1
|
Su H, Rong G, Li L, Cheng Y. Subcellular targeting strategies for protein and peptide delivery. Adv Drug Deliv Rev 2024; 212:115387. [PMID: 38964543 DOI: 10.1016/j.addr.2024.115387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/15/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
Cytosolic delivery of proteins and peptides provides opportunities for effective disease treatment, as they can specifically modulate intracellular processes. However, most of protein-based therapeutics only have extracellular targets and are cell-membrane impermeable due to relatively large size and hydrophilicity. The use of organelle-targeting strategy offers great potential to overcome extracellular and cell membrane barriers, and enables localization of protein and peptide therapeutics in the organelles. Although progresses have been made in the recent years, organelle-targeted protein and peptide delivery is still challenging and under exploration. We reviewed recent advances in subcellular targeted delivery of proteins/peptides with a focus on targeting mechanisms and strategies, and highlight recent examples of active and passive organelle-specific protein and peptide delivery systems. This emerging platform could open a new avenue to develop more effective protein and peptide therapeutics.
Collapse
Affiliation(s)
- Hao Su
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Guangyu Rong
- Department of Ophthalmology and Vision Science, Shanghai Eye, Ear, Nose and Throat Hospital, Fudan University, Shanghai, 200030, China
| | - Longjie Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Yiyun Cheng
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
2
|
Zhang HF, Yu H, Pan SX, Zhang C, Ma YH, Zhang YF, Zuo LL, Hao CY, Lin XY, Geng H, Wu D, Mu SQ, Yu WL, Shi NQ. Multibarrier-penetrating drug delivery systems for deep tumor therapy based on synergistic penetration strategy. Biomater Sci 2024; 12:2321-2330. [PMID: 38488841 DOI: 10.1039/d3bm01959d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Nanotherapies, valued for their high efficacy and low toxicity, frequently serve as antitumor treatments, but do not readily penetrate deep into tumor tissues and cells. Here we developed an improved tumor-penetrating peptide (TPP)-based drug delivery system. Briefly, the established TPP iNGR was modified to generate a linear NGR peptide capable of transporting nanotherapeutic drugs into tumors through a CendR pathway-dependent, neuropilin-1 receptor-mediated process. Although TPPs have been reported to reach intended tumor targets, they often fail to penetrate cell membranes to deliver tumoricidal drugs to intracellular targets. We addressed this issue by harnessing cell penetrating peptide technology to develop a liposome-based multibarrier-penetrating delivery system (mbPDS) with improved synergistic drug penetration into deep tumor tissues and cells. The system incorporated doxorubicin-loaded liposomes coated with nona-arginine (R9) CPP and cyclic iNGR (CRNGRGPDC) molecules, yielding Lip-mbPDS. Lip-mbPDS tumor-targeting, tumor cell/tissue-penetrating and antitumor capabilities were assessed using CD13-positive human fibrosarcoma-derived cell (HT1080)-based in vitro and in vivo tumor models. Lip-mbPDS evaluation included three-dimensional layer-by-layer confocal laser scanning microscopy, cell internalization/toxicity assays, three-dimensional tumor spheroid-based penetration assays and antitumor efficacy assays conducted in an animal model. Lip-mbPDS provided enhanced synergistic drug penetration of multiple biointerfaces for potentially deep tumor therapeutic outcomes.
Collapse
Affiliation(s)
| | - Huan Yu
- School of Pharmacy, Jilin Medical University, China.
| | | | - Chuang Zhang
- School of Pharmacy, Jilin Medical University, China.
| | - Ying-Hui Ma
- School of Pharmacy, Jilin Medical University, China.
| | - Yan-Fei Zhang
- School of Pharmacy, Jilin Medical University, China.
| | - Li-Li Zuo
- School of public health, Jilin Medical University, China
| | - Cheng-Yi Hao
- School of Pharmacy, Jilin Medical University, China.
| | - Xiao-Ying Lin
- School of Pharmacy, Jilin Medical University, China.
| | - Hao Geng
- School of Pharmacy, Jilin Medical University, China.
| | - Di Wu
- School of Pharmacy, Jilin Medical University, China.
| | | | - Wei-Lun Yu
- School of Bioengineering, Jilin Medical University, China
| | - Nian-Qiu Shi
- School of Pharmacy, Jilin Medical University, China.
- College of Pharmaceutical Sciences, Yanbian University, China
| |
Collapse
|
3
|
Bolcaen J, Gizawy MA, Terry SYA, Paulo A, Cornelissen B, Korde A, Engle J, Radchenko V, Howell RW. Marshalling the Potential of Auger Electron Radiopharmaceutical Therapy. J Nucl Med 2023; 64:1344-1351. [PMID: 37591544 PMCID: PMC10478825 DOI: 10.2967/jnumed.122.265039] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/05/2023] [Indexed: 08/19/2023] Open
Abstract
Auger electron (AE) radiopharmaceutical therapy (RPT) may have the same therapeutic efficacy as α-particles for oncologic small disease, with lower risks of normal-tissue toxicity. The seeds of using AE emitters for RPT were planted several decades ago. Much knowledge has been gathered about the potency of the biologic effects caused by the intense shower of these low-energy AEs. Given their short range, AEs deposit much of their energy in the immediate vicinity of their site of decay. However, the promise of AE RPT has not yet been realized, with few agents evaluated in clinical trials and none becoming part of routine treatment so far. Instigated by the 2022 "Technical Meeting on Auger Electron Emitters for Radiopharmaceutical Developments" at the International Atomic Energy Agency, this review presents the current status of AE RPT based on the discussions by experts in the field. A scoring system was applied to illustrate hurdles in the development of AE RPT, and we present a selected list of well-studied and emerging AE-emitting radionuclides. Based on the number of AEs and other emissions, physical half-life, radionuclide production, radiochemical approaches, dosimetry, and vector availability, recommendations are put forward to enhance and impact future efforts in AE RPT research.
Collapse
Affiliation(s)
- Julie Bolcaen
- SSC Laboratory, Radiation Biophysics, NRF iThemba LABS, Cape Town, South Africa
| | - Mohamed A Gizawy
- Egyptian Second Research Reactor Complex, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Samantha Y A Terry
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - António Paulo
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Campus Tecnológico e Nuclear, Bobadela, Portugal
| | - Bart Cornelissen
- Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Aruna Korde
- Division of Physical and Chemical Sciences, Department of Nuclear Sciences and Application, International Atomic Energy Agency, Vienna, Austria
| | - Jonathan Engle
- University of Wisconsin Cyclotron Research Group, Departments of Medical Physics and Radiology, Madison, Wisconsin
| | - Valery Radchenko
- TRIUMF, Life Sciences Division, Vancouver, British Columbia, Canada;
- University of British Columbia, Chemistry Department, Vancouver, British Columbia, Canada; and
| | - Roger W Howell
- Division of Radiation Research, Department of Radiology and Center for Cell Signaling, New Jersey Medical School, Rutgers University, Newark, New Jersey
| |
Collapse
|
4
|
Shin MJ, Eum WS, Youn GS, Park JH, Yeo HJ, Yeo EJ, Kwon HJ, Sohn EJ, Lee LR, Kim NY, Kwon SY, Kim SM, Jung HY, Kim DS, Cho SW, Kwon OS, Kim DW, Choi SY. Protective effects of cell permeable Tat-PIM2 protein on oxidative stress induced dopaminergic neuronal cell death. Heliyon 2023; 9:e15945. [PMID: 37223703 PMCID: PMC10200856 DOI: 10.1016/j.heliyon.2023.e15945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/27/2023] [Accepted: 04/27/2023] [Indexed: 05/25/2023] Open
Abstract
Background Oxidative stress is considered as one of the main causes of Parkinson's disease (PD), however the exact etiology of PD is still unknown. Although it is known that Proviral Integration Moloney-2 (PIM2) promotes cell survival by its ability to inhibit formation of reactive oxygen species (ROS) in the brain, the precise functional role of PIM2 in PD has not been fully studied yet. Objective We investigated the protective effect of PIM2 against apoptosis of dopaminergic neuronal cells caused by oxidative stress-induced ROS damage by using the cell permeable Tat-PIM2 fusion protein in vitro and in vivo. Methods Transduction of Tat-PIM2 into SH-SY5Y cells and apoptotic signaling pathways were determined by Western blot analysis. Intracellular ROS production and DNA damage was confirmed by DCF-DA and TUNEL staining. Cell viability was determined by MTT assay. PD animal model was induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and protective effects were examined using immunohistochemistry. Results Transduced Tat-PIM2 inhibited the apoptotic caspase signaling and reduced the production of ROS induced by 1-methyl-4-phenylpyridinium (MPP+) in SH-SY5Y cells. Furthermore, we confirmed that Tat-PIM2 transduced into the substantia nigra (SN) region through the blood-brain barrier and this protein protected the Tyrosine hydroxylase-positive cells by observation of immunohistostaining. Tat-PIM2 also regulated antioxidant biomolecules such as SOD1, catalase, 4-HNE, and 8-OHdG which reduce the formation of ROS in the MPTP-induced PD mouse model. Conclusion These results indicated that Tat-PIM2 markedly inhibited the loss of dopaminergic neurons by reducing ROS damage, suggesting that Tat-PIM2 might be a suitable therapeutic agent for PD.
Collapse
Affiliation(s)
- Min Jea Shin
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, South Korea
| | - Won Sik Eum
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, South Korea
| | - Gi Soo Youn
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, South Korea
| | - Jung Hwan Park
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, South Korea
| | - Hyeon Ji Yeo
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, South Korea
| | - Eun Ji Yeo
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, South Korea
| | - Hyun Jung Kwon
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, South Korea
| | - Eun Jeong Sohn
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, South Korea
| | - Lee Re Lee
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, South Korea
| | - Na Yeon Kim
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, South Korea
| | - Su Yeon Kwon
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, South Korea
| | - Su Min Kim
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, South Korea
| | - Hyo Young Jung
- Department of Veterinary Medicine & Institute of Veterinary Science, Chungnam National University, Daejeon, 34134, South Korea
| | - Duk-Soo Kim
- Department of Anatomy and BK21 FOUR Project, College of Medicine, Soonchunhyang University, Cheonan-si 31538, South Korea
| | - Sung-Woo Cho
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul 05505, South Korea
| | - Oh-Shin Kwon
- School of Life Sciences, College of Natural Sciences Kyungpook National University, Taegu 41566, South Korea
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung-Wonju National University, Gangneung 25457, South Korea
| | - Soo Young Choi
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, South Korea
| |
Collapse
|
5
|
Goyal P, Malviya R. Advances in nuclei targeted delivery of nanoparticles for the management of cancer. Biochim Biophys Acta Rev Cancer 2023; 1878:188881. [PMID: 36965678 DOI: 10.1016/j.bbcan.2023.188881] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/16/2023] [Accepted: 03/21/2023] [Indexed: 03/27/2023]
Abstract
A carrier is inserted into the appropriate organelles (nucleus) in successful medication transport, crucial to achieving very effective illness treatment. Cell-membrane targeting is the major focus of using nuclei to localize delivery. It has been demonstrated that high quantities of anticancer drugs can be injected directly into the nuclei of cancer cells, causing the cancer cells to die and increasing the effectiveness of chemotherapy. There are several effective ways to functionalize Nanoparticles (NPs), including changing their chemical makeup or attaching functional groups to their surface to increase their ability to target organelles. To cause tumor cells to apoptosis, released medicines must engage with molecular targets on particular organelles when their concentration is high enough. Targeted medication delivery studies will increasingly focus on organelle-specific delivery.
Collapse
Affiliation(s)
- Priyanshi Goyal
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India.
| |
Collapse
|
6
|
Abstract
AbstractBiophysical studies have a very high impact on the understanding of internalization, molecular mechanisms, interactions, and localization of CPPs and CPP/cargo conjugates in live cells or in vivo. Biophysical studies are often first carried out in test-tube set-ups or in vitro, leading to the complicated in vivo systems. This review describes recent studies of CPP internalization, mechanisms, and localization. The multiple methods in these studies reveal different novel and important aspects and define the rules for CPP mechanisms, hopefully leading to their improved applicability to novel and safe therapies.
Collapse
Affiliation(s)
- Matjaž Zorko
- University of Ljubljana, Medical Faculty, Institute of Biochemistry and Molecular Genetics, Vrazov trg 2, 1000Ljubljana, Slovenia,
| | - Ülo Langel
- University of Stockholm, Department of Biochemistry and Biophysics, Svante Arrhenius väg 16, 106 91 Stockholm, Sweden, , and Institute of Technology, University of Tartu, Nooruse 1, Tartu, Estonia, 50411
| |
Collapse
|
7
|
Cerrato CP, Langel Ü. An update on cell-penetrating peptides with intracellular organelle targeting. Expert Opin Drug Deliv 2022; 19:133-146. [PMID: 35086398 DOI: 10.1080/17425247.2022.2034784] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Cell-penetrating peptide (CPP) technologies represent an important strategy to address drug delivery to specific intracellular compartments by covalent conjugation to targeting sequences, potentially enabling strategies to combat most diseases. AREAS COVERED This updated review article provides an overview of current intracellular organelle targeting by CPP. The targeting strategies of CPP and CPP/cargo complexes to specific cells or intracellular organelles are summarized, and the review provides an update on the current data for their pharmacological and therapeutical applications. EXPERT OPINION Targeted drug delivery is moving from the level of tissue or specific pathogenic cell to the level of specific organelle that is the target of the drug, an important aspect in drug design and development. Organelle-targeted drug delivery results in improved efficacy, ability to control mode of action, reduction of undesired toxicities and side effects, and possibility to overcome drug resistance mechanisms.
Collapse
Affiliation(s)
| | - Ülo Langel
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden.,Laboratory of Molecular Biotechnology, Institute of Technology, University of Tartu, Tartu, Estonia
| |
Collapse
|
8
|
Effect of FKBP12-Derived Intracellular Peptides on Rapamycin-Induced FKBP-FRB Interaction and Autophagy. Cells 2022; 11:cells11030385. [PMID: 35159195 PMCID: PMC8834644 DOI: 10.3390/cells11030385] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 02/04/2023] Open
Abstract
Intracellular peptides (InPeps) generated by proteasomes were previously suggested as putative natural regulators of protein-protein interactions (PPI). Here, the main aim was to investigate the intracellular effects of intracellular peptide VFDVELL (VFD7) and related peptides on PPI. The internalization of the peptides was achieved using a C-terminus covalently bound cell-penetrating peptide (cpp; YGRKKRRQRRR). The possible inhibition of PPI was investigated using a NanoBiT® luciferase structural complementation reporter system, with a pair of plasmids vectors each encoding, simultaneously, either FK506-binding protein (FKBP) or FKBP-binding domain (FRB) of mechanistic target of rapamycin complex 1 (mTORC1). The interaction of FKBP-FRB within cells occurs under rapamycin induction. Results shown that rapamycin-induced interaction between FKBP-FRB within human embryonic kidney 293 (HEK293) cells was inhibited by VFD7-cpp (10-500 nM) and FDVELLYGRKKRRQRRR (VFD6-cpp; 1-500 nM); additional VFD7-cpp derivatives were either less or not effective in inhibiting FKBP-FRB interaction induced by rapamycin. Molecular dynamics simulations suggested that selected peptides, such as VFD7-cpp, VFD6-cpp, VFAVELLYGRKKKRRQRRR (VFA7-cpp), and VFEVELLYGRKKKRRQRRR (VFA7-cpp), bind to FKBP and to FRB protein surfaces. However, only VFD7-cpp and VFD6-cpp induced changes on FKBP structure, which could help with understanding their mechanism of PPI inhibition. InPeps extracted from HEK293 cells were found mainly associated with macromolecular components (i.e., proteins and/or nucleic acids), contributing to understanding InPeps' intracellular proteolytic stability and mechanism of action-inhibiting PPI within cells. In a model of cell death induced by hypoxia-reoxygenation, VFD6-cpp (1 µM) increased the viability of mouse embryonic fibroblasts cells (MEF) expressing mTORC1-regulated autophagy-related gene 5 (Atg5), but not in autophagy-deficient MEF cells lacking the expression of Atg5. These data suggest that VFD6-cpp could have therapeutic applications reducing undesired side effects of rapamycin long-term treatments. In summary, the present report provides further evidence that InPeps have biological significance and could be valuable tools for the rational design of therapeutic molecules targeting intracellular PPI.
Collapse
|
9
|
Rusiecka I, Gągało I, Kocić I. Cell-penetrating peptides improve pharmacokinetics and pharmacodynamics of anticancer drugs. Tissue Barriers 2022; 10:1965418. [PMID: 34402743 PMCID: PMC8794253 DOI: 10.1080/21688370.2021.1965418] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 08/01/2021] [Accepted: 08/02/2021] [Indexed: 10/20/2022] Open
Abstract
This review concentrates on the research concerning conjugates of anticancer drugs with versatile cell-penetrating peptides (CPPs). For a better insight into the relationship between the components of the constructs, it starts with the characteristic of the peptides and considers its following aspects: mechanisms of cellular internalization, interaction with cancer-modified membranes, selectivity against tumor tissue. Also, CPPs with anticancer activity have been distinguished and summarized with their mechanisms of action. With respect to the conjugates, the preclinical studies (in vitro, in vivo) indicated that they possess several merits in comparison to the parent drugs. They concerned not only better cellular internalization but also other improvements in pharmacokinetics (e.g. access to the brain tissue) and pharmacodynamics (e.g. overcoming drug resistance). The anticancer activity of the conjugates was usually superior to that of the unconjugated drug. Certain anticancer CPPs and conjugates entered clinical trials.
Collapse
Affiliation(s)
- Izabela Rusiecka
- Department of Pharmacology, Medical University of Gdansk, Gdansk, Poland
| | - Iwona Gągało
- Department of Pharmacology, Medical University of Gdansk, Gdansk, Poland
| | - Ivan Kocić
- Department of Pharmacology, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
10
|
Yu JR, LeRoy G, Bready D, Frenster JD, Saldaña-Meyer R, Jin Y, Descostes N, Stafford JM, Placantonakis DG, Reinberg D. The H3K36me2 writer-reader dependency in H3K27M-DIPG. SCIENCE ADVANCES 2021; 7:eabg7444. [PMID: 34261657 PMCID: PMC8279504 DOI: 10.1126/sciadv.abg7444] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 06/01/2021] [Indexed: 05/12/2023]
Abstract
Histone H3K27M is a driving mutation in diffuse intrinsic pontine glioma (DIPG), a deadly pediatric brain tumor. H3K27M reshapes the epigenome through a global inhibition of PRC2 catalytic activity and displacement of H3K27me2/3, promoting oncogenesis of DIPG. As a consequence, a histone modification H3K36me2, antagonistic to H3K27me2/3, is aberrantly elevated. Here, we investigate the role of H3K36me2 in H3K27M-DIPG by tackling its upstream catalyzing enzymes (writers) and downstream binding factors (readers). We determine that NSD1 and NSD2 are the key writers for H3K36me2. Loss of NSD1/2 in H3K27M-DIPG impedes cellular proliferation and tumorigenesis by disrupting tumor-promoting transcriptional programs. Further, we demonstrate that LEDGF and HDGF2 are the main readers mediating the protumorigenic effects downstream of NSD1/2-H3K36me2. Treatment with a chemically modified peptide mimicking endogenous H3K36me2 dislodges LEDGF/HDGF2 from chromatin and specifically inhibits the proliferation of H3K27M-DIPG. Our results indicate a functional pathway of NSD1/2-H3K36me2-LEDGF/HDGF2 as an acquired dependency in H3K27M-DIPG.
Collapse
Affiliation(s)
- Jia-Ray Yu
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA
- Howard Hughes Medical Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Gary LeRoy
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA
- Howard Hughes Medical Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Devin Bready
- Department of Neurosurgery, New York University Grossman School of Medicine, New York, NY, USA
| | - Joshua D Frenster
- Department of Neurosurgery, New York University Grossman School of Medicine, New York, NY, USA
| | - Ricardo Saldaña-Meyer
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA
- Howard Hughes Medical Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Ying Jin
- Shared Bioinformatics Core Cancer Center, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Nicolas Descostes
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA
- Howard Hughes Medical Institute, New York University Grossman School of Medicine, New York, NY, USA
- EMBL Rome, Adriano Buzzati-Traverso Campus, Rome, Italy
| | - James M Stafford
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA
- Howard Hughes Medical Institute, New York University Grossman School of Medicine, New York, NY, USA
- Department of Neurological Sciences, University of Vermont Larner College of Medicine, Burlington, VT, USA
| | - Dimitris G Placantonakis
- Department of Neurosurgery, New York University Grossman School of Medicine, New York, NY, USA
- Kimmel Center for Stem Cell Biology, New York University Grossman School of Medicine, New York, NY, USA
- Laura and Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY, USA
- Brain and Spine Tumor Center, New York University Grossman School of Medicine, New York, NY, USA
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Danny Reinberg
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA.
- Howard Hughes Medical Institute, New York University Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
11
|
Huang S, Zhu Z, Jia B, Zhang W, Song J. Design of acid-activated cell-penetrating peptides with nuclear localization capacity for anticancer drug delivery. J Pept Sci 2021; 27:e3354. [PMID: 34101293 DOI: 10.1002/psc.3354] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 01/27/2023]
Abstract
Camptothecin (CPT), a DNA-toxin drug, exerts anticancer activity by inhibiting topoisomerase I. Targeted delivery of CPT into the cancer cell nucleus is important for enhancing its therapeutic efficiency. In this study, a new type of acid-activated cell-penetrating peptide (CPP) with nuclear localization capacity was constructed by conjugating six histidine residues and a hydrophobic peptide sequence, PFVYLI, to the nuclear localization sequence (NLS). Our results indicated that HNLS-3 displayed significant pH-dependent cellular uptake efficiency, endosomal escape ability, and nuclear localization activity. More importantly, the HNLS-3-CPT conjugate showed obviously enhanced cytotoxicity and selectivity compared with CPT. Taken together, our findings provide an effective approach to develop efficient CPPs with both cancer- and nucleus-targeting properties.
Collapse
Affiliation(s)
- Sujie Huang
- School of Life Sciences, Lanzhou University, Lanzhou, China.,Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Zhongwen Zhu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Bo Jia
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Wei Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Jingjing Song
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| |
Collapse
|
12
|
Peier A, Ge L, Boyer N, Frost J, Duggal R, Biswas K, Edmondson S, Hermes JD, Yan L, Zimprich C, Sadruddin A, Kristal Kaan HY, Chandramohan A, Brown CJ, Thean D, Lee XE, Yuen TY, Ferrer-Gago FJ, Johannes CW, Lane DP, Sherborne B, Corona C, Robers MB, Sawyer TK, Partridge AW. NanoClick: A High Throughput, Target-Agnostic Peptide Cell Permeability Assay. ACS Chem Biol 2021; 16:293-309. [PMID: 33539064 DOI: 10.1021/acschembio.0c00804] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Macrocyclic peptides open new opportunities to target intracellular protein-protein interactions (PPIs) that are often considered nondruggable by traditional small molecules. However, engineering sufficient membrane permeability into these molecules is a central challenge for identifying clinical candidates. Currently, there is a lack of high-throughput assays to assess peptide permeability, which limits our capacity to engineer this property into macrocyclic peptides for advancement through drug discovery pipelines. Accordingly, we developed a high throughput and target-agnostic cell permeability assay that measures the relative cumulative cytosolic exposure of a peptide in a concentration-dependent manner. The assay was named NanoClick as it combines in-cell Click chemistry with an intracellular NanoBRET signal. We validated the approach using known cell penetrating peptides and further demonstrated a correlation to cellular activity using a p53/MDM2 model system. With minimal change to the peptide sequence, NanoClick enables the ability to measure uptake of molecules that enter the cell via different mechanisms such as endocytosis, membrane translocation, or passive permeability. Overall, the NanoClick assay can serve as a screening tool to uncover predictive design rules to guide structure-activity-permeability relationships in the optimization of functionally active molecules.
Collapse
Affiliation(s)
- Andrea Peier
- Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Lan Ge
- Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Nicolas Boyer
- Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | - John Frost
- Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Ruchia Duggal
- Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | - Kaustav Biswas
- Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | - Scott Edmondson
- Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | | | - Lin Yan
- Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Chad Zimprich
- Promega Corporation, Madison, Wisconsin 53711, United States
| | | | | | | | - Christopher J. Brown
- Agency for Science, Technology and Research (A*STAR) Singapore 138665, Singapore
| | - Dawn Thean
- Agency for Science, Technology and Research (A*STAR) Singapore 138665, Singapore
| | - Xue Er Lee
- Agency for Science, Technology and Research (A*STAR) Singapore 138665, Singapore
| | - Tsz Ying Yuen
- Agency for Science, Technology and Research (A*STAR) Singapore 138665, Singapore
| | | | - Charles W. Johannes
- Agency for Science, Technology and Research (A*STAR) Singapore 138665, Singapore
| | - David P. Lane
- Agency for Science, Technology and Research (A*STAR) Singapore 138665, Singapore
| | - Brad Sherborne
- Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Cesear Corona
- Promega Biosciences Incorporated, San Luis Obispo, California 93401, United States
| | | | - Tomi K. Sawyer
- Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | | |
Collapse
|
13
|
Behzadi M, Arasteh S, Bagheri M. Palmitoylation of Membrane-Penetrating Magainin Derivatives Reinforces Necroptosis in A549 Cells Dependent on Peptide Conformational Propensities. ACS APPLIED MATERIALS & INTERFACES 2020; 12:56815-56829. [PMID: 33296603 DOI: 10.1021/acsami.0c17648] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Anticancer lipopeptides (ACLPs) are considered promising alternatives to combat resistant cancer cells, but the influence of peptide conformational propensity alone on their selectivity and mechanism remains obscure. In this study, we developed N-palmitoylated MK5E (P1MK5E) and MEK5 (P1MEK5) that have the same composition of 23 residues undergoing the pH-dependent structural alterations but differ in the conformational tendency of their amino acid composites. Nonlipidated peptides were readily accumulated in the A549 cell nucleus by the direct membrane translocation and the heparan sulfate-mediated endocytosis than the lipid-raft-dependent pathway. The increased hydrophobicity favored the amino acid-position-dependent folding of P1MK5E and P1MEK5, respectively, toward the α-helical coiled-coil nanofibrils and amyloidlike β-protofibrils. At the close concentrations (∼7.5 μM) to the toxic effects of doxorubicin (DOX), P1MK5E exhibited (i) an increased anticancer toxicity through a time-dependent S-phase arrest, (ii) enhanced plasma membrane permeability, and (iii) dose-dependent changes in the cell death characteristic features in the A549 cells relative to P1MEK5 that was almost inactive at ∼75 μM. These observations were in accordance with the TNF-α-mediated necroptotic signaling in the c-MYC/PARP1-overexpressed A549 cells exposed to P1MK5E and accompanied by the ultrastructure of plasma membrane protrusions, extensive endoplasmic reticulum (ER) membrane expansion, mitochondrial swelling, and the formation of distinct cytoplasmic vacuolation. The structural results and the bioactivity behaviors, herein, declared the significance of α-helical propensity in the peptide sequence and the nanostructure morphologies of self-assembling ACLPs upon the selectivity and enhanced anticancer effectiveness, which notably holds promise in the design and development of efficient therapeutics for cancer.
Collapse
Affiliation(s)
- Malihe Behzadi
- Peptide Chemistry Laboratory, Institute of Biochemistry and Biophysics, University of Tehran, 16 Azar Street, 14176-14335 Tehran, Iran
| | - Shima Arasteh
- Peptide Chemistry Laboratory, Institute of Biochemistry and Biophysics, University of Tehran, 16 Azar Street, 14176-14335 Tehran, Iran
| | - Mojtaba Bagheri
- Peptide Chemistry Laboratory, Institute of Biochemistry and Biophysics, University of Tehran, 16 Azar Street, 14176-14335 Tehran, Iran
| |
Collapse
|
14
|
Illa O, Olivares JA, Gaztelumendi N, Martínez-Castro L, Ospina J, Abengozar MÁ, Sciortino G, Maréchal JD, Nogués C, Royo M, Rivas L, Ortuño RM. Chiral Cyclobutane-Containing Cell-Penetrating Peptides as Selective Vectors for Anti- Leishmania Drug Delivery Systems. Int J Mol Sci 2020; 21:E7502. [PMID: 33053805 PMCID: PMC7590151 DOI: 10.3390/ijms21207502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/06/2020] [Accepted: 10/08/2020] [Indexed: 02/04/2023] Open
Abstract
Two series of new hybrid γ/γ-peptides, γ-CC and γ-CT, formed by (1S,2R)-3-amino-2,2,dimethylcyclobutane-1-carboxylic acid joined in alternation to a Nα-functionalized cis- or trans-γ-amino-l-proline derivative, respectively, have been synthesized and evaluated as cell penetrating peptides (CPP) and as selective vectors for anti-Leishmania drug delivery systems (DDS). They lacked cytotoxicity on the tumoral human cell line HeLa with a moderate cell-uptake on these cells. In contrast, both γ-CC and γ-CT tetradecamers were microbicidal on the protozoan parasite Leishmania beyond 25 μM, with significant intracellular accumulation. They were conjugated to fluorescent doxorubicin (Dox) as a standard drug showing toxicity beyond 1 μM, while free Dox was not toxic. Intracellular accumulation was 2.5 higher than with Dox-TAT conjugate (TAT = transactivator of transcription, taken as a standard CPP). The conformational structure of the conjugates was approached both by circular dichroism spectroscopy and molecular dynamics simulations. Altogether, computational calculations predict that the drug-γ-peptide conjugates adopt conformations that bury the Dox moiety into a cavity of the folded peptide, while the positively charged guanidinium groups face the solvent. The favorable charge/hydrophobicity balance in these CPP improves the solubility of Dox in aqueous media, as well as translocation across cell membranes, making them promising candidates for DDS.
Collapse
Affiliation(s)
- Ona Illa
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; (O.I.); (J.-A.O.); (L.M.-C.); (J.O.); (G.S.); (J.-D.M.)
| | - José-Antonio Olivares
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; (O.I.); (J.-A.O.); (L.M.-C.); (J.O.); (G.S.); (J.-D.M.)
| | - Nerea Gaztelumendi
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain;
| | - Laura Martínez-Castro
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; (O.I.); (J.-A.O.); (L.M.-C.); (J.O.); (G.S.); (J.-D.M.)
| | - Jimena Ospina
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; (O.I.); (J.-A.O.); (L.M.-C.); (J.O.); (G.S.); (J.-D.M.)
| | - María-Ángeles Abengozar
- Centro de Investigaciones Biológicas Margarita Salas, CSIC, c/Ramiro de Maeztu, 9, 28040 Madrid, Spain;
| | - Giuseppe Sciortino
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; (O.I.); (J.-A.O.); (L.M.-C.); (J.O.); (G.S.); (J.-D.M.)
| | - Jean-Didier Maréchal
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; (O.I.); (J.-A.O.); (L.M.-C.); (J.O.); (G.S.); (J.-D.M.)
| | - Carme Nogués
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain;
| | - Míriam Royo
- Institut de Química Avançada de Catalunya (IQAC-CSIC), c/Jordi Girona, 18–26, 08034 Barcelona, Spain;
- Centro de Investigación Biomédica en Red Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), c/Jordi Girona, 18–26, 08034 Barcelona, Spain
| | - Luis Rivas
- Centro de Investigaciones Biológicas Margarita Salas, CSIC, c/Ramiro de Maeztu, 9, 28040 Madrid, Spain;
| | - Rosa M. Ortuño
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; (O.I.); (J.-A.O.); (L.M.-C.); (J.O.); (G.S.); (J.-D.M.)
| |
Collapse
|
15
|
Young CC, Vedadghavami A, Bajpayee AG. Bioelectricity for Drug Delivery: The Promise of Cationic Therapeutics. Bioelectricity 2020; 2:68-81. [PMID: 32803148 DOI: 10.1089/bioe.2020.0012] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Biological systems overwhelmingly comprise charged entities generating electrical activity that can have significant impact on biological structure and function. This intrinsic bio-electrical activity can also be harnessed for overcoming the tissue matrix and cell membrane barriers, which have been outstanding challenges for targeted drug delivery, by using rationally designed cationic carriers. The weak and reversible long-range electrostatic interactions with fixed negatively charged groups facilitate electro-diffusive transport of cationic therapeutics through full-tissue thickness to effectively reach intra-tissue, cellular, and intracellular target sites. This article presents a perspective on the promise of using rationally designed cationic biomaterials in targeted drug delivery, the underlying charge-based mechanisms, and bio-transport phenomena while addressing outstanding concerns around toxicity and methods to mitigate them. We also discuss electrically charged drugs that are currently being evaluated in clinical trials and identify areas of further development that have the potential to usher in new treatments.
Collapse
Affiliation(s)
- Cameron C Young
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts, USA
| | - Armin Vedadghavami
- Department of Bioengineering, Northeastern University, Boston, Massachusetts, USA
| | - Ambika G Bajpayee
- Department of Bioengineering, Northeastern University, Boston, Massachusetts, USA.,Department of Mechanical and Industrial Engineering, Northeastern University, Boston, Massachusetts, USA
| |
Collapse
|
16
|
Lopez-Barbosa N, Suárez-Arnedo A, Cifuentes J, Gonzalez Barrios AF, Silvera Batista CA, Osma JF, Muñoz-Camargo C, Cruz JC. Magnetite-OmpA Nanobioconjugates as Cell-Penetrating Vehicles with Endosomal Escape Abilities. ACS Biomater Sci Eng 2019; 6:415-424. [PMID: 33463215 DOI: 10.1021/acsbiomaterials.9b01214] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Outer membrane protein A (OmpA) has been extensively studied in Gram-negative bacteria due to its relevance in the adhesion of pathogens to host cells and its surfactant capabilities. It consists of a hydrophobic β-barrel domain and a hydrophilic periplasmic domain, that confers OmpA an amphiphilic structure. This study aims to elucidate the capacity of Escherichia coli OmpA to translocate liposomal membranes and serve as a potential cell-penetrating vehicle. We immobilized OmpA on magnetite nanoparticles and investigated the possible functional changes exhibited by OmpA after immobilization. Liposomal intake was addressed using egg lecithin liposomes as a model, where magnetite-OmpA nanobioconjugates were able to translocate the liposomal membrane and caused a disruptive effect when subjected to a magnetic field. Nanobioconjugates showed both low cytotoxicity and hemolytic tendency. Additional interactions within the intracellular space led to altered viability results via 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT). Confocal microscopy images revealed that immobilized nanoparticles effectively enter the cytoplasm of THP-1 and Vero cells by different routes, and, subsequently, some escape endosomes, lysosomes, and other intracellular compartments with relatively high efficiencies. This was demonstrated by co-localization analyses with LysoTracker green that showed Pearson correlations of about 80 and 28%.
Collapse
Affiliation(s)
| | | | | | | | - Carlos A Silvera Batista
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | | | | | | |
Collapse
|
17
|
Grasso G, Mercuri S, Danani A, Deriu MA. Biofunctionalization of Silica Nanoparticles with Cell-Penetrating Peptides: Adsorption Mechanism and Binding Energy Estimation. J Phys Chem B 2019; 123:10622-10630. [DOI: 10.1021/acs.jpcb.9b08106] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Gianvito Grasso
- Istituto Dalle Molle di studi sull’Intelligenza Artificiale (IDSIA), Scuola Universitaria Professionale della Svizzera italiana (SUPSI), Università della Svizzera italiana (USI), Centro Galleria 2, Manno, CH-6928, Switzerland
| | - Stefano Mercuri
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, IT-10128, Torino, Italy
| | - Andrea Danani
- Istituto Dalle Molle di studi sull’Intelligenza Artificiale (IDSIA), Scuola Universitaria Professionale della Svizzera italiana (SUPSI), Università della Svizzera italiana (USI), Centro Galleria 2, Manno, CH-6928, Switzerland
| | - Marco A. Deriu
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, IT-10128, Torino, Italy
| |
Collapse
|
18
|
Shrestha A, Sadeyen JR, Iqbal M. Enhancing Protective Efficacy of Poultry Vaccines through Targeted Delivery of Antigens to Antigen-Presenting Cells. Vaccines (Basel) 2018; 6:E75. [PMID: 30445683 PMCID: PMC6313852 DOI: 10.3390/vaccines6040075] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 11/09/2018] [Accepted: 11/13/2018] [Indexed: 02/07/2023] Open
Abstract
Avian viral diseases including avian influenza, Marek's disease and Newcastle disease are detrimental to economies around the world that depend on the poultry trade. A significant zoonotic threat is also posed by avian influenza viruses. Vaccination is an important and widely used method for controlling these poultry diseases. However, the current vaccines do not provide full protection or sterile immunity. Hence, there is a need to develop improved vaccines. The major aim of developing improved vaccines is to induce strong and specific humoral and cellular immunity in vaccinated animals. One strategy used to enhance the immunogenicity of vaccines is the selective delivery of protective antigens to antigen-presenting cells (APCs) including dendritic cells, macrophages and B cells. APCs have a central role in the initiation and maintenance of immune responses through their ability to capture, process and present antigens to T and B cells. Vaccine technology that selectively targets APCs has been achieved by coupling antigens to monoclonal antibodies or ligands that are targeted by APCs. The aim of this review is to discuss existing strategies of selective delivery of antigens to APCs for effective vaccine development in poultry.
Collapse
Affiliation(s)
- Angita Shrestha
- The Pirbright Institute, Ash Road, Pirbright, Woking GU24 0NF, Surrey, UK.
- Department of Zoology, University of Oxford, Oxford OX1 2JD, UK.
| | - Jean-Remy Sadeyen
- The Pirbright Institute, Ash Road, Pirbright, Woking GU24 0NF, Surrey, UK.
| | - Munir Iqbal
- The Pirbright Institute, Ash Road, Pirbright, Woking GU24 0NF, Surrey, UK.
| |
Collapse
|
19
|
Shi NQ, Li Y, Zhang Y, Li ZQ, Qi XR. Deepened cellular/subcellular interface penetration and enhanced antitumor efficacy of cyclic peptidic ligand-decorated accelerating active targeted nanomedicines. Int J Nanomedicine 2018; 13:5537-5559. [PMID: 30271146 PMCID: PMC6154709 DOI: 10.2147/ijn.s172556] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Introduction Acceleration and improvement of penetration across cell-membrane interfaces of active targeted nanotherapeutics into tumor cells would improve tumor-therapy efficacy by overcoming the issue of poor drug penetration. Cell-penetrating peptides, especially synthetic polyarginine, have shown promise in facilitating cargo delivery. However, it is unknown whether polyarginine can work to overcome the membrane interface in an inserted pattern for cyclic peptide ligand-mediated active targeting drug delivery. Here, we conducted a study to test the hypothesis that tandem-insert nona-arginine (tiR9) can act as an accelerating component for intracellular internalization, enhance cellular penetration, and promote antitumor efficacy of active targeted cyclic asparagine–glycine–arginine (cNGR)-decorated nanoliposomes. Methods Polyarginine was coupled with the polyethylene glycol (PEG) chain and the cNGR moiety, yielding a cNGR–tiR9–PEG2,000–distearoylphosphatidylethanolamine conjugate. Results The accelerating active targeted liposome (Lip) nanocarrier (cNGR-tiR9-Lip–doxorubicin [Dox]) constructed in this study held suitable physiochemical features, such as appropriate particle size of ~150 nm and sustained-release profiles. Subsequently, tiR9 was shown to enhance cellular drug delivery of Dox-loaded active targeted systems (cNGR-Lip-Dox) significantly. Layer-by-layer confocal microscopy indicated that the tandem-insert polyarginine accelerated active targeted system entry into deeper intracellular regions based on observations at marginal and center locations. tiR9 enhanced the penetration depth of cNGR-Lip–coumarin 6 through subcellular membrane barriers and caused its specific accumulation in mitochondria, endoplasmic reticulum, and Golgi apparatus. It was also obvious that cNGR-tiR9-Lip-Dox induced enhanced apoptosis and activated caspase 3/7. Moreover, compared with cNGR-Lip-Dox, cNGR-tiR9-Lip-Dox induced a significantly higher antiproliferative effect and markedly suppressed tumor growth in HT1080-bearing nude mice. Conclusion This active tumor-targeting nanocarrier incorporating a tandem-insert polyarginine (tiR9) as an accelerating motif shows promise as an effective drug-delivery system to accelerate translocation of drugs across tumor-cell/subcellular membrane barriers to achieve improved specific tumor therapy.
Collapse
Affiliation(s)
- Nian-Qiu Shi
- School of Pharmacy, Jilin Medical University, Jilin, Jilin, 132013, China,
| | - Yan Li
- Immunology Department, Laboratory Medical College, Jilin Medical University, Jilin, Jilin, 132013, China
| | - Yong Zhang
- College of Life Science, Jilin University, Changchun, Jilin, 130012, China
| | - Zheng-Qiang Li
- Key Laboratory for Molecular Enzymology and Engineering, Ministry of Education, College of Life Science, Jilin University, Changchun, Jilin, 130012, China,
| | - Xian-Rong Qi
- Department of Pharmaceutics, School of Pharmaceutical Science, Peking University, Beijing, 100191, China
| |
Collapse
|
20
|
Wang W, Suga T, Hagimori M, Kuroda N, Fuchigami Y, Kawakami S. Investigation of Intracellular Delivery of NuBCP-9 by Conjugation with Oligoarginines Peptides in MDA-MB-231 Cells. Biol Pharm Bull 2018; 41:1448-1455. [PMID: 30175779 DOI: 10.1248/bpb.b18-00335] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Oligoarginines (Rn) are becoming promising tools for the intracellular delivery of biologically active molecules. NuBCP-9, a peptide that induces apoptosis in B-cell lymphoma 2 (Bcl-2)-expressing cancer cells, has been reported to promote the uptake and non-specific cytotoxicity of R8, also called octaarginine. However, it is unknown whether a similar synergistic effect can be seen with other Rn. In this study, we conjugated NuBCP-9 with various Rn (n=8, 10, 12, 14) to investigate and compare their cellular uptake characteristics. In addition, their non-specific cytotoxicity and apoptosis-inducing abilities were evaluated. We found that NuBCP-9 conjugated with Rn enhanced cellular uptake mainly through clathrin-mediated endocytosis and macropinocytosis, and that the uptake pathways were not different from those used by unconjugated Rn. However, the cytotoxicity study showed that NuBCP-9-R12 and NuBCP-9-R14 conjugates enhanced non-specific cytotoxicity. We found that NuBCP-9-R10 conjugate had the highest uptake efficiency and induced correspondingly high levels of apoptosis, while resulting in a tolerable degree of non-specific toxicity.
Collapse
Affiliation(s)
- Wei Wang
- Department of Pharmaceutical Informatics, Graduate School of Biomedical Sciences, Nagasaki University.,Department of Analytical Chemistry for Pharmaceutics, Graduate School of Biomedical Sciences, Nagasaki University
| | - Tadaharu Suga
- Department of Pharmaceutical Informatics, Graduate School of Biomedical Sciences, Nagasaki University.,Department of Analytical Chemistry for Pharmaceutics, Graduate School of Biomedical Sciences, Nagasaki University
| | - Masayori Hagimori
- Department of Pharmaceutical Informatics, Graduate School of Biomedical Sciences, Nagasaki University
| | - Naotaka Kuroda
- Department of Analytical Chemistry for Pharmaceutics, Graduate School of Biomedical Sciences, Nagasaki University
| | - Yuki Fuchigami
- Department of Pharmaceutical Informatics, Graduate School of Biomedical Sciences, Nagasaki University
| | - Shigeru Kawakami
- Department of Pharmaceutical Informatics, Graduate School of Biomedical Sciences, Nagasaki University
| |
Collapse
|
21
|
Cosme PJ, Ye J, Sears S, Wojcikiewicz EP, Terentis AC. Label-Free Confocal Raman Mapping of Transportan in Melanoma Cells. Mol Pharm 2018; 15:851-860. [PMID: 29397737 DOI: 10.1021/acs.molpharmaceut.7b00601] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cell-penetrating peptides (CPPs) are promising vectors for the intracellular delivery of a variety of membrane-impermeable bioactive compounds. The mechanisms by which CPPs cross the cell membrane, and the effects that CPPs may have on cell function, still remain to be fully clarified. In this work, we employed confocal Raman microscopy (CRM) and atomic force microscopy (AFM) to study the infiltration and physiological effects of the amphipathic CPP transportan (Tp) on the metastatic melanoma cell line SK-Mel-2. CRM enabled the detection of label-free Tp within the cells. Raman maps of live cells revealed rapid entry (within 5 min) and widespread distribution of the peptide throughout the cytoplasm and the presence of the peptide within the nucleus after ∼20 min. Principal component analysis of the CRM data collected from Tp-treated and untreated cells showed that Tp Raman bands were not positively correlated with lipid Raman bands, indicating that Tp entered the cells via a nonendocytic mechanism. Analysis of intracellularly recovered Tp by mass spectrometry showed that Tp remained intact in SK-Mel-2 cells for up to 24 h. The Raman spectroscopic data also showed that, although Tp was predominantly unstructured (random coil) in aqueous solution, it accumulated to high densities within the cells with mostly β-sheet and α-helical structures. AFM was employed to measure the effect of Tp treatment on cell stiffness. These data showed that Tp induced a significant increase in cell stiffness within the first hour of treatment, which was partially abated after 2 h. It is hypothesized that the increase in cell stiffness was the result of cytoskeletal changes triggered by Tp.
Collapse
|
22
|
Shi NQ, Li Y, Zhang Y, Shen N, Qi L, Wang SR, Qi XR. Intelligent "Peptide-Gathering Mechanical Arm" Tames Wild "Trojan-Horse" Peptides for the Controlled Delivery of Cancer Nanotherapeutics. ACS APPLIED MATERIALS & INTERFACES 2017; 9:41767-41781. [PMID: 29161013 DOI: 10.1021/acsami.7b15523] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Cell-penetrating peptides (CPPs), also called "Trojan-Horse" peptides, have been used for facilitating intracellular delivery of numerous diverse cargoes and even nanocarriers. However, the lack of targeting specificity ("wildness" or nonselectivity) of CPP-nanocarriers remains an intractable challenge for many in vivo applications. In this work, we used an intelligent "peptide-gathering mechanical arm" (Int PMA) to curb CPPs' wildness and enhance the selectivity of R9-liposome-based cargo delivery for tumor targeting. The peptide NGR, serving as a cell-targeting peptide for anchoring, and peptide PLGLAG, serving as a substrate peptide for deanchoring, were embedded in the Int PMA motif. The Int PMA construct was designed to be sensitive to tumor microenvironmental stimuli, including aminopeptidase N (CD13) and matrix metalloproteinases (MMP-2/9). Moreover, Int PMA could be specifically recognized by tumor tissues via CD13-mediated anchoring and released for cell entry by MMP-2/9-mediated deanchoring. To test the Int PMA design, a series of experiments were conducted in vitro and in vivo. Functional conjugates Int PMA-R9-poly(ethylene glycol) (PEG)2000-distearoylphosphatidyl-ethanolamine (DSPE) and R9-PEG2000-DSPE were synthesized by Michael addition reaction and were characterized by thin-layer chromatography and matrix-assisted laser desorption ionization-time-of-flight mass spectrometry. The Int PMA-R9-modified doxorubicin-loaded liposomes (Int PMA-R9-Lip-DOX) exhibited a proper particle diameter (approximately 155 nm) with in vitro sustained release characteristics. Cleavage assay showed that Int PMA-R9 peptide molecules could be cleaved by MMP-2/9 for completion of deanchoring. Flow cytometry and confocal microscopy studies indicated that Int PMA-R9-Lip-DOX can respond to both endogenous and exogenous stimuli in the presence/absence of excess MMP-2/9 and MMP-2/9 inhibitor (GM6001) and effectively function under competitive receptor-binding conditions. Moreover, Int PMA-R9-Lip-DOX generated more significant subcellular dispersions that were especially evident within endoplasmic reticulum (ER) and Golgi apparatus. Notably, Int PMA-R9-Lip-DOX could induce enhanced apoptosis, during which caspase 3/7 might be activated. In addition, Int PMA-R9-Lip-DOX displayed enhanced in vitro and in vivo antitumor efficacy versus "wild" R9-Lip-DOX. On the basis of investigations at the molecular level, cellular level, and animals' level, the control of Int PMA was effective and promoted selective delivery of R9-liposome cargo to the target site and reduced nonspecific uptake. This Int PMA-controlled strategy based on aminopeptidase-guided anchoring and protease-triggered deanchoring effectively curbed the wildness of CPPs and bolstered their effectiveness for in vivo delivery of nanotherapeutics. The specific nanocarrier delivery system used here could be adapted using a variety of intelligent designs based on combinations of multifunctional peptides that would specifically and preferentially bind to tumors versus nontumor tissues for tumor-localized accumulation in vivo. Thus, CPPs have a strong advantage for the development of intelligent nanomedicines for targeted tumor therapy.
Collapse
Affiliation(s)
- Nian-Qiu Shi
- State Key Laboratory of Medicinal Chemical Biology, Nankai University , Tianjin 300071, China
| | | | - Yong Zhang
- College of Life Science, Jilin University , 2699 Qianjin Street, Changchun 130012, Jilin Province, China
| | | | | | | | - Xian-Rong Qi
- Department of Pharmaceutics, School of Pharmaceutical Science, Peking University , Beijing 100191, China
| |
Collapse
|
23
|
Mohammadi S, Zakeri-Milani P, Golkar N, Farkhani SM, Shirani A, Shahbazi Mojarrad J, Nokhodchi A, Valizadeh H. Synthesis and cellular characterization of various nano-assemblies of cell penetrating peptide-epirubicin-polyglutamate conjugates for the enhancement of antitumor activity. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 46:1572-1585. [PMID: 28933182 DOI: 10.1080/21691401.2017.1379016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A new class of cell penetrating peptides (CPPs) named peptide amphiphile was designed to improve the intracellular uptake and the antitumor activity of epirubicin (EPR). Various amphiphilic CPPs were synthesized by solid phase peptide synthesis method and were chemically conjugated to EPR. Their corresponding nanoparticles (CPPs-E4 and CPPs-E8) were prepared via non-covalent binding of the peptides and polyanions. Cytotoxicity and anti-proliferative activity were evaluated by MTT assay. Cellular uptake was examined by flow cytometry and fluorescence microscopy. The CPPs exhibited slight cytotoxicity. Binding of polyglutamate to CPPs (CPPs-E4 and CPPs-E8 nanoparticles) decreased their cytotoxicity. CPPs-E8 nanoparticles showed lower cytotoxicity than CPPs-E4 nanoparticles. Cellular uptake of K3W4K3-E8, K2W4K2-E8 and W3K4W3-E8 reached 100% with no difference between each of the mentioned CPPs and its nanoparticles at 50 µM. The anti-proliferative activity of EPR was enhanced following conjugation to peptides and nanoparticles at 25 µM. CPPs-EPR-E4 and CPPs-E8-EPR nanoparticles displayed higher anti-proliferative activity than CPPs-EPR at 25 µM. CPPs-E8-EPR nanoparticles showed higher anti-proliferative activity than CPPs-E4-EPR. K3W4K3-E8-EPR nanoparticles exhibited the highest anti-proliferative activity at 25 µM. The synthesized peptide nanoparticles are proposed as suitable carriers for improving the intracellular delivery of EPR into tumor cells with low cytotoxicity and high antitumor activity.
Collapse
Affiliation(s)
- Samaneh Mohammadi
- a Biotechnology Research Center and Faculty of Advanced Medical Sciences , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Parvin Zakeri-Milani
- b Liver and Gastrointestinal Diseases Research Center and Faculty of Pharmacy , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Nasim Golkar
- c Pharmaceutics Department, School of Pharmacy , Shiraz University of Medical Sciences , Shiraz , Iran
| | - Samad Mussa Farkhani
- a Biotechnology Research Center and Faculty of Advanced Medical Sciences , Tabriz University of Medical Sciences , Tabriz , Iran.,d Student Research Committee , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Ali Shirani
- a Biotechnology Research Center and Faculty of Advanced Medical Sciences , Tabriz University of Medical Sciences , Tabriz , Iran.,d Student Research Committee , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Javid Shahbazi Mojarrad
- b Liver and Gastrointestinal Diseases Research Center and Faculty of Pharmacy , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Ali Nokhodchi
- e Pharmaceutics Research Laboratory, School of Life Sciences , University of Sussex , Brighton , UK
| | - Hadi Valizadeh
- f Drug Applied Research Center and Faculty of Pharmacy , Tabriz University of Medical Sciences , Tabriz , Iran
| |
Collapse
|
24
|
Abstract
RNA interference mediated gene silencing has tremendous applicability in fields ranging from basic biological research to clinical therapy. However, delivery of siRNA across the cell membrane into the cytoplasm, where the RNA silencing machinery is located, is a significant hurdle in most primary cells. Cell-penetrating peptides (CPPs), peptides that possess an intrinsic ability to translocate across cell membranes, have been explored as a means to achieve cellular delivery of siRNA. Approaches using CPPs by themselves or through incorporation into other siRNA delivery platforms have been investigated with the intent of improving cytoplasmic delivery. Here, we review the utilization of CPPs for siRNA delivery with a focus on strategies developed to enhance cellular uptake, endosomal escape and cytoplasmic localization of CPP/siRNA complexes.
Collapse
|
25
|
Cerrato CP, Künnapuu K, Langel Ü. Cell-penetrating peptides with intracellular organelle targeting. Expert Opin Drug Deliv 2016; 14:245-255. [PMID: 27426871 DOI: 10.1080/17425247.2016.1213237] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION One of the major limiting steps in order to have an effective drug is the passage through one or more cell membranes to reach its site of action. To reach the action-site, the specific macromolecules are required to be delivered specifically to the cell compartment/organelle in their (pre)active form. Areas covered: In this review, we will discuss cell-penetrating peptides (CPPs) developed in the last decade to transport small RNA/DNA, plasmids, antibodies, and nanoparticles into specific sites of the cell. The article describes CPPs in complex with cargo molecules that target specific intracellular organelles and their potential for pharmacological or clinical use. Expert opinion: Organelle targeting is the ultimate goal to ensure selective delivery to the site of action in the cells. CPP technologies represent an important strategy to address drug delivery to specific intracellular compartments by covalent conjugation to targeting sequences, potentially enabling strategies to combat genomic diseases as well as infections, cancer, neurodegenerative and hereditary diseases. They have proven to be successful in delivering various therapeutic agents into cells however, further in vivo experiments and clinical trials are required to demonstrate the efficacy of this technology.
Collapse
Affiliation(s)
| | - Kadri Künnapuu
- b Laboratory of Molecular Biotechnology, Institute of Technology , University of Tartu , Tartu , Estonia
| | - Ülo Langel
- a Department of Neurochemistry , Stockholm University , Stockholm , Sweden.,b Laboratory of Molecular Biotechnology, Institute of Technology , University of Tartu , Tartu , Estonia
| |
Collapse
|
26
|
Wang H, Ma J, Yang Y, Zeng F, Liu C. Highly Efficient Delivery of Functional Cargoes by a Novel Cell-Penetrating Peptide Derived from SP140-Like Protein. Bioconjug Chem 2016; 27:1373-81. [PMID: 27070736 DOI: 10.1021/acs.bioconjchem.6b00161] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Cell-penetrating peptides (CPPs) have been successfully applied to deliver various functional macromolecules into cells in recent times. Here, we describe a novel CPP designated as hPP3 (KPKRKRRKKKGHGWSR), which were derived from human nuclear body protein SP140-like protein. The location of hPP3-FITC in cells was investigated using the fluorescence microscopy, and the internalization of hPP3 was quantitatively measured using a fluorescence spectrophotometer. The results showed that hPP3-FITC could enter into culturing cells, following a concentration-, incubation time-, serum-, and temperature-dependent manner. Uptake of hPP3-FITC into cells was significantly enhanced by DMSO pretreatment, and inhibited by heparin and the endocytosis inhibitors (chlorpromazine and sodium azide), while the potent lysosomotropic agent, chloroquine, showed small positive effects on hPP3-FITC penetrating. Moreover, hPP3 could mediate functional GFP, KLA, or NBD penetration. The findings of this study showed that human origin peptide hPP3 has the potential to act as a macromolecular carrier penetrating cellular membranes and promising delivery peptide as drug delivery vectors.
Collapse
Affiliation(s)
| | | | | | - Fanhui Zeng
- The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture , Enshi 445000, China
| | | |
Collapse
|
27
|
Lim S, Koo JH, Choi JM. Use of Cell-Penetrating Peptides in Dendritic Cell-Based Vaccination. Immune Netw 2016; 16:33-43. [PMID: 26937230 PMCID: PMC4770098 DOI: 10.4110/in.2016.16.1.33] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Revised: 01/21/2016] [Accepted: 01/26/2016] [Indexed: 12/13/2022] Open
Abstract
Cell-penetrating peptides (CPPs) are short amino acids that have been widely used to deliver macromolecules such as proteins, peptides, DNA, or RNA, to control cellular behavior for therapeutic purposes. CPPs have been used to treat immunological diseases through the delivery of immune modulatory molecules in vivo. Their intracellular delivery efficiency is highly synergistic with the cellular characteristics of the dendritic cells (DCs), which actively uptake foreign antigens. DC-based vaccines are primarily generated by pulsing DCs ex vivo with various immunomodulatory antigens. CPP conjugation to antigens would increase DC uptake as well as antigen processing and presentation on both MHC class II and MHC class I molecules, leading to antigen specific CD4(+) and CD8(+) T cell responses. CPP-antigen based DC vaccination is considered a promising tool for cancer immunotherapy due to the enhanced CTL response. In this review, we discuss the various applications of CPPs in immune modulation and DC vaccination, and highlight the advantages and limitations of the current CPP-based DC vaccination.
Collapse
Affiliation(s)
- Sangho Lim
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Korea.; Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Ja-Hyun Koo
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Korea.; Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Je-Min Choi
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Korea.; Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
28
|
Zaro JL, Shen WC. Cationic and amphipathic cell-penetrating peptides (CPPs): Their structures and in vivo studies in drug delivery. Front Chem Sci Eng 2015. [DOI: 10.1007/s11705-015-1538-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
29
|
Wang Y, Ho TG, Franz E, Hermann JS, Smith FD, Hehnly H, Esseltine JL, Hanold LE, Murph MM, Bertinetti D, Scott JD, Herberg FW, Kennedy EJ. PKA-type I selective constrained peptide disruptors of AKAP complexes. ACS Chem Biol 2015; 10:1502-10. [PMID: 25765284 DOI: 10.1021/acschembio.5b00009] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A-Kinase Anchoring Proteins (AKAPs) coordinate complex signaling events by serving as spatiotemporal modulators of cAMP-dependent protein kinase activity in cells. Although AKAPs organize a plethora of diverse pathways, their cellular roles are often elusive due to the dynamic nature of these signaling complexes. AKAPs can interact with the type I or type II PKA holoenzymes by virtue of high-affinity interactions with the R-subunits. As a means to delineate AKAP-mediated PKA signaling in cells, we sought to develop isoform-selective disruptors of AKAP signaling. Here, we report the development of conformationally constrained peptides named RI-STapled Anchoring Disruptors (RI-STADs) that target the docking/dimerization domain of the type 1 regulatory subunit of PKA. These high-affinity peptides are isoform-selective for the RI isoforms, can outcompete binding by the classical AKAP disruptor Ht31, and can selectively displace RIα, but not RIIα, from binding the dual-specific AKAP149 complex. Importantly, these peptides are cell-permeable and disrupt Type I PKA-mediated phosphorylation events in the context of live cells. Hence, RI-STAD peptides are versatile cellular tools to selectively probe anchored type I PKA signaling events.
Collapse
Affiliation(s)
- Yuxiao Wang
- Department
of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30602, United States
| | - Tienhuei G. Ho
- Department
of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30602, United States
| | - Eugen Franz
- Department
of Biochemistry, University of Kassel, 34132 Kassel, Germany
| | | | - F. Donelson Smith
- Howard
Hughes Medical Institute, Department of Pharmacology, University of Washington School of Medicine, Seattle, Washington 98195, United States
| | - Heidi Hehnly
- Howard
Hughes Medical Institute, Department of Pharmacology, University of Washington School of Medicine, Seattle, Washington 98195, United States
| | - Jessica L. Esseltine
- Howard
Hughes Medical Institute, Department of Pharmacology, University of Washington School of Medicine, Seattle, Washington 98195, United States
| | - Laura E. Hanold
- Department
of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30602, United States
| | - Mandi M. Murph
- Department
of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30602, United States
| | | | - John D. Scott
- Howard
Hughes Medical Institute, Department of Pharmacology, University of Washington School of Medicine, Seattle, Washington 98195, United States
| | | | - Eileen J. Kennedy
- Department
of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
30
|
Moutal A, François-Moutal L, Brittain JM, Khanna M, Khanna R. Differential neuroprotective potential of CRMP2 peptide aptamers conjugated to cationic, hydrophobic, and amphipathic cell penetrating peptides. Front Cell Neurosci 2015; 8:471. [PMID: 25674050 PMCID: PMC4306314 DOI: 10.3389/fncel.2014.00471] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 12/30/2014] [Indexed: 01/26/2023] Open
Abstract
The microtubule-associated axonal specification collapsin response mediator protein 2 (CRMP2) is a novel target for neuroprotection. A CRMP2 peptide (TAT-CBD3) conjugated to the HIV transactivator of transcription (TAT) protein's cationic cell penetrating peptide (CPP) motif protected neurons in the face of toxic levels of Ca(2+) influx leaked in via N-methyl-D-aspartate receptor (NMDAR) hyperactivation. Here we tested whether replacing the hydrophilic TAT motif with alternative cationic (nona-arginine (R9)), hydrophobic (membrane transport sequence (MTS) of k-fibroblast growth factor) or amphipathic (model amphipathic peptide (MAP)) CPPs could be superior to the neuroprotection bestowed by TAT-CBD3. In giant plasma membrane vesicles (GPMVs) derived from cortical neurons, the peptides translocated across plasma membranes with similar efficiencies. Cortical neurons, acutely treated with peptides prior to a toxic glutamate challenge, demonstrated enhanced efflux of R9-CBD3 compared to others. R9-CBD3 inhibited N-methyl-D-aspartate (NMDA)-evoked Ca(2+) influx to a similar extent as TAT-CBD3 while MTS-CBD3 was ineffective which correlated with the ability of R9- and TAT-CBD3, but not MTS-CBD3, to block NMDAR interaction with CRMP2. Unrestricted Ca(2+) influx through NMDARs leading to delayed calcium dysregulation and neuronal cell death was blocked by all peptides but MAP-CBD3. When applied acutely for 10 min, R9-CBD3 was more effective than TAT-CBD3 at neuroprotection while MTS- and MAP-CBD3 were ineffective. In contrast, long-term (>24 h) treatment with MTS-CBD3 conferred neuroprotection where TAT-CBD3 failed. Neither peptide altered surface trafficking of NMDARs. Neuroprotection conferred by MTS-CBD3 peptide is likely due to its increased uptake coupled with decreased efflux when compared to TAT-CBD3. Overall, our results demonstrate that altering CPPs can bestow differential neuroprotective potential onto the CBD3 cargo.
Collapse
Affiliation(s)
- Aubin Moutal
- Department of Pharmacology, College of Medicine, University of Arizona Tucson, AZ, USA
| | | | - Joel M Brittain
- Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine Indianapolis, IN, USA
| | - May Khanna
- Department of Pharmacology, College of Medicine, University of Arizona Tucson, AZ, USA
| | - Rajesh Khanna
- Department of Pharmacology, College of Medicine, University of Arizona Tucson, AZ, USA ; Neuroscience Graduate Interdisciplinary Program, College of Medicine, University of Arizona Tucson, AZ, USA
| |
Collapse
|
31
|
Zeller S, Choi CS, Uchil PD, Ban HS, Siefert A, Fahmy TM, Mothes W, Lee SK, Kumar P. Attachment of cell-binding ligands to arginine-rich cell-penetrating peptides enables cytosolic translocation of complexed siRNA. ACTA ACUST UNITED AC 2014; 22:50-62. [PMID: 25544044 DOI: 10.1016/j.chembiol.2014.11.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 10/15/2014] [Accepted: 11/03/2014] [Indexed: 11/19/2022]
Abstract
Cell-penetrating peptides (CPPs), such as nona-arginine (9R), poorly translocate siRNA into cells. Our studies demonstrate that attaching 9R to ligands that bind cell surface receptors quantitatively increases siRNA uptake and importantly, allows functional delivery of complexed siRNA. The mechanism involved accumulation of ligand-9R:siRNA microparticles on the cell membrane, which induced transient membrane inversion at the site of ligand-9R binding and rapid siRNA translocation into the cytoplasm. siRNA release also occurred late after endocytosis when the ligand was attached to the L isoform of 9R, but not the protease-resistant 9DR, prolonging mRNA knockdown. This critically depended on endosomal proteolytic activity, implying that partial CPP degradation is required for endosome-to-cytosol translocation. The data demonstrate that ligand attachment renders simple polycationic CPPs effective for siRNA delivery by restoring their intrinsic property of translocation.
Collapse
Affiliation(s)
- Skye Zeller
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Chang Seon Choi
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT 06510, USA; Department of Bioengineering and Institute of Nanoscience and Technology, Hanyang University, Seoul 133-791, South Korea
| | - Pradeep D Uchil
- Department of Microbial Pathogenesis, Yale University, New Haven, CT 06510, USA
| | - Hong-Seok Ban
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT 06510, USA; Department of Bioengineering and Institute of Nanoscience and Technology, Hanyang University, Seoul 133-791, South Korea
| | - Alyssa Siefert
- Department of Biomedical Engineering, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Tarek M Fahmy
- Department of Biomedical Engineering, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Walther Mothes
- Department of Microbial Pathogenesis, Yale University, New Haven, CT 06510, USA
| | - Sang-Kyung Lee
- Department of Bioengineering and Institute of Nanoscience and Technology, Hanyang University, Seoul 133-791, South Korea.
| | - Priti Kumar
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
32
|
Penetrating the cell membrane, thermal targeting and novel anticancer drugs: the development of thermally targeted, elastin-like polypeptide cancer therapeutics. Ther Deliv 2014; 5:429-45. [PMID: 24856169 DOI: 10.4155/tde.14.14] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Therapeutic peptides offer important cancer treatment approaches. Designed to inhibit oncogenes and other oncoproteins, early therapeutic peptides applications were hampered by pharmacokinetic properties now addressed through tumor targeting strategies. Active targeting with environmentally responsive biopolymers or macromolecules enhances therapeutics accumulation at tumor sites; passive targeting with macromolecules, or liposomes, exploits angiogenesis and poor lymphatic drainage to preferentially accumulate therapeutics within tumors. Genetically engineered, thermally-responsive, elastin-like polypeptides use both strategies and cell-penetrating peptides to further intratumoral cell uptake. This review describes the development and application of cell-penetrating peptide-elastin-like polypeptide therapeutics for the thermally targeted delivery of therapeutic peptides.
Collapse
|
33
|
Zhuang X, Stahl SJ, Watts NR, DiMattia MA, Steven AC, Wingfield PT. A cell-penetrating antibody fragment against HIV-1 Rev has high antiviral activity: characterization of the paratope. J Biol Chem 2014; 289:20222-33. [PMID: 24878961 DOI: 10.1074/jbc.m114.581090] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The HIV-1 protein Rev oligomerizes on viral transcripts and directs their nuclear export. Previously, a Fab against Rev generated by phage display was used to crystallize and solve the structure of the Rev oligomerization domain. Here we have investigated the capability of this Fab to block Rev oligomerization and inhibit HIV-1 replication. The Fab itself did not have antiviral activity, but when a Tat-derived cell-penetrating peptide was appended, the resulting molecule (FabRev1-Tat) was strongly inhibitory of three different CCR5-tropic HIV-1 isolates (IC50 = 0.09-0.44 μg/ml), as assessed by suppression of reverse transcriptase activity in infected peripheral blood mononuclear cells, and had low cell toxicity (TC50 > 100 μg/ml). FabRev1-Tat was taken up by both peripheral blood mononuclear and HEK293T cells, appearing in both the cytoplasm and nucleus, as shown by immunofluorescence confocal laser scanning microscopy. Computational alanine scanning was used to identify key residues in the complementarity-determining regions to guide mutagenesis experiments. Residues in the light chain CDR3 (LCDR3) were assessed to be important. Residues in LCDR3 were mutated, and LCDR3-Tyr(92) was found to be critical for binding to Rev, as judged by surface plasmon resonance and electron microscopy. Peptides corresponding to all six CDR regions were synthesized and tested for Rev binding. None of the linear peptides had significant affinity for Rev, but four of the amide-cyclic forms did. Especially cyclic-LCDR3 (LGGYPAASYRTA) had high affinity for Rev and was able to effectively depolymerize Rev filaments, as shown by both surface plasmon resonance and electron microscopy.
Collapse
Affiliation(s)
| | | | | | - Michael A DiMattia
- the Laboratory of Structural Biology Research, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - Alasdair C Steven
- the Laboratory of Structural Biology Research, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | | |
Collapse
|
34
|
Sun C, Shen WC, Tu J, Zaro JL. Interaction between cell-penetrating peptides and acid-sensitive anionic oligopeptides as a model for the design of targeted drug carriers. Mol Pharm 2014; 11:1583-90. [PMID: 24697211 PMCID: PMC4012841 DOI: 10.1021/mp400747k] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Overcoming the nonspecific cellular uptake of cell-penetrating peptides (CPPs) is a major hurdle in their clinical application. Using pH as the activation switch, histidine-glutamic acid (HE) dipeptide repeats were fused to CPPs to trigger the membrane-penetrating activity at mildly acidic pH environments (i.e., pH 6.5 or below) while masking the internalization at neutral pH (i.e., pH 7.0 or above). In this study, a series of recombinant GST-fusion proteins containing an HE oligopeptide sequence (i.e., (HE)n with n = 8, 10, or 12) and a cationic CPP (i.e., YG(RG)6, YGR6G6, or Tat) were engineered for a pH-sensitive study comparing their cellular uptake and surface binding in cultured HeLa cells. Circular dichroism (CD) spectroscopy was performed to correlate differences between CPPs in secondary structure with the pH sensitivity. YGR6G6 with clustered arginine residues exhibited greater pH sensitivity in cellular uptake than YG(RG)6 with separated arginine residues. Increasing the stretch of HE repeats decreased cellular uptake and surface binding for both YG(RG)6 and YGR6G6. The ratio of cellular internalization at pH 7.5 vs 6.0 was not changed by the presence of serum. CD spectral data revealed that both (HE)10-Tat and (HE)10-YGR6G6 exhibited an unordered secondary structure, whereas (HE)10-YG(RG)6 adopted an antiparallel β-sheet conformation. This β-sheet conformation presumably stabilized the association of (HE)10 with YG(RG)6, leading to weakened pH sensitivity of (HE)10-YG(RG)6. On the other hand, the random-coiled structures, that is, (HE)10-YGR6G6 and (HE)10-Tat, both showed higher pH sensitivity as determined in cell experiments. The data presented in this study provide a basis for the future design of pH-sensitive HE-CPP carrier for targeted drug delivery.
Collapse
Affiliation(s)
- Chunmeng Sun
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University , 24 Tong Jia Xiang, Nanjing 210009, China
| | | | | | | |
Collapse
|
35
|
Harreither E, Rydberg HA, Amand HL, Jadhav V, Fliedl L, Benda C, Esteban MA, Pei D, Borth N, Grillari-Voglauer R, Hommerding O, Edenhofer F, Nordén B, Grillari J. Characterization of a novel cell penetrating peptide derived from human Oct4. CELL REGENERATION 2014; 3:2. [PMID: 25408881 PMCID: PMC4230757 DOI: 10.1186/2045-9769-3-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 01/23/2014] [Indexed: 12/20/2022]
Abstract
Background Oct4 is a transcription factor that plays a major role for the preservation of the pluripotent state in embryonic stem cells as well as for efficient reprogramming of somatic cells to induced pluripotent stem cells (iPSC) or other progenitors. Protein-based reprogramming methods mainly rely on the addition of a fused cell penetrating peptide. This study describes that Oct4 inherently carries a protein transduction domain, which can translocate into human and mouse cells. Results A 16 amino acid peptide representing the third helix of the human Oct4 homeodomain, referred to as Oct4 protein transduction domain (Oct4-PTD), can internalize in mammalian cells upon conjugation to a fluorescence moiety thereby acting as a cell penetrating peptide (CPP). The cellular distribution of Oct4-PTD shows diffuse cytosolic and nuclear staining, whereas penetratin is strictly localized to a punctuate pattern in the cytoplasm. By using a Cre/loxP-based reporter system, we show that this peptide also drives translocation of a functionally active Oct4-PTD-Cre-fusion protein. We further provide evidence for translocation of full length Oct4 into human and mouse cell lines without the addition of any kind of cationic fusion tag. Finally, physico-chemical properties of the novel CPP are characterized, showing that in contrast to penetratin a helical structure of Oct4-PTD is only observed if the FITC label is present on the N-terminus of the peptide. Conclusions Oct4 is a key transcription factor in stem cell research and cellular reprogramming. Since it has been shown that recombinant Oct4 fused to a cationic fusion tag can drive generation of iPSCs, our finding might contribute to further development of protein-based methods to generate iPSCs. Moreover, our data support the idea that transcription factors might be part of an alternative paracrine signalling pathway, where the proteins are transferred to neighbouring cells thereby actively changing the behaviour of the recipient cell. Electronic supplementary material The online version of this article (doi: 10.1186/2045-9769-3-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Eva Harreither
- Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Hanna A Rydberg
- Department of Chemical and Biological Engineering/Physical Chemistry, Chalmers University of Technology, Kemivägen 10, S-412 96 Gothenburg, Sweden
| | - Helene L Amand
- Department of Chemical and Biological Engineering/Physical Chemistry, Chalmers University of Technology, Kemivägen 10, S-412 96 Gothenburg, Sweden
| | - Vaibhav Jadhav
- Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Lukas Fliedl
- ACIB GmbH, Austrian Center of Industrial Biotechnology, Petersgasse 14, 8010 Graz, Austria
| | - Christina Benda
- Key Laboratory of Regenerative Biology, Chinese Academy of Sciences, and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, 510530 Guangzhou, China
| | - Miguel A Esteban
- Key Laboratory of Regenerative Biology, Chinese Academy of Sciences, and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, 510530 Guangzhou, China
| | - Duanqing Pei
- Key Laboratory of Regenerative Biology, Chinese Academy of Sciences, and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, 510530 Guangzhou, China
| | - Nicole Borth
- Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria ; ACIB GmbH, Austrian Center of Industrial Biotechnology, Petersgasse 14, 8010 Graz, Austria
| | - Regina Grillari-Voglauer
- Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria ; Evercyte GmbH, Muthgasse 18, 1190 Vienna, Austria ; ACIB GmbH, Austrian Center of Industrial Biotechnology, Petersgasse 14, 8010 Graz, Austria
| | - Oliver Hommerding
- Stem Cell Engineering Group, Institute of Reconstructive Neurobiology, University of Bonn - Life & Brain Center and Hertie Foundation, Sigmund-Freud Strasse 25, D-53105 Bonn, Germany
| | - Frank Edenhofer
- Stem Cell Engineering Group, Institute of Reconstructive Neurobiology, University of Bonn - Life & Brain Center and Hertie Foundation, Sigmund-Freud Strasse 25, D-53105 Bonn, Germany ; Stem Cell and Regenerative Medicine Group, Institute of Anatomy and Cell Biology, Julius-Maximilians-University Würzburg, Koellikerstrasse 6, D-97070 Würzburg, Germany
| | - Bengt Nordén
- Department of Chemical and Biological Engineering/Physical Chemistry, Chalmers University of Technology, Kemivägen 10, S-412 96 Gothenburg, Sweden
| | - Johannes Grillari
- Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria ; Evercyte GmbH, Muthgasse 18, 1190 Vienna, Austria ; Christian Doppler Laboratory on Biotechnology of Skin Aging, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| |
Collapse
|
36
|
Kenien R, Shen WC, Zaro JL. Vesicle-to-cytosol transport of disulfide-linked cargo mediated by an amphipathic cell-penetrating peptide. J Drug Target 2012; 20:793-800. [DOI: 10.3109/1061186x.2012.719899] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
37
|
Structural stability–chromatographic retention relationship on exenatide diastereomer separation. Anal Bioanal Chem 2012; 404:2437-44. [DOI: 10.1007/s00216-012-6352-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 08/03/2012] [Accepted: 08/13/2012] [Indexed: 10/27/2022]
|
38
|
Duncan R, Richardson SCW. Endocytosis and intracellular trafficking as gateways for nanomedicine delivery: opportunities and challenges. Mol Pharm 2012; 9:2380-402. [PMID: 22844998 DOI: 10.1021/mp300293n] [Citation(s) in RCA: 248] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
More than 40 nanomedicines are already in routine clinical use with a growing number following in preclinical and clinical development. The therapeutic objectives are often enhanced disease-specific targeting (with simultaneously reduced access to sites of toxicity) and, especially in the case of macromolecular biotech drugs, improving access to intracellular pharmacological target receptors. Successful navigation of the endocytic pathways is usually a prerequisite to achieve these goals. Thus a comprehensive understanding of endocytosis and intracellular trafficking pathways in both the target and bystander normal cell type(s) is essential to enable optimal nanomedicine design. It is becoming evident that endocytic pathways can become disregulated in disease and this, together with the potential changes induced during exposure to the nanocarrier itself, has the potential to significantly impact nanomedicine performance in terms of safety and efficacy. Here we overview the endomembrane trafficking pathways, discuss the methods used to determine and quantitate the intracellular fate of nanomedicines, and review the current status of lysosomotropic and endosomotropic delivery. Based on the lessons learned during more than 3 decades of clinical development, the need to use endocytosis-relevant clinical biomarkers to better select those patients most likely to benefit from nanomedicine therapy is also discussed.
Collapse
Affiliation(s)
- Ruth Duncan
- School of Science, University of Greenwich, Central Avenue, Chatham Maritime, Kent, ME4 4TB, UK.
| | | |
Collapse
|
39
|
Doan ND, Nguyen TTM, Létourneau M, Turcotte K, Fournier A, Chatenet D. Biochemical and pharmacological characterization of nuclear urotensin-II binding sites in rat heart. Br J Pharmacol 2012; 166:243-57. [PMID: 22044114 DOI: 10.1111/j.1476-5381.2011.01710.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND AND PURPOSE During the past decade, a few GPCRs have been characterized at the nuclear membrane where they exert complementary physiological functions. In this study, we investigated (1) the presence of a functional urotensin-II (U-II) receptor (UT) in rat heart nuclear extracts and (2) the propensity of U-II and U-II-related peptide (URP) to cross the plasma membrane in a receptor-independent manner. EXPERIMENTAL APPROACH Biochemical and pharmacological methods including competitive binding assays, photoaffinity labelling, immunoblotting as well as de novo RNA synthesis were used to characterize the presence of functional UT receptors in rat heart nuclei. In addition, confocal microscopy and flow cytometry analysis were used to investigate the cellular uptake of fluorescent U-II and URP derivatives. KEY RESULTS The presence of specific U-II binding sites was demonstrated in rat heart nuclear extracts. Moreover, such subcellular localization was also observed in monkey heart extracts. In vitro transcription initiation assays on rat, freshly isolated, heart nuclei suggested that nuclear UT receptors are functional, and that U-II, but not URP, participates in nuclear UT-associated gene expression. Surprisingly, hU-II and URP efficiently crossed the plasma membrane in a receptor-independent mechanism involving endocytosis through caveolin-coated pits; this uptake of hU-II, but not that of URP, was dependent on extracellular pH. CONCLUSION Our results suggest that (1) U-II and URP can differentially modulate nuclear UT functions such as gene expression, and (2) both ligands can reach the internal cellular space through a receptor-independent mechanism.
Collapse
Affiliation(s)
- N D Doan
- Université du Québec, INRS - Institut Armand-Frappier, Ville de Laval, QC, Canada
| | | | | | | | | | | |
Collapse
|
40
|
Zaro JL, Fei L, Shen WC. Recombinant peptide constructs for targeted cell penetrating peptide-mediated delivery. J Control Release 2012; 158:357-61. [DOI: 10.1016/j.jconrel.2012.01.039] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 01/24/2012] [Accepted: 01/27/2012] [Indexed: 01/03/2023]
|
41
|
Effects of Tat peptide on intracellular delivery of arsenic trioxide albumin microspheres. Anticancer Drugs 2012; 23:303-12. [DOI: 10.1097/cad.0b013e32834e75c1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
42
|
|
43
|
Santos H, Bimbo L, Das Neves J, Sarmento B, INEB. Nanoparticulate targeted drug delivery using peptides and proteins. Nanomedicine (Lond) 2012. [DOI: 10.1533/9780857096449.2.236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
44
|
Mo RH, Zaro JL, Shen WC. Comparison of cationic and amphipathic cell penetrating peptides for siRNA delivery and efficacy. Mol Pharm 2011; 9:299-309. [PMID: 22171592 DOI: 10.1021/mp200481g] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Cell penetrating peptides (CPPs) are short strands of arginine- and/or lysine-rich peptides (<30 amino acids) that use their cationic nature for efficient intracellular accumulation. CPPs have been used for small interfering RNA (siRNA) delivery by direct complexation with the siRNA anionic phosphate backbone. During this process, however, part of the CPP cationic charges are neutralized, and the resultant loss of free positive charges may substantially compromise CPP's internalization capabilities and eventually reduce siRNA delivery efficiency. The purpose of this study was to design a novel type of polyplex for siRNA delivery to overcome the CPP neutralization issue. This novel polyplex consists of three components: siRNA, 21mer oligolysine (K21) chemically modified to incorporate CPP conjugation sites (K21-PDP), and CPP delivery moiety. The siRNA was first neutralized by cationic charges of K21-PDP to form a polyplex. Then a cationic (hexaarginine, R6) or an amphipathic (model amphipathic peptide, MAP) CPP was conjugated to the polyplex. Agarose gel shift assays indicated that the siRNA could be released from the polyplex after K21-PDP degradation or polyplex dilution. Furthermore, the total intracellular internalization of these two CPP-polyplexes was studied. Compared with R6-polyplex, MAP-polyplex exhibited 170- and 600-fold greater uptake of fluorescently labeled siRNA at 1 and 6 h post-transfection, respectively. MAP-polyplex also exhibited comparable GFP silencing effects as Lipofectamine 2000 complex in Huh7.5 cells stably transfected to express GFP-light chain 3 protein, whereas R6-polyplex did not demonstrate significant silencing activity. Further studies indicated that the K21-PDP-siRNA polyplex formation and conjugation of MAP to the polyplex were essential for siRNA polyplex uptake and gene silencing. MAP-polyplex was also shown to be unaffected by the presence of 10% FBS during transfection. In addition, MAP-polyplex uptake was dependent on vesicle formation and fusion due to 70 and 54% loss of uptake at 4 and 16 °C, respectively, compared to incubation at 37 °C. Therefore, the amphipathic CPP is a more suitable carrier moiety for delivery of siRNA polyplex.
Collapse
Affiliation(s)
- Robert H Mo
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California School of Pharmacy, Los Angeles, California 90033, USA
| | | | | |
Collapse
|
45
|
Yi WJ, Yang J, Li C, Wang HY, Liu CW, Tao L, Cheng SX, Zhuo RX, Zhang XZ. Enhanced Nuclear Import and Transfection Efficiency of TAT Peptide-Based Gene Delivery Systems Modified by Additional Nuclear Localization Signals. Bioconjug Chem 2011; 23:125-34. [DOI: 10.1021/bc2005472] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Wen-Jie Yi
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Juan Yang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Cao Li
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Hui-Yuan Wang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Chen-Wei Liu
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Li Tao
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Si-Xue Cheng
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Ren-Xi Zhuo
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| |
Collapse
|
46
|
Distinct transduction modes of arginine-rich cell-penetrating peptides for cargo delivery into tumor cells. Int J Pharm 2011; 419:200-8. [PMID: 21843610 DOI: 10.1016/j.ijpharm.2011.08.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 07/22/2011] [Accepted: 08/02/2011] [Indexed: 01/28/2023]
Abstract
The application of cell-penetrating peptides (CPPs) for delivering various cargo molecules with biological functions into cells has gained much attention in recent years. However, the internalization mechanisms and delivery properties of CPP-cargo remains controversial. In this study, low- and high-molecular-weight cargoes attached to arginine-rich CPPs were employed: the former was the fluorescein isothiocyanate-labeled nona-arginine (CPP-FITC), and the latter was the fluorescently labeled nona-arginine-avidin complex (CPP-avidin). We measured the intracellular trafficking of CPP-FITC and CPP-avidin in four cancer cell lines in a series of microenvironments altered by the presence or absence of serum, different temperatures and different incubation times. The results revealed that CPP-cargo delivery exhibited no specificity toward any cell line, but the levels were found to be related to cell type and cargo. Furthermore, their endocytic mechanisms were investigated via incubation with related endocytic inhibitors. Two different types of CPP-cargo were required to cross the plasma membrane to bind to cell surface-associated heparan sulfate proteoglycans in a time-dependent manner. CPPs and small cargoes attached to CPP may enter cells rapidly via direct translocation in addition to the endocytic route. Translocation of large components linked to CPP tended to be mediated by macropinocytosis in an energy-dependent manner with slower rates for larger compounds. In contrast, the clathrin-dependent pathway is not essential to the translocation of either type of CPP-cargo.
Collapse
|
47
|
Sarko D, Beijer B, Garcia Boy R, Nothelfer EM, Leotta K, Eisenhut M, Altmann A, Haberkorn U, Mier W. The pharmacokinetics of cell-penetrating peptides. Mol Pharm 2010; 7:2224-31. [PMID: 20845937 DOI: 10.1021/mp100223d] [Citation(s) in RCA: 157] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Cell-penetrating peptides (CPPs) are able to penetrate the cell membrane carrying cargoes such as peptides, proteins, oligonucleotides, siRNAs, radioisotopes, liposomes, and nanoparticles. Consequently, many delivery approaches have been developed to use CPPs as tools for drug delivery. However, until now a systematic analysis of their in vivo properties including potential tumor binding specificity for drug targeting purposes has not been conducted. Ten of the most commonly applied CPPs were obtained by solid phase peptide synthesis and labeled with (111)In or (68)Ga. Uptake studies were conducted using a panel of six tumor cell lines of different origin. The stability of the peptides was examined in human serum. Biodistribution experiments were conducted in nude mice bearing human prostate carcinoma. Finally, positron emission tomography (PET) measurements were performed in male Wistar rats. The in vitro uptake studies revealed high cellular uptake values, but no specificity toward any of the cell lines. The biodistribution in PC-3 tumor-bearing nude mice showed a high transient accumulation in well-perfused organs and a rapid clearance from the blood. All of the CPPs revealed a relatively low accumulation rate in the brain. The highest uptake values were observed in the liver (with a maximal uptake of 51 %ID/g observed for oligoarginine (R(9))) and the kidneys (with a maximal uptake of 94 %ID/g observed for NLS). The uptake values in the PC-3 tumor were low at all time points, indicating a lack of tumor specific accumulation for all peptides studied. A micro-PET imaging study with (68)Ga-labeled penetratin, Tat and transportan(10) (TP(10)) confirmed the organ distribution data. These data reveal that CPPs do not show evidence for application in tumor targeting purposes in vivo. However, CPPs readily penetrate into most organs and show rapid clearance from the circulation. The high uptake rates observed in vitro and the relatively low specificity in vivo imply that CPPs would be better suited for topical application in combination with cargoes which show passive targeting and dominate the pharmacokinetic behavior. In conclusion, CPPs are suitable as drug carriers for in vivo application provided that their pharmacokinetic properties are also considered in design of CPP drug delivery systems.
Collapse
Affiliation(s)
- Dikran Sarko
- Department of Nuclear Medicine, University Hospital Heidelberg, INF 400, 69120 Heidelberg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|