1
|
Cai Y, Li Q, Banga AK, Wesselmann U, Zhao C. Tetrodotoxin Delivery Pen Safely Uses Potent Natural Neurotoxin to Manage Severe Cutaneous Pain. Adv Healthc Mater 2025:e2401549. [PMID: 39981822 DOI: 10.1002/adhm.202401549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 12/23/2024] [Indexed: 02/22/2025]
Abstract
Clinically available therapies often inadequately address severe chronic cutaneous pain due to short anesthetic duration, insufficient intensity, or side effects. This study introduces a pen device delivering tetrodotoxin (TTX), a potent neurotoxin targeting nerve voltage-gated sodium channels, as a safe and effective topical anesthetic to treat severe chronic cutaneous pain. Chemical permeation enhancers, such as sodium dodecyl sulfate (SDS) and limonene (LIM), are incorporated to enhance TTX skin permeability. The device ensures precise TTX dosing down to the nanogram level, essential to avoid TTX overdose. In rats, the pen device treatment produces TTX-dose-dependent anesthetic effectiveness. An administration of 900 ng of TTX with SDS and LIM to the rat back skin produces a 393.25% increase (measurement limit) in the nociceptive skin pressure threshold, and the hypoalgesia lasts for 11.25 h, outperforming bupivacaine (28 µg), of which are 25.24% and under 1 h. Moreover, the pen device provides on-demand therapy for multiple treatments, consistently achieving prolonged anesthesia over ten sessions (1 treatment per day) without noted toxicity. Furthermore, a single topical administration of 16 µg of TTX exhibits no TTX-related toxicity in rats. The TTX delivery pen paves the way for clinical trials, offering a promising solution for severe cutaneous pain.
Collapse
Affiliation(s)
- Yuhao Cai
- Department of Chemical and Biological Engineering, University of Alabama, Tuscaloosa, AL, 35487, USA
| | - Qi Li
- Department of Chemical and Biological Engineering, University of Alabama, Tuscaloosa, AL, 35487, USA
| | - Ajay K Banga
- Center for Drug Delivery Research, Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA, 30341, USA
| | - Ursula Wesselmann
- Departments of Anesthesiology and Perioperative Medicine/Division of Pain Medicine, Neurology and Psychology, and Consortium for Neuroengineering and Brain-Computer Interfaces, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Chao Zhao
- Department of Chemical and Biological Engineering, University of Alabama, Tuscaloosa, AL, 35487, USA
- Center for Convergent Biosciences and Medicine, University of Alabama, Tuscaloosa, AL, 35487, USA
| |
Collapse
|
2
|
Cai Y, Li Q, Wesselmann U, Zhao C. Exosomal Bupivacaine: Integrating Nerve Barrier Penetration Capability and Sustained Drug Release for Enhanced Potency in Peripheral Nerve Block and Reduced Toxicity. ADVANCED FUNCTIONAL MATERIALS 2024; 34:2406876. [PMID: 40027274 PMCID: PMC11870390 DOI: 10.1002/adfm.202406876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Indexed: 03/05/2025]
Abstract
Peripherally injected local anesthetics exhibit limited ability to penetrate peripheral nerve barriers (PNBs), which limits their effectiveness in peripheral nerve block and increases the risk of adverse effects. In this work, we demonstrated that exosomes derived from Human Embryo Kidney (HEK) 293 cells can effectively traverse the perineurium, which is the rate-limiting barrier within PNBs that local anesthetics need to cross before acting on axons. Based on this finding, we use these exosomes as a carrier for bupivacaine (BUP), a local anesthetic commonly used in clinical settings. The in vitro assessments revealed that the prepared exosomal bupivacaine (BUP@EXO) achieves a BUP loading capacity of up to 82.33% and sustained release of BUP for over 30 days. In rats, a single peripheral injection of BUP@EXO, containing 0.75 mg of BUP, which is ineffective for BUP alone, induced a 2-hour sensory nerve blockade without significant motor impairments. Increasing the BUP dose in BUP@EXO to 2.5 mg, a highly toxic dose for BUP alone, extended the sensory nerve blockade to 12 hours without causing systemic cardiotoxicity and local neurotoxicity and myotoxicity.
Collapse
Affiliation(s)
- Yuhao Cai
- Department of Chemical and Biological Engineering, University of Alabama, Tuscaloosa, AL, 35487, USA
| | - Qi Li
- Department of Chemical and Biological Engineering, University of Alabama, Tuscaloosa, AL, 35487, USA
| | - Ursula Wesselmann
- Departments of Anesthesiology and Perioperative Medicine/Division of Pain Medicine, Neurology and Psychology, and Consortium for Neuroengineering and Brain-Computer Interfaces, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Chao Zhao
- Department of Chemical and Biological Engineering, University of Alabama, Tuscaloosa, AL, 35487, USA
- Center for Convergent Biosciences and Medicine, University of Alabama, Tuscaloosa, AL, 35487, USA
| |
Collapse
|
3
|
Xue T, Li Y, Torre M, Shao R, Han Y, Chen S, Lee D, Kohane DS. Polymeric Prodrugs using Dynamic Covalent Chemistry for Prolonged Local Anesthesia. Angew Chem Int Ed Engl 2024; 63:e202406158. [PMID: 38885607 PMCID: PMC11337095 DOI: 10.1002/anie.202406158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Indexed: 06/20/2024]
Abstract
Depot-type drug delivery systems are designed to deliver drugs at an effective rate over an extended period. Minimizing initial "burst" can also be important, especially with drugs causing systemic toxicity. Both goals are challenging with small hydrophilic molecules. The delivery of molecules such as the ultrapotent local anesthetic tetrodotoxin (TTX) exemplifies both challenges. Toxicity can be mitigated by conjugating TTX to polymers with ester bonds, but the slow ester hydrolysis can result in subtherapeutic TTX release. Here, we developed a prodrug strategy, based on dynamic covalent chemistry utilizing a reversible reaction between the diol TTX and phenylboronic acids. These polymeric prodrugs exhibited TTX encapsulation efficiencies exceeding 90 % and the resulting polymeric nanoparticles showed a range of TTX release rates. In vivo injection of the TTX polymeric prodrugs at the sciatic nerve reduced TTX systemic toxicity and produced nerve block lasting 9.7±2.0 h, in comparison to 1.6±0.6 h from free TTX. This approach could also be used to co-deliver the diol dexamethasone, which prolonged nerve block to 21.8±5.1 h. This work emphasized the usefulness of dynamic covalent chemistry for depot-type drug delivery systems with slow and effective drug release kinetics.
Collapse
Affiliation(s)
- Tianrui Xue
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Boston Children’s Hospital, Harvard Medical School Boston, Massachusetts, 02115, United States
| | - Yang Li
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Boston Children’s Hospital, Harvard Medical School Boston, Massachusetts, 02115, United States
| | - Matthew Torre
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School Boston, Massachusetts, 02115, United States
| | - Rachelle Shao
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Boston Children’s Hospital, Harvard Medical School Boston, Massachusetts, 02115, United States
| | - Yiyuan Han
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Boston Children’s Hospital, Harvard Medical School Boston, Massachusetts, 02115, United States
| | - Shuanglong Chen
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Boston Children’s Hospital, Harvard Medical School Boston, Massachusetts, 02115, United States
| | - Daniel Lee
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Boston Children’s Hospital, Harvard Medical School Boston, Massachusetts, 02115, United States
| | - Daniel S. Kohane
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Boston Children’s Hospital, Harvard Medical School Boston, Massachusetts, 02115, United States
| |
Collapse
|
4
|
Li Q, Li X, Zhang Y, Yang Q, Hathcock SF, Cai Y, Busa P, Pang S, Tan L, Kim BJ, Zhao C. Galacturonic acid-capsaicin prodrug for prolonged nociceptive-selective nerve blockade. J Control Release 2024; 371:324-337. [PMID: 38823584 PMCID: PMC11209757 DOI: 10.1016/j.jconrel.2024.05.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/28/2024] [Accepted: 05/26/2024] [Indexed: 06/03/2024]
Abstract
There is an urgent clinical need to develop nerve-blocking agents capable of inducing long duration sensory block without muscle weakness or paralysis to treat post-operative and chronic pain conditions. Here, we report a galacturonic acid-capsaicin (GalA-CAP) prodrug as an effective nociceptive-selective axon blocking agent. Capsaicin selectively acts on nociceptive signaling without motor nerve blockade or disruption of proprioception and touch sensation, and the galacturonic acid moiety enhance prodrug permeability across the restrictive peripheral nerve barriers (PNBs) via carrier-mediated transport by the facilitative glucose transporters (GLUTs). In addition, following prodrug transport across PNBs, the inactive prodrug is converted to active capsaicin through linker hydrolysis, leading to sustained drug release. A single injection of GalA-CAP prodrug at the sciatic nerves of rats led to nociceptive-selective nerve blockade lasting for 234 ± 37 h, which is a sufficient duration to address the most intense period of postsurgical pain. Furthermore, the prodrug markedly mitigated capsaicin-associated side effects, leading to a notable decrease in systemic toxicity, benign local tissue reactions, and diminished burning and irritant effects.
Collapse
Affiliation(s)
- Qi Li
- Department of Chemical and Biological Engineering, University of Alabama, Tuscaloosa, AL 35487, USA
| | - Xiaosi Li
- Department of Chemical and Biological Engineering, University of Alabama, Tuscaloosa, AL 35487, USA
| | - Yanqi Zhang
- Department of Human Nutrition and Hospitality Management, University of Alabama, Tuscaloosa, AL 35487, USA
| | - Qiuyun Yang
- Department of Chemical and Biological Engineering, University of Alabama, Tuscaloosa, AL 35487, USA
| | - Sarah F Hathcock
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA
| | - Yuhao Cai
- Department of Chemical and Biological Engineering, University of Alabama, Tuscaloosa, AL 35487, USA
| | - Prabhakar Busa
- Department of Chemical and Biological Engineering, University of Alabama, Tuscaloosa, AL 35487, USA
| | - Stephany Pang
- Department of Chemical and Biological Engineering, University of Alabama, Tuscaloosa, AL 35487, USA
| | - Libo Tan
- Department of Human Nutrition and Hospitality Management, University of Alabama, Tuscaloosa, AL 35487, USA
| | - Brandon J Kim
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA
| | - Chao Zhao
- Department of Chemical and Biological Engineering, University of Alabama, Tuscaloosa, AL 35487, USA; Center for Convergent Biosciences and Medicine, University of Alabama, Tuscaloosa, AL 35487, USA; Alabama Life Research Institute, University of Alabama, Tuscaloosa, AL 35487, USA.
| |
Collapse
|
5
|
Geng WC, Jiang ZT, Chen SL, Guo DS. Supramolecular interaction in the action of drug delivery systems. Chem Sci 2024; 15:7811-7823. [PMID: 38817563 PMCID: PMC11134347 DOI: 10.1039/d3sc04585d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 04/27/2024] [Indexed: 06/01/2024] Open
Abstract
Complex diseases and diverse clinical needs necessitate drug delivery systems (DDSs), yet the current performance of DDSs is far from ideal. Supramolecular interactions play a pivotal role in various aspects of drug delivery, encompassing biocompatibility, drug loading, stability, crossing biological barriers, targeting, and controlled release. Nevertheless, despite having some understanding of the role of supramolecular interactions in drug delivery, their incorporation is frequently overlooked in the design and development of DDSs. This perspective provides a brief analysis of the involved supramolecular interactions in the action of drug delivery, with a primary emphasis on the DDSs employed in the clinic, mainly liposomes and polymers, and recognized phenomena in research, such as the protein corona. The supramolecular interactions implicated in various aspects of drug delivery systems, including biocompatibility, drug loading, stability, spatiotemporal distribution, and controlled release, were individually analyzed and discussed. This perspective aims to trigger a comprehensive and systematic consideration of supramolecular interactions in the further development of DDSs. Supramolecular interactions embody the true essence of the interplay between the majority of DDSs and biological systems.
Collapse
Affiliation(s)
- Wen-Chao Geng
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University Tianjin 300071 China
| | - Ze-Tao Jiang
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University Tianjin 300071 China
| | - Shi-Lin Chen
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University Tianjin 300071 China
| | - Dong-Sheng Guo
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University Tianjin 300071 China
| |
Collapse
|
6
|
Tang L, Qin F, Gong D, Dong Y, Pan L, Zhou C, Yin Q, Song X, Ling R, Huang J, Fan Q, Yi W, Wu F, Wu X, Zhang W, Yang J, Wang JY. Long-term sciatic nerve block led by a supramolecular arrangement of self-delivery local anesthetic nano systems. Chem Commun (Camb) 2023. [PMID: 37326382 DOI: 10.1039/d3cc02269b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Classical local anesthetics are unsuitable to treat regional pain lasting several days due to their limited duration and systemic toxicity. Self-delivery nano systems without excipients were designed for long-term sensory blocks. 1a self-assembled into different vehicles with different fractions of intermolecular π-π stacking, transported itself into nerve cells, and released single molecules slowly to achieve long-term duration for rats' sciatic nerve block for 11.6 h in water, 12.1 h in water with CO2 and 3.4 h in NS (normal saline). After the counter ions were changed to SO42-, 1e can self-assemble into vesicles and prolong the duration to 43.2 h, which was much longer than the 3.8 h led by (s)-bupivacaine hydrocloride (0.75%). This was mainly caused by the enhancement of self-release and counter ion exchange inside nerve cells, which were affected by the gemini surfactant structure, pKa of the counter ions and π-π stacking interactions.
Collapse
Affiliation(s)
- Lei Tang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, P. R. China.
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Feng Qin
- West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Deying Gong
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, P. R. China.
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Yu Dong
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University, Chengdu, 611130, P. R. China
| | - LiLi Pan
- West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Changcui Zhou
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, P. R. China.
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Qinqin Yin
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, P. R. China.
| | - Xinghai Song
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, P. R. China.
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Rui Ling
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, P. R. China.
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Junlong Huang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, P. R. China.
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Qin Fan
- West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Wenhao Yi
- West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Fengbo Wu
- West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Xiaoai Wu
- West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Weiyi Zhang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, P. R. China.
| | - Jun Yang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, P. R. China.
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Ji-Yu Wang
- Department of Chemistry, Xihua University, Chengdu, P. R. China.
| |
Collapse
|
7
|
Sun Y, Zabihi M, Li Q, Li X, Kim BJ, Ubogu EE, Raja SN, Wesselmann U, Zhao C. Drug Permeability: From the Blood-Brain Barrier to the Peripheral Nerve Barriers. ADVANCED THERAPEUTICS 2023; 6:2200150. [PMID: 37649593 PMCID: PMC10465108 DOI: 10.1002/adtp.202200150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Indexed: 01/20/2023]
Abstract
Drug delivery into the peripheral nerves and nerve roots has important implications for effective local anesthesia and treatment of peripheral neuropathies and chronic neuropathic pain. Similar to drugs that need to cross the blood-brain barrier (BBB) and blood-spinal cord barrier (BSCB) to gain access to the central nervous system (CNS), drugs must cross the peripheral nerve barriers (PNB), formed by the perineurium and blood-nerve barrier (BNB) to modulate peripheral axons. Despite significant progress made to develop effective strategies to enhance BBB permeability in therapeutic drug design, efforts to enhance drug permeability and retention in peripheral nerves and nerve roots are relatively understudied. Guided by knowledge describing structural, molecular and functional similarities between restrictive neural barriers in the CNS and peripheral nervous system (PNS), we hypothesize that certain CNS drug delivery strategies are adaptable for peripheral nerve drug delivery. In this review, we describe the molecular, structural and functional similarities and differences between the BBB and PNB, summarize and compare existing CNS and peripheral nerve drug delivery strategies, and discuss the potential application of selected CNS delivery strategies to improve efficacious drug entry for peripheral nerve disorders.
Collapse
Affiliation(s)
- Yifei Sun
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Mahmood Zabihi
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Qi Li
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Xiaosi Li
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Brandon J. Kim
- Department of Biological Sciences, The University of Alabama, Tuscaloosa AL 35487, USA
- Department of Microbiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham AL 35294, USA
- Center for Convergent Biosciences and Medicine, University of Alabama, Tuscaloosa AL 35487, USA
- Alabama Life Research Institute, University of Alabama, Tuscaloosa AL 35487, USA
| | - Eroboghene E. Ubogu
- Division of Neuromuscular Disease, Department of Neurology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Srinivasa N. Raja
- Division of Pain Medicine, Department of Anesthesiology & Critical Care Medicine, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Ursula Wesselmann
- Department of Anesthesiology and Perioperative Medicine, Division of Pain Medicine, and Department of Neurology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Consortium for Neuroengineering and Brain-Computer Interfaces, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Chao Zhao
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL 35487, USA
- Center for Convergent Biosciences and Medicine, University of Alabama, Tuscaloosa AL 35487, USA
- Alabama Life Research Institute, University of Alabama, Tuscaloosa AL 35487, USA
| |
Collapse
|
8
|
Li X, Li Q, Song S, Stevens AO, Broemmel Z, He Y, Wesselmann U, Yaksh T, Zhao C. Emulsion-induced polymersomes taming tetrodotoxin for prolonged duration local anesthesia. ADVANCED THERAPEUTICS 2023; 6:2200199. [PMID: 36819711 PMCID: PMC9937052 DOI: 10.1002/adtp.202200199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Indexed: 11/06/2022]
Abstract
Injectable local anesthetics that can provide a continuous nerve block approximating the duration of a pain state would be a life-changing solution for patients experiencing post-operative pain or chronic pain. Tetrodotoxin (TTX) is a site 1 sodium channel blocker that is extremely potent compared to clinically used local anesthetics. Challengingly, TTX doses are limited by its associated systemic toxicity, thus shortening the achievable duration of nerve blocks. Here, we explore emulsion-induced polymersomes (EIP) as a drug delivery system to safely use TTX for local anesthesia. By emulsifying hyperbranched polyglycerol-poly (propylene glycol)-hyperbranched polyglycerol (HPG-PPG-HPG) in TTX aqueous solution, HPG-PPG-HPG self-assembled into micrometer-sized polymersomes within seconds. The formed polymersomes have microscopically visible internal aqueous pockets that encapsulate TTX with an encapsulation efficiency of up to 94%. Moreover, the polymersomes are structurally stable, enabling sustained TTX release. In vivo, the freshly prepared EIP/TTX formulation can be directly injected and increased the tolerated dose of TTX in Sprague-Dawley rats to 11.5 μg without causing any TTX-related systemic toxicity. In the presence of the chemical penetration enhancer (CPE) sodium octyl sulfate (SOS), a single perineural injection of EIP/TTX/SOS formulation produced a reliable sciatic nerve block for 22 days with minimal local toxicity.
Collapse
Affiliation(s)
- Xiaosi Li
- Department of Chemical and Biological Engineering, University of Alabama, Tuscaloosa, AL 35487, USA
| | - Qi Li
- Department of Chemical and Biological Engineering, University of Alabama, Tuscaloosa, AL 35487, USA
| | - Shenghan Song
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Amy O. Stevens
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Zach Broemmel
- Department of Chemical and Biological Engineering, University of Alabama, Tuscaloosa, AL 35487, USA
| | - Yi He
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM 87131, USA
- Translational Informatics Division, Department of Internal Medicine, University of New Mexico, Albuquerque, NM 87131, USA
| | - Ursula Wesselmann
- Department of Anesthesiology and Perioperative Medicine, Division of Pain Medicine, and Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Tony Yaksh
- Department of Anesthesiology, University of California at San Diego, La Jolla, CA 92093, USA
| | - Chao Zhao
- Department of Chemical and Biological Engineering, University of Alabama, Tuscaloosa, AL 35487, USA
- Center for Convergent Biosciences and Medicine, University of Alabama, Tuscaloosa AL 35487
- Alabama Life Research Institute, University of Alabama, Tuscaloosa AL 35487
| |
Collapse
|
9
|
Mehta M, Zhao C, Liu A, Innocent C, Kohane DS. Prolonged Retrobulbar Local Anesthesia of the Cornea Does Not Cause Keratopathy in Mice. Transl Vis Sci Technol 2022; 11:33. [PMID: 35072700 PMCID: PMC8802029 DOI: 10.1167/tvst.11.1.33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Prolonged local anesthesia (PLA) of the cornea is currently assumed to cause neurotrophic keratitis and is strongly discouraged. We investigate whether PLA of the cornea per se causes neurotrophic keratitis. Methods PLA of the cornea was induced in 12 female albino BALB/c mice by retrobulbar injection of a polymeric prodrug (PGS-TTX) where the site 1 sodium channel blocker tetrodotoxin (TTX) was slowly released from the polymer polyglycerol sebacate. The duration and depth of corneal anesthesia was monitored by the Cochet-Bonnet esthesiometer. Corneal injury from PLA was assessed by slit lamp examination with 2% sodium fluorescein dye, histology, corneal nerve density by immunohistochemistry with anti-β III tubulin antibody and confocal microscopy, and corneal neurotrophin levels (substance P and neurokinin A) by an enzyme-linked immunosorbent assay. PLA was also induced by topical amitriptyline (80 mM), used as a positive control for local anesthetic-induced corneal injury. Frequent ocular lubrication was provided. Results Retrobulbar PGS-TTX resulted in complete corneal anesthesia lasting 50.1 ± 3.6 hours and mean time to complete resolution of block of 55.1 ± 3.6 hours with no keratopathy provided lubrication was provided. Topical 80 mM amitriptyline induced complete corneal anesthesia for 24 hours and developed keratopathy. There was no difference in the histology, levels of corneal neurotrophins, and corneal nerve density between the retrobulbar PGS-TTX group and normal cornea. Conclusions In the absence of topical toxicity or corneal exposure, PLA of the cornea per se does not cause keratitis. Translational Relevance PLA of the cornea could be highly beneficial in acute and chronic painful corneal conditions.
Collapse
Affiliation(s)
- Manisha Mehta
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Institutes of Medicine, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA.,Boston Children's Hospital, Boston, MA, USA
| | - Chao Zhao
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Institutes of Medicine, Boston, MA, USA.,Boston Children's Hospital, Boston, MA, USA
| | - Andong Liu
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Institutes of Medicine, Boston, MA, USA.,Boston Children's Hospital, Boston, MA, USA
| | | | - Daniel S Kohane
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Institutes of Medicine, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA.,Boston Children's Hospital, Boston, MA, USA
| |
Collapse
|
10
|
Unconventional Passive Enhancement of Transdermal Drug Delivery: toward a Mechanistic Understanding of Penetration Enhancers Releasing from Acrylic Pressure-Sensitive Adhesive of Patches. Pharm Res 2020; 37:169. [PMID: 32794010 DOI: 10.1007/s11095-020-02901-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 07/29/2020] [Indexed: 01/23/2023]
Abstract
PURPOSE Penetration enhancers (PEs) enhancing efficacy depends on two processes: PEs release from patches and action on skin. Compared with their action on skin, PEs release process was poorly understood. Therefore, the purpose of this study was to make a mechanistic understanding of PEs release from acrylic pressure-sensitive adhesive of patches and propose an unconventional enhancement of PEs efficacy. METHODS PEs efficacy was evaluated both in drug permeation study and drug pharmacokinetic study. Confocal Raman spectroscopy was employed to observe PEs release behavior by mapping PEs dynamic distribution in skin. The mechanism of PEs release behavior was provided from molecular interaction and rheology using FT-IR, molecular docking, molecular dynamic simulation and rheometer, separately. RESULTS The release behavior of PEs themselves greatly restricted their efficacy. By using PEG 400, an improvement of oleic acid (OA) release behavior was achieved, and the efficacy of OA was significantly enhanced with enhancing ratio (ER) from 2.69 to 4.10 and AUClast from 1574 ± 87 to 2664 ± 249 ng·h/mL, separately. The improvement of OA release behavior was primarily resulted from reduction of the interaction between OA and adhesive, which was caused by other small molecules with a strong ability in forming hydrogen bonds with adhesive. Also, the rigidity of adhesive was a factor in affecting PEs release behavior. CONCLUSIONS An unconventional passive enhancement of transdermal drug delivery was achieved via improving PEs themselves releasing from acrylic pressure-sensitive adhesive. Graphical abstract Influence of PEs release behavior on drug permeation through skin and molecular mechanism.
Collapse
|
11
|
Abstract
The effect of local anesthetics, particularly those which are hydrophilic, such as tetrodotoxin, is impeded by tissue barriers that restrict access to individual nerve cells. Methods of enhancing penetration of tetrodotoxin into nerve include co-administration with chemical permeation enhancers, nanoencapsulation, and insonation with very low acoustic intensity ultrasound and microbubbles. In this study, we examined the effect of acoustic intensity on nerve block by tetrodotoxin and compared it to the effect on nerve block by bupivacaine, a more hydrophobic local anesthetic. Anesthetics were applied in peripheral nerve blockade in adult Sprague-Dawley rats. Insonation with 1-MHz ultrasound at acoustic intensity greater than 0.5 W/cm2 improved nerve block effectiveness, increased nerve block reliability, and prolonged both sensory and motor nerve blockade mediated by the hydrophilic ultra-potent local anesthetic, tetrodotoxin. These effects were not enhanced by microbubbles. There was minimal or no tissue injury from ultrasound treatment. Insonation did not enhance nerve block from bupivacaine. Using an in vivo model system of local anesthetic delivery, we studied the effect of acoustic intensity on insonation-mediated drug delivery of local anesthetics to the peripheral nerve. We found that insonation alone (at intensities greater than 0.5 W/cm2) enhanced nerve blockade mediated by the hydrophilic ultra-potent local anesthetic, tetrodotoxin. Graphical abstract.
Collapse
|
12
|
Abstract
Many diseases and conditions affect a relatively localized area of the body. They can be treated either by direct deposition of drug in the target area, or by giving the drug systemically. Here we review nanoparticle-based approaches to achieving both. We highlight advantages and disadvantages that nanoscale solutions have for locally administered therapies, with emphasis on the former. We discuss strategies to enable systemically delivered nanoparticles to deliver their payloads at specific locations in the body, including triggering (local and remote) and targeting.
Collapse
Affiliation(s)
- Tianjiao Ji
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Daniel S. Kohane
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
13
|
Zhao C, Liu A, Santamaria CM, Shomorony A, Ji T, Wei T, Gordon A, Elofsson H, Mehta M, Yang R, Kohane DS. Polymer-tetrodotoxin conjugates to induce prolonged duration local anesthesia with minimal toxicity. Nat Commun 2019; 10:2566. [PMID: 31189915 PMCID: PMC6561913 DOI: 10.1038/s41467-019-10296-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 05/01/2019] [Indexed: 01/09/2023] Open
Abstract
There is clinical and scientific interest in developing local anesthetics with prolonged durations of effect from single injections. The need for such is highlighted by the current opioid epidemic. Site 1 sodium channel blockers such as tetrodotoxin (TTX) are extremely potent, and can provide very long nerve blocks but the duration is limited by the associated systemic toxicity. Here we report a system where slow release of TTX conjugated to a biocompatible and biodegradable polymer, poly(triol dicarboxylic acid)-co-poly(ethylene glycol) (TDP), is achieved by hydrolysis of ester linkages. Nerve block by the released TTX is enhanced by administration in a carrier with chemical permeation enhancer (CPE) properties. TTX release can be adjusted by tuning the hydrophilicity of the TDP polymer backbone. In vivo, 1.0–80.0 µg of TTX released from these polymers produced a range of durations of nerve block, from several hours to 3 days, with minimal systemic or local toxicity. There is interest in developing long-lasting local anaesthetics for a range of applications. Here, the authors report on the application of tetrodotoxin conjugated to amphiphilic biodegradable polymer to reduce systemic toxicity, achieve sustained release and investigate application as a local anaesthetic.
Collapse
Affiliation(s)
- Chao Zhao
- Laboratory for Biomaterials and Drug Delivery, Division of Critical Care Medicine, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Andong Liu
- Laboratory for Biomaterials and Drug Delivery, Division of Critical Care Medicine, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Claudia M Santamaria
- Laboratory for Biomaterials and Drug Delivery, Division of Critical Care Medicine, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Andre Shomorony
- Laboratory for Biomaterials and Drug Delivery, Division of Critical Care Medicine, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Tianjiao Ji
- Laboratory for Biomaterials and Drug Delivery, Division of Critical Care Medicine, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Tuo Wei
- Laboratory for Biomaterials and Drug Delivery, Division of Critical Care Medicine, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Akiva Gordon
- Laboratory for Biomaterials and Drug Delivery, Division of Critical Care Medicine, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Hannes Elofsson
- Laboratory for Biomaterials and Drug Delivery, Division of Critical Care Medicine, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Manisha Mehta
- Laboratory for Biomaterials and Drug Delivery, Division of Critical Care Medicine, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Rong Yang
- Laboratory for Biomaterials and Drug Delivery, Division of Critical Care Medicine, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Daniel S Kohane
- Laboratory for Biomaterials and Drug Delivery, Division of Critical Care Medicine, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA.
| |
Collapse
|
14
|
Yang R, Saarinen R, Okonkwo OS, Hao Y, Mehta M, Kohane DS. Transtympanic Delivery of Local Anesthetics for Pain in Acute Otitis Media. Mol Pharm 2019; 16:1555-1562. [PMID: 30840478 DOI: 10.1021/acs.molpharmaceut.8b01235] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Acute otitis media (AOM) commonly causes pain and distress in children. Existing analgesic ototopical drops have limited effectiveness due to the impermeable nature of the tympanic membrane. We developed a local drug delivery system to provide sustained pain relief in patients with AOM, achieved by applying a single dose of a hydrogel formulation onto the tympanic membrane. Successful drug delivery across intact tympanic membranes was demonstrated using the amino-amide anesthetic, bupivacaine, and a highly potent site 1 sodium channel blocker anesthetic, tetrodotoxin. The chemical permeation enhancers incorporated in the delivery system increased the permeability of the tympanic membrane to the anesthetics considerably. The drug levels measured using a previously developed ex vivo model reflect the potential for highly effective local anesthesia.
Collapse
Affiliation(s)
- Rong Yang
- Department of Anesthesiology, Division of Critical Care Medicine , Children's Hospital Boston, Harvard Medical School , 300 Longwood Avenue , Boston , Massachusetts 02115 , United States
| | - Riitta Saarinen
- Department of Anesthesiology, Division of Critical Care Medicine , Children's Hospital Boston, Harvard Medical School , 300 Longwood Avenue , Boston , Massachusetts 02115 , United States
| | - Obiajulu S Okonkwo
- Department of Anesthesiology, Division of Critical Care Medicine , Children's Hospital Boston, Harvard Medical School , 300 Longwood Avenue , Boston , Massachusetts 02115 , United States
| | - Yi Hao
- Department of Anesthesiology, Division of Critical Care Medicine , Children's Hospital Boston, Harvard Medical School , 300 Longwood Avenue , Boston , Massachusetts 02115 , United States
| | - Manisha Mehta
- Department of Anesthesiology, Division of Critical Care Medicine , Children's Hospital Boston, Harvard Medical School , 300 Longwood Avenue , Boston , Massachusetts 02115 , United States
| | - Daniel S Kohane
- Department of Anesthesiology, Division of Critical Care Medicine , Children's Hospital Boston, Harvard Medical School , 300 Longwood Avenue , Boston , Massachusetts 02115 , United States
| |
Collapse
|
15
|
Hussain N, McCartney C, Neal J, Chippor J, Banfield L, Abdallah F. Local anaesthetic-induced myotoxicity in regional anaesthesia: a systematic review and empirical analysis. Br J Anaesth 2018; 121:822-841. [DOI: 10.1016/j.bja.2018.05.076] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 05/16/2018] [Accepted: 07/09/2018] [Indexed: 12/19/2022] Open
|
16
|
Addressing the Issue of Tetrodotoxin Targeting. Mar Drugs 2018; 16:md16100352. [PMID: 30261623 PMCID: PMC6212850 DOI: 10.3390/md16100352] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 09/21/2018] [Accepted: 09/24/2018] [Indexed: 12/27/2022] Open
Abstract
This review is devoted to the medical application of tetrodotoxin (TTX), a potent non-protein specific blocker of voltage-gated sodium (NaV) channels. The selectivity of action, lack of affinity with the heart muscle NaV channels, and the inability to penetrate the blood–brain barrier make this toxin an attractive candidate for anesthetic and analgesic drug design. The efficacy of TTX was shown in neuropathic, acute and inflammatory pain models. The main emphasis of the review is on studies focused on the improvement of TTX efficacy and safety in conjunction with additional substances and drug delivery systems. A significant improvement in the effectiveness of the toxin was demonstrated when used in tandem with vasoconstrictors, local anesthetics and chemical permeation enhancers, with the best results obtained with the encapsulation of TTX in microparticles and liposomes conjugated to gold nanorods.
Collapse
|
17
|
Shen M, Liu C, Wan X, Farah N, Fang L. Development of a daphnetin transdermal patch using chemical enhancer strategy: insights of the enhancement effect of Transcutol P and the assessment of pharmacodynamics. Drug Dev Ind Pharm 2018; 44:1642-1649. [DOI: 10.1080/03639045.2018.1483391] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Meiyue Shen
- Department of Pharmaceutical Sciences, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Chao Liu
- Department of Pharmaceutical Sciences, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Xiaocao Wan
- Department of Pharmaceutical Sciences, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | | | - Liang Fang
- Department of Pharmaceutical Sciences, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
18
|
Cullion K, Santamaria CM, Zhan C, Zurakowski D, Sun T, Pemberton GL, McDannold NJ, Kohane DS. High-frequency, low-intensity ultrasound and microbubbles enhance nerve blockade. J Control Release 2018; 276:150-156. [PMID: 29471039 DOI: 10.1016/j.jconrel.2018.02.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 02/05/2018] [Accepted: 02/16/2018] [Indexed: 10/18/2022]
Affiliation(s)
- Kathleen Cullion
- Laboratory for Biomaterials and Drug Delivery, Division of Critical Care Medicine, Department of Anesthesiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States; Department of Medicine, Division of Medicine Critical Care, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Claudia M Santamaria
- Laboratory for Biomaterials and Drug Delivery, Division of Critical Care Medicine, Department of Anesthesiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Changyou Zhan
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai, China
| | - David Zurakowski
- Department of Anesthesiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Tao Sun
- Focused Ultrasound Laboratory, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Grant L Pemberton
- Laboratory for Biomaterials and Drug Delivery, Division of Critical Care Medicine, Department of Anesthesiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States; Department of Medicine, Division of Medicine Critical Care, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Nathan J McDannold
- Focused Ultrasound Laboratory, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Daniel S Kohane
- Laboratory for Biomaterials and Drug Delivery, Division of Critical Care Medicine, Department of Anesthesiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States; Department of Anesthesiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
19
|
Tang L, Yang J, Yin Q, Yang L, Gong D, Qin F, Liu J, Fan Q, Li J, Zhao W, Zhang W, Wang J, Zhu T, Zhang W, Liu J. Janus particles self-assembled from a small organic atypical asymmetric gemini surfactant. Chem Commun (Camb) 2018; 53:8675-8678. [PMID: 28722057 DOI: 10.1039/c7cc03973e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A series of atypical asymmetric gemini surfactants with an amphiphilic carbonate group (-O-CO-O-) have been prepared. Some of these compounds could self-assemble in water into gourd-shaped Janus particles (JPs). Initial results suggested that the formation of JPs was highly likely to be related to their atypical gemini surfactant structure. To our knowledge, this is the first report on JPs that are self-assembled from a single kind of small organic molecule. We believe that our results will be utilized in many fields.
Collapse
Affiliation(s)
- Lei Tang
- Laboratory of Anaestheisa & Critical Care Medicine, Translational Neuroscience Center, and Department of Anaesthesiology, West China Hospital, Sichuan University, Chengdu 610041, P. R. China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Liu Q, Santamaria CM, Wei T, Zhao C, Ji T, Yang T, Shomorony A, Wang BY, Kohane DS. Hollow Silica Nanoparticles Penetrate the Peripheral Nerve and Enhance the Nerve Blockade from Tetrodotoxin. NANO LETTERS 2018; 18:32-37. [PMID: 29227106 DOI: 10.1021/acs.nanolett.7b02461] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The efficacy of tetrodotoxin (TTX), a very potent local anesthetic, is limited by its poor penetration through barriers to axonal surfaces. To address this issue, we encapsulated TTX in hollow silica nanoparticles (TTX-HSN) and injected them at the sciatic nerve in rats. TTX-HSN achieved an increased frequency of successful blocks, prolonged the duration of the block, and decreased the toxicity compared to free TTX. In animals injected with fluorescently labeled HSN, the imaging of frozen sections of nerve demonstrated that HSN could penetrate into nerve and that the penetrating ability of silica nanoparticles was highly size-dependent. These results demonstrated that HSN could deliver TTX into the nerve, enhancing efficacy while improving safety.
Collapse
Affiliation(s)
- Qian Liu
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Boston Children's Hospital, Harvard Medical School , Boston, Massachusetts 02115, United States
| | - Claudia M Santamaria
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Boston Children's Hospital, Harvard Medical School , Boston, Massachusetts 02115, United States
| | - Tuo Wei
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Boston Children's Hospital, Harvard Medical School , Boston, Massachusetts 02115, United States
| | - Chao Zhao
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Boston Children's Hospital, Harvard Medical School , Boston, Massachusetts 02115, United States
| | - Tianjiao Ji
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Boston Children's Hospital, Harvard Medical School , Boston, Massachusetts 02115, United States
| | - Tianshe Yang
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Boston Children's Hospital, Harvard Medical School , Boston, Massachusetts 02115, United States
| | - Andre Shomorony
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Boston Children's Hospital, Harvard Medical School , Boston, Massachusetts 02115, United States
| | - Bruce Y Wang
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Boston Children's Hospital, Harvard Medical School , Boston, Massachusetts 02115, United States
| | - Daniel S Kohane
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Boston Children's Hospital, Harvard Medical School , Boston, Massachusetts 02115, United States
| |
Collapse
|
21
|
Yang R, Wei T, Goldberg H, Wang W, Cullion K, Kohane DS. Getting Drugs Across Biological Barriers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:10.1002/adma.201606596. [PMID: 28752600 PMCID: PMC5683089 DOI: 10.1002/adma.201606596] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 05/30/2017] [Indexed: 05/13/2023]
Abstract
The delivery of drugs to a target site frequently involves crossing biological barriers. The degree and nature of the impediment to flux, as well as the potential approaches to overcoming it, depend on the tissue, the drug, and numerous other factors. Here an overview of approaches that have been taken to crossing biological barriers is presented, with special attention to transdermal drug delivery. Technology and knowledge pertaining to addressing these issues in a variety of organs could have a significant clinical impact.
Collapse
Affiliation(s)
- Rong Yang
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Division of Critical Care Medicine, Children's Hospital Boston, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Tuo Wei
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Division of Critical Care Medicine, Children's Hospital Boston, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Hannah Goldberg
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Division of Critical Care Medicine, Children's Hospital Boston, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Weiping Wang
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Division of Critical Care Medicine, Children's Hospital Boston, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Kathleen Cullion
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Division of Critical Care Medicine, Children's Hospital Boston, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Daniel S Kohane
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Division of Critical Care Medicine, Children's Hospital Boston, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA
| |
Collapse
|
22
|
Elci SG, Tonga GY, Yan B, Kim ST, Kim CS, Jiang Y, Saha K, Moyano DF, Marsico ALM, Rotello VM, Vachet RW. Dual-Mode Mass Spectrometric Imaging for Determination of in Vivo Stability of Nanoparticle Monolayers. ACS NANO 2017; 11:7424-7430. [PMID: 28696668 PMCID: PMC5767328 DOI: 10.1021/acsnano.7b03711] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Effective correlation of the in vitro and in vivo stability of nanoparticle-based platforms is a key challenge in their translation into the clinic. Here, we describe a dual imaging method that site-specifically reports the stability of monolayer-functionalized nanoparticles in vivo. This approach uses laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) imaging to monitor the distributions of the nanoparticle core material and laser desorption/ionization mass spectrometry (LDI-MS) imaging to report on the monolayers on the nanoparticles. Quantitative comparison of the images reveals nanoparticle stability at the organ and suborgan level. The stability of particles observed in the spleen was location-dependent and qualitatively similar to in vitro studies. In contrast, in vivo stability of the nanoparticles in the liver differed dramatically from in vitro studies, demonstrating the importance of in vivo assessment of nanoparticle stability.
Collapse
|
23
|
Santamaria CM, Zhan C, McAlvin B, Zurakowski D, Kohane DS. Tetrodotoxin, Epinephrine, and Chemical Permeation Enhancer Combinations in Peripheral Nerve Blockade. Anesth Analg 2017; 124:1804-1812. [PMID: 28452816 PMCID: PMC5438287 DOI: 10.1213/ane.0000000000002072] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND Chemical permeation enhancers (CPEs) have the potential to improve nerve blockade by site 1 sodium channel blockers such as tetrodotoxin (TTX). Here, we investigated the efficacy and toxicity of CPE-enhanced nerve blockade across a range of TTX concentrations using 2 CPEs (sodium octyl sulfate and octyl trimethyl ammonium bromide). We also tested the hypothesis that CPEs could be used to reduce the concentrations of TTX and/or of a second adjuvant drug (in this case, epinephrine) needed to achieve prolonged local anesthesia METHODS:: Sprague-Dawley rats were injected at the sciatic nerve with combinations of TTX and CPEs, with and without epinephrine. Sensory and motor nerve blockade were assessed using a modified hot plate test and a weight-bearing test, respectively. Systemic and local toxicities of the different combinations were assessed. RESULTS Addition of increasing concentrations of TTX to fixed concentrations of CPEs produced a marked concentration-dependent improvement in the rate of successful nerve blocks and in nerve block duration. CPEs did not affect systemic toxicity. At some concentrations, the addition of sodium octyl sulfate increased the duration of block from TTX plus epinephrine, and epinephrine increased that from TTX plus CPEs. The addition of epinephrine did not cause an increase in local toxicity, and it markedly reduced systemic toxicity. CONCLUSIONS CPEs can prolong the duration of nerve blockade across a range of concentrations of TTX. CPEs could also be used to reduce the concentration of epinephrine needed to achieve a given degree of nerve block. CPEs may be useful in enhancing nerve blockade from site 1 sodium channel blockers.
Collapse
Affiliation(s)
- Claudia M. Santamaria
- Laboratory for Biomaterials and Drug Delivery, Division of Critical Care Medicine, Department of Anesthesiology, Boston Children’s Hospital, Boston, MA, United States
| | - Changyou Zhan
- Laboratory for Biomaterials and Drug Delivery, Division of Critical Care Medicine, Department of Anesthesiology, Boston Children’s Hospital, Boston, MA, United States
| | - Brian McAlvin
- Laboratory for Biomaterials and Drug Delivery, Division of Critical Care Medicine, Department of Anesthesiology, Boston Children’s Hospital, Boston, MA, United States
- Division of Medicine Critical Care, Department of Medicine, Boston Children’s Hospital, Boston, MA, United States
| | - David Zurakowski
- Department of Anesthesiology, Perioperative, and Pain Medicine, Boston Children’s Hospital, Boston, MA, United States
| | - Daniel S. Kohane
- Laboratory for Biomaterials and Drug Delivery, Division of Critical Care Medicine, Department of Anesthesiology, Boston Children’s Hospital, Boston, MA, United States
- Department of Anesthesiology, Perioperative, and Pain Medicine, Boston Children’s Hospital, Boston, MA, United States
| |
Collapse
|
24
|
Zhan C, Wang W, Santamaria C, Wang B, Rwei A, Timko BP, Kohane DS. Ultrasensitive Phototriggered Local Anesthesia. NANO LETTERS 2017; 17:660-665. [PMID: 28058845 PMCID: PMC5469101 DOI: 10.1021/acs.nanolett.6b03588] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
An injectable local anesthetic producing repeatable on-demand nerve block would be desirable for pain management. Here we present a phototriggerable device to achieve repeatable and adjustable on-demand local anesthesia in superficial or deep tissues, consisting of gold nanorods attached to low temperature sensitive liposomes (LTSL). The particles were loaded with tetrodotoxin and dexmedetomidine. Near-infrared light (NIR, 808 nm, continuous wave) could heat gold nanorods at low fluence (short duration and low irradiance), leading to rapid release of payload. In vivo, 1-2 min of irradiation at ≤272 mW/cm2 produced repeatable and adjustable on-demand infiltration anesthesia or sciatic nerve blockade with minimal toxicity. The nerve block intensity and duration correlated with the irradiance and duration of the applied light.
Collapse
Affiliation(s)
- Changyou Zhan
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 200032, China
- Laboratory for Biomaterials and Drug Delivery, Division of Critical Care Medicine, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, Massachusetts 02115, United States
| | - Weiping Wang
- Laboratory for Biomaterials and Drug Delivery, Division of Critical Care Medicine, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, Massachusetts 02115, United States
| | - Claudia Santamaria
- Laboratory for Biomaterials and Drug Delivery, Division of Critical Care Medicine, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, Massachusetts 02115, United States
| | - Bruce Wang
- Laboratory for Biomaterials and Drug Delivery, Division of Critical Care Medicine, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, Massachusetts 02115, United States
| | - Alina Rwei
- Laboratory for Biomaterials and Drug Delivery, Division of Critical Care Medicine, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, Massachusetts 02115, United States
| | - Brian P Timko
- Laboratory for Biomaterials and Drug Delivery, Division of Critical Care Medicine, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, Massachusetts 02115, United States
| | - Daniel S Kohane
- Laboratory for Biomaterials and Drug Delivery, Division of Critical Care Medicine, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, Massachusetts 02115, United States
| |
Collapse
|
25
|
Yin Q, Ke B, Chen X, Guan Y, Feng P, Chen G, Kang Y, Zhang W, Nie Y. Effects of Liposomes Charge on Extending Sciatic Nerve Blockade of N-ethyl Bromide of Lidocaine in Rats. Sci Rep 2016; 6:38582. [PMID: 27924842 PMCID: PMC5141481 DOI: 10.1038/srep38582] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 11/09/2016] [Indexed: 02/05/2023] Open
Abstract
N-methyl bromide of lidocaine (QX-314) is a potential local anaesthetic with compromised penetration through cell membranes due to its obligated positive charge. Liposomes have been widely used for drug delivery with promising efficacy and safety. Therefore we investigated the local anaesthetic effects and tissue reactions of QX-314 in combination with anionic, cationic or neutral liposomes in rat sciatic nerve block model, and explored the effects of these liposomes on cellular entry of QX-314 in human embryonic kidney 293 cells. The results demonstrated that anionic liposomes substantially prolonged the duration of sensory (25.7 ± 8.3 h) and motor (41.4 ± 6.1 h) blocks of QX-314, while cationic and neutral ones had little effects. Tissue reactions from QX-314 with anionic liposomes were similar to those with commonly used local anaesthetic bupivacaine. Consistent with in vivo results, the anionic liposomes produced the greatest promotion of cellular entry of QX-314 in a time-dependent manner. In conclusion, ultra-long lasting nerve blocks were achieved by a mixture of QX-314 and anionic liposomes with a satisfactory safety profile, indicating a potential approach to improve postoperative pain management. The liposome-induced enhancement in cellular uptake of QX-314 may underlie the in vivo effects.
Collapse
Affiliation(s)
- Qinqin Yin
- Laboratory of Anaesthesia and Critical Care Medicine, Translational Neuroscience Centre of West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P.R. China
| | - Bowen Ke
- Laboratory of Anaesthesia and Critical Care Medicine, Translational Neuroscience Centre of West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P.R. China
| | - Xiaobing Chen
- National Engineering Research Centre for Biomaterials, Sichuan University, Chengdu 610064, Sichuan, P.R. China
| | - Yikai Guan
- Laboratory of Anaesthesia and Critical Care Medicine, Translational Neuroscience Centre of West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P.R. China
| | - Ping Feng
- Institution of Clinical Trials, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, P.R. China
| | - Guo Chen
- Laboratory of Anaesthesia and Critical Care Medicine, Translational Neuroscience Centre of West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P.R. China
| | - Yi Kang
- Laboratory of Anaesthesia and Critical Care Medicine, Translational Neuroscience Centre of West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P.R. China
| | - Wensheng Zhang
- Laboratory of Anaesthesia and Critical Care Medicine, Translational Neuroscience Centre of West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P.R. China
- Department of Anaesthesiology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, P.R. China
| | - Yu Nie
- National Engineering Research Centre for Biomaterials, Sichuan University, Chengdu 610064, Sichuan, P.R. China
| |
Collapse
|
26
|
Probing the role of chemical enhancers in facilitating drug release from patches: Mechanistic insights based on FT-IR spectroscopy, molecular modeling and thermal analysis. J Control Release 2016; 227:13-22. [DOI: 10.1016/j.jconrel.2016.02.027] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 02/11/2016] [Accepted: 02/14/2016] [Indexed: 11/22/2022]
|
27
|
Caddeo C, Valenti D, Nácher A, Manconi M, Fadda AM. Exploring the co-loading of lidocaine chemical forms in surfactant/phospholipid vesicles for improved skin delivery. J Pharm Pharmacol 2015; 67:909-17. [PMID: 25648182 DOI: 10.1111/jphp.12385] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 12/21/2014] [Indexed: 12/12/2022]
Abstract
OBJECTIVES The present study was aimed at targeting the skin to deliver lidocaine loaded in surfactant/phospholipid vesicles tailored for improved local delivery. The influence of different formulation parameters was explored to maximise drug efficacy. METHODS The vesicles were prepared using a mixture of soy lipids (Phospholipon 50) and a surfactant with penetration-enhancing properties (Oramix CG110, Labrasol, Labrafac PG or Labrafac CC), and loaded with lidocaine. The formulations were analysed in detail by cryo-TEM, SAXS, Turbiscan Lab, and tested in permeation experiments through new born pig skin, as a function of the chemical form and concentration of lidocaine (i.e. free base or salt, 12.5 or 25 mg/ml). KEY FINDINGS Small, spherical vesicles with good entrapment efficiency and exceptional long-term stability were produced. The lamellar organisation was affected by either the surfactant or the lidocaine form used. Permeation studies highlighted that the co-incorporation of lidocaine base + hydrochloride allowed the achievement of a superior deposition in the skin layers, especially when surfactant vesicles were used, as their content was presumably saturated with the maximum amount of loadable anaesthetic. CONCLUSIONS The proposed systems based on surfactant/phospholipid vesicles co-loaded with both lidocaine forms are an effective approach for improving its local delivery.
Collapse
Affiliation(s)
- Carla Caddeo
- Department Scienze della Vita e dell'Ambiente, Sezione di Scienze del Farmaco, University of Cagliari, Cagliari, Italy
| | - Donatella Valenti
- Department Scienze della Vita e dell'Ambiente, Sezione di Scienze del Farmaco, University of Cagliari, Cagliari, Italy
| | - Amparo Nácher
- Department of Pharmacy and Pharmaceutical Technology, University of Valencia, Valencia, Spain.,Instituto de Reconocimiento Molecular y Desarrollo Tecnológico, Centro Mixto Universidad Politécnica de Valencia-Universidad de Valencia, Valencia, Spain
| | - Maria Manconi
- Department Scienze della Vita e dell'Ambiente, Sezione di Scienze del Farmaco, University of Cagliari, Cagliari, Italy
| | - Anna Maria Fadda
- Department Scienze della Vita e dell'Ambiente, Sezione di Scienze del Farmaco, University of Cagliari, Cagliari, Italy
| |
Collapse
|
28
|
Ookubo N, Michiue H, Kitamatsu M, Kamamura M, Nishiki TI, Ohmori I, Matsui H. The transdermal inhibition of melanogenesis by a cell-membrane-permeable peptide delivery system based on poly-arginine. Biomaterials 2014; 35:4508-16. [DOI: 10.1016/j.biomaterials.2014.01.052] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 01/22/2014] [Indexed: 11/26/2022]
|
29
|
Abstract
PURPOSE Ocular local anesthetics currently used in routine clinical practice for corneal anesthesia are short acting and their ability to delay corneal healing makes them unsuitable for long-term use. In this study, we examined the effect of the site 1 sodium channel blocker tetrodotoxin (TTX) on the duration of corneal anesthesia, applied with either proparacaine (PPC) or the chemical permeation enhancer octyl-trimethyl ammonium bromide (OTAB). The effect of test solutions on corneal healing was also studied. METHODS Solutions of TTX, PPC, and OTAB, singly or in combination, were applied topically to the rat cornea. The blink response, an indirect measure of corneal sensitivity, was recorded using a Cochet-Bonnet esthesiometer, and the duration of corneal anesthesia was calculated. The effect of test compounds on the rate of corneal epithelialization was studied in vivo after corneal debridement. RESULTS Combination of TTX and PPC resulted in corneal anesthesia that was 8 to 10 times longer in duration than that from either drug administered alone, whereas OTAB did not prolong anesthesia. The rate of corneal healing was moderately delayed after coadministration of TTX and PPC. CONCLUSIONS Coadministration of TTX and PPC significantly prolonged corneal anesthesia, but in view of delayed corneal reepithelialization, caution is suggested in the use of the drug combination.
Collapse
|
30
|
McAlvin JB, Kohane DS. Prolonged Duration Local Anesthesia. ADVANCES IN DELIVERY SCIENCE AND TECHNOLOGY 2014. [DOI: 10.1007/978-1-4614-9434-8_28] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
31
|
Duration and local toxicity of sciatic nerve blockade with coinjected site 1 sodium-channel blockers and quaternary lidocaine derivatives. Reg Anesth Pain Med 2013; 37:483-9. [PMID: 22914659 DOI: 10.1097/aap.0b013e31826125b3] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND AND OBJECTIVES Quaternary lidocaine derivatives (QLDs) have recently received much attention because of their potential application in prolonged or sensory-selective local anesthesia. However, associated tissue toxicity is an impeding factor that makes QLDs unfavorable for clinical use. Based on the proposed intracellular site of action, we hypothesized that nerve blocks obtained from lower concentrations of QLDs would be enhanced by the coapplication of extracellularly acting site 1 sodium-channel blocker, resulting in prolonged block duration but with minimal tissue toxicity. METHODS Quaternary lidocaine derivatives (QX-314 or QX-222), site 1 sodium-channel blockers (tetrodotoxin [30 μM] or saxitoxin [12.5 μM]), or both were injected in the vicinity of the sciatic nerve. Thermal nociceptive block was assessed using a modified hot plate test; motor block by a weight-bearing test. Tissue from the site of injection was harvested for histological assessment. RESULTS Coapplication of 25 mM QX-314 or 100 mM QX-222 with site 1 sodium-channel blockers produced an 8- to 10- fold increase in the duration of nerve blocks (P < 0.05), compared with QLDs or site 1 blockers alone. Quaternary lidocaine derivatives elicited severe myotoxicity; this was not exacerbated by coinjection of the site 1 sodium-channel blockers. CONCLUSIONS Coadministration of site 1 sodium-channel blockers and QLDs greatly prolongs the duration of peripheral nerve block without enhancing local tissue injury, but minimal myotoxicity still persists. It is not clear that the risks of QLDs are outweighed by the benefits in providing prolonged nerve blockade.
Collapse
|
32
|
Nasrollahi SA, Taghibiglou C, Azizi E, Farboud ES. Cell-penetrating peptides as a novel transdermal drug delivery system. Chem Biol Drug Des 2012; 80:639-46. [PMID: 22846609 DOI: 10.1111/cbdd.12008] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In the last decade, almost one-third of the newly discovered drugs approved by the US FDA were biomolecules and biologics. Effective delivery of therapeutic biomolecules to their target is a challenging issue. Innovations in drug delivery systems have improved the efficiency of many of new biopharmaceuticals. Designing of novel transdermal delivery systems has been one of the most important pharmaceutical innovations, which offers a number of advantages. The cell-penetrating peptides have been increasingly used to mediate delivery of bimolecular cargoes such as small molecules, small interfering RNA nucleotides, drug-loaded nanoparticles, proteins, and peptides, both in vitro and in vivo, without using any receptors and without causing any significant membrane damage. Among several different drug delivery routes, application of cell-penetrating peptides in the topical and transdermal delivery systems has recently garnered tremendous attention in both cosmeceutical and pharmaceutical research and industries. In this review, we discuss history of cell-penetrating peptides, cell-penetrating peptide/cargo complex formation, and their mechanisms of cell and skin transduction.
Collapse
Affiliation(s)
- Saman A Nasrollahi
- Department of Pharmaceutics, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | | |
Collapse
|
33
|
Fernandes C, Oliveira L, Tiritan ME, Leitao L, Pozzi A, Noronha-Matos JB, Correia-de-Sá P, Pinto MM. Synthesis of new chiral xanthone derivatives acting as nerve conduction blockers in the rat sciatic nerve. Eur J Med Chem 2012; 55:1-11. [PMID: 22819594 DOI: 10.1016/j.ejmech.2012.06.049] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Revised: 06/18/2012] [Accepted: 06/25/2012] [Indexed: 11/29/2022]
Abstract
The synthesis and structure elucidation of three new chiral xanthone (9H-xanthon-9-one) derivatives (2-4) are fully reported. The coupling reactions of the synthesized building block 6-methoxy-9-oxo-9H-xanthene-2-carboxylic acid (1) with two enantiomerically pure amino alcohols ((S)-(+)-valinol and (S)-(+)-leucinol) and one amine ((S)-(-)-α-4-dimethylbenzylamine), were carried out using the coupling reagent O-(benzotriazol-1-yl-)-N,N,N',N'-tetramethylluronium tetrafluoroborate (TBTU). The coupling reactions were performed with yields higher than 97% and enantiomeric excess higher than 99%. The structures of the compounds were established by IR, MS, and NMR ((1)H, (13)C, HSQC, and HMBC) techniques. Taking into account that these new chiral xanthone derivatives have molecular moieties structurally very similar to local anaesthetics, the ability to block compound action potentials (CAP) at the isolated rat sciatic nerve was also investigated. Nerve conduction blockade might result from a selective interference with Na(+) ionic currents or from a non-selective modification of membrane stabilizing properties. Thus, the mechanism, by which the three chiral xanthone derivatives cause conduction blockade in the rat sciatic nerve and their ability to prevent hypotonic haemolysis, given that erythrocytes are non-excitable cells devoid of voltage-gated Na(+) channels, are also described. Data suggest that nerve conduction blockade caused by newly-synthesized xanthone derivatives might result predominantly from an action on Na(+) ionic currents. This effect can be dissociated from their ability to stabilize cell membranes, which became apparent only upon increasing the concentration of compounds 2-4 to the higher micromolar range.
Collapse
Affiliation(s)
- Carla Fernandes
- Centro de Química Medicinal da Universidade do Porto (CEQUIMED-UP), Portugal
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Hackel D, Brack A, Fromm M, Rittner H. Modulation of tight junction proteins in the perineurium for regional pain control. Ann N Y Acad Sci 2012; 1257:199-206. [DOI: 10.1111/j.1749-6632.2012.06499.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
35
|
Zwanziger D, Hackel D, Staat C, Böcker A, Brack A, Beyermann M, Rittner H, Blasig IE. A peptidomimetic tight junction modulator to improve regional analgesia. Mol Pharm 2012; 9:1785-94. [PMID: 22524793 DOI: 10.1021/mp3000937] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The paracellular flux of solutes through tissue barriers is limited by transmembrane tight junction proteins. Within the family of tight junction proteins, claudin-1 seems to be a key protein for tightness formation and integrity. In the peripheral nervous system, the nerve fibers are surrounded with a barrier formed by the perineurium which expresses claudin-1. To enhance the access of hydrophilic pharmaceutical agents via the paracellular route, a claudin-1 specific modulator was developed. For this purpose, we designed and investigated the claudin-1 derived peptide C1C2. It transiently increased the paracellular permeability for ions and high and low molecular weight compounds through a cellular barrier model. Structural studies revealed a β-sheet potential for the functionality of the peptide. Perineurial injection of C1C2 in rats facilitated the effect of hydrophilic antinociceptive agents and raised mechanical nociceptive thresholds. The mechanism is related to the internalization of C1C2 and to a vesicle-like distribution within the cells. The peptide mainly colocalized with intracellular claudin-1. C1C2 decreased membrane-localized claudin-1 of cells in culture and in vivo in the perineurium of rats after perineurial injection. In conclusion, a novel tool was developed to improve the delivery of pharmaceutical agents through the perineurial barrier by transient modulation of claudin-1.
Collapse
Affiliation(s)
- Denise Zwanziger
- Leibniz Institut für Molekulare Pharmakologie, Robert-Rössle-Strasse 10, 13125, Berlin-Buch, Germany
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Liang L, Wang Z, Lü N, Yang J, Zhang Y, Zhao Z. Involvement of nerve injury and activation of peripheral glial cells in tetanic sciatic stimulation-induced persistent pain in rats. J Neurosci Res 2010; 88:2899-910. [PMID: 20544834 DOI: 10.1002/jnr.22439] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Tetanic stimulation of the sciatic nerve (TSS) produces long-lasting pain hypersensitivity in rats. Long-term potentiation (LTP) of C- and A-fiber-evoked field potentials in the spinal cord has been explored as contributing to central sensitization in pain pathways. However, the peripheral mechanism underlying TSS-induced pain hypersensitivity remains largely unknown. We investigated the effect of TSS on peripheral nerve and the expression of activating transcription factor 3 (ATF3) in dorsal root ganglion (DRG) as a marker of neuronal injury. TSS induced a mechanical allodynia for at least 35 days and induced ATF3 expression in the ipsilateral DRG. ATF3 is colocalized with NF200-labeled myelinated DRG neurons or CGRP- and IB4-labeled unmyelinated ones. Furthermore, we found that TSS induced Wallerian degeneration of sciatic nerve at the level of myelinisation by S100 protein (to label Schwann cells) immunohistochemistry, luxol fast blue staining, and electron microscopy. TSS also elicited the activation of satellite glial cells (SGCs) and enhanced the colocalization of GFAP and P2X7 receptors. Repeated local treatment with tetrodotoxin decreased GFAP expression in SGCs and behavioral allodynia induced by TSS. Furthermore, reactive microglia and astrocytes were found in the spinal dorsal horn after TSS. These results suggest that TSS-induced nerve injury and glial activation in the DRG and spinal dorsal horn may be involved in cellular mechanisms underlying the development of persistent pain after TSS and that TSS-induced nerve injury may be used as a novel neuropathic pain model.
Collapse
Affiliation(s)
- Lingli Liang
- Institute of Neurobiology, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | | | | | | | | | | |
Collapse
|
37
|
Cohen-Avrahami M, Aserin A, Garti N. HII mesophase and peptide cell-penetrating enhancers for improved transdermal delivery of sodium diclofenac. Colloids Surf B Biointerfaces 2010; 77:131-8. [DOI: 10.1016/j.colsurfb.2010.01.013] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Revised: 01/19/2010] [Accepted: 01/20/2010] [Indexed: 11/28/2022]
|
38
|
Abstract
Sensory-selective local anesthesia has long been a key goal in local anesthetic development. For example, it allows women to be pain-free during labor without compromising their ability to push. Here we show that prolonged sensory-selective nerve block can be produced by specific concentrations of surfactants-such as are used to enhance drug flux across skin-in combination with QX-314, a lidocaine derivative that has relative difficulty penetrating nerves. For example, injection of 25 mM QX-314 in 30 mM octyltrimethylammonium bromide (OTAB) lasted up to 7 h. Sensory selectivity was imparted to varying degrees by cationic, neutral, and anionic surfactants, and also was achieved with another lidocaine derivative, QX-222. Simultaneous injection of OTAB at a s.c. injection site remote from the sciatic nerve did not result in prolonged sensory-specific nerve blockade from QX-314, suggesting that the observed effect is due to a local interaction between the surfactant and the lidocaine derivative, not a systemic effect.
Collapse
|
39
|
|