1
|
Antipin IS, Alfimov MV, Arslanov VV, Burilov VA, Vatsadze SZ, Voloshin YZ, Volcho KP, Gorbatchuk VV, Gorbunova YG, Gromov SP, Dudkin SV, Zaitsev SY, Zakharova LY, Ziganshin MA, Zolotukhina AV, Kalinina MA, Karakhanov EA, Kashapov RR, Koifman OI, Konovalov AI, Korenev VS, Maksimov AL, Mamardashvili NZ, Mamardashvili GM, Martynov AG, Mustafina AR, Nugmanov RI, Ovsyannikov AS, Padnya PL, Potapov AS, Selektor SL, Sokolov MN, Solovieva SE, Stoikov II, Stuzhin PA, Suslov EV, Ushakov EN, Fedin VP, Fedorenko SV, Fedorova OA, Fedorov YV, Chvalun SN, Tsivadze AY, Shtykov SN, Shurpik DN, Shcherbina MA, Yakimova LS. Functional supramolecular systems: design and applications. RUSSIAN CHEMICAL REVIEWS 2021. [DOI: 10.1070/rcr5011] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
2
|
|
3
|
Orton GRF, Pilgrim BS, Champness NR. The chemistry of phosphines in constrained, well-defined microenvironments. Chem Soc Rev 2021; 50:4411-4431. [PMID: 33606857 DOI: 10.1039/d0cs01556c] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Developments in the confinement of phosphines within micro- or nano-environments are explored. Phosphines are ubiquitous across metal coordination chemistry and underpin some of the most famous homogeneous transition metal catalysts. Constraining phosphines within confined environments influences not only their behaviour but also that of their metal complexes. Notable examples include the use of metal-organic frameworks (MOFs) or metal-organic cages (MOCs) to support phosphines which demonstrate how the microenvironment within such constructs leads to reactivity modification. The development of phosphine confinement is explored and parallels are drawn with related constrained macrocyclic systems and mechanically interlocked molecules. The review concludes by identifying areas that remain a challenge and those that will provide new avenues for research.
Collapse
Affiliation(s)
- Georgia R F Orton
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK.
| | | | | |
Collapse
|
4
|
Yoshida D, Sinawang G, Osaki M, Yamaguchi H, Harada A, Takashima Y. Preparation and activity of ruthenium catalyst based on β-cyclodextrin for ring-opening metathesis polymerization. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2020.152712] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
5
|
Molnár Á. Synthetic Application of Cyclodextrins in Combination with Metal Ions, Complexes, and Metal Particles. ChemCatChem 2020. [DOI: 10.1002/cctc.202001610] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Árpád Molnár
- Department of Organic Chemistry University of Szeged Dóm tér 8 6720 Szeged Hungary
| |
Collapse
|
6
|
Foster JC, Grocott MC, Arkinstall LA, Varlas S, Redding MJ, Grayson SM, O’Reilly RK. It is Better with Salt: Aqueous Ring-Opening Metathesis Polymerization at Neutral pH. J Am Chem Soc 2020; 142:13878-13885. [PMID: 32673484 PMCID: PMC7426906 DOI: 10.1021/jacs.0c05499] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Indexed: 12/15/2022]
Abstract
Aqueous ring-opening metathesis polymerization (ROMP) is a powerful tool for polymer synthesis under environmentally friendly conditions, functionalization of biomacromolecules, and preparation of polymeric nanoparticles via ROMP-induced self-assembly (ROMPISA). Although new water-soluble Ru-based metathesis catalysts have been developed and evaluated for their efficiency in mediating cross metathesis (CM) and ring-closing metathesis (RCM) reactions, little is known with regards to their catalytic activity and stability during aqueous ROMP. Here, we investigate the influence of solution pH, the presence of salt additives, and catalyst loading on ROMP monomer conversion and catalyst lifetime. We find that ROMP in aqueous media is particularly sensitive to chloride ion concentration and propose that this sensitivity originates from chloride ligand displacement by hydroxide or H2O at the Ru center, which reversibly generates an unstable and metathesis inactive complex. The formation of this Ru-(OH)n complex not only reduces monomer conversion and catalyst lifetime but also influences polymer microstructure. However, we find that the addition of chloride salts dramatically improves ROMP conversion and control. By carrying out aqueous ROMP in the presence of various chloride sources such as NaCl, KCl, or tetrabutylammonium chloride, we show that diblock copolymers can be readily synthesized via ROMPISA in solutions with high concentrations of neutral H2O (i.e., 90 v/v%) and relatively low concentrations of catalyst (i.e., 1 mol %). The capability to conduct aqueous ROMP at neutral pH is anticipated to enable new research avenues, particularly for applications in biological media, where the unique characteristics of ROMP provide distinct advantages over other polymerization strategies.
Collapse
Affiliation(s)
- Jeffrey C. Foster
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United
Kingdom
| | - Marcus C. Grocott
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United
Kingdom
| | - Lucy A. Arkinstall
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United
Kingdom
| | - Spyridon Varlas
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United
Kingdom
| | - McKenna J. Redding
- Department
of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| | - Scott M. Grayson
- Department
of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| | - Rachel K. O’Reilly
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United
Kingdom
| |
Collapse
|
7
|
Yao X, Huang P, Nie Z. Cyclodextrin-based polymer materials: From controlled synthesis to applications. Prog Polym Sci 2019. [DOI: 10.1016/j.progpolymsci.2019.03.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
8
|
Hoque J, Sangaj N, Varghese S. Stimuli-Responsive Supramolecular Hydrogels and Their Applications in Regenerative Medicine. Macromol Biosci 2019; 19:e1800259. [PMID: 30295012 PMCID: PMC6333493 DOI: 10.1002/mabi.201800259] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/10/2018] [Indexed: 12/16/2022]
Abstract
Supramolecular hydrogels are a class of self-assembled network structures formed via non-covalent interactions of the hydrogelators. These hydrogels capable of responding to external stimuli are considered to be smart materials due to their ability to undergo sol-gel and/or gel-sol transition upon subtle changes in their surroundings. Such stimuli-responsive hydrogels are intriguing biomaterials with applications in tissue engineering, delivery of cells and drugs, modulating tissue environment to promote innate tissue repair, and imaging for medical diagnostics among others. This review summarizes the recent developments in stimuli-responsive supramolecular hydrogels and their potential applications in regenerative medicine. Specifically, various structural aspects of supramolecular hydrogelators involved in self-assembly, the role of external stimuli in tuning/controlling their phase transitions, and how these functions could be harnessed to advance applications in regenerative medicine are focused on. Finally, the key challenges and future prospects for these versatile materials are briefly described.
Collapse
Affiliation(s)
- Jiaul Hoque
- Department of Orthopaedic Surgery, Duke University, Durham 27710, NC,
| | - Nivedita Sangaj
- Department of Orthopaedic Surgery, Duke University, Durham 27710, NC
| | - Shyni Varghese
- Department of Orthopaedic Surgery, Department of Biomedical Engineering, Department of Mechanical Engineering and Materials Science, Duke University, Durham 27710, NC
| |
Collapse
|
9
|
Leblond J, Potier J, Menuel S, Bricout H, Machut-Binkowski C, Landy D, Tilloy S, Monflier E, Hapiot F. Water-soluble phosphane-substituted cyclodextrin as an effective bifunctional additive in hydroformylation of higher olefins. Catal Sci Technol 2017. [DOI: 10.1039/c7cy01108c] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cyclodextrins substituted with a sulfophenyl phosphane show an excellent recognition ability towards higher olefins in aqueous biphasic Rh-catalyzed hydroformylation.
Collapse
Affiliation(s)
- J. Leblond
- Univ. Artois
- CNRS
- Centrale Lille
- ENSCL
- Univ. Lille
| | - J. Potier
- Univ. Lille
- CNRS
- INRA
- ENSCL
- UMR 8207 – UMET – Unité Matériaux et Transformations
| | - S. Menuel
- Univ. Artois
- CNRS
- Centrale Lille
- ENSCL
- Univ. Lille
| | - H. Bricout
- Univ. Artois
- CNRS
- Centrale Lille
- ENSCL
- Univ. Lille
| | | | - D. Landy
- Univ. Littoral
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV, EA 4492)
- SFR Condorcet FR CNRS 3417
- ULCO
- F-59140 Dunkerque
| | - S. Tilloy
- Univ. Artois
- CNRS
- Centrale Lille
- ENSCL
- Univ. Lille
| | - E. Monflier
- Univ. Artois
- CNRS
- Centrale Lille
- ENSCL
- Univ. Lille
| | - F. Hapiot
- Univ. Artois
- CNRS
- Centrale Lille
- ENSCL
- Univ. Lille
| |
Collapse
|
10
|
Koyanagi K, Takashima Y, Nakamura T, Yamaguchi H, Harada A. Radical polymerization by a supramolecular catalyst: cyclodextrin with a RAFT reagent. Beilstein J Org Chem 2016; 12:2495-2502. [PMID: 28144318 PMCID: PMC5238571 DOI: 10.3762/bjoc.12.244] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 11/08/2016] [Indexed: 11/23/2022] Open
Abstract
Supramolecular catalysts have received a great deal of attention because they improve the selectivity and efficiency of reactions. Catalysts with host molecules exhibit specific reaction properties and recognize substrates via host-guest interactions. Here, we examined radical polymerization reactions with a chain transfer agent (CTA) that has α-cyclodextrin (α-CD) as a host molecule (α-CD-CTA). Prior to the polymerization of N,N-dimethylacrylamide (DMA), we investigated the complex formation of α-CD with DMA. Single X-ray analysis demonstrated that α-CD includes DMA inside its cavity. When DMA was polymerized in the presence of α-CD-CTA using 2,2'-azobis[2-(2-imidazolin-2-yl)propane dihydrochloride (VA-044) as an initiator in an aqueous solution, poly(DMA) was obtained in good yield and with narrow molecular weight distribution. In contrast, the polymerization of DMA without α-CD-CTA produced more widely distributed polymers. In the presence of 1,6-hexanediol (C6 diol) which works as a competitive molecule by being included in the α-CD cavity, the reaction yield was lower than that without C6 diol.
Collapse
Affiliation(s)
- Kohei Koyanagi
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Yoshinori Takashima
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Takashi Nakamura
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Hiroyasu Yamaguchi
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Akira Harada
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
- JST-ImPACT, Chiyoda-ku, Tokyo 100-8914, Japan
| |
Collapse
|
11
|
Jouffroy M, Armspach D, Matt D, Osakada K, Takeuchi D. Synthesis of Optically Active Polystyrene Catalyzed by Monophosphine Pd Complexes. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201603191] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Matthieu Jouffroy
- Chemical Resources Laboratory; Tokyo Institute of Technology; 4259 Nagatsuta Yokohama 226-8503 Japan
- Laboratoire de Chimie Inorganique Moléculaire et Catalyse; Institut de Chimie, UMR 7177 CNRS; Université de Strasbourg; 4, rue Blaise Pascal, CS 90032 67081 Strasbourg cedex France
| | - Dominique Armspach
- Laboratoire de Chimie Inorganique Moléculaire et Catalyse; Institut de Chimie, UMR 7177 CNRS; Université de Strasbourg; 4, rue Blaise Pascal, CS 90032 67081 Strasbourg cedex France
| | - Dominique Matt
- Laboratoire de Chimie Inorganique Moléculaire et Catalyse; Institut de Chimie, UMR 7177 CNRS; Université de Strasbourg; 4, rue Blaise Pascal, CS 90032 67081 Strasbourg cedex France
| | - Kohtaro Osakada
- Chemical Resources Laboratory; Tokyo Institute of Technology; 4259 Nagatsuta Yokohama 226-8503 Japan
| | - Daisuke Takeuchi
- Chemical Resources Laboratory; Tokyo Institute of Technology; 4259 Nagatsuta Yokohama 226-8503 Japan
| |
Collapse
|
12
|
Jouffroy M, Armspach D, Matt D, Osakada K, Takeuchi D. Synthesis of Optically Active Polystyrene Catalyzed by Monophosphine Pd Complexes. Angew Chem Int Ed Engl 2016; 55:8367-70. [DOI: 10.1002/anie.201603191] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Matthieu Jouffroy
- Chemical Resources Laboratory; Tokyo Institute of Technology; 4259 Nagatsuta Yokohama 226-8503 Japan
- Laboratoire de Chimie Inorganique Moléculaire et Catalyse; Institut de Chimie, UMR 7177 CNRS; Université de Strasbourg; 4, rue Blaise Pascal, CS 90032 67081 Strasbourg cedex France
| | - Dominique Armspach
- Laboratoire de Chimie Inorganique Moléculaire et Catalyse; Institut de Chimie, UMR 7177 CNRS; Université de Strasbourg; 4, rue Blaise Pascal, CS 90032 67081 Strasbourg cedex France
| | - Dominique Matt
- Laboratoire de Chimie Inorganique Moléculaire et Catalyse; Institut de Chimie, UMR 7177 CNRS; Université de Strasbourg; 4, rue Blaise Pascal, CS 90032 67081 Strasbourg cedex France
| | - Kohtaro Osakada
- Chemical Resources Laboratory; Tokyo Institute of Technology; 4259 Nagatsuta Yokohama 226-8503 Japan
| | - Daisuke Takeuchi
- Chemical Resources Laboratory; Tokyo Institute of Technology; 4259 Nagatsuta Yokohama 226-8503 Japan
| |
Collapse
|
13
|
|
14
|
The chemistry of the carbon-transition metal double and triple bond: Annual survey covering the year 2013. Coord Chem Rev 2015. [DOI: 10.1016/j.ccr.2014.09.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Bistri O, Reinaud O. Supramolecular control of transition metal complexes in water by a hydrophobic cavity: a bio-inspired strategy. Org Biomol Chem 2015; 13:2849-65. [DOI: 10.1039/c4ob02511c] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Different strategies for obtaining water-soluble cavity-appended metal complexes are described, and their resulting interlocked assets are discussed in relationship with the very specific properties of water as a solvent.
Collapse
Affiliation(s)
- Olivia Bistri
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques
- UMR CNRS 8601
- Université Paris Descartes
- Sorbonne Paris Cité
- 75006 Paris, France
| | - Olivia Reinaud
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques
- UMR CNRS 8601
- Université Paris Descartes
- Sorbonne Paris Cité
- 75006 Paris, France
| |
Collapse
|
16
|
Jouffroy M, Armspach D, Matt D. Cyclodextrin and phosphorus(iii): a versatile combination for coordination chemistry and catalysis. Dalton Trans 2015; 44:12942-69. [DOI: 10.1039/c5dt00667h] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The relevance of cyclodextrins equipped with P(iii) atoms in coordination chemistry and homogeneous catalysis is discussed.
Collapse
Affiliation(s)
- Matthieu Jouffroy
- Laboratoire de Chimie Inorganique Moléculaire et Catalyse
- Institut de Chimie UMR 7177 CNRS
- Université de Strasbourg
- 67070 Strasbourg cedex
- France
| | - Dominique Armspach
- Laboratoire de Chimie Inorganique Moléculaire et Catalyse
- Institut de Chimie UMR 7177 CNRS
- Université de Strasbourg
- 67070 Strasbourg cedex
- France
| | - Dominique Matt
- Laboratoire de Chimie Inorganique Moléculaire et Catalyse
- Institut de Chimie UMR 7177 CNRS
- Université de Strasbourg
- 67070 Strasbourg cedex
- France
| |
Collapse
|
17
|
Jouffroy M, Gramage-Doria R, Sémeril D, Armspach D, Matt D, Oberhauser W, Toupet L. Phosphinocyclodextrins as confining units for catalytic metal centres. Applications to carbon-carbon bond forming reactions. Beilstein J Org Chem 2014; 10:2388-405. [PMID: 25383109 PMCID: PMC4222288 DOI: 10.3762/bjoc.10.249] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 09/09/2014] [Indexed: 02/02/2023] Open
Abstract
The capacity of two cavity-shaped ligands, HUGPHOS-1 and HUGPHOS-2, to generate exclusively singly phosphorus-ligated complexes, in which the cyclodextrin cavity tightly wraps around the metal centre, was explored with a number of late transition metal cations. Both cyclodextrin-derived ligands were assessed in palladium-catalysed Mizoroki-Heck coupling reactions between aryl bromides and styrene on one hand, and the rhodium-catalysed asymmetric hydroformylation of styrene on the other hand. The inability of both chiral ligands to form standard bis(phosphine) complexes under catalytic conditions was established by high-pressure NMR studies and shown to have a deep impact on the two carbon-carbon bond forming reactions both in terms of activity and selectivity. For example, when used as ligands in the rhodium-catalysed hydroformylation of styrene, they lead to both high isoselectivity and high enantioselectivity. In the study dealing with the Mizoroki-Heck reactions, comparative tests were carried out with WIDEPHOS, a diphosphine analogue of HUGPHOS-2.
Collapse
Affiliation(s)
- Matthieu Jouffroy
- Laboratoire de Chimie Inorganique Moléculaire et Catalyse, Institut de Chimie UMR 7177 CNRS, Université de Strasbourg, 1, rue Blaise Pascal, 67008 Strasbourg Cedex, France
| | - Rafael Gramage-Doria
- Laboratoire de Chimie Inorganique Moléculaire et Catalyse, Institut de Chimie UMR 7177 CNRS, Université de Strasbourg, 1, rue Blaise Pascal, 67008 Strasbourg Cedex, France
| | - David Sémeril
- Laboratoire de Chimie Inorganique Moléculaire et Catalyse, Institut de Chimie UMR 7177 CNRS, Université de Strasbourg, 1, rue Blaise Pascal, 67008 Strasbourg Cedex, France
| | - Dominique Armspach
- Laboratoire de Chimie Inorganique Moléculaire et Catalyse, Institut de Chimie UMR 7177 CNRS, Université de Strasbourg, 1, rue Blaise Pascal, 67008 Strasbourg Cedex, France
| | - Dominique Matt
- Laboratoire de Chimie Inorganique Moléculaire et Catalyse, Institut de Chimie UMR 7177 CNRS, Université de Strasbourg, 1, rue Blaise Pascal, 67008 Strasbourg Cedex, France
| | - Werner Oberhauser
- Istituto di Chimica dei Composti OrganoMetallici CNR, via Madonna del Piano, 10, 50019 Sesto Fiorentino, Firenze, Italy
| | - Loïc Toupet
- Groupe Matière Condensée et Matériaux, UMR 6626 CNRS, Université de Rennes 1, 263, avenue du Général Leclerc, 35042 Rennes Cedex, France
| |
Collapse
|
18
|
|
19
|
Hapiot F, Bricout H, Menuel S, Tilloy S, Monflier E. Recent breakthroughs in aqueous cyclodextrin-assisted supramolecular catalysis. Catal Sci Technol 2014. [DOI: 10.1039/c4cy00005f] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|