1
|
Rizzo S, Varache M, Sayers EJ, Jones AT, Tonks A, Thomas DW, Ferguson EL. Modification of the Antibiotic, Colistin, with Dextrin Causes Enhanced Cytotoxicity and Triggers Apoptosis in Myeloid Leukemia. Int J Nanomedicine 2024; 19:5419-5437. [PMID: 38868592 PMCID: PMC11166864 DOI: 10.2147/ijn.s449185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 04/16/2024] [Indexed: 06/14/2024] Open
Abstract
Introduction Acute myeloid leukemia (AML) remains difficult to treat due to its heterogeneity in molecular landscape, epigenetics and cell signaling alterations. Precision medicine is a major goal in AML therapy towards developing agents that can be used to treat patients with different 'subtypes' in combination with current chemotherapies. We have previously developed dextrin-colistin conjugates to combat the rise in multi-drug resistant bacterial infections and overcome dose-limiting nephrotoxicity. Recent evidence of colistin's anticancer activity, mediated through inhibition of intracellular lysine-specific histone demethylase 1 (LSD1/KDM1A), suggests that dextrin-colistin conjugates could be used to treat cancer cells, including AML. This study aimed to evaluate whether dextrin conjugation (which reduces in vivo toxicity and prolongs plasma half-life) could enhance colistin's cytotoxic effects in myeloid leukemia cell lines and compare the intracellular uptake and localization of the free and conjugated antibiotic. Results Our results identified a conjugate (containing 8000 g/mol dextrin with 1 mol% succinoylation) that caused significantly increased toxicity in myeloid leukemia cells, compared to free colistin. Dextrin conjugation altered the mechanism of cell death by colistin, from necrosis to caspase 3/7-dependent apoptosis. In contrast, conjugation via a reversible ester linker, instead of an amide, had no effect on the mechanism of the colistin-induced cell death. Live cell confocal microscopy of fluorescently labelled compounds showed both free and dextrin-conjugated colistins were endocytosed and co-localized in lysosomes, and increasing the degree of modification by succinoylation of dextrin significantly reduced colistin internalization. Discussion Whilst clinical translation of dextrin-colistin conjugates for the treatment of AML is unlikely due to the potential to promote antimicrobial resistance (AMR) and the relatively high colistin concentrations required for anticancer activity, the ability to potentiate the effectiveness of an anticancer drug by polymer conjugation, while reducing side effects and improving biodistribution of the drug, is very attractive, and this approach warrants further investigation.
Collapse
Affiliation(s)
- Siân Rizzo
- Advanced Therapies Group, School of Dentistry, Cardiff University, Cardiff, UK
| | - Mathieu Varache
- Advanced Therapies Group, School of Dentistry, Cardiff University, Cardiff, UK
| | - Edward J Sayers
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK
| | - Arwyn T Jones
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK
| | - Alex Tonks
- Department of Haematology, School of Medicine, Cardiff University, Cardiff, UK
| | - David W Thomas
- Advanced Therapies Group, School of Dentistry, Cardiff University, Cardiff, UK
| | - Elaine L Ferguson
- Advanced Therapies Group, School of Dentistry, Cardiff University, Cardiff, UK
| |
Collapse
|
2
|
Varache M, Rizzo S, Sayers EJ, Newbury L, Mason A, Liao CT, Chiron E, Bourdiec N, Jones A, Fraser DJ, Taylor PR, Jones AT, Thomas DW, Ferguson EL. Dextrin conjugation to colistin inhibits its toxicity, cellular uptake and acute kidney injury in vivo. RSC PHARMACEUTICS 2024; 1:68-79. [PMID: 38646595 PMCID: PMC11024668 DOI: 10.1039/d3pm00014a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/04/2024] [Indexed: 04/23/2024]
Abstract
The acute kidney injury (AKI) and dose-limiting nephrotoxicity, which occurs in 20-60% of patients following systemic administration of colistin, represents a challenge in the effective treatment of multi-drug resistant Gram-negative infections. To reduce clinical toxicity of colistin and improve targeting to infected/inflamed tissues, we previously developed dextrin-colistin conjugates, whereby colistin is designed to be released by amylase-triggered degradation of dextrin in infected and inflamed tissues, after passive targeting by the enhanced permeability and retention effect. Whilst it was evident in vitro that polymer conjugation can reduce toxicity and prolong plasma half-life, without significant reduction in antimicrobial activity of colistin, it was unclear how dextrin conjugation would alter cellular uptake and localisation of colistin in renal tubular cells in vivo. We discovered that dextrin conjugation effectively reduced colistin's toxicity towards human kidney proximal tubular epithelial cells (HK-2) in vitro, which was mirrored by significantly less cellular uptake of Oregon Green (OG)-labelled dextrin-colistin conjugate, when compared to colistin. Using live-cell confocal imaging, we revealed localisation of both, free and dextrin-bound colistin in endolysosome compartments of HK-2 and NRK-52E cells. Using a murine AKI model, we demonstrated dextrin-colistin conjugation dramatically diminishes both proximal tubular injury and renal accumulation of colistin. These findings reveal new insight into the mechanism by which dextrin conjugation can overcome colistin's renal toxicity and show the potential of polymer conjugation to improve the side effect profile of nephrotoxic drugs.
Collapse
Affiliation(s)
- Mathieu Varache
- Advanced Therapies Group, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University Heath Park Cardiff CF14 4XY UK
| | - Siân Rizzo
- Advanced Therapies Group, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University Heath Park Cardiff CF14 4XY UK
| | - Edward J Sayers
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University CF10 3NB UK
| | - Lucy Newbury
- Wales Kidney Research Unit, Division of Infection and Immunity, School of Medicine, College of Biomedical and Life Sciences, Cardiff University Cardiff CF14 4XN UK
| | - Anna Mason
- Wales Kidney Research Unit, Division of Infection and Immunity, School of Medicine, College of Biomedical and Life Sciences, Cardiff University Cardiff CF14 4XN UK
| | - Chia-Te Liao
- Systems Immunity Research Institute, Division of Infection and Immunity, School of Medicine, Cardiff University Cardiff CF14 4XN UK
| | - Emilie Chiron
- Advanced Therapies Group, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University Heath Park Cardiff CF14 4XY UK
| | - Nathan Bourdiec
- Advanced Therapies Group, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University Heath Park Cardiff CF14 4XY UK
| | - Adam Jones
- Advanced Therapies Group, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University Heath Park Cardiff CF14 4XY UK
- Cellular Pathology Department, University Dental Hospital, Cardiff and Vale University Health Board Cardiff CF14 4XY UK
| | - Donald J Fraser
- Wales Kidney Research Unit, Division of Infection and Immunity, School of Medicine, College of Biomedical and Life Sciences, Cardiff University Cardiff CF14 4XN UK
| | - Philip R Taylor
- Systems Immunity Research Institute, Division of Infection and Immunity, School of Medicine, Cardiff University Cardiff CF14 4XN UK
- UK Dementia Research Institute at Cardiff Hadyn Ellis Building Maindy Road Cardiff CF24 4HQ UK
| | - Arwyn T Jones
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University CF10 3NB UK
| | - David W Thomas
- Advanced Therapies Group, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University Heath Park Cardiff CF14 4XY UK
- Systems Immunity Research Institute, Division of Infection and Immunity, School of Medicine, Cardiff University Cardiff CF14 4XN UK
| | - Elaine L Ferguson
- Advanced Therapies Group, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University Heath Park Cardiff CF14 4XY UK
| |
Collapse
|
3
|
Biopolymeric Prodrug Systems as Potential Antineoplastic Therapy. Pharmaceutics 2022; 14:pharmaceutics14091773. [PMID: 36145522 PMCID: PMC9505808 DOI: 10.3390/pharmaceutics14091773] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
Nowadays, cancer represents a major public health issue, a substantial economic issue, and a burden for society. Limited by numerous disadvantages, conventional chemotherapy is being replaced by new strategies targeting tumor cells. In this context, therapies based on biopolymer prodrug systems represent a promising alternative for improving the pharmacokinetic and pharmacologic properties of drugs and reducing their toxicity. The polymer-directed enzyme prodrug therapy is based on tumor cell targeting and release of the drug using polymer–drug and polymer–enzyme conjugates. In addition, current trends are oriented towards natural sources. They are biocompatible, biodegradable, and represent a valuable and renewable source. Therefore, numerous antitumor molecules have been conjugated with natural polymers. The present manuscript highlights the latest research focused on polymer–drug conjugates containing natural polymers such as chitosan, hyaluronic acid, dextran, pullulan, silk fibroin, heparin, and polysaccharides from Auricularia auricula.
Collapse
|
4
|
Ha SJ, Choi YO, Kwag EB, Kim SD, Yoo HS, Kang IC, Park SJ. Qualitative Analysis of Proteins in Two Snake Venoms, Gloydius Blomhoffii and Agkistrodon Acutus. J Pharmacopuncture 2022; 25:52-62. [PMID: 35371588 PMCID: PMC8947974 DOI: 10.3831/kpi.2022.25.1.52] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/12/2022] [Accepted: 02/08/2022] [Indexed: 11/24/2022] Open
Abstract
Objectives Snake venom is a complex mixture of various pharmacologically active substances, such as small proteins, peptides, and organic and mineral components. This paper aims to identify and analyse the proteins in common venomous snakes, such as Gloydius blomhoffii (G. blomhoffii) and Agkistrodon acutus (A. acutus), in Korea. Methods We used mass spectrometry, electrophoresis, N-terminal sequencing and in-gel digestion to analyse the proteins in these two snake venoms. Results We identified eight proteins in G. blomhoffii venom and four proteins in A. acutus venom. The proteins detected in G. blomhoffii and A. acutus venoms were phospholipase A2, snake venom metalloproteinase and cysteine-rich secretory protein. Snake C-type lectin (snaclec) was unique to A. acutus venom. Conclusion These data will contribute to the current knowledge of proteins present in the venoms of viper snakes and provide useful information for investigating their therapeutic potential.
Collapse
Affiliation(s)
- Su-Jeong Ha
- East West Cancer Center, Daejeon Korean Medicine Hospital, Daejeon University, Daejeon, Republic of Korea
| | - Yeo-Ok Choi
- Bio Research Institute of Biotechnology, Goyang, Republic of Korea
| | - Eun-Bin Kwag
- East West Cancer Center, Daejeon Korean Medicine Hospital, Daejeon University, Daejeon, Republic of Korea
| | - Soo-Dam Kim
- East West Cancer Center, Daejeon Korean Medicine Hospital, Daejeon University, Daejeon, Republic of Korea
| | - Hwa-seung Yoo
- East West Cancer Center, Seoul Korean Medicine Hospital, Daejeon University, Seoul, Republic of Korea
| | - In-Cheol Kang
- Department of Biological Science and BioChip Research Center, Hoseo University, Asan, Republic of Korea
- InnoPharmaScreen Inc., Incheon, Republic of Korea
| | - So-Jung Park
- East West Cancer Center, Daejeon Korean Medicine Hospital, Daejeon University, Daejeon, Republic of Korea
| |
Collapse
|
5
|
Evaluation of the Effectiveness of Crotoxin as an Antiseptic against Candida spp. Biofilms. Toxins (Basel) 2020; 12:toxins12090532. [PMID: 32825220 PMCID: PMC7551583 DOI: 10.3390/toxins12090532] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/08/2020] [Accepted: 08/11/2020] [Indexed: 02/06/2023] Open
Abstract
The growing number of oral infections caused by the Candida species are becoming harder to treat as the commonly used antibiotics become less effective. This drawback has led to the search for alternative strategies of treatment, which include the use of antifungal molecules derived from natural products. Herein, crotoxin (CTX), the main toxin of Crotalus durissus terrificus venom, was challenged against Candida tropicalis (CBS94) and Candida dubliniensis (CBS7987) strains by in vitro antimicrobial susceptibility tests. Minimum inhibitory concentration (MIC), minimum fungicidal concentration (MFC), and inhibition of biofilm formation were evaluated after CTX treatment. In addition, CTX-induced cytotoxicity in HaCaT cells was assessed by MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) colorimetric assay. Native CTX showed a higher antimicrobial activity (MIC = 47 μg/mL) when compared to CTX-containing mouthwash (MIC = 750 μg/mL) and nystatin (MIC = 375 μg/mL). Candida spp biofilm formation was more sensitive to both CTX and CTX-containing mouthwash (IC100 = 12 μg/mL) when compared to nystatin (IC100 > 47 μg/mL). Moreover, significant membrane permeabilization at concentrations of 1.5 and 47 µg/mL was observed. Native CTX was less cytotoxic to HaCaT cells than CTX-containing mouthwash or nystatin between 24 and 48 h. These preliminary findings highlight the potential use of CTX in the treatment of oral candidiasis caused by resistant strains.
Collapse
|
6
|
Hu X, Wang Y, Liu C, Jin Z, Tian Y. Dextrin-uricase conjugate: Preparation, characterization, and enzymatic properties. Int J Biol Macromol 2018; 111:28-32. [DOI: 10.1016/j.ijbiomac.2017.12.131] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 12/18/2017] [Accepted: 12/25/2017] [Indexed: 01/13/2023]
|
7
|
Escalona GR, Sanchis J, Vicent MJ. pH-Responsive Polyacetal-Protein Conjugates Designed for Polymer Masked-Unmasked Protein Therapy (PUMPT). Macromol Biosci 2017; 18. [DOI: 10.1002/mabi.201700302] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/23/2017] [Indexed: 01/13/2023]
Affiliation(s)
- Gabriela Rodríguez Escalona
- Centro de Investigación Príncipe Felipe (CIPF); C/Eduardo Primo Yúfera, 3 46012 Valencia Spain
- Centro de Biomateriales e Ingeniería Tisular; Universidad Politécnica de Valencia; Camino de Vera, s/n 46022 Valencia Spain
| | - Joaquin Sanchis
- Centro de Investigación Príncipe Felipe (CIPF); C/Eduardo Primo Yúfera, 3 46012 Valencia Spain
- Faculty of Pharmacy and Pharmaceutical Sciences; Monash University; 381 Royal Parade Parkville VIC 3052 Australia
| | - María J. Vicent
- Centro de Investigación Príncipe Felipe (CIPF); C/Eduardo Primo Yúfera, 3 46012 Valencia Spain
| |
Collapse
|
8
|
Scomparin A, Florindo HF, Tiram G, Ferguson EL, Satchi-Fainaro R. Two-step polymer- and liposome-enzyme prodrug therapies for cancer: PDEPT and PELT concepts and future perspectives. Adv Drug Deliv Rev 2017; 118:52-64. [PMID: 28916497 DOI: 10.1016/j.addr.2017.09.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 08/17/2017] [Accepted: 09/07/2017] [Indexed: 12/14/2022]
Abstract
Polymer-directed enzyme prodrug therapy (PDEPT) and polymer enzyme liposome therapy (PELT) are two-step therapies developed to provide anticancer drugs site-selective intratumoral accumulation and release. Nanomedicines, such as polymer-drug conjugates and liposomal drugs, accumulate in the tumor site due to extravasation-dependent mechanism (enhanced permeability and retention - EPR - effect), and further need to cross the cellular membrane and release their payload in the intracellular compartment. The subsequent administration of a polymer-enzyme conjugate able to accumulate in the tumor tissue and to trigger the extracellular release of the active drug showed promising preclinical results. The development of polymer-enzyme, polymer-drug conjugates and liposomal drugs had undergone a vast advancement over the past decades. Several examples of enzyme mimics for in vivo therapy can be found in the literature. Moreover, polymer therapeutics often present an enzyme-sensitive mechanism of drug release. These nanomedicines can thus be optimal substrates for PDEPT and this review aims to provide new insights and stimuli toward the future perspectives of this promising combination.
Collapse
Affiliation(s)
- Anna Scomparin
- Department of Physiology and Pharmacology, Sackler School of Medicine, Room 607, Tel Aviv University, Tel Aviv 69978, Israel
| | - Helena F Florindo
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Galia Tiram
- Department of Physiology and Pharmacology, Sackler School of Medicine, Room 607, Tel Aviv University, Tel Aviv 69978, Israel
| | - Elaine L Ferguson
- Advanced Therapies Group, Oral and Biomedical Sciences, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Heath Park, Cardiff CF14 4XY, UK
| | - Ronit Satchi-Fainaro
- Department of Physiology and Pharmacology, Sackler School of Medicine, Room 607, Tel Aviv University, Tel Aviv 69978, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
9
|
Ferguson EL, Scomparin A, Hailu H, Satchi-Fainaro R. HPMA copolymer-phospholipase C and dextrin-phospholipase A2 as model triggers for polymer enzyme liposome therapy (PELT). J Drug Target 2017; 25:818-828. [PMID: 28728446 DOI: 10.1080/1061186x.2017.1358726] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
'Polymer Enzyme Liposome Therapy' (PELT) is a two-step anticancer approach in which a liposomal drug and polymer-phospholipase conjugate are administered sequentially to target the tumour interstitium by the enhanced permeability and retention effect, and trigger rapid, local, drug release. To date, however, the concept has only been described theoretically. We synthesised two polymer conjugates of phospholipase C (PLC) and A2 (PLA2) and evaluated their ability to trigger anthracycline release from the clinically used liposomes, Caelyx® and DaunoXome®. N-(2-Hydroxypropyl)methacrylamide (HPMA) copolymer-PLC and a dextrin-PLA2 were synthesised and their enzymatic activity characterised. Doxorubicin release from polyethyleneglycol-coated (PEGylated) Caelyx® was relatively slow (<20%, 60 min), whereas daunomycin was rapidly released from non-PEGylated DaunoXome® (∼87%) by both enzymes. Incubation with dextrin-PLA2 triggered significantly less daunomycin release than HPMA copolymer-PLC, but when dextrin-PLA2 was pre-incubated with α-amylase, the rate of daunomycin release increased. DaunoXome®'s diameter increased in the presence of PLA2, while Caelyx®'s diameter was unaffected by free or conjugated PLA2. Dextrin-PLA2 potentiated the cytotoxicity of DaunoXome® to MCF-7 cells to a greater extent than free PLA2, while combining dextrin-PLA2 with Caelyx® resulted in antagonism, even in the presence of α-amylase, presumably due to steric hindrance by PEG. Our findings suggest that in vivo studies to evaluate PELT combinations should be further evaluated.
Collapse
Affiliation(s)
- Elaine L Ferguson
- a Centre for Polymer Therapeutics, Welsh School of Pharmacy , Cardiff University , Cardiff , UK.,b Advanced Therapies Group, Oral and Biomedical Sciences, School of Dentistry, College of Biomedical and Life Sciences , Cardiff University , Cardiff , UK
| | - Anna Scomparin
- c Department of Physiology and Pharmacology, Sackler Faculty of Medicine , Tel Aviv University , Tel Aviv , Israel
| | - Hanna Hailu
- a Centre for Polymer Therapeutics, Welsh School of Pharmacy , Cardiff University , Cardiff , UK
| | - Ronit Satchi-Fainaro
- c Department of Physiology and Pharmacology, Sackler Faculty of Medicine , Tel Aviv University , Tel Aviv , Israel
| |
Collapse
|
10
|
Azzopardi E, Lloyd C, Teixeira SR, Conlan RS, Whitaker IS. Clinical applications of amylase: Novel perspectives. Surgery 2016; 160:26-37. [PMID: 27117578 DOI: 10.1016/j.surg.2016.01.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Revised: 12/20/2015] [Accepted: 01/08/2016] [Indexed: 12/13/2022]
Abstract
BACKGROUND Amylase was the first enzyme to be characterized, and for the previous 200 years, its clinical role has been restricted to a diagnostic aid. Recent interface research has led to a substantial expansion of its role into novel, viable diagnostic, and therapeutic applications to cancer, infection, and wound healing. This review provides a concise "state-of-the-art" overview of the genetics, structure, distribution, and localization of amylase in humans. METHOD A first-generation literature search was performed with the MeSH search string "Amylase AND (diagnost∗ OR therapeut$)" on OVIDSP and PUBMED platforms. A second-generation search was then performed by forward and backward referencing on Web of Knowledge™ and manual indexing, limited to the English Language. RESULTS "State of the Art" in amylase genetics, structure, function distribution, localisation and detection of amylase in humans is provided. To the 4 classic patterns of hyperamylasemia (pancreatic, salivary, macroamylasemia, and combinations) a fifth, the localized targeting of amylase to specific foci of infection, is proposed. CONCLUSIONS The implications are directed at novel therapeutic and diagnostic clinical applications of amylase such as the novel therapeutic drug classes capable of targeted delivery and "smart release" in areas of clinical need. Future directions of research in areas of high clinical benefit are reported.
Collapse
Affiliation(s)
- Ernest Azzopardi
- Reconstructive Surgery and Regenerative Medicine Group, Swansea University, Swansea, United Kingdom; Centre for Nanohealth, Swansea University, Swansea, United Kingdom; The Welsh Centre for Burns and Plastic Surgery, Morriston Hospital, Swansea, United Kingdom; Swansea University Medical School, Swansea University, Swansea, United Kingdom.
| | - Catherine Lloyd
- Reconstructive Surgery and Regenerative Medicine Group, Swansea University, Swansea, United Kingdom; Centre for Nanohealth, Swansea University, Swansea, United Kingdom
| | | | - R Steven Conlan
- Centre for Nanohealth, Swansea University, Swansea, United Kingdom; Swansea University Medical School, Swansea University, Swansea, United Kingdom
| | - Iain S Whitaker
- Reconstructive Surgery and Regenerative Medicine Group, Swansea University, Swansea, United Kingdom; The Welsh Centre for Burns and Plastic Surgery, Morriston Hospital, Swansea, United Kingdom; Swansea University Medical School, Swansea University, Swansea, United Kingdom
| |
Collapse
|
11
|
|
12
|
Talelli M, Vicent MJ. Reduction Sensitive Poly(l-glutamic acid) (PGA)-Protein Conjugates Designed for Polymer Masked–Unmasked Protein Therapy. Biomacromolecules 2014; 15:4168-77. [DOI: 10.1021/bm5011883] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Marina Talelli
- Polymer Therapeutics Lab, Centro de Investigación Príncipe Felipe (CIPF), Av. Eduardo Primo
Yúfera 3, 46012 Valencia, Spain
| | - María J. Vicent
- Polymer Therapeutics Lab, Centro de Investigación Príncipe Felipe (CIPF), Av. Eduardo Primo
Yúfera 3, 46012 Valencia, Spain
| |
Collapse
|
13
|
Calderon LA, Sobrinho JC, Zaqueo KD, de Moura AA, Grabner AN, Mazzi MV, Marcussi S, Nomizo A, Fernandes CFC, Zuliani JP, Carvalho BMA, da Silva SL, Stábeli RG, Soares AM. Antitumoral activity of snake venom proteins: new trends in cancer therapy. BIOMED RESEARCH INTERNATIONAL 2014; 2014:203639. [PMID: 24683541 PMCID: PMC3943284 DOI: 10.1155/2014/203639] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 12/07/2013] [Accepted: 12/08/2013] [Indexed: 02/06/2023]
Abstract
For more than half a century, cytotoxic agents have been investigated as a possible treatment for cancer. Research on animal venoms has revealed their high toxicity on tissues and cell cultures, both normal and tumoral. Snake venoms show the highest cytotoxic potential, since ophidian accidents cause a large amount of tissue damage, suggesting a promising utilization of these venoms or their components as antitumoral agents. Over the last few years, we have studied the effects of snake venoms and their isolated enzymes on tumor cell cultures. Some in vivo assays showed antineoplastic activity against induced tumors in mice. In human beings, both the crude venom and isolated enzymes revealed antitumor activities in preliminary assays, with measurable clinical responses in the advanced treatment phase. These enzymes include metalloproteases (MP), disintegrins, L-amino acid oxidases (LAAOs), C-type lectins, and phospholipases A2 (PLA2s). Their mechanisms of action include direct toxic action (PLA2s), free radical generation (LAAOs), apoptosis induction (PLA2s, MP, and LAAOs), and antiangiogenesis (disintegrins and lectins). Higher cytotoxic and cytostatic activities upon tumor cells than normal cells suggest the possibility for clinical applications. Further studies should be conducted to ensure the efficacy and safety of different snake venom compounds for cancer drug development.
Collapse
Affiliation(s)
- Leonardo A. Calderon
- Centro de Estudos de Biomoléculas Aplicadas à Saúde, CEBio, Fundação Oswaldo Cruz, Fiocruz Rondônia e Departamento de Medicina, Universidade Federal de Rondônia, UNIR, Porto Velho, RO, Brazil
| | - Juliana C. Sobrinho
- Centro de Estudos de Biomoléculas Aplicadas à Saúde, CEBio, Fundação Oswaldo Cruz, Fiocruz Rondônia e Departamento de Medicina, Universidade Federal de Rondônia, UNIR, Porto Velho, RO, Brazil
| | - Kayena D. Zaqueo
- Centro de Estudos de Biomoléculas Aplicadas à Saúde, CEBio, Fundação Oswaldo Cruz, Fiocruz Rondônia e Departamento de Medicina, Universidade Federal de Rondônia, UNIR, Porto Velho, RO, Brazil
| | - Andrea A. de Moura
- Centro de Estudos de Biomoléculas Aplicadas à Saúde, CEBio, Fundação Oswaldo Cruz, Fiocruz Rondônia e Departamento de Medicina, Universidade Federal de Rondônia, UNIR, Porto Velho, RO, Brazil
| | - Amy N. Grabner
- Centro de Estudos de Biomoléculas Aplicadas à Saúde, CEBio, Fundação Oswaldo Cruz, Fiocruz Rondônia e Departamento de Medicina, Universidade Federal de Rondônia, UNIR, Porto Velho, RO, Brazil
| | - Maurício V. Mazzi
- Fundação Hermínio Ometto, UNIARARAS, Núcleo de Ciências da Saúde-NUCISA, 13607-339 Araras, SP, Brazil
| | - Silvana Marcussi
- Departamento de Química, Universidade Federal de Lavras, UFLA, 37200-000 Lavras, MG, Brazil
| | - Auro Nomizo
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, USP, Ribeirão Preto, SP, Brazil
| | - Carla F. C. Fernandes
- Centro de Estudos de Biomoléculas Aplicadas à Saúde, CEBio, Fundação Oswaldo Cruz, Fiocruz Rondônia e Departamento de Medicina, Universidade Federal de Rondônia, UNIR, Porto Velho, RO, Brazil
| | - Juliana P. Zuliani
- Centro de Estudos de Biomoléculas Aplicadas à Saúde, CEBio, Fundação Oswaldo Cruz, Fiocruz Rondônia e Departamento de Medicina, Universidade Federal de Rondônia, UNIR, Porto Velho, RO, Brazil
| | - Bruna M. A. Carvalho
- Departamento de Química, Biotecnologia e Engenharia de Bioprocessos, Universidade Federal de São João del Rei, UFSJ, Campus Alto paraopeba, Ouro Branco, MG, Brazil
| | - Saulo L. da Silva
- Departamento de Química, Biotecnologia e Engenharia de Bioprocessos, Universidade Federal de São João del Rei, UFSJ, Campus Alto paraopeba, Ouro Branco, MG, Brazil
| | - Rodrigo G. Stábeli
- Centro de Estudos de Biomoléculas Aplicadas à Saúde, CEBio, Fundação Oswaldo Cruz, Fiocruz Rondônia e Departamento de Medicina, Universidade Federal de Rondônia, UNIR, Porto Velho, RO, Brazil
| | - Andreimar M. Soares
- Centro de Estudos de Biomoléculas Aplicadas à Saúde, CEBio, Fundação Oswaldo Cruz, Fiocruz Rondônia e Departamento de Medicina, Universidade Federal de Rondônia, UNIR, Porto Velho, RO, Brazil
| |
Collapse
|
14
|
|
15
|
Duncan R, Richardson SCW. Endocytosis and intracellular trafficking as gateways for nanomedicine delivery: opportunities and challenges. Mol Pharm 2012; 9:2380-402. [PMID: 22844998 DOI: 10.1021/mp300293n] [Citation(s) in RCA: 248] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
More than 40 nanomedicines are already in routine clinical use with a growing number following in preclinical and clinical development. The therapeutic objectives are often enhanced disease-specific targeting (with simultaneously reduced access to sites of toxicity) and, especially in the case of macromolecular biotech drugs, improving access to intracellular pharmacological target receptors. Successful navigation of the endocytic pathways is usually a prerequisite to achieve these goals. Thus a comprehensive understanding of endocytosis and intracellular trafficking pathways in both the target and bystander normal cell type(s) is essential to enable optimal nanomedicine design. It is becoming evident that endocytic pathways can become disregulated in disease and this, together with the potential changes induced during exposure to the nanocarrier itself, has the potential to significantly impact nanomedicine performance in terms of safety and efficacy. Here we overview the endomembrane trafficking pathways, discuss the methods used to determine and quantitate the intracellular fate of nanomedicines, and review the current status of lysosomotropic and endosomotropic delivery. Based on the lessons learned during more than 3 decades of clinical development, the need to use endocytosis-relevant clinical biomarkers to better select those patients most likely to benefit from nanomedicine therapy is also discussed.
Collapse
Affiliation(s)
- Ruth Duncan
- School of Science, University of Greenwich, Central Avenue, Chatham Maritime, Kent, ME4 4TB, UK.
| | | |
Collapse
|
16
|
Toita S, Sawada SI, Akiyoshi K. Polysaccharide nanogel gene delivery system with endosome-escaping function: Co-delivery of plasmid DNA and phospholipase A2. J Control Release 2011; 155:54-9. [DOI: 10.1016/j.jconrel.2010.12.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 11/17/2010] [Accepted: 12/20/2010] [Indexed: 10/18/2022]
|