostic approaches.
Collapse
Affiliation(s)
- Caroline Ladurantie
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, 205 Route de Narbonne, BP64182, 31077 Toulouse, France.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Li C, Yang XQ, Zhang MZ, Song YY, Cheng K, An J, Zhang XS, Xuan Y, Liu B, Zhao YD. In vivo Imaging-Guided Nanoplatform for Tumor Targeting Delivery and Combined Chemo-, Gene- and Photothermal Therapy. Am J Cancer Res 2018; 8:5662-5675. [PMID: 30555572 PMCID: PMC6276300 DOI: 10.7150/thno.28241] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 10/19/2018] [Indexed: 02/07/2023] Open
Abstract
Currently, a large number of anti-tumor drug delivery systems have been widely used in cancer therapy. However, due to the molecular complexity and multidrug resistance of tumors, monotherapies remain suboptimal. Thus, this study aimed to develop a multifunctional theranostic nanoplatform for effective cancer therapy. Methods: Folic acid-modified silver sulfide@mesoporous silica core-shell nanoparticle was first modified with desthiobiotin (db) on the surface, then doxorubicin (DOX) was loaded into pore. Avidin was employed as "gatekeeper" to prevent leakage of DOX via desthiobiotin-avidin interaction. Db-modified survivin antisense oligonucleotide (db-DNA) which could inhibit survivin expression was then grafted on avidin at the outer layer of nanoparticle. DOX release and db-DNA dissociation were simultaneously triggered by overexpressing biotin in cancer cells, then combining PTT from Ag2S QD to inhibit tumor growth. Results: This nanoprobe had satisfactory stability and photothermal conversion efficiency up to 33.86% which was suitable for PTT. Due to the good targeting ability and fluorescent anti-bleaching, its signal still existed at the tumor site after tail vein injection of probe into HeLa tumor-bearing nude mice for 48 h. In vitro and in vivo antitumor experiments both demonstrated that drug, gene and photothermal synergistic therapy significantly enhanced antitumor efficacy with minimal systemic toxicity. Conclusion: Our findings demonstrate that this novel nanoplatform for targeted image-guided treatment of tumor and tactfully integrated chemotherapy, photothermal therapy (PTT) and gene therapy might provide an insight for cancer theranostics.
Collapse
|
31
|
Diaz D, Care A, Sunna A. Bioengineering Strategies for Protein-Based Nanoparticles. Genes (Basel) 2018; 9:E370. [PMID: 30041491 PMCID: PMC6071185 DOI: 10.3390/genes9070370] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 07/16/2018] [Accepted: 07/17/2018] [Indexed: 12/16/2022] Open
Abstract
In recent years, the practical application of protein-based nanoparticles (PNPs) has expanded rapidly into areas like drug delivery, vaccine development, and biocatalysis. PNPs possess unique features that make them attractive as potential platforms for a variety of nanobiotechnological applications. They self-assemble from multiple protein subunits into hollow monodisperse structures; they are highly stable, biocompatible, and biodegradable; and their external components and encapsulation properties can be readily manipulated by chemical or genetic strategies. Moreover, their complex and perfect symmetry have motivated researchers to mimic their properties in order to create de novo protein assemblies. This review focuses on recent advances in the bioengineering and bioconjugation of PNPs and the implementation of synthetic biology concepts to exploit and enhance PNP's intrinsic properties and to impart them with novel functionalities.
Collapse
Affiliation(s)
- Dennis Diaz
- Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia.
| | - Andrew Care
- Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia.
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Macquarie University, Sydney, NSW 2109, Australia.
| | - Anwar Sunna
- Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia.
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Macquarie University, Sydney, NSW 2109, Australia.
- Biomolecular Discovery and Design Research Centre, Macquarie University, Sydney, NSW 2109, Australia.
| |
Collapse
|
32
|
Liu X, Jiang J, Ji Y, Lu J, Chan R, Meng H. Targeted drug delivery using iRGD peptide for solid cancer treatment. MOLECULAR SYSTEMS DESIGN & ENGINEERING 2017; 2:370-379. [PMID: 30498580 PMCID: PMC6258069 DOI: 10.1039/c7me00050b] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Many solid tumor types, such as pancreatic cancer, have a generally poor prognosis, in part because the delivery of therapeutic regimen is prohibited by pathological abnormalities that block access to tumor vasculature, leading to poor bioavailability. Recent development of tumor penetrating iRGD peptide that is covalently conjugated on nanocarriers' surface or co-administered with nanocarriers becomes a popular approach for tumor targeting. More importantly, scientists have unlocked an important tumor transcytosis mechanism by which drug carrying nanoparticles directly access solid tumors (without the need of leaky vasculature), thereby allowing systemically injected nanocarriers more abundantly distribute at tumor site with improved efficacy. In this focused review, we summarized the design and implementation strategy for iRGD-mediated tumor targeting. This includes the working principle of such peptide and discussion on patient-specific iRGD effect in vivo, commensurate with the level of key biomarker (i.e. neuropilin-1) expression on tumor vasculature. This highlights the necessity to contemplate the use of a personalized approach when iRGD technology is used in clinic.
Collapse
Affiliation(s)
- Xiangsheng Liu
- Department of Medicine, Division of NanoMedicine, University of California, Los Angeles, CA, USA
| | - Jinhong Jiang
- Department of Medicine, Division of NanoMedicine, University of California, Los Angeles, CA, USA
| | - Ying Ji
- Department of Medicine, Division of NanoMedicine, University of California, Los Angeles, CA, USA
| | - Jianqin Lu
- Department of Medicine, Division of NanoMedicine, University of California, Los Angeles, CA, USA
| | - Ryan Chan
- Department of Medicine, Division of NanoMedicine, University of California, Los Angeles, CA, USA
| | - Huan Meng
- Department of Medicine, Division of NanoMedicine, University of California, Los Angeles, CA, USA
- California NanoSystems Institute, University of California, Los Angeles, CA, USA
| |
Collapse
|
33
|
Zhao R, Han X, Li Y, Wang H, Ji T, Zhao Y, Nie G. Photothermal Effect Enhanced Cascade-Targeting Strategy for Improved Pancreatic Cancer Therapy by Gold Nanoshell@Mesoporous Silica Nanorod. ACS NANO 2017; 11:8103-8113. [PMID: 28738680 DOI: 10.1021/acsnano.7b02918] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Pancreatic cancer, one of the leading causes of cancer-related mortality, is characterized by desmoplasia and hypovascular cancerous tissue, with a 5 year survival rate of <8%. To overcome the severe resistance of pancreatic cancer to conventional therapies, we synthesized gold nanoshell-coated rod-like mesoporous silica (GNRS) nanoparticles which integrated cascade tumor targeting (mediated by photothermal effect and molecular receptor binding) and photothermal treatment-enhanced gemcitabine chemotherapy, under mild near-infrared laser irradiation condition. GNRS significantly improved gemcitabine penetration and accumulation in tumor tissues, thus destroying the dense stroma barrier of pancreatic cancer and reinforcing chemosensitivity in mice. Our current findings strongly support the notion that further development of this integrated plasmonic photothermal strategy may represent a promising translational nanoformulation for effective treatment of pancreatic cancer with integral cascade tumor targeting strategy and enhanced drug delivery efficacy.
Collapse
Affiliation(s)
- Ruifang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center of Excellence in Nanoscience, National Center for Nanoscience and Technology , Beijing 100190, P. R. China
- Department of Chemistry, Tsinghua University , Beijing 100084, P. R. China
- University of Chinese Academy of Sciences , Beijing 100049, P. R. China
| | - Xuexiang Han
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center of Excellence in Nanoscience, National Center for Nanoscience and Technology , Beijing 100190, P. R. China
- Department of Chemistry, Tsinghua University , Beijing 100084, P. R. China
- University of Chinese Academy of Sciences , Beijing 100049, P. R. China
| | - Yiye Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center of Excellence in Nanoscience, National Center for Nanoscience and Technology , Beijing 100190, P. R. China
- University of Chinese Academy of Sciences , Beijing 100049, P. R. China
| | - Hai Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center of Excellence in Nanoscience, National Center for Nanoscience and Technology , Beijing 100190, P. R. China
- University of Chinese Academy of Sciences , Beijing 100049, P. R. China
| | - Tianjiao Ji
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center of Excellence in Nanoscience, National Center for Nanoscience and Technology , Beijing 100190, P. R. China
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Division of Critical Care Medicine, Children's Hospital Boston, Harvard Medical School , 300 Longwood Avenue, Boston, Massachusetts 02115, United States
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center of Excellence in Nanoscience, National Center for Nanoscience and Technology , Beijing 100190, P. R. China
- University of Chinese Academy of Sciences , Beijing 100049, P. R. China
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center of Excellence in Nanoscience, National Center for Nanoscience and Technology , Beijing 100190, P. R. China
- University of Chinese Academy of Sciences , Beijing 100049, P. R. China
| |
Collapse
|
34
|
Nakamura Y, Yamada S, Nishikawa S, Matsuura K. DNA-modified artificial viral capsids self-assembled from DNA-conjugated β-annulus peptide. J Pept Sci 2017; 23:636-643. [PMID: 28133866 DOI: 10.1002/psc.2967] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 12/15/2016] [Accepted: 12/18/2016] [Indexed: 01/01/2023]
Abstract
β-Annulus peptides from tomato bushy stunt virus conjugated with DNAs (dA20 and dT20 ) at the C-terminal were synthesized. The DNA-modified β-annulus peptides self-assembled into artificial viral capsids with sizes of 45-160 nm. ζ-Potential measurements revealed that the DNAs were coated on the surface of artificial viral capsids. Fluorescence assays indicated that the DNAs on the artificial viral capsids were partially hybridized with the complementary DNAs. Moreover, the DNA-modified artificial viral capsids formed aggregates by adding complementary polynucleotides. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Yoko Nakamura
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Tottori, 680-8552, Japan
| | - Saki Yamada
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Tottori, 680-8552, Japan
| | - Shoko Nishikawa
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Tottori, 680-8552, Japan
| | - Kazunori Matsuura
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Tottori, 680-8552, Japan
| |
Collapse
|
35
|
Karimi M, Zangabad PS, Mehdizadeh F, Malekzad H, Ghasemi A, Bahrami S, Zare H, Moghoofei M, Hekmatmanesh A, Hamblin MR. Nanocaged platforms: modification, drug delivery and nanotoxicity. Opening synthetic cages to release the tiger. NANOSCALE 2017; 9:1356-1392. [PMID: 28067384 PMCID: PMC5300024 DOI: 10.1039/c6nr07315h] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Nanocages (NCs) have emerged as a new class of drug-carriers, with a wide range of possibilities in multi-modality medical treatments and theranostics. Nanocages can overcome such limitations as high toxicity caused by anti-cancer chemotherapy or by the nanocarrier itself, due to their unique characteristics. These properties consist of: (1) a high loading-capacity (spacious interior); (2) a porous structure (analogous to openings between the bars of the cage); (3) enabling smart release (a key to unlock the cage); and (4) a low likelihood of unfavorable immune responses (the outside of the cage is safe). In this review, we cover different classes of NC structures such as virus-like particles (VLPs), protein NCs, DNA NCs, supramolecular nanosystems, hybrid metal-organic NCs, gold NCs, carbon-based NCs and silica NCs. Moreover, NC-assisted drug delivery including modification methods, drug immobilization, active targeting, and stimulus-responsive release mechanisms are discussed, highlighting the advantages, disadvantages and challenges. Finally, translation of NCs into clinical applications, and an up-to-date assessment of the nanotoxicology considerations of NCs are presented.
Collapse
Affiliation(s)
- Mahdi Karimi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Parham Sahandi Zangabad
- Research Center for Pharmaceutical Nanotechnology (RCPN), Tabriz University of Medical Science (TUOMS), Tabriz, Iran
- Advanced Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran, Iran
- Department of Materials Science and Engineering, Sharif University of Technology, 11365-9466, Tehran, Iran
- Nanomedicine Research Association (NRA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | | | - Hedieh Malekzad
- Advanced Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran, Iran
- Faculty of Chemistry, Kharazmi University of Tehran, Tehran, Iran
| | - Alireza Ghasemi
- Department of Materials Science and Engineering, Sharif University of Technology, 11365-9466, Tehran, Iran
| | - Sajad Bahrami
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Zare
- Biomaterials Group, Materials Science & Engineering Department, Iran University of Science & Technology, P.O. Box 1684613114 Tehran, Iran
| | - Mohsen Moghoofei
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amin Hekmatmanesh
- Laboratory of Intelligent Machines, Lappeenranta University of Technology, 53810, Finland
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
36
|
Zhang M, Xu C, Wen L, Han MK, Xiao B, Zhou J, Zhang Y, Zhang Z, Viennois E, Merlin D. A Hyaluronidase-Responsive Nanoparticle-Based Drug Delivery System for Targeting Colon Cancer Cells. Cancer Res 2016; 76:7208-7218. [PMID: 27742685 PMCID: PMC5161640 DOI: 10.1158/0008-5472.can-16-1681] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 09/08/2016] [Accepted: 09/26/2016] [Indexed: 11/16/2022]
Abstract
The ability of nanoparticles to target tumors and to enable site-specific drug release provides a unique system for the delivery of effective therapy with reduced toxic side effects. In this study, we used mesoporous silica nanoparticles (MSN) to fabricate a targeted drug delivery system that is responsive to hyaluronidase (HAase). Following engraftment of desthiobiotin onto the surface of MSN, a streptavidin complex was generated, which was functionalized with biotin-modified hyaluronic acid (HA) to enable controlled drug release at cancer cells expressing HAase. Various technologies were used to confirm the successful fabrication of this MSN-based nanocarrier system for targeted drug delivery. In vitro analyses showed that the release of doxorubicin hydrochloride (Dox) was accelerated significantly in the presence of biotin or HAase and accelerated further in the presence of biotin and HAase. Uptake by cancer cells was mediated efficiently by CD44 receptor-mediated endocytosis and the MSN exhibited good biocompatibility in vitro and in vivo MSN-HA/Dox nanoparticles induced apoptosis in cancer cells more efficiently than free doxorubicin and inhibited tumor growth with minimal systemic toxicity in vivo Collectively, our findings offered a preclinical proof of concept for a novel targeted drug delivery carrier system for cancer therapy. Cancer Res; 76(24); 7208-18. ©2016 AACR.
Collapse
Affiliation(s)
- Mingzhen Zhang
- Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia.
- Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia
| | - Changlong Xu
- Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia
- Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia
- The 2nd Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Liuqing Wen
- Department of Chemistry, Georgia State University, Atlanta, Georgia
| | - Moon Kwon Han
- Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia
- Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia
| | - Bo Xiao
- Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia
- Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia
| | - Jun Zhou
- Department of Chemistry, Georgia State University, Atlanta, Georgia
| | - Yuchen Zhang
- Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia
- Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia
| | - Zhan Zhang
- Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia
- Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia
| | - Emilie Viennois
- Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia
- Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia
| | - Didier Merlin
- Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia
- Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia
- Veterans Affairs Medical Center, Decatur, Georgia
| |
Collapse
|
37
|
Bioengineered protein-based nanocage for drug delivery. Adv Drug Deliv Rev 2016; 106:157-171. [PMID: 26994591 DOI: 10.1016/j.addr.2016.03.002] [Citation(s) in RCA: 163] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 03/01/2016] [Accepted: 03/08/2016] [Indexed: 01/01/2023]
Abstract
Nature, in its wonders, presents and assembles the most intricate and delicate protein structures and this remarkable phenomenon occurs in all kingdom and phyla of life. Of these proteins, cage-like multimeric proteins provide spatial control to biological processes and also compartmentalizes compounds that may be toxic or unstable and avoids their contact with the environment. Protein-based nanocages are of particular interest because of their potential applicability as drug delivery carriers and their perfect and complex symmetry and ideal physical properties, which have stimulated researchers to engineer, modify or mimic these qualities. This article reviews various existing types of protein-based nanocages that are used for therapeutic purposes, and outlines their drug-loading mechanisms and bioengineering strategies via genetic and chemical functionalization. Through a critical evaluation of recent advances in protein nanocage-based drug delivery in vitro and in vivo, an outlook for de novo and in silico nanocage design, and also protein-based nanocage preclinical and future clinical applications will be presented.
Collapse
|
38
|
Self-fluorescent drug delivery vector based on genipin-crosslinked polyethylenimine conjugated globin nanoparticle. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 71:17-24. [PMID: 27987695 DOI: 10.1016/j.msec.2016.09.059] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 08/23/2016] [Accepted: 09/26/2016] [Indexed: 11/20/2022]
Abstract
A kind of self-fluorescent, biocompatible, and low-toxic Genipin crosslinked Globin-PEI nanoparticle (Gb-G-PEI NP) with high enzymolysis-stability and photo-stability was synthesized successfully. The properties of the Gb-G-PEI NP were characterized, including its particle size, surface zeta potential, morphology, paclitaxel (PTX) loading capacity and release. The Gb-G-PEI NPs as imaging probe were investigated by Confocal Laser Scanning Microscope (CLSM) in vitro and by fluorescence imaging system in vivo. Cell imaging results showed that the tumor cell line (HepG-2) had the faster cell uptake rate and metabolism rate than the normal cell line (L-O2), this difference showed its tumor selectivity. MTT assay revealed that the PTX-loaded Gb-G-PEI NPs showed almost the equal potence to tumor cell HepG-2 as the free PTX at the same PTX concentration, while a lower cytotoxicity to normal cell L-O2, suggesting its promising utilization as a drug delivery system. The imaging on mice demonstrated the possibility of the self-fluorescent Gb-G-PEI NPs as probe in vivo. So Gb-G-PEI NPs can be potentially utilized as both tracking marker and tumor cell selective drug delivery system in the biomaterial field.
Collapse
|
39
|
Zhang Y, Ardejani MS, Orner BP. Design and Applications of Protein-Cage-Based Nanomaterials. Chem Asian J 2016; 11:2814-2828. [DOI: 10.1002/asia.201600769] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Yu Zhang
- Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals; College of Chemical Engineering; Nanjing Forestry University; Nanjing 210037 P.R. China
| | - Maziar S. Ardejani
- Department of Chemistry; The Scripps Research Institute; La Jolla CA 92037 United States
| | - Brendan P. Orner
- Department of Chemistry; King's College London; London SE1 1DB United Kingdom
| |
Collapse
|
40
|
Abstract
A primary envisioned use for nanoparticles (NPs) in a cellular context is for controlled drug delivery where the full benefit of NP attributes (small size, large drug cargo loading capacity) can improve the pharmacokinetics of the drug cargo. This requires the ability to controllably manipulate the release of the drug cargo from the NP vehicle or ‘controlled actuation’. In this review, we highlight new developments in this field from 2013 to 2015. The number and breadth of reports are a testament to the significant advancements made in this field over this time period. We conclude with a perspective of how we envision this field to continue to develop in the years to come.
Collapse
|
41
|
Hamano N, Murata M, Kawano T, Piao JS, Narahara S, Nakata R, Akahoshi T, Ikeda T, Hashizume M. Förster Resonance Energy Transfer-Based Self-Assembled Nanoprobe for Rapid and Sensitive Detection of Postoperative Pancreatic Fistula. ACS APPLIED MATERIALS & INTERFACES 2016; 8:5114-5123. [PMID: 26845508 DOI: 10.1021/acsami.5b11902] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Postoperative pancreatic fistula (POPF) is the most serious and challenging complication following gastroenterological surgery. Activated pancreatic juice leaking from the organ remnant contains proteases that attack the surrounding tissue, potentially leading to severe inflammation, tissue necrosis, and fistula formation. However, it is difficult to observe pancreatic leakage during surgery and to evaluate the protease activity of leaked fluid at the patient's bedside. This report describes a protein nanocage-based protease ratiometric sensor comprising a pancreatic protease-sensitive small heat-shock protein (HSP) 16.5, which is a naturally occurring protein in Methanococcus jannaschii that forms a spherical structure by self-assembly of 24 subunits, and a chemically conjugated donor-acceptor dye pair for Förster resonance energy transfer (FRET). The HSP-FRET probe was constructed by subunit exchange of each dye-labeled engineered HSP, resulting in a spherical nanocage of approximately 10 nm in diameter, which exhibited very high stability against degradation in blood plasma and no remarkable toxicity in mice. The efficiency of FRET was found to depend on both the dye orientation and the acceptor/donor ratio. Pancreatic proteases, including trypsin, α-chymotrypsin, and elastase, were quantitatively analyzed by fluorescence recovery with high specificity using the HSP-FRET nanoprobe. Furthermore, the HSP-FRET nanoprobe was sufficiently sensitive to detect POPF in the pancreatic juice of patients using only the naked eye within 10 min. Thus, this novel nanoprobe is proposed as an effective and convenient tool for the detection of POPF and the visualization of activated pancreatic juice during gastroenterological surgery.
Collapse
Affiliation(s)
- Nobuhito Hamano
- Center for Advanced Medical Innovation, ‡Department of Advanced Medical Initiatives, Faculty of Medical Sciences, and §Innovation Center for Medical Redox Navigation, Kyushu University , 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Masaharu Murata
- Center for Advanced Medical Innovation, ‡Department of Advanced Medical Initiatives, Faculty of Medical Sciences, and §Innovation Center for Medical Redox Navigation, Kyushu University , 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Takahito Kawano
- Center for Advanced Medical Innovation, ‡Department of Advanced Medical Initiatives, Faculty of Medical Sciences, and §Innovation Center for Medical Redox Navigation, Kyushu University , 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Jing Shu Piao
- Center for Advanced Medical Innovation, ‡Department of Advanced Medical Initiatives, Faculty of Medical Sciences, and §Innovation Center for Medical Redox Navigation, Kyushu University , 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Sayoko Narahara
- Center for Advanced Medical Innovation, ‡Department of Advanced Medical Initiatives, Faculty of Medical Sciences, and §Innovation Center for Medical Redox Navigation, Kyushu University , 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Ryosuke Nakata
- Center for Advanced Medical Innovation, ‡Department of Advanced Medical Initiatives, Faculty of Medical Sciences, and §Innovation Center for Medical Redox Navigation, Kyushu University , 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Tomohiko Akahoshi
- Center for Advanced Medical Innovation, ‡Department of Advanced Medical Initiatives, Faculty of Medical Sciences, and §Innovation Center for Medical Redox Navigation, Kyushu University , 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Tetsuo Ikeda
- Center for Advanced Medical Innovation, ‡Department of Advanced Medical Initiatives, Faculty of Medical Sciences, and §Innovation Center for Medical Redox Navigation, Kyushu University , 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Makoto Hashizume
- Center for Advanced Medical Innovation, ‡Department of Advanced Medical Initiatives, Faculty of Medical Sciences, and §Innovation Center for Medical Redox Navigation, Kyushu University , 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
42
|
Ghisaidoobe ABT, Chung SJ. Functionalized protein nanocages as a platform of targeted therapy and immunodetection. Nanomedicine (Lond) 2015; 10:3579-95. [PMID: 26651131 DOI: 10.2217/nnm.15.175] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
To improve the therapeutic/diagnostic potentials of drugs and/or imaging contrast agents, various targeted delivery systems are actively being developed. Especially protein nanocages, hollow and highly symmetrical nanometer-sized cage structures that are self-assembled from multiple protein subunits, are emerging as powerful targeted delivery tools. Their natural abundance, biocompatibility, low toxicity, well defined size and high symmetry are a few of the favorable characteristics which render protein nanocages as near ideal carriers for pharmaceuticals and/or imaging probes. This review aims to highlight current progress in the development and application of protein nanocages in targeted drug delivery approaches with an emphasis on the use of antibodies as targeting motifs to achieve high selectivity toward specific targets.
Collapse
Affiliation(s)
| | - Sang J Chung
- Department of Chemistry, Dongguk University, Seoul 100-715, Republic of Korea
| |
Collapse
|