1
|
Benda J, Narikiyo H, Stafslien SJ, VanderWal LJ, Finlay JA, Aldred N, Clare AS, Webster DC. Studying the Effect of Pre-Polymer Composition and Incorporation of Surface-Modifying Amphiphilic Additives on the Fouling-Release Performance of Amphiphilic Siloxane-Polyurethane Coatings. ACS APPLIED MATERIALS & INTERFACES 2022; 14:37229-37247. [PMID: 35939765 DOI: 10.1021/acsami.2c10983] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Combining amphiphilic fouling-release (FR) coatings with the surface-active nature of amphiphilic additives can improve the antifouling/fouling-release (AF/FR) properties needed to offer broad-spectrum resistance to marine biofoulants. This work is focused on further tuning the amphiphilic character of a previously developed amphiphilic siloxane-polyurethane (SiPU) coating by varying the amount of PDMS and PEG in the base system. Furthermore, surface-modifying amphiphilic additives (SMAAs) were incorporated into these amphiphilic FR SiPU coatings in varying amounts. ATR-FTIR, contact angle and surface energy measurements, and AFM were performed to assess changes in surface composition, wettability, and morphology. AF/FR properties were evaluated using laboratory biological assays involving Cellulophaga lytica, Navicula incerta, Ulva linza, Amphibalanus amphitrite, and Geukensia demissa. The surfaces of these coatings varied significantly upon changes in PDMS and PEG content in the coating matrix, as well as with changes in SMAA incorporation. AF/FR properties were also significantly changed, with formulations containing the highest amounts of SMAA showing very high removal properties compared to other experimental formulations, in some cases better than that of commercial standard FR coatings.
Collapse
Affiliation(s)
- Jackson Benda
- Department of Coatings and Polymeric, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Hayato Narikiyo
- Graduate School of Engineering, Department of Polymer Chemistry, Kyoto University, Sakyo Ward, Kyoto 606-8501, Japan
| | - Shane J Stafslien
- Department of Coatings and Polymeric, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Lyndsi J VanderWal
- Department of Coatings and Polymeric, North Dakota State University, Fargo, North Dakota 58108, United States
| | - John A Finlay
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, U.K
| | - Nick Aldred
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, U.K
| | - Anthony S Clare
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, U.K
| | - Dean C Webster
- Department of Coatings and Polymeric, North Dakota State University, Fargo, North Dakota 58108, United States
| |
Collapse
|
2
|
Yi J, Lee S, Lee JY. Biomimetic polypyrrole/hyaluronic acid electrodes integrated with hyaluronidase inhibitors offer persistent electroactivity and resistance to cell binding. J Mater Chem B 2022; 10:1591-1600. [DOI: 10.1039/d1tb02849a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Conductive polymers, including polypyrrole (PPy), have garnered much attention as bioelectrodes because of their high conductivity, low interfacial resistance, environmental stability, and biocompatibility. In particular, the introduction of high-molecular weight...
Collapse
|
3
|
Kumar A, Al-Jumaili A, Bazaka O, Ivanova EP, Levchenko I, Bazaka K, Jacob MV. Functional nanomaterials, synergisms, and biomimicry for environmentally benign marine antifouling technology. MATERIALS HORIZONS 2021; 8:3201-3238. [PMID: 34726218 DOI: 10.1039/d1mh01103k] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Marine biofouling remains one of the key challenges for maritime industries, both for seafaring and stationary structures. Currently used biocide-based approaches suffer from significant drawbacks, coming at a significant cost to the environment into which the biocides are released, whereas novel environmentally friendly approaches are often difficult to translate from lab bench to commercial scale. In this article, current biocide-based strategies and their adverse environmental effects are briefly outlined, showing significant gaps that could be addressed through advanced materials engineering. Current research towards the use of natural antifouling products and strategies based on physio-chemical properties is then reviewed, focusing on the recent progress and promising novel developments in the field of environmentally benign marine antifouling technologies based on advanced nanocomposites, synergistic effects and biomimetic approaches are discussed and their benefits and potential drawbacks are compared to existing techniques.
Collapse
Affiliation(s)
- Avishek Kumar
- Electronics Materials Lab, College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia.
| | - Ahmed Al-Jumaili
- Electronics Materials Lab, College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia.
- Medical Physics Department, College of Medical Sciences Techniques, The University of Mashreq, Baghdad, Iraq
| | - Olha Bazaka
- School of Science, RMIT University, PO Box 2476, Melbourne, VIC 3001, Australia
| | - Elena P Ivanova
- School of Science, RMIT University, PO Box 2476, Melbourne, VIC 3001, Australia
| | - Igor Levchenko
- Plasma Sources and Application Centre, NIE, Nanyang Technological University, 637616, Singapore
| | - Kateryna Bazaka
- Electronics Materials Lab, College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia.
- Faculty of Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia
- School of Engineering, The Australian National University, Canberra, ACT 2601, Australia
| | - Mohan V Jacob
- Electronics Materials Lab, College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia.
| |
Collapse
|
4
|
Xu W, Li S, Ye Z, Zhang J, Deng L, Dong A. Optimization of sulfonated polyethyleneimine zwitterionic coating mediated by polydopamine for poly(vinyl chloride) antifouling. J Appl Polym Sci 2020. [DOI: 10.1002/app.49636] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Wei Xu
- Department of Polymer Science and Technology, Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology Tianjin University Tianjin China
| | - Shuangyang Li
- Department of Polymer Science and Technology, Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology Tianjin University Tianjin China
| | - Zhanpeng Ye
- Department of Polymer Science and Technology, Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology Tianjin University Tianjin China
| | - Jianhua Zhang
- Department of Polymer Science and Technology, Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology Tianjin University Tianjin China
| | - Liandong Deng
- Department of Polymer Science and Technology, Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology Tianjin University Tianjin China
| | - Anjie Dong
- Department of Polymer Science and Technology, Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology Tianjin University Tianjin China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin China
| |
Collapse
|
5
|
A Review of Metal and Metal-Oxide Nanoparticle Coating Technologies to Inhibit Agglomeration and Increase Bioactivity for Agricultural Applications. AGRONOMY-BASEL 2020. [DOI: 10.3390/agronomy10071018] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Coatings offer a means to control nanoparticle (NP) size, regulate dissolution, and mitigate runoff when added to crops through soil. Simultaneously, coatings can enhance particle binding to plants and provide an additional source of nutrients, making them a valuable component to existing nanoparticle delivery systems. Here, the surface functionalization of metal and metal-oxide nanoparticles to inhibit aggregation and preserve smaller agglomerate sizes for enhanced transport to the rooting zone and improved uptake in plants is reviewed. Coatings are classified by type and by their efficacy to mitigate agglomeration in soils with variable pH, ionic concentration, and natural organic matter profiles. Varying degrees of success have been reported using a range of different polymers, biomolecules, and inorganic surface coatings. Advances in zwitterionic coatings show the best results for maintaining nanoparticle stability in solutions even under high salinity and temperature conditions, whereas coating by the soil component humic acid may show additional benefits such as promoting dissolution and enhancing bioavailability in soils. Pre-tuning of NP surface properties through exposure to select natural organic matter, microbial products, and other biopolymers may yield more cost-effective nonagglomerating metal/metal-oxide NPs for soil applications in agriculture.
Collapse
|
6
|
Koc J, Schönemann E, Wanka R, Aldred N, Clare AS, Gardner H, Swain GW, Hunsucker K, Laschewsky A, Rosenhahn A. Effects of crosslink density in zwitterionic hydrogel coatings on their antifouling performance and susceptibility to silt uptake. BIOFOULING 2020; 36:646-659. [PMID: 32718200 DOI: 10.1080/08927014.2020.1796983] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/08/2020] [Accepted: 07/12/2020] [Indexed: 06/11/2023]
Abstract
Hydrogel coatings effectively reduce the attachment of proteins and organisms in laboratory assays, in particular when made from zwitterionic monomers. In field experiments with multiple species and non-living material, such coatings suffer from adsorption of particulate matter. In this study, the zwitterionic monomer 3-[N-(2-methacryloyloxyethyl)-N,N-dimethylammonio] propanesulfonate (SPE) was copolymerized with increasing amounts of the photo-crosslinker benzophenon-4-yloxyethyl methacrylate (BPEMA) to systematically alter the density of crosslinks between the polymer chains. The effect of increasing crosslink density on the antifouling (AF) performance of the coatings was investigated in laboratory assays and fields tests. In both cases, the AF performance was improved by increasing the crosslinker content. The coatings reduced protein, diatom, and barnacle accumulation, and showed better resistance to biomass accumulation. The findings underline that the marine AF performance of hydrogel coatings does not only depend on the specific chemical structure of the polymers, but also on their physico-chemical properties such as rigidity and swelling.
Collapse
Affiliation(s)
- Julian Koc
- Analytical Chemistry - Biointerfaces, Ruhr University Bochum, Bochum, Germany
| | - Eric Schönemann
- Institute of Chemistry, Universität Potsdam, Potsdam, Germany
| | - Robin Wanka
- Analytical Chemistry - Biointerfaces, Ruhr University Bochum, Bochum, Germany
| | - Nick Aldred
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
- School of Life Sciences, University of Essex, Wivenhoe Park, UK
| | - Anthony S Clare
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Harrison Gardner
- Center for Corrosion & Biofouling, Florida Institute of Technology, Melbourne, FL, USA
| | - Geoffrey W Swain
- Center for Corrosion & Biofouling, Florida Institute of Technology, Melbourne, FL, USA
| | - Kelli Hunsucker
- Center for Corrosion & Biofouling, Florida Institute of Technology, Melbourne, FL, USA
| | - Andre Laschewsky
- Institute of Chemistry, Universität Potsdam, Potsdam, Germany
- Fraunhofer Institute of Applied Polymer Research IAP, Potsdam, Germany
| | - Axel Rosenhahn
- Analytical Chemistry - Biointerfaces, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
7
|
Zheng L, Lin Y, Wang D, Chen J, Yang K, Zheng B, Bai W, Jian R, Xu Y. Facile one-pot synthesis of silver nanoparticles encapsulated in natural polymeric urushiol for marine antifouling. RSC Adv 2020; 10:13936-13943. [PMID: 35498472 PMCID: PMC9051603 DOI: 10.1039/d0ra02205e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 06/25/2020] [Accepted: 03/26/2020] [Indexed: 12/16/2022] Open
Abstract
Silver nanoparticle-based coatings have been regarded as promising candidates for marine antifouling. However, current toxic fabrication methods also lead to environment risks. Nanoparticle agglomeration, poor compatibility with polymer, and rapid release of Ag+ result in short-term efficacy. In this study, a facile one-pot synthesis method of silver nanoparticles (AgNPs) encapsulated in polymeric urushiol (PUL) was developed. AgNPs were synthesized in situ by natural urushiol, serving as a reductant, dispersant and surfactant. Simultaneously, silver nitrate catalyzed the polymerization of urushiol into PUL. This in situ reduction method made AgNPs uniformly distributed in the polymer matrix. The binding between the AgNPs and the PUL resulted in the stable release of Ag+. Results showed the antibacterial rate of a 0.1% AgNPs coating is 100% in laboratory experiments. This environment-friendly coating showed good microbial inhibition performance with long-term (120 days) marine antifouling efficacy. This study shows the potential of preparing an eco-friendly coating with long-term marine antifouling ability. PUL/AgNPs was developed by a one-step reaction, PUL/AgNPs coatings showed excellent antifouling performance in antimicrobial experiments and marine field tests.![]()
Collapse
Affiliation(s)
- Lu Zheng
- College of Chemistry and Materials
- Fujian Normal University
- Fuzhou 350007
- P. R. China
- Fujian Provincial Key Laboratory of Advanced Oriented Chemical Engineering
| | - Yucai Lin
- College of Chemistry and Materials
- Fujian Normal University
- Fuzhou 350007
- P. R. China
- Fujian Provincial Key Laboratory of Polymer Materials
| | - Donghui Wang
- College of Chemistry and Materials
- Fujian Normal University
- Fuzhou 350007
- P. R. China
| | - Jipeng Chen
- College of Chemistry and Materials
- Fujian Normal University
- Fuzhou 350007
- P. R. China
| | - Ke Yang
- College of Chemistry and Materials
- Fujian Normal University
- Fuzhou 350007
- P. R. China
| | - Binbin Zheng
- College of Chemistry and Materials
- Fujian Normal University
- Fuzhou 350007
- P. R. China
| | - Weibin Bai
- College of Chemistry and Materials
- Fujian Normal University
- Fuzhou 350007
- P. R. China
- Fujian Provincial Key Laboratory of Polymer Materials
| | - Rongkun Jian
- College of Chemistry and Materials
- Fujian Normal University
- Fuzhou 350007
- P. R. China
- Fujian Provincial Key Laboratory of Polymer Materials
| | - Yanlian Xu
- College of Chemistry and Materials
- Fujian Normal University
- Fuzhou 350007
- P. R. China
- Fujian Provincial Key Laboratory of Polymer Materials
| |
Collapse
|
8
|
Li Z, Li H, Sun Z, Hao B, Lee TC, Feng A, Zhang L, Thang SH. Synthesis of star-shaped polyzwitterions with adjustable UCST and fast responsiveness by a facile RAFT polymerization. Polym Chem 2020. [DOI: 10.1039/d0py00318b] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We describe crosslinking of polyzwitterions for the formation of novel star-shaped polymers with low polydispersities and dual-responsiveness using RAFT polymerization.
Collapse
Affiliation(s)
- Zhi Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering
- College of Materials Science and Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Hao Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering
- College of Materials Science and Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Zhonghe Sun
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering
- College of Materials Science and Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Botao Hao
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering
- College of Materials Science and Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Tung-Chun Lee
- Institute for Materials Discovery and Department of Chemistry
- University College London
- WC1H 0AJ London
- UK
| | - Anchao Feng
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering
- College of Materials Science and Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Liqun Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering
- College of Materials Science and Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - San H. Thang
- School of Chemistry
- Monash University
- Clayton
- Australia
| |
Collapse
|
9
|
Liu Y, Bejjanki NK, Jiang W, Zhao Y, Wang L, Sun X, Tang X, Liu H, Wang Y. Controlled Syntheses of Well-Defined Poly(thionophosphoester)s That Undergo Peroxide-Triggered Degradation. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Yi Liu
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Naveen Kumar Bejjanki
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Wei Jiang
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Yangyang Zhao
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Li Wang
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Xun Sun
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Xinfeng Tang
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Hang Liu
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Yucai Wang
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
10
|
New insights into developing antibiofouling surfaces for industrial photobioreactors. Biotechnol Bioeng 2019; 116:2212-2222. [DOI: 10.1002/bit.27013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/08/2019] [Accepted: 05/02/2019] [Indexed: 01/20/2023]
|
11
|
Surface and anti-fouling properties of a polyampholyte hydrogel grafted onto a polyethersulfone membrane. J Colloid Interface Sci 2018; 517:155-165. [PMID: 29421675 DOI: 10.1016/j.jcis.2018.01.106] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 01/25/2018] [Accepted: 01/29/2018] [Indexed: 11/23/2022]
Abstract
Zwitterion polymers have anti-fouling properties; therefore, grafting new zwitterions to surfaces, particularly as hydrogels, is one of the leading research directions for preventing fouling. Specifically, polyampholytes, polymers of random mixed charged subunits with a net-electric charge, offer a synthetically easy alternative for studying new zwitterions with a broad spectrum of charged moieties. Here, a novel polyampholyte hydrogel was grafted onto the surface of polyethersulfone membrane by copolymerizing a mixture of vinylsulfonic acid (VSA) and [2-(methacryloyloxy)ethyl]trimethylammonium chloride (METMAC) as the negatively and positively charged monomers, respectively, using various monomer ratios in the polymerization solution, and with N,N'-methylenebisacrylamide as the crosslinker. The physicochemical, morphological and anti-fouling properties of the modified membranes were systematically investigated. Hydrophilic hydrogels were successfully grafted using monomers at different molar ratios. A thin-film zwitterion hydrogel (∼90 nm) was achieved at a 3:1 [VSA:METMAC] molar ratio in the polymerization solution. Among all examined membranes, the zwitterion polyampholyte-modified membrane demonstrated the lowest adsorption of proteins, humic acid, and sodium alginate. It also had low fouling and high flux recovery following filtration with a protein or with an extracellular polymeric substance solution. These findings suggest that this polyampholyte hydrogel is applicable as a low fouling surface coating.
Collapse
|
12
|
Jin YJ, Kang S, Park P, Choi D, Kim DW, Jung D, Koh J, Jeon J, Lee M, Ham J, Seo JH, Jin HR, Lee Y. Anti-inflammatory and Antibacterial Effects of Covalently Attached Biomembrane-Mimic Polymer Grafts on Gore-Tex Implants. ACS APPLIED MATERIALS & INTERFACES 2017; 9:19161-19175. [PMID: 28557438 DOI: 10.1021/acsami.7b02696] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Expanded polytetrafluoroethylene (ePTFE), also known as Gore-Tex, is widely used as an implantable biomaterial in biomedical applications because of its favorable mechanical properties and biochemical inertness. However, infection and inflammation are two major complications with ePTFE implantations, because pathogenic bacteria can inhabit the microsized pores, without clearance by host immune cells, and the limited biocompatibility can induce foreign body reactions. To minimize these complications, we covalently grafted a biomembrane-mimic polymer, poly(2-methacryloyloxylethyl phosphorylcholine) (PMPC), by partial defluorination followed by UV-induced polymerization with cross-linkers on the ePTFE surface. PMPC grafting greatly reduced serum protein adsorption as well as fibroblast adhesion on the ePTFE surface. Moreover, the PMPC-grafted ePTFE surface exhibited a dramatic inhibition of the adhesion and growth of Staphylococcus aureus, a typical pathogenic bacterium in ePTFE implants, in the porous network. On the basis of an analysis of immune cells and inflammation-related factors, i.e., transforming growth factor-β (TGF-β) and myeloperoxidase (MPO), we confirmed that inflammation was efficiently alleviated in tissues around PMPC-grafted ePTFE plates implanted in the backs of rats. Covalent PMPC may be an effective strategy for promoting anti-inflammatory and antibacterial functions in ePTFE implants and to reduce side effects in biomedical applications of ePTFE.
Collapse
Affiliation(s)
- Young Ju Jin
- Department of Otolaryngology-Head and Neck Surgery, Seoul National University Boramae Medical Center , 5 Gil 20, Boramae-ro, Dongjak-Gu, Seoul 156-707, Republic of Korea
| | - Sunah Kang
- Department of Chemistry, College of Natural Sciences, Seoul National University , 1 Gwanak-ro, Gwanak-gu, Seoul 151-747, Republic of Korea
| | - Pona Park
- Department of Otolaryngology-Head and Neck Surgery, Seoul National University Boramae Medical Center , 5 Gil 20, Boramae-ro, Dongjak-Gu, Seoul 156-707, Republic of Korea
| | - Dongkil Choi
- Department of Chemistry, College of Natural Sciences, Seoul National University , 1 Gwanak-ro, Gwanak-gu, Seoul 151-747, Republic of Korea
| | - Dae Woo Kim
- Department of Otolaryngology-Head and Neck Surgery, Seoul National University Boramae Medical Center , 5 Gil 20, Boramae-ro, Dongjak-Gu, Seoul 156-707, Republic of Korea
| | - Dongwook Jung
- Department of Chemistry, College of Natural Sciences, Seoul National University , 1 Gwanak-ro, Gwanak-gu, Seoul 151-747, Republic of Korea
| | - Jaemoon Koh
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine , 101 Daehak-ro, Jongno-gu, Seoul 110-744, Republic of Korea
| | - Joohee Jeon
- Department of Chemistry, College of Natural Sciences, Seoul National University , 1 Gwanak-ro, Gwanak-gu, Seoul 151-747, Republic of Korea
| | - Myoungjin Lee
- Department of Materials Science and Engineering, Korea University , 145 Anam-ro, Seongbuk-gu, Seoul 136-701, Republic of Korea
| | - Jiyeon Ham
- Department of Chemistry, College of Natural Sciences, Seoul National University , 1 Gwanak-ro, Gwanak-gu, Seoul 151-747, Republic of Korea
| | - Ji-Hun Seo
- Department of Materials Science and Engineering, Korea University , 145 Anam-ro, Seongbuk-gu, Seoul 136-701, Republic of Korea
| | - Hong-Ryul Jin
- Department of Otolaryngology-Head and Neck Surgery, Seoul National University Boramae Medical Center , 5 Gil 20, Boramae-ro, Dongjak-Gu, Seoul 156-707, Republic of Korea
| | - Yan Lee
- Department of Chemistry, College of Natural Sciences, Seoul National University , 1 Gwanak-ro, Gwanak-gu, Seoul 151-747, Republic of Korea
| |
Collapse
|
13
|
Zeriouh O, Reinoso-Moreno JV, López-Rosales L, Cerón-García MDC, Sánchez-Mirón A, García-Camacho F, Molina-Grima E. Biofouling in photobioreactors for marine microalgae. Crit Rev Biotechnol 2017; 37:1006-1023. [DOI: 10.1080/07388551.2017.1299681] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Ouassim Zeriouh
- Department of Chemical Engineering, University of Almería, Almería, Spain
| | | | | | - María del Carmen Cerón-García
- Department of Chemical Engineering, University of Almería, Almería, Spain
- Research Center in Agrifood Biotechnology, University of Almería, Almería, Spain
| | - Asterio Sánchez-Mirón
- Department of Chemical Engineering, University of Almería, Almería, Spain
- Research Center in Agrifood Biotechnology, University of Almería, Almería, Spain
| | - Francisco García-Camacho
- Department of Chemical Engineering, University of Almería, Almería, Spain
- Research Center in Agrifood Biotechnology, University of Almería, Almería, Spain
| | - Emilio Molina-Grima
- Department of Chemical Engineering, University of Almería, Almería, Spain
- Research Center in Agrifood Biotechnology, University of Almería, Almería, Spain
| |
Collapse
|
14
|
Galli G, Martinelli E. Amphiphilic Polymer Platforms: Surface Engineering of Films for Marine Antibiofouling. Macromol Rapid Commun 2017; 38. [DOI: 10.1002/marc.201600704] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Revised: 12/31/2016] [Indexed: 12/15/2022]
Affiliation(s)
- Giancarlo Galli
- Dipartimento di Chimica e Chimica Industriale and UdR Pisa INSTM; Università di Pisa; 56124 Pisa Italy
| | - Elisa Martinelli
- Dipartimento di Chimica e Chimica Industriale and UdR Pisa INSTM; Università di Pisa; 56124 Pisa Italy
| |
Collapse
|
15
|
Kuliasha CA, Finlay JA, Franco SC, Clare AS, Stafslien SJ, Brennan AB. Marine anti-biofouling efficacy of amphiphilic poly(coacrylate) grafted PDMSe: effect of graft molecular weight. BIOFOULING 2017; 33:252-267. [PMID: 28270054 DOI: 10.1080/08927014.2017.1288807] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 01/25/2017] [Indexed: 06/06/2023]
Abstract
There is currently strong motivation due to ecological concerns to develop effective anti-biofouling coatings that are environmentally benign, durable, and stable for use by the maritime industry. The antifouling (AF) and fouling-release (FR) efficacy of amphiphilic, charged copolymers composed of ~52% acrylamide, ~34% acrylic acid, and ~14% methyl acrylate grafted to poly(dimethyl siloxane) (PDMSe) surfaces were tested against zoospores of the green alga Ulva linza and the diatom Navicula incerta. The biofouling response to molecular weight variation was analyzed for grafts ranging from ~100 to 1,400 kg mol-1, The amphiphilic coatings showed a marked improvement in the FR response, with a 55% increase in the percentage removal of diatoms and increased AF efficacy, with 92% reduction in initial attachment density of zoospores, compared to PDMSe controls. However, graft molecular weight, in the range tested, was statistically insignificant. Grafting copolymers to PDMSe embossed with the Sharklet™ microtopography did not produce enhanced AF efficacy.
Collapse
Affiliation(s)
- Cary A Kuliasha
- a Department of Materials Science and Engineering , University of Florida , Gainesville , FL , USA
| | - John A Finlay
- b School of Marine Science and Technology , Newcastle University , Newcastle-upon-Tyne , UK
| | - Sofia C Franco
- b School of Marine Science and Technology , Newcastle University , Newcastle-upon-Tyne , UK
| | - Anthony S Clare
- b School of Marine Science and Technology , Newcastle University , Newcastle-upon-Tyne , UK
| | - Shane J Stafslien
- c Office of Research and Creative Activity , North Dakota State University , Fargo , ND , USA
| | - Anthony B Brennan
- a Department of Materials Science and Engineering , University of Florida , Gainesville , FL , USA
| |
Collapse
|
16
|
The direct synthesis of sulfobetaine-containing amphiphilic block copolymers and their self-assembly behavior. Eur Polym J 2017. [DOI: 10.1016/j.eurpolymj.2016.09.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
17
|
Yesilyurt V, Veiseh O, Doloff JC, Li J, Bose S, Xie X, Bader AR, Chen M, Webber MJ, Vegas AJ, Langer R, Anderson DG. A Facile and Versatile Method to Endow Biomaterial Devices with Zwitterionic Surface Coatings. Adv Healthc Mater 2017; 6:10.1002/adhm.201601091. [PMID: 27976536 PMCID: PMC5322155 DOI: 10.1002/adhm.201601091] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Indexed: 01/10/2023]
Abstract
The surface modification of implantable biomaterials with zwitterionic phosphorylcholine polymer is demonstrated through mussel-mimetic catecholamine polymer thin films. Using this method, the surfaces of alginate hydrogel microspheres and polystyrene microbeads, a model material known to produce robust foreign body responses and fibrosis, are successfully modified to reduce the tissue reaction by reducing the fibrosis in immunocompetent C57BL/6J mice.
Collapse
Affiliation(s)
- Volkan Yesilyurt
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Anesthesiology, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Omid Veiseh
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Joshua C Doloff
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Anesthesiology, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Jie Li
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Anesthesiology, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Suman Bose
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Anesthesiology, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Xi Xie
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Andrew R Bader
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Anesthesiology, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Michael Chen
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Anesthesiology, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Matthew J Webber
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Anesthesiology, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Arturo J Vegas
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Anesthesiology, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Robert Langer
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Anesthesiology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Daniel G Anderson
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Anesthesiology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
18
|
Kim SE, Zhang C, Advincula AA, Baer E, Pokorski JK. Protein and Bacterial Antifouling Behavior of Melt-Coextruded Nanofiber Mats. ACS APPLIED MATERIALS & INTERFACES 2016; 8:8928-8938. [PMID: 27043205 DOI: 10.1021/acsami.6b00093] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Antifouling surfaces are important for biomedical devices to prevent secondary infections and mitigate the effects of the foreign body response. Herein, we describe melt-coextruded poly(ε-caprolactone) (PCL) nanofiber mats grafted with antifouling polymers. Nonwoven PCL fiber mats are produced using a multilayered melt coextrusion process followed by high-pressure hydroentanglement to yield porous patches. The resulting fiber mats show submicrometer cross-sectional fiber dimensions and yield pore sizes that were nearly uniform, with a mean pore size of 1.6 ± 0.9 μm. Several antifouling polymers, including hydrophilic, zwitterionic, and amphipathic molecules, are grafted to the surface of the mats using a two-step procedure that includes photochemistry followed by the copper-catalyzed azide-alkyne cycloaddition reaction. Fiber mats are evaluated using separate adsorption tests for serum proteins and E. coli. The results indicate that poly(oligo(ethylene glycol) methyl ether methacrylate)-co-(trifluoroethyl methacrylate) (poly(OEGMEMA-co-TFEMA)) grafted mats exhibit approximately 85% less protein adhesion and 97% less E. coli adsorption when compared to unmodified PCL fibermats. In dynamic antifouling testing, the amphiphilic fluorous polymer surface shows the highest flux and highest rejection value of foulants. The work presented within has implications on the high-throughput production of antifouling microporous patches for medical applications.
Collapse
Affiliation(s)
- Si-Eun Kim
- Department of Macromolecular Science & Engineering, Case Western Reserve University , 2100 Adelbert Road, Cleveland, Ohio 44106, United States
| | - Cong Zhang
- Department of Macromolecular Science & Engineering, Case Western Reserve University , 2100 Adelbert Road, Cleveland, Ohio 44106, United States
| | - Abigail A Advincula
- Department of Macromolecular Science & Engineering, Case Western Reserve University , 2100 Adelbert Road, Cleveland, Ohio 44106, United States
| | - Eric Baer
- Department of Macromolecular Science & Engineering, Case Western Reserve University , 2100 Adelbert Road, Cleveland, Ohio 44106, United States
| | - Jonathan K Pokorski
- Department of Macromolecular Science & Engineering, Case Western Reserve University , 2100 Adelbert Road, Cleveland, Ohio 44106, United States
| |
Collapse
|
19
|
Ko DY, Patel M, Jung BK, Park JH, Jeong B. Phosphorylcholine-Based Zwitterionic Biocompatible Thermogel. Biomacromolecules 2015; 16:3853-62. [DOI: 10.1021/acs.biomac.5b01169] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Du Young Ko
- Department of Chemistry and
Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 120-750, Korea
| | - Madhumita Patel
- Department of Chemistry and
Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 120-750, Korea
| | - Bo Kyoeng Jung
- Department of Chemistry and
Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 120-750, Korea
| | - Jin Hye Park
- Department of Chemistry and
Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 120-750, Korea
| | - Byeongmoon Jeong
- Department of Chemistry and
Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 120-750, Korea
| |
Collapse
|