1
|
Lawson JL, Sekar RP, Wright ARE, Wheeler G, Yanes J, Estridge J, Johansen CG, Farnsworth NL, Kumar P, Tay JW, Kumar R. The Spatial Distribution of Lipophilic Cations in Gradient Copolymers Regulates Polymer-pDNA Complexation, Polyplex Aggregation, and Intracellular pDNA Delivery. Biomacromolecules 2024; 25:6855-6870. [PMID: 39318335 DOI: 10.1021/acs.biomac.4c01101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Here, we demonstrate that the spatial distribution of lipophilic cations governs the complexation pathways, serum stability, and biological performance of polymer-pDNA complexes (polyplexes). Previous research focused on block/statistical copolymers, whereas gradient copolymers, where the density of lipophilic cations diminishes (gradually or steeply) along polymer backbones, remain underexplored. We engineered gradient copolymers that combine the polyplex colloidal stability of block copolymers with the transfection efficiency of statistical copolymers. We synthesized length- and compositionally equivalent gradient copolymers (G1-G3) along with statistical (S) and block (B) copolymers of 2-(diisopropylamino)ethyl methacrylate and 2-hydroxyethyl methacrylate. We mapped how polymer microstructure governs pDNA loading per polyplex, pDNA conformational changes, and polymer-pDNA binding thermodynamics via static light scattering, circular dichroism spectroscopy, and isothermal titration calorimetry, respectively. While gradient steepness is a powerful design handle to improve polyplex physical properties, augment pDNA delivery capacity, and attenuate polycation-triggered hemolysis, microstructural contrasts did not elicit differences in complement activation.
Collapse
Affiliation(s)
- Jessica L Lawson
- Materials Science, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Ram Prasad Sekar
- Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Aryelle R E Wright
- Quantitative Biosciences and Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Grant Wheeler
- Quantitative Biosciences and Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Jillian Yanes
- Quantitative Biosciences and Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Jordan Estridge
- Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Chelsea G Johansen
- Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Nikki L Farnsworth
- Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
- Quantitative Biosciences and Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Praveen Kumar
- Shared Instrumentation Facility, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Jian Wei Tay
- Biofrontiers Institute, University of Colorado, Boulder, Colorado 80309, United States
| | - Ramya Kumar
- Materials Science, Colorado School of Mines, Golden, Colorado 80401, United States
- Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
- Quantitative Biosciences and Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| |
Collapse
|
2
|
Barr KE, Ohnsorg ML, Liberman L, Corcoran LG, Sarode A, Nagapudi K, Feder CR, Bates FS, Reineke TM. Drug-Polymer Nanodroplet Formation and Morphology Drive Solubility Enhancement of GDC-0810. Bioconjug Chem 2024; 35:499-516. [PMID: 38546823 DOI: 10.1021/acs.bioconjchem.4c00018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
Nanodroplet formation is important to achieve supersaturation of active pharmaceutical ingredients (APIs) in an amorphous solid dispersion. The aim of the current study was to explore how polymer composition, architecture, molar mass, and surfactant concentration affect polymer-drug nanodroplet morphology with the breast cancer API, GDC-0810. The impact of nanodroplet size and morphology on dissolution efficacy and drug loading capacity was explored using polarized light microscopy, dynamic light scattering, and cryogenic transmission electron microscopy. Poly(N-isopropylacrylamide-stat-N,N-dimethylacrylamide) (PND) was synthesized as two linear derivatives and two bottlebrush derivatives with carboxylated or PEGylated end-groups. Hydroxypropyl methylcellulose acetate succinate grade MF (HPMCAS-MF) and poly(vinylpyrrolidone-co-vinyl acetate) (PVPVA) were included as commercial polymer controls. We report the first copolymerization synthesis of a PVPVA bottlebrush copolymer, which was the highest performing excipient in this study, maintaining 688 μg/mL GDC-0810 concentration at 60 wt % drug loading. This is likely due to strong polymer-drug noncovalent interactions and the compaction of GDC-0810 along the PVPVA bottlebrush backbone. Overall, it was observed that the most effective formulations had a hydrodynamic radius less than 25 nm with tightly compacted nanodroplet morphologies.
Collapse
Affiliation(s)
- Kaylee E Barr
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Monica L Ohnsorg
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Lucy Liberman
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Louis G Corcoran
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Apoorva Sarode
- Synthetic Molecule Pharmaceutical Sciences, Genentech, Inc., South San Francisco, California 94080, United States
| | - Karthik Nagapudi
- Synthetic Molecule Pharmaceutical Sciences, Genentech, Inc., South San Francisco, California 94080, United States
| | - Christina R Feder
- Synthetic Molecule Pharmaceutical Sciences, Genentech, Inc., South San Francisco, California 94080, United States
| | - Frank S Bates
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Theresa M Reineke
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
3
|
Yu H, Liu L, Yin R, Jayapurna I, Wang R, Xu T. Mapping Composition Evolution through Synthesis, Purification, and Depolymerization of Random Heteropolymers. J Am Chem Soc 2024; 146:6178-6188. [PMID: 38387070 PMCID: PMC10921401 DOI: 10.1021/jacs.3c13909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/24/2024]
Abstract
Random heteropolymers (RHPs) consisting of three or more comonomers have been routinely used to synthesize functional materials. While increasing the monomer variety diversifies the side-chain chemistry, this substantially expands the sequence space and leads to ensemble-level sequence heterogeneity. Most studies have relied on monomer composition and simulated sequences to design RHPs, but the questions remain unanswered regarding heterogeneities within each RHP ensemble and how closely these simulated sequences reflect the experimental outcomes. Here, we quantitatively mapped out the evolution of monomer compositions in four-monomer-based RHPs throughout a design-synthesis-purification-depolymerization process. By adopting a Jaacks method, we first determined 12 reactivity ratios directly from quaternary methacrylate RAFT copolymerization experiments to account for the influences of competitive monomer addition and the reversible activation/deactivation equilibria. The reliability of in silico analysis was affirmed by a quantitative agreement (<4% difference) between the simulated RHP compositions and the experimental results. Furthermore, we mapped out the conformation distribution within each ensemble in different solvents as a function of monomer chemistry, composition, and segmental characteristics via high-throughput computation based on self-consistent field theory (SCFT). These comprehensive studies confirmed monomer composition as a viable design parameter to engineer RHP-based functional materials as long as the reactivity ratios are accurately determined and the livingness of RHP synthesis is ensured.
Collapse
Affiliation(s)
- Hao Yu
- California
Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, California 94720, United States
| | - Luofu Liu
- Department
of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Ruilin Yin
- Department
of Chemistry, University of California,
Berkeley, Berkeley, California 94720, United States
| | - Ivan Jayapurna
- Department
of Materials Science and Engineering, University
of California, Berkeley, Berkeley, California 94720, United States
| | - Rui Wang
- Department
of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States
- Department
of Materials Science and Engineering, University
of California, Berkeley, Berkeley, California 94720, United States
| | - Ting Xu
- California
Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, California 94720, United States
- Department
of Chemistry, University of California,
Berkeley, Berkeley, California 94720, United States
- Department
of Materials Science and Engineering, University
of California, Berkeley, Berkeley, California 94720, United States
- Departent
of Materials Science and Engineering, University
of California, Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
4
|
Toussaint F, Lepeltier E, Franconi F, Pautu V, Jérôme C, Passirani C, Debuigne A. Diversely substituted poly(N-vinyl amide) derivatives towards non-toxic, stealth and pH-responsive lipid nanocapsules. Colloids Surf B Biointerfaces 2024; 235:113788. [PMID: 38335770 DOI: 10.1016/j.colsurfb.2024.113788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/22/2024] [Accepted: 02/03/2024] [Indexed: 02/12/2024]
Abstract
Surface modification of lipid nanocapsules (LNC) is necessary to impart stealth properties to these drug carriers and enhance their accumulation into the tumor microenvironment. While pegylation is commonly used to prolong the circulation time of LNC, the increased presence of anti-PEG antibodies in the human population and the internalization issues associated to the PEG shell are strong incentives to search alternatives. This work describes the development of amphiphilic poly(N-vinyl amide)-based (co)polymers, including pH-responsive ones, and their use as LNC modifiers towards improved drug delivery systems. RAFT polymerization gave access to a series of LNC modifiers composed of poly(N-methyl-N-vinyl acetamide), poly(N-vinyl pyrrolidone) or pH-responsive vinylimidazole-based sequence bearing a variety of lipophilic end-groups, namely octadecyl, dioctadecyl or phospholipid groups, for anchoring to the LNC. Decoration of the LNC with these families of poly(N-vinyl amide) derivatives was achieved via both post-insertion and per-formulation methods. This offered valuable and non-toxic LNC protection from opsonization by complement activation, emphasized the benefit of dioctadecyl in the per-formulation approach and highlighted the great potential of poly(N-methyl-N-vinyl acetamide) as PEG alternative. Moreover, incorporation of imidazole moieties in the shell of the carrier imparted pH-responsiveness to the LNC likely to increase the cellular uptake in the acidic tumor microenvironment, opening up new possibilities in the field of active targeting.
Collapse
Affiliation(s)
- François Toussaint
- Center for Education and Research on Macromolecules (CERM), Complex and Entangled Systems from Atoms to Materials Research Unit (CESAM), University of Liège (ULiege), 4000 Liège, Belgium
| | - Elise Lepeltier
- Micro et Nanomédecines Translationnelles (MINT), University of Angers, INSERM 1066, CNRS 6021, Angers, France; Institut Universitaire de France (IUF), France
| | - Florence Franconi
- Micro et Nanomédecines Translationnelles (MINT), University of Angers, INSERM 1066, CNRS 6021, Angers, France
| | - Vincent Pautu
- Micro et Nanomédecines Translationnelles (MINT), University of Angers, INSERM 1066, CNRS 6021, Angers, France
| | - Christine Jérôme
- Center for Education and Research on Macromolecules (CERM), Complex and Entangled Systems from Atoms to Materials Research Unit (CESAM), University of Liège (ULiege), 4000 Liège, Belgium
| | - Catherine Passirani
- Micro et Nanomédecines Translationnelles (MINT), University of Angers, INSERM 1066, CNRS 6021, Angers, France.
| | - Antoine Debuigne
- Center for Education and Research on Macromolecules (CERM), Complex and Entangled Systems from Atoms to Materials Research Unit (CESAM), University of Liège (ULiege), 4000 Liège, Belgium.
| |
Collapse
|
5
|
Zhang S, Wang T, Xue J, Xu H, Wu S. Hydrogen Bonding Principle-Based Molecular Design of a Polymer Excipient and Impacts on Hydrophobic Drug Properties: Molecular Simulation and Experiment. Biomacromolecules 2023; 24:1675-1688. [PMID: 36867105 DOI: 10.1021/acs.biomac.2c01473] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
Although some commercial excipients for improving the solubility of highly crystalline drugs are widely used, they still cannot cover all types of hydrophobic drugs. In this regard, with phenytoin as the target drug, related molecular structures of polymer excipients were designed. The optimal repeating units of NiPAm and HEAm were screened out through quantum mechanical simulation and Monte Carlo simulation methods, and the copolymerization ratio was also determined. Using molecular dynamics simulation technology, it was confirmed that the dispersibility and intermolecular hydrogen bonds of phenytoin in the designed copolymer were better than those in the commercial PVP materials. At the same time, the designed copolymers and solid dispersions were also prepared during the experiment, and the improvement of their solubility was confirmed, which is in accordance with the simulation predictions. The new ideas and simulation technology may be used for drug modification and development.
Collapse
Affiliation(s)
- Sidian Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Tao Wang
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, P. R. China
| | - Jiajia Xue
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Haiyan Xu
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, P. R. China
| | - Sizhu Wu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|
6
|
Jayapurna I, Ruan Z, Eres M, Jalagam P, Jenkins S, Xu T. Sequence Design of Random Heteropolymers as Protein Mimics. Biomacromolecules 2023; 24:652-660. [PMID: 36638823 PMCID: PMC9930114 DOI: 10.1021/acs.biomac.2c01036] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Random heteropolymers (RHPs) have been computationally designed and experimentally shown to recapitulate protein-like phase behavior and function. However, unlike proteins, RHP sequences are only statistically defined and cannot be sequenced. Recent developments in reversible-deactivation radical polymerization allowed simulated polymer sequences based on the well-established Mayo-Lewis equation to more accurately reflect ground-truth sequences that are experimentally synthesized. This led to opportunities to perform bioinformatics-inspired analysis on simulated sequences to guide the design, synthesis, and interpretation of RHPs. We compared batches on the order of 10000 simulated RHP sequences that vary by synthetically controllable and measurable RHP characteristics such as chemical heterogeneity and average degree of polymerization. Our analysis spans across 3 levels: segments along a single chain, sequences within a batch, and batch-averaged statistics. We discuss simulator fidelity and highlight the importance of robust segment definition. Examples are presented that demonstrate the use of simulated sequence analysis for in-silico iterative design to mimic protein hydrophobic/hydrophilic segment distributions in RHPs and compare RHP and protein sequence segments to explain experimental results of RHPs that mimic protein function. To facilitate the community use of this workflow, the simulator and analysis modules have been made available through an open source toolkit, the RHPapp.
Collapse
Affiliation(s)
- Ivan Jayapurna
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Zhiyuan Ruan
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Marco Eres
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Prajna Jalagam
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Spencer Jenkins
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Ting Xu
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, California 94720, United States.,Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States.,Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
7
|
Tomara M, Selianitis D, Pispas S. Dual-Responsive Amphiphilic P(DMAEMA-co-LMA-co-OEGMA) Terpolymer Nano-Assemblies in Aqueous Media. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12213791. [PMID: 36364568 PMCID: PMC9659099 DOI: 10.3390/nano12213791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/04/2022] [Accepted: 10/24/2022] [Indexed: 06/12/2023]
Abstract
This work reports on the synthesis and self-assembly of a novel series of dual-responsive poly[2-(dimethylamino)ethylmethacrylate-co-laurylmethacrylate-co-(oligoethyleneglycol)methacrylate], P(DMAEMA-co-LMA-co-OEGMA)statistical terpolymers in aqueous solutions. Five P(DMAEMA-co-LMA-co-OEGMA) amphiphilic terpolymers, having different content of the three monomers, were synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization. The success of the synthesis was confirmed by the molecular characterization of the terpolymers via size exclusion chromatography (SEC) for the determination of molecular weights and the molecular weight distributions. By using nuclear magnetic resonance (1H-NMR) and Fourier-transform infrared (FTIR) spectroscopy, it was possible to determine the exact composition of the terpolymers. Dynamic light scattering (DLS) and fluorescence spectroscopy (FS) indicated the formation of P(DMAEMA-co-LMA-co-OEGMA) unimolecular or multichain aggregates in aqueous solutions, as a response to pH, temperature and ionic strength changes, with their dimensions being largely affected. The amphiphilic terpolymers were able to encapsulate the hydrophobic drug curcumin (CUR) and demonstrate stability to fetal bovine serum (FBS) solutions. These terpolymer aggregates were studied by DLS, FS and UV-Vis, and it was found that they may have been used as potential nanocarriers for drug delivery and bio-imaging applications.
Collapse
|
8
|
HIRANO T, MOMOSE H, KAMIIKE R, UTE K. Determination of Chemical Composition and Monomer Sequence Distributions of Methacrylate Copolymers by Multivariate Analysis of NMR Spectra. BUNSEKI KAGAKU 2022. [DOI: 10.2116/bunsekikagaku.71.471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | - Hikaru MOMOSE
- Department of Applied Chemistry, Tokushima University
| | | | - Koichi UTE
- Department of Applied Chemistry, Tokushima University
| |
Collapse
|
9
|
Babu NR, Nagpal D, Ankola D, Awasthi R. Evolution of Solid Dispersion Technology: Solubility Enhancement Using Hydroxypropyl Methylcellulose Acetate Succinate: Myth or Reality? Assay Drug Dev Technol 2022; 20:149-163. [DOI: 10.1089/adt.2022.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- N. Raveendra Babu
- Watson Pharma Private Limited (A Teva Company), Thane, India
- Development of Pharmaceutics, Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, India
| | - Dheeraj Nagpal
- Development of Pharmaceutics, Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, India
| | - Dhawal Ankola
- Watson Pharma Private Limited (A Teva Company), Thane, India
| | - Rajendra Awasthi
- Department of Pharmaceutical Sciences, School of Health Sciences & Technology, University of Petroleum and Energy Studies (UPES), Dehradun, India
| |
Collapse
|
10
|
Determination of monomer reactivity ratios from a single sample using multivariate analysis of the 1H NMR spectra of poly[(methyl methacrylate)-co-(benzyl methacrylate)]. Polym J 2022. [DOI: 10.1038/s41428-022-00618-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
11
|
Pautu V, Lepeltier E, Mellinger A, Riou J, Debuigne A, Jérôme C, Clere N, Passirani C. pH-Responsive Lipid Nanocapsules: A Promising Strategy for Improved Resistant Melanoma Cell Internalization. Cancers (Basel) 2021; 13:2028. [PMID: 33922267 PMCID: PMC8122844 DOI: 10.3390/cancers13092028] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/12/2021] [Accepted: 04/16/2021] [Indexed: 12/12/2022] Open
Abstract
Despite significant advances in melanoma therapy, low response rates and multidrug resistance (MDR) have been described, reducing the anticancer efficacy of the administered molecules. Among the causes to explain these resistances, the decreased intratumoral pH is known to potentiate MDR and to reduce the sensitivity to anticancer molecules. Nanomedicines have been widely exploited as the carriers of MDR reversing molecules. Lipid nanocapsules (LNC) are nanoparticles that have already demonstrated their ability to improve cancer treatment. Here, LNC were modified with novel copolymers that combine N-vinylpyrrolidone (NVP) to impart stealth properties and vinyl imidazole (Vim), providing pH-responsive ability to address classical chemoresistance by improving tumor cell entry. These copolymers could be post-inserted at the LNC surface, leading to the property of going from neutral charge under physiological pH to positive charge under acidic conditions. LNC modified with polymer P5 (C18H37-P(NVP21-co-Vim15)) showed in vitro pH-responsive properties characterized by an enhanced cellular uptake under acidic conditions. Moreover, P5 surface modification led to an increased biological effect by protecting the nanocarrier from opsonization by complement activation. These data suggest that pH-sensitive LNC responds to what is expected from a promising nanocarrier to target metastatic melanoma.
Collapse
Affiliation(s)
- Vincent Pautu
- Micro & Nanomedecines Translationnelles (MINT), University of Angers, Inserm, The National Center for Scientific Research (CNRS), SFR ICAT, F-49000 Angers, France; (V.P.); (E.L.); (A.M.); (J.R.); (N.C.)
- Center for Education and Research on Macromolecules (CERM), Complex and Entangled Systems from Atoms to Materials Research Unit (CESAM-RU), University of Liège, 4000 Liège, Belgium; (A.D.); (C.J.)
| | - Elise Lepeltier
- Micro & Nanomedecines Translationnelles (MINT), University of Angers, Inserm, The National Center for Scientific Research (CNRS), SFR ICAT, F-49000 Angers, France; (V.P.); (E.L.); (A.M.); (J.R.); (N.C.)
| | - Adélie Mellinger
- Micro & Nanomedecines Translationnelles (MINT), University of Angers, Inserm, The National Center for Scientific Research (CNRS), SFR ICAT, F-49000 Angers, France; (V.P.); (E.L.); (A.M.); (J.R.); (N.C.)
| | - Jérémie Riou
- Micro & Nanomedecines Translationnelles (MINT), University of Angers, Inserm, The National Center for Scientific Research (CNRS), SFR ICAT, F-49000 Angers, France; (V.P.); (E.L.); (A.M.); (J.R.); (N.C.)
| | - Antoine Debuigne
- Center for Education and Research on Macromolecules (CERM), Complex and Entangled Systems from Atoms to Materials Research Unit (CESAM-RU), University of Liège, 4000 Liège, Belgium; (A.D.); (C.J.)
| | - Christine Jérôme
- Center for Education and Research on Macromolecules (CERM), Complex and Entangled Systems from Atoms to Materials Research Unit (CESAM-RU), University of Liège, 4000 Liège, Belgium; (A.D.); (C.J.)
| | - Nicolas Clere
- Micro & Nanomedecines Translationnelles (MINT), University of Angers, Inserm, The National Center for Scientific Research (CNRS), SFR ICAT, F-49000 Angers, France; (V.P.); (E.L.); (A.M.); (J.R.); (N.C.)
| | - Catherine Passirani
- Micro & Nanomedecines Translationnelles (MINT), University of Angers, Inserm, The National Center for Scientific Research (CNRS), SFR ICAT, F-49000 Angers, France; (V.P.); (E.L.); (A.M.); (J.R.); (N.C.)
| |
Collapse
|
12
|
Upadhya R, Kosuri S, Tamasi M, Meyer TA, Atta S, Webb MA, Gormley AJ. Automation and data-driven design of polymer therapeutics. Adv Drug Deliv Rev 2021; 171:1-28. [PMID: 33242537 PMCID: PMC8127395 DOI: 10.1016/j.addr.2020.11.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/10/2020] [Accepted: 11/12/2020] [Indexed: 01/01/2023]
Abstract
Polymers are uniquely suited for drug delivery and biomaterial applications due to tunable structural parameters such as length, composition, architecture, and valency. To facilitate designs, researchers may explore combinatorial libraries in a high throughput fashion to correlate structure to function. However, traditional polymerization reactions including controlled living radical polymerization (CLRP) and ring-opening polymerization (ROP) require inert reaction conditions and extensive expertise to implement. With the advent of air-tolerance and automation, several polymerization techniques are now compatible with well plates and can be carried out at the benchtop, making high throughput synthesis and high throughput screening (HTS) possible. To avoid HTS pitfalls often described as "fishing expeditions," it is crucial to employ intelligent and big data approaches to maximize experimental efficiency. This is where the disruptive technologies of machine learning (ML) and artificial intelligence (AI) will likely play a role. In fact, ML and AI are already impacting small molecule drug discovery and showing signs of emerging in drug delivery. In this review, we present state-of-the-art research in drug delivery, gene delivery, antimicrobial polymers, and bioactive polymers alongside data-driven developments in drug design and organic synthesis. From this insight, important lessons are revealed for the polymer therapeutics community including the value of a closed loop design-build-test-learn workflow. This is an exciting time as researchers will gain the ability to fully explore the polymer structural landscape and establish quantitative structure-property relationships (QSPRs) with biological significance.
Collapse
Affiliation(s)
| | | | | | | | - Supriya Atta
- Rutgers, The State University of New Jersey, USA
| | - Michael A Webb
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08540, USA
| | | |
Collapse
|
13
|
Upadhya R, Punia A, Kanagala MJ, Liu L, Lamm M, Rhodes TA, Gormley AJ. Automated PET-RAFT Polymerization Towards Pharmaceutical Amorphous Solid Dispersion Development. ACS APPLIED POLYMER MATERIALS 2021; 3:1525-1536. [PMID: 34368765 PMCID: PMC8336633 DOI: 10.1021/acsapm.0c01376] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In pharmaceutical oral drug delivery development, about 90% of drugs in the pipeline have poor aqueous solubility leading to severe challenges with oral bioavailability and translation to effective and safe drug products. Amorphous solid dispersions (ASDs) have been utilized to enhance the oral bioavailability of poorly soluble active pharmaceutical ingredients (APIs). However, a limited selection of regulatory-approved polymer excipients exists for the development and further understanding of tailor-made ASDs. Thus, a significant need exists to better understand how polymers can be designed to interact with specific API moieties. Here, we demonstrate how an automated combinatorial library approach can be applied to the synthesis and screening of polymer excipients for the model drug probucol. We synthesized a library of 25 random heteropolymers containing one hydrophilic monomer (2-hydroxypropyl acrylate (HPA)) and four hydrophobic monomers at varied incorporation. The performance of ASDs made by a rapid film casting method was evaluated by dissolution using ultra-performance liquid chromatography (UPLC) sampling at various time points. This combinatorial library and rapid screening strategy enabled us to identify a relationship between polymer hydrophobicity, monomer hydrophobic side group geometry, and API dissolution performance. Remarkably, the most effective synthesized polymers displayed slower drug release kinetics compared to industry standard polymer excipients, showing the ability to modulate the drug release profile. Future coupling of high throughput polymer synthesis, high throughput screening (HTS), and quantitative modeling would enable specification of designer polymer excipients for specific API functionalities.
Collapse
Affiliation(s)
- Rahul Upadhya
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Ashish Punia
- Preformulation Sciences, MRL, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Mythili J. Kanagala
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Lina Liu
- Preformulation Sciences, MRL, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Matthew Lamm
- Preformulation Sciences, MRL, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Timothy A. Rhodes
- Preformulation Sciences, MRL, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Adam J. Gormley
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|
14
|
Wang Z, Detrembleur C, Debuigne A. Reversible deactivation radical (co)polymerization of dimethyl methylene oxazolidinone towards responsive vicinal aminoalcohol-containing copolymers. Polym Chem 2020. [DOI: 10.1039/d0py01255f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Well-defined oxazolidinone-containing copolymers produced by controlled radical polymerization give access to multi-responsive vicinal amino-alcohol functional poly(vinyl alcohol)s.
Collapse
Affiliation(s)
- Zhuoqun Wang
- Center for Education and Research on Macromolecules (CERM)
- CESAM Research Unit
- University of Liege
- 4000 Liege
- Belgium
| | - Christophe Detrembleur
- Center for Education and Research on Macromolecules (CERM)
- CESAM Research Unit
- University of Liege
- 4000 Liege
- Belgium
| | - Antoine Debuigne
- Center for Education and Research on Macromolecules (CERM)
- CESAM Research Unit
- University of Liege
- 4000 Liege
- Belgium
| |
Collapse
|
15
|
Wang Z, Poli R, Detrembleur C, Debuigne A. Organometallic-Mediated Radical (Co)polymerization of γ-Methylene-γ-Butyrolactone: Access to pH-Responsive Poly(vinyl alcohol) Derivatives. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01838] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zhuoqun Wang
- Center for Education and Research on Macromolecules (CERM), CESAM Research Unit, Department of Chemistry, University of Liege, Allée de la Chimie B6A, 4000 Liège, Belgium
| | - Rinaldo Poli
- CNRS, LCC (Laboratoire de Chimie de Coordination) and Université de Toulouse, UPS, INPT, 205 route de Narbonne, BP 44099, 31077 Toulouse Cedex 4, France
- Institut Universitaire de France, 1, rue Descartes, 75231 Paris Cedex 05, France
| | - Christophe Detrembleur
- Center for Education and Research on Macromolecules (CERM), CESAM Research Unit, Department of Chemistry, University of Liege, Allée de la Chimie B6A, 4000 Liège, Belgium
| | - Antoine Debuigne
- Center for Education and Research on Macromolecules (CERM), CESAM Research Unit, Department of Chemistry, University of Liege, Allée de la Chimie B6A, 4000 Liège, Belgium
| |
Collapse
|
16
|
Upadhya R, Murthy NS, Hoop CL, Kosuri S, Nanda V, Kohn J, Baum J, Gormley AJ. PET-RAFT and SAXS: High Throughput Tools to Study Compactness and Flexibility of Single-Chain Polymer Nanoparticles. Macromolecules 2019; 52:8295-8304. [PMID: 33814613 PMCID: PMC8018520 DOI: 10.1021/acs.macromol.9b01923] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
From protein science, it is well understood that ordered folding and 3D structure mainly arises from balanced and noncovalent polar and nonpolar interactions, such as hydrogen bonding. Similarly, it is understood that single-chain polymer nanoparticles (SCNPs) will also compact and become more rigid with greater hydrophobicity and intrachain hydrogen bonding. Here, we couple high throughput photoinduced electron/energy transfer reversible addition-fragmentation chain-transfer (PET-RAFT) polymerization with high throughput small-angle X-ray scattering (SAXS) to characterize a large combinatorial library (>450) of several homopolymers, random heteropolymers, block copolymers, PEG-conjugated polymers, and other polymer-functionalized polymers. Coupling these two high throughput tools enables us to study the major influence(s) for compactness and flexibility in higher breadth than ever before possible. Not surprisingly, we found that many were either highly disordered in solution, in the case of a highly hydrophilic polymer, or insoluble if too hydrophobic. Remarkably, we also found a small group (9/457) of PEG-functionalized random heteropolymers and block copolymers that exhibited compactness and flexibility similar to that of bovine serum albumin (BSA) by dynamic light scattering (DLS), NMR, and SAXS. In general, we found that describing a rough association between compactness and flexibility parameters (R g /R h and Porod Exponent, respectively) with logP, a quantity that describes hydrophobicity, helps to demonstrate and predict material parameters that lead to SCNPs with greater compactness, rigidity, and stability. Future implementation of this combinatorial and high throughput approach for characterizing SCNPs will allow for the creation of detailed design parameters for well-defined macromolecular chemistry.
Collapse
Affiliation(s)
- Rahul Upadhya
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - N. Sanjeeva Murthy
- New Jersey Center for Biomaterials, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Cody L. Hoop
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Shashank Kosuri
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Vikas Nanda
- Center for Advanced Biotechnology and Medicine, and the Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Joachim Kohn
- New Jersey Center for Biomaterials, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Jean Baum
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Adam J. Gormley
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|
17
|
Rumyantsev AM, Jackson NE, Yu B, Ting JM, Chen W, Tirrell MV, de Pablo JJ. Controlling Complex Coacervation via Random Polyelectrolyte Sequences. ACS Macro Lett 2019; 8:1296-1302. [PMID: 35651159 DOI: 10.1021/acsmacrolett.9b00494] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The utilization of chemical sequence control in polymeric materials is key to enabling material design on par with biomacromolecular systems. One important avenue for scalable sequence-controlled polymers leverages the random copolymerization of distinct monomers, with the statistical distribution of the monomeric sequence arising from reaction kinetics following a first-order Markov process. Here we utilize the framework of the random phase approximation (RPA) to develop a theory for the phase behavior of symmetric polyelectrolyte coacervates whose chemical sequences are dictated by simple statistical distributions. We find that a high charge "blockiness" within the random sequences favors the formation of denser and more salt-resistant coacervates while simultaneously increasing the width of the two-phase region. We trace these physical effects to the increased cooperativity of Coulomb interactions that results from increased charge blockiness in oppositely charged polyelectrolytes.
Collapse
Affiliation(s)
- Artem M. Rumyantsev
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Nicholas E. Jackson
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
- Center for Molecular Engineering and Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Boyuan Yu
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Jeffrey M. Ting
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
- Center for Molecular Engineering and Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Wei Chen
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
- Center for Molecular Engineering and Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Matthew V. Tirrell
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
- Center for Molecular Engineering and Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Juan J. de Pablo
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
- Center for Molecular Engineering and Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| |
Collapse
|
18
|
Qin H, Liu X, Huang J, Liang H, Zhang Z, Lu J. Design and Synthesis of a Facile Solution‐Processing and Ultrastable Crosslinkable Branched Nitroxide Polymer. MACROMOL CHEM PHYS 2019. [DOI: 10.1002/macp.201900068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Herong Qin
- MOE of the Key Laboratory for Polymeric Composite and Functional MaterialsGuangdong Provincial Key Laboratory for High Performance Resin‐based Composites Materials Science InstituteSchool of ChemistrySun Yat‐sen University Guangzhou 510275 China
| | - Xiu Liu
- MOE of the Key Laboratory for Polymeric Composite and Functional MaterialsGuangdong Provincial Key Laboratory for High Performance Resin‐based Composites Materials Science InstituteSchool of ChemistrySun Yat‐sen University Guangzhou 510275 China
| | - Jianbing Huang
- MOE of the Key Laboratory for Polymeric Composite and Functional MaterialsGuangdong Provincial Key Laboratory for High Performance Resin‐based Composites Materials Science InstituteSchool of ChemistrySun Yat‐sen University Guangzhou 510275 China
| | - Hui Liang
- MOE of the Key Laboratory for Polymeric Composite and Functional MaterialsGuangdong Provincial Key Laboratory for High Performance Resin‐based Composites Materials Science InstituteSchool of ChemistrySun Yat‐sen University Guangzhou 510275 China
| | - Zishou Zhang
- MOE of the Key Laboratory for Polymeric Composite and Functional MaterialsGuangdong Provincial Key Laboratory for High Performance Resin‐based Composites Materials Science InstituteSchool of ChemistrySun Yat‐sen University Guangzhou 510275 China
| | - Jiang Lu
- MOE of the Key Laboratory for Polymeric Composite and Functional MaterialsGuangdong Provincial Key Laboratory for High Performance Resin‐based Composites Materials Science InstituteSchool of ChemistrySun Yat‐sen University Guangzhou 510275 China
| |
Collapse
|
19
|
The effect in the RAFT polymerization of two oligo(ethylene glycol) methacrylates when the CTA 4-cyano-4-(propylthiocarbonothioylthio) pentanoic acid is auto-hydrolyzed to its corresponding amide. JOURNAL OF POLYMER RESEARCH 2019. [DOI: 10.1007/s10965-019-1718-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
20
|
Smith AAA, Hall A, Wu V, Xu T. Practical Prediction of Heteropolymer Composition and Drift. ACS Macro Lett 2019; 8:36-40. [PMID: 35619408 DOI: 10.1021/acsmacrolett.8b00813] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Composition drift in batch polymerizations is a well-known phenomenon and can lead to composition gradients in polymers synthesized using controlled polymerization methodologies. With known reactivity ratios of monomers, the drift, and thus resultant gradient copolymer, can be designed by adjusting reagent ratios and targeted conversions. Although such prediction is straightforward, it is seldom done, likely due to the perceived difficulty and unfamiliarity for nonspecialists. We seek to remedy this by providing the communities using copolymers with an easy-to-use program called Compositional Drift which is based on the Mayo-Lewis model and the penultimate model of monomer addition, using Monte Carlo methodology. This tool can also be applied to predict composition in nondrifting polymerizations. Herein we supply this tool to the community, showcasing two recent examples of use to guide experimental design and understanding of heteropolymers (RHP).
Collapse
Affiliation(s)
- Anton A. A. Smith
- Department of Materials Science and Engineering, University of California, Berkeley, California 94720, United States
- Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| | - Aaron Hall
- Department of Materials Science and Engineering, University of California, Berkeley, California 94720, United States
| | - Vincent Wu
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Ting Xu
- Department of Materials Science and Engineering, University of California, Berkeley, California 94720, United States
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
21
|
Huang J, Qin H, Chen X, Wang B, Liang H, Lu J. Synthesis of an ortho-phthalaldehyde-functionalized copolymer for rapid, chemoselective and efficient conjugation with native proteins under physiological conditions. Polym Chem 2019. [DOI: 10.1039/c9py00365g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Anortho-phthalaldehyde-containing copolymer was designed and synthesized for rapid, chemoselective and efficient conjugation with proteins under physiological conditions.
Collapse
Affiliation(s)
- Jianbing Huang
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education
- Guangdong Provincial Key Laboratory for High Performance Resin-based Composites
- School of Chemistry
- Sun Yat-sen University
- Guangzhou
| | - Herong Qin
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education
- Guangdong Provincial Key Laboratory for High Performance Resin-based Composites
- School of Chemistry
- Sun Yat-sen University
- Guangzhou
| | - Xu Chen
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education
- Guangdong Provincial Key Laboratory for High Performance Resin-based Composites
- School of Chemistry
- Sun Yat-sen University
- Guangzhou
| | - Biyun Wang
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education
- Guangdong Provincial Key Laboratory for High Performance Resin-based Composites
- School of Chemistry
- Sun Yat-sen University
- Guangzhou
| | - Hui Liang
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education
- Guangdong Provincial Key Laboratory for High Performance Resin-based Composites
- School of Chemistry
- Sun Yat-sen University
- Guangzhou
| | - Jiang Lu
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education
- Guangdong Provincial Key Laboratory for High Performance Resin-based Composites
- School of Chemistry
- Sun Yat-sen University
- Guangzhou
| |
Collapse
|
22
|
Stiernet P, Jérôme C, Debuigne A. Precision design of vinyl amine and vinyl alcohol-based copolymers via cobalt-mediated radical polymerization. Polym Chem 2019. [DOI: 10.1039/c9py00020h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Controlling the amount and the distribution of vinyl amine and vinyl alcohol units within a copolymer is attractive to modulate the properties of the parent major industrial homopolymers, i.e. poly(vinyl amine) and poly(vinyl alcohol).
Collapse
Affiliation(s)
- Pierre Stiernet
- Center for Education and Research on Macromolecules (CERM)
- CESAM-Research Unit
- University of Liege (ULiege)
- B-4000 Liège
- Belgium
| | - Christine Jérôme
- Center for Education and Research on Macromolecules (CERM)
- CESAM-Research Unit
- University of Liege (ULiege)
- B-4000 Liège
- Belgium
| | - Antoine Debuigne
- Center for Education and Research on Macromolecules (CERM)
- CESAM-Research Unit
- University of Liege (ULiege)
- B-4000 Liège
- Belgium
| |
Collapse
|
23
|
Scholten PBV, Demarteau J, Gennen S, De Winter J, Grignard B, Debuigne A, Meier MAR, Detrembleur C. Merging CO2-Based Building Blocks with Cobalt-Mediated Radical Polymerization for the Synthesis of Functional Poly(vinyl alcohol)s. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b00492] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Philip B. V. Scholten
- Department of Chemistry, Center for Education and Research on Macromolecules (CERM), CESAM Research Unit, University of Liège, Sart-Tilman B6a, 4000 Liège, Belgium
- Institute of Organic Chemistry (IOC), Materialwissenschaftliches Zentrum MZE, Karlsruhe Institute of Technology (KIT), Straße am Forum 7, 76131 Karlsruhe, Germany
| | - Jérémy Demarteau
- Department of Chemistry, Center for Education and Research on Macromolecules (CERM), CESAM Research Unit, University of Liège, Sart-Tilman B6a, 4000 Liège, Belgium
| | - Sandro Gennen
- Department of Chemistry, Center for Education and Research on Macromolecules (CERM), CESAM Research Unit, University of Liège, Sart-Tilman B6a, 4000 Liège, Belgium
| | - Julien De Winter
- Organic Synthesis and Mass Spectrometry Laboratory (S2MOS), University of Mons, 23 Place du Parc, B-7000 Mons, Belgium
| | - Bruno Grignard
- Department of Chemistry, Center for Education and Research on Macromolecules (CERM), CESAM Research Unit, University of Liège, Sart-Tilman B6a, 4000 Liège, Belgium
| | - Antoine Debuigne
- Department of Chemistry, Center for Education and Research on Macromolecules (CERM), CESAM Research Unit, University of Liège, Sart-Tilman B6a, 4000 Liège, Belgium
| | - Michael A. R. Meier
- Institute of Organic Chemistry (IOC), Materialwissenschaftliches Zentrum MZE, Karlsruhe Institute of Technology (KIT), Straße am Forum 7, 76131 Karlsruhe, Germany
| | - Christophe Detrembleur
- Department of Chemistry, Center for Education and Research on Macromolecules (CERM), CESAM Research Unit, University of Liège, Sart-Tilman B6a, 4000 Liège, Belgium
| |
Collapse
|
24
|
Ting JM, Porter WW, Mecca JM, Bates FS, Reineke TM. Advances in Polymer Design for Enhancing Oral Drug Solubility and Delivery. Bioconjug Chem 2018; 29:939-952. [PMID: 29319295 DOI: 10.1021/acs.bioconjchem.7b00646] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Synthetic polymers have enabled amorphous solid dispersions (ASDs) to emerge as an oral delivery strategy for overcoming poor drug solubility in aqueous environments. Modern ASD products noninvasively treat a range of chronic diseases (for example, hepatitis C, cystic fibrosis, and HIV). In such formulations, polymeric carriers generate and maintain drug supersaturation upon dissolution, increasing the apparent drug solubility to enhance gastrointestinal barrier absorption and oral bioavailability. In this Review, we outline several approaches in designing polymeric excipients to drive interactions with active pharmaceutical ingredients (APIs) in spray-dried ASDs, highlighting polymer-drug formulation guidelines from industrial and academic perspectives. Special attention is given to new commercial and specialized polymer design strategies that can solubilize highly hydrophobic APIs and suppress the propensity for rapid drug recrystallization. These molecularly customized excipients and hierarchical excipient assemblies are promising toward informing early-stage drug-discovery development and reformulating existing API candidates into potentially lifesaving oral medicines for our growing global population.
Collapse
|
25
|
Kuliasha CA, Fedderwitz RL, Calvo PR, Sumerlin BS, Brennan AB. Engineering the Surface Properties of Poly(dimethylsiloxane) Utilizing Aqueous RAFT Photografting of Acrylate/Methacrylate Monomers. Macromolecules 2018. [DOI: 10.1021/acs.macromol.7b02575] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Cary A. Kuliasha
- Department of Materials Science and Engineering, §J. Crayton M. Pruitt Family Department of Biomedical Engineering, and ‡George & Josephine Butler Polymer Research Laboratory, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Rebecca L. Fedderwitz
- Department of Materials Science and Engineering, §J. Crayton M. Pruitt Family Department of Biomedical Engineering, and ‡George & Josephine Butler Polymer Research Laboratory, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Patricia R. Calvo
- Department of Materials Science and Engineering, §J. Crayton M. Pruitt Family Department of Biomedical Engineering, and ‡George & Josephine Butler Polymer Research Laboratory, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Brent S. Sumerlin
- Department of Materials Science and Engineering, §J. Crayton M. Pruitt Family Department of Biomedical Engineering, and ‡George & Josephine Butler Polymer Research Laboratory, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Anthony B. Brennan
- Department of Materials Science and Engineering, §J. Crayton M. Pruitt Family Department of Biomedical Engineering, and ‡George & Josephine Butler Polymer Research Laboratory, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
26
|
Lin L, Qin H, Huang J, Liang H, Quan D, Lu J. Design and synthesis of an AIE-active polymeric H2S-donor with capacity for self-tracking. Polym Chem 2018. [DOI: 10.1039/c8py00548f] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Poly(3-formyl-4-hydroxybenzyl methacrylate) (PFHMA) was reacted sequentially with PEG-ONH2, hydrazine and S-benzoylthiohydroxylamine to yield a self-fluorescent polymeric H2S-donor.
Collapse
Affiliation(s)
- Lvhuan Lin
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education
- Guangdong Provincial Key Laboratory for High Performance Resin-based Composites
- School of Chemistry
- Sun Yat-sen University
- Guangzhou
| | - Herong Qin
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education
- Guangdong Provincial Key Laboratory for High Performance Resin-based Composites
- School of Chemistry
- Sun Yat-sen University
- Guangzhou
| | - Jianbing Huang
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education
- Guangdong Provincial Key Laboratory for High Performance Resin-based Composites
- School of Chemistry
- Sun Yat-sen University
- Guangzhou
| | - Hui Liang
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education
- Guangdong Provincial Key Laboratory for High Performance Resin-based Composites
- School of Chemistry
- Sun Yat-sen University
- Guangzhou
| | - Daping Quan
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education
- Guangdong Provincial Key Laboratory for High Performance Resin-based Composites
- School of Chemistry
- Sun Yat-sen University
- Guangzhou
| | - Jiang Lu
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education
- Guangdong Provincial Key Laboratory for High Performance Resin-based Composites
- School of Chemistry
- Sun Yat-sen University
- Guangzhou
| |
Collapse
|
27
|
Zhu Z, Zhang Y, Jiang W, Sun L, Dai L, Zhang G, Tang J. Effect of monomer sequence distribution on the CO2-philicity of a well-defined ternary copolymer: Poly(vinyl acetate-co-vinyl butyrate-co-vinyl butyl ether). POLYMER 2017. [DOI: 10.1016/j.polymer.2017.09.050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
28
|
Gavrilov AA, Chertovich AV. Copolymerization of Partly Incompatible Monomers: An Insight from Computer Simulations. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b00180] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Alexey A. Gavrilov
- Physics Department, Lomonosov Moscow State University, Moscow, Russian Federation 119991
| | | |
Collapse
|
29
|
Demarteau J, Améduri B, Ladmiral V, Mees MA, Hoogenboom R, Debuigne A, Detrembleur C. Controlled Synthesis of Fluorinated Copolymers via Cobalt-Mediated Radical Copolymerization of Perfluorohexylethylene and Vinyl Acetate. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b00578] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Jérémy Demarteau
- Centre
for Education and Research on Macromolecules (CERM), CESAM Research
Unit, Department of Chemistry, University of Liege, Allée
de la Chimie B6A, 4000 Liège, Belgium
| | - Bruno Améduri
- Ingénierie
et Architectures Macromoléculaires, CNRS, UM, ENSCM, Institut Charles Gerhardt, UMR 5253, Place Eugène Bataillon, 34095 Montpellier, Cedex 5, France
| | - Vincent Ladmiral
- Ingénierie
et Architectures Macromoléculaires, CNRS, UM, ENSCM, Institut Charles Gerhardt, UMR 5253, Place Eugène Bataillon, 34095 Montpellier, Cedex 5, France
| | - Maarten A. Mees
- Supramolecular
Chemistry Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, 9000 Ghent, Belgium
| | - Richard Hoogenboom
- Supramolecular
Chemistry Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, 9000 Ghent, Belgium
| | - Antoine Debuigne
- Centre
for Education and Research on Macromolecules (CERM), CESAM Research
Unit, Department of Chemistry, University of Liege, Allée
de la Chimie B6A, 4000 Liège, Belgium
| | - Christophe Detrembleur
- Centre
for Education and Research on Macromolecules (CERM), CESAM Research
Unit, Department of Chemistry, University of Liege, Allée
de la Chimie B6A, 4000 Liège, Belgium
| |
Collapse
|
30
|
Chernikova EV, Sivtsov EV. Reversible addition-fragmentation chain-transfer polymerization: Fundamentals and use in practice. POLYMER SCIENCE SERIES B 2017. [DOI: 10.1134/s1560090417020038] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
31
|
Ting J, Tale S, Purchel AA, Jones S, Widanapathirana L, Tolstyka ZP, Guo L, Guillaudeu S, Bates FS, Reineke TM. High-Throughput Excipient Discovery Enables Oral Delivery of Poorly Soluble Pharmaceuticals. ACS CENTRAL SCIENCE 2016; 2:748-755. [PMID: 27800558 PMCID: PMC5084074 DOI: 10.1021/acscentsci.6b00268] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Indexed: 05/22/2023]
Abstract
Polymeric excipients are crucial ingredients in modern pills, increasing the therapeutic bioavailability, safety, stability, and accessibility of lifesaving products to combat diseases in developed and developing countries worldwide. Because many early-pipeline drugs are clinically intractable due to hydrophobicity and crystallinity, new solubilizing excipients can reposition successful and even failed compounds to more effective and inexpensive oral formulations. With assistance from high-throughput controlled polymerization and screening tools, we employed a strategic, molecular evolution approach to systematically modulate designer excipients based on the cyclic imide chemical groups of an important (yet relatively insoluble) drug phenytoin. In these acrylamide- and methacrylate-containing polymers, a synthon approach was employed: one monomer served as a precipitation inhibitor for phenytoin recrystallization, while the comonomer provided hydrophilicity. Systems that maintained drug supersaturation in amorphous solid dispersions were identified with molecular-level understanding of noncovalent interactions using NOESY and DOSY NMR spectroscopy. Poly(N-isopropylacrylamide-co-N,N-dimethylacrylamide) (poly(NIPAm-co-DMA)) at 70 mol % NIPAm exhibited the highest drug solubilization, in which phenytoin associated with inhibiting NIPAm units only with lowered diffusivity in solution. In vitro dissolution tests of select spray-dried dispersions corroborated the screening trends between polymer chemical composition and solubilization performance, where the best NIPAm/DMA polymer elevated the mean area-under-the-dissolution-curve by 21 times its crystalline state at 10 wt % drug loading. When administered to rats for pharmacokinetic evaluation, the same leading poly(NIPAm-co-DMA) formulation tripled the oral bioavailability compared to a leading commercial excipient, HPMCAS, and translated to a remarkable 23-fold improvement over crystalline phenytoin.
Collapse
Affiliation(s)
- Jeffrey
M. Ting
- Department of Chemistry and Department of Chemical Engineering and Materials
Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Swapnil Tale
- Department of Chemistry and Department of Chemical Engineering and Materials
Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Anatolii A. Purchel
- Department of Chemistry and Department of Chemical Engineering and Materials
Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Seamus
D. Jones
- Department of Chemistry and Department of Chemical Engineering and Materials
Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Lakmini Widanapathirana
- Department of Chemistry and Department of Chemical Engineering and Materials
Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Zachary P. Tolstyka
- Department of Chemistry and Department of Chemical Engineering and Materials
Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Li Guo
- Corporate
R&D, The Dow Chemical Company, Midland, Michigan 48674, United States
| | | | - Frank S. Bates
- Department of Chemistry and Department of Chemical Engineering and Materials
Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Theresa M. Reineke
- Department of Chemistry and Department of Chemical Engineering and Materials
Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
32
|
Puranik AS, Pao LP, White VM, Peppas NA. In Vitro Evaluation of pH-Responsive Nanoscale Hydrogels for the Oral Delivery of Hydrophobic Therapeutics. Ind Eng Chem Res 2016. [DOI: 10.1021/acs.iecr.6b02565] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Amey S. Puranik
- Department of Chemical Engineering, ‡Department of Biomedical
Engineering, §College of Pharmacy, and ∥Institute for
Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Ludovic P. Pao
- Department of Chemical Engineering, ‡Department of Biomedical
Engineering, §College of Pharmacy, and ∥Institute for
Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Vanessa M. White
- Department of Chemical Engineering, ‡Department of Biomedical
Engineering, §College of Pharmacy, and ∥Institute for
Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Nicholas A. Peppas
- Department of Chemical Engineering, ‡Department of Biomedical
Engineering, §College of Pharmacy, and ∥Institute for
Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
33
|
Dréan M, Guégan P, Detrembleur C, Jérôme C, Rieger J, Debuigne A. Controlled Synthesis of Poly(vinylamine)-Based Copolymers by Organometallic-Mediated Radical Polymerization. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b00992] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mathilde Dréan
- Center
for Education and Research on Macromolecules (CERM), Department of
Chemistry, University of Liege (ULg), Sart-Tilman, Allée de la
Chimie 3, Bat. B6a, B-4000 Liège, Belgium
- UPMC
Univ Paris 06, CNRS, Institut Parisien de Chimie Moléculaire
(IPCM), UMR 8232, Team Chimie des Polymères (LCP), Sorbonne Universités, 4 Place Jussieu, F-75005 Paris, France
| | - Philippe Guégan
- UPMC
Univ Paris 06, CNRS, Institut Parisien de Chimie Moléculaire
(IPCM), UMR 8232, Team Chimie des Polymères (LCP), Sorbonne Universités, 4 Place Jussieu, F-75005 Paris, France
| | - Christophe Detrembleur
- Center
for Education and Research on Macromolecules (CERM), Department of
Chemistry, University of Liege (ULg), Sart-Tilman, Allée de la
Chimie 3, Bat. B6a, B-4000 Liège, Belgium
| | - Christine Jérôme
- Center
for Education and Research on Macromolecules (CERM), Department of
Chemistry, University of Liege (ULg), Sart-Tilman, Allée de la
Chimie 3, Bat. B6a, B-4000 Liège, Belgium
| | - Jutta Rieger
- UPMC
Univ Paris 06, CNRS, Institut Parisien de Chimie Moléculaire
(IPCM), UMR 8232, Team Chimie des Polymères (LCP), Sorbonne Universités, 4 Place Jussieu, F-75005 Paris, France
| | - Antoine Debuigne
- Center
for Education and Research on Macromolecules (CERM), Department of
Chemistry, University of Liege (ULg), Sart-Tilman, Allée de la
Chimie 3, Bat. B6a, B-4000 Liège, Belgium
| |
Collapse
|
34
|
Huang J, Zhu H, Liang H, Lu J. Salicylaldehyde-functionalized block copolymer nano-objects: one-pot synthesis via polymerization-induced self-assembly and their simultaneous cross-linking and fluorescence modification. Polym Chem 2016. [DOI: 10.1039/c6py00794e] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Salicylaldehyde-functionalized nano-objects are prepared via RAFT-mediated polymerization-induced self-assembly. Their simultaneous stabilization and fluorescence modification can be achieved by one-step reaction.
Collapse
Affiliation(s)
- Jianbing Huang
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education
- Guangdong Provincial Key Laboratory for High Performance Polymer-based Composites
- School of Chemistry and Chemical Engineering
- Sun Yat-sen University
- Guangzhou, 510275
| | - Hanjun Zhu
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education
- Guangdong Provincial Key Laboratory for High Performance Polymer-based Composites
- School of Chemistry and Chemical Engineering
- Sun Yat-sen University
- Guangzhou, 510275
| | - Hui Liang
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education
- Guangdong Provincial Key Laboratory for High Performance Polymer-based Composites
- School of Chemistry and Chemical Engineering
- Sun Yat-sen University
- Guangzhou, 510275
| | - Jiang Lu
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education
- Guangdong Provincial Key Laboratory for High Performance Polymer-based Composites
- School of Chemistry and Chemical Engineering
- Sun Yat-sen University
- Guangzhou, 510275
| |
Collapse
|
35
|
Dréan M, Guégan P, Jérôme C, Rieger J, Debuigne A. Far beyond primary poly(vinylamine)s through free radical copolymerization and amide hydrolysis. Polym Chem 2016. [DOI: 10.1039/c5py01325a] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Copolymers bearing various amino groups of predictable compositions are made available through radical copolymerization followed by optimized amide hydrolysis.
Collapse
Affiliation(s)
- Mathilde Dréan
- Center for Education and Research on Macromolecules (CERM)
- Department of Chemistry
- University of Liege (ULg)
- B-4000 Liège
- Belgium
| | - Philippe Guégan
- Sorbonne Universités
- UPMC Univ Paris 06
- CNRS
- Institut Parisien de Chimie Moléculaire
- F-75005 Paris
| | - Christine Jérôme
- Center for Education and Research on Macromolecules (CERM)
- Department of Chemistry
- University of Liege (ULg)
- B-4000 Liège
- Belgium
| | - Jutta Rieger
- Sorbonne Universités
- UPMC Univ Paris 06
- CNRS
- Institut Parisien de Chimie Moléculaire
- F-75005 Paris
| | - Antoine Debuigne
- Center for Education and Research on Macromolecules (CERM)
- Department of Chemistry
- University of Liege (ULg)
- B-4000 Liège
- Belgium
| |
Collapse
|
36
|
|
37
|
Ting JM, Navale TS, Jones SD, Bates FS, Reineke TM. Deconstructing HPMCAS: Excipient Design to Tailor Polymer-Drug Interactions for Oral Drug Delivery. ACS Biomater Sci Eng 2015; 1:978-990. [PMID: 33429529 DOI: 10.1021/acsbiomaterials.5b00234] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Spray-dried dispersions (SDDs) are fascinating polymer-drug mixtures that exploit the amorphous state of a drug to dramatically elevate its apparent aqueous solubility above equilibrium. For practical usage in oral delivery, understanding how polymers mechanistically provide physical stability during storage and prevent supersaturated drugs from succumbing to precipitation during dissolution remains a formidable challenge. To this end, we developed a versatile polymeric platform with functional groups analogous to hydroxypropyl methyl cellulose acetate succinate (HPMCAS, a heterogeneous leading excipient candidate for SDDs) and studied its interactions with Biopharmaceutical Classification System Class II drug models probucol, danazol, and phenytoin at various dosages. By conducting reversible addition-fragmentation chain transfer polymerizations with monomeric components chemically analogous to HPMCAS, we synthetically dismantled the highly polydisperse architecture of HPMCAS into well-defined polymer systems (i.e., targetable Mn, Đ < 1.3, tunable Tg). In the powdered SDD form, by wide-angle X-ray diffraction all HPMCAS analogs yielded amorphous danazol and phenytoin up to 50 wt % loading, whereas for probucol, hydrophobic methoxy functionality and high polymeric Tg were key to inhibit immediate partitioning into crystalline domains. Nonsink in vitro dissolution tests revealed distinct release profiles. The polymer containing only acetyl and succinoyl substituents spray-dried with probucol increased the area under the dissolution curve by a factor of 180, 112, and 26 over pure drug at 10, 25, and 50 wt % loading, respectively. For crystallization-prone danazol and phenytoin, we observed that the water-soluble polymer with hydroxyl groups inhibited crystal growth and enabled high burst release and supersaturation maintenance. Our findings provide fundamental insight into how excipient microstructures can complex with drugs for excipient formulation applications.
Collapse
Affiliation(s)
- Jeffrey M Ting
- Departments of Chemistry and ‡Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Tushar S Navale
- Departments of Chemistry and Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Seamus D Jones
- Departments of Chemistry and Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Frank S Bates
- Departments of Chemistry and Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Theresa M Reineke
- Departments of Chemistry and Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
38
|
Holmberg AL, Karavolias MG, Epps TH. RAFT polymerization and associated reactivity ratios of methacrylate-functionalized mixed bio-oil constituents. Polym Chem 2015. [DOI: 10.1039/c5py00291e] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
High separations costs reduce the practicality of polymers sourced from renewable bio-oils, motivating economical multicomponent bio-oil polymerizations. Thus, this paper investigates polymerization behavior of model bio-oil components and their mixtures.
Collapse
Affiliation(s)
- Angela L. Holmberg
- Department of Chemical and Biomolecular Engineering
- University of Delaware
- Newark
- USA
| | | | - Thomas H. Epps
- Department of Chemical and Biomolecular Engineering
- University of Delaware
- Newark
- USA
- Department of Materials Science and Engineering
| |
Collapse
|
39
|
Caydamli Y, Ding Y, Joijode A, Li S, Shen J, Zhu J, Tonelli AE. Estimating Monomer Sequence Distributions in Tetrapolyacrylates. Macromolecules 2014. [DOI: 10.1021/ma5019268] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Yavuz Caydamli
- Fiber & Polymer Science Program, North Carolina State University, Campus Box 8301, Raleigh, North Carolina 27695, United States
| | - Yi Ding
- Fiber & Polymer Science Program, North Carolina State University, Campus Box 8301, Raleigh, North Carolina 27695, United States
| | - Abhay Joijode
- Fiber & Polymer Science Program, North Carolina State University, Campus Box 8301, Raleigh, North Carolina 27695, United States
| | - Shanshan Li
- Fiber & Polymer Science Program, North Carolina State University, Campus Box 8301, Raleigh, North Carolina 27695, United States
| | - Jialong Shen
- Fiber & Polymer Science Program, North Carolina State University, Campus Box 8301, Raleigh, North Carolina 27695, United States
| | - Jiadeng Zhu
- Fiber & Polymer Science Program, North Carolina State University, Campus Box 8301, Raleigh, North Carolina 27695, United States
| | - Alan E. Tonelli
- Fiber & Polymer Science Program, North Carolina State University, Campus Box 8301, Raleigh, North Carolina 27695, United States
| |
Collapse
|
40
|
Cai F, Shan S, Yang L, Chen B, Luo J, Zhong CJ. CO oxidation on supported platinum group metal (PGM) based nanoalloys. Sci China Chem 2014. [DOI: 10.1007/s11426-014-5264-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
41
|
Ting JM, Navale TS, Bates FS, Reineke TM. Design of Tunable Multicomponent Polymers as Modular Vehicles To Solubilize Highly Lipophilic Drugs. Macromolecules 2014. [DOI: 10.1021/ma501839s] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Jeffrey M. Ting
- Department
of Chemical Engineering and Materials Science and ‡Department of
Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Tushar S. Navale
- Department
of Chemical Engineering and Materials Science and ‡Department of
Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Frank S. Bates
- Department
of Chemical Engineering and Materials Science and ‡Department of
Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Theresa M. Reineke
- Department
of Chemical Engineering and Materials Science and ‡Department of
Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
42
|
Shan S, Luo J, Yang L, Zhong CJ. Nanoalloy catalysts: structural and catalytic properties. Catal Sci Technol 2014. [DOI: 10.1039/c4cy00469h] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|