1
|
Doan-Nguyen TP, Aunkham A, Preedanorawut P, Chanpong T, Schulte A, Crespy D, Suginta W. Nanodots functionalized with chitooligosaccharides for blocking chitoporins. Colloids Surf B Biointerfaces 2024; 245:114284. [PMID: 39395215 DOI: 10.1016/j.colsurfb.2024.114284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/26/2024] [Accepted: 09/29/2024] [Indexed: 10/14/2024]
Abstract
We report the synthesis of functionalized nanodots as potential powerful blockers of solute transport through a chitoporin. Ultrasmall silica nanocapsules with a diameter of ∼ 6 nm were coated with chitooligosaccharides to be used as a "lid" binding to the opening of the chitoporin VhChiP of Vibrio campbellii. Efficient blocking is attributed to the adequate size of the nanodots and their functionalization with oligochitosan, which has strong affinity towards the Vibrio chitoporin. This strategy paves the way towards the development of nanomaterials for blocking other porins.
Collapse
Affiliation(s)
- Thao P Doan-Nguyen
- Department of Materials Science and Engineering, School of Molecular Science and Engineering (MSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
| | - Anuwat Aunkham
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
| | - Patitta Preedanorawut
- Department of Materials Science and Engineering, School of Molecular Science and Engineering (MSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
| | - Thanida Chanpong
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
| | - Albert Schulte
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
| | - Daniel Crespy
- Department of Materials Science and Engineering, School of Molecular Science and Engineering (MSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand.
| | - Wipa Suginta
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand.
| |
Collapse
|
2
|
Abhilash MR, Gangadhar A, Krishnegowda J, Chikkamadaiah M, Srikantaswamy S. Hydrothermal synthesis, characterization and enhanced photocatalytic activity and toxicity studies of a rhombohedral Fe2O3nanomaterial. RSC Adv 2019; 9:25158-25169. [PMID: 35528652 PMCID: PMC9069891 DOI: 10.1039/c9ra04978a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 08/02/2019] [Indexed: 11/21/2022] Open
Abstract
The present investigation focuses on the synthesis of metal oxide nanoparticles (MONPs)viaa facile hydrothermal route.
Collapse
Affiliation(s)
| | - Akshatha Gangadhar
- Department of Studies in Environmental Science
- University of Mysore
- Mysore 570006
- India
- Centre for Materials Science and Technology
| | - Jagadish Krishnegowda
- Department of Studies in Environmental Science
- University of Mysore
- Mysore 570006
- India
- Centre for Materials Science and Technology
| | | | - Shivanna Srikantaswamy
- Department of Studies in Environmental Science
- University of Mysore
- Mysore 570006
- India
- Centre for Materials Science and Technology
| |
Collapse
|
3
|
Nath Roy D, Goswami R, Pal A. Nanomaterial and toxicity: what can proteomics tell us about the nanotoxicology? Xenobiotica 2016; 47:632-643. [PMID: 27414072 DOI: 10.1080/00498254.2016.1205762] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
1. In the last few years, a substantial scientific work is focused to identify the potential toxicity of nanomaterials by studying the cellular pathways under in vitro and in vivo conditions. Owing to high surface area to volume ratio nanoparticles (NPs) can pass through cell membranes which might be responsible for creating adverse interactions in biological systems. Simultaneously, researchers are also interested to assess the fate of NP inside the living system, which may lead to altered protein expression as well as protein corona formation. 2. According to published reports, NP-mediated toxicity involves altered cellular system including cell morphology, cell differentiation, cell metabolism, cell mobility, cellular immunity, which is derived from the side effects of nanoformulation and leading to apoptosis and necrosis. These results indicate the existence of potential toxic effect of these particles to human health. 3. The advent of proteomics with sophisticated technical improvement coupled with advanced bioinformatics has led to identify altered proteins due to nanomaterial exposure that could provide a new avenue to biomarker discovery. 4. This review aims to provide the current status of safe production and use of nanomaterials.
Collapse
Affiliation(s)
- Dijendra Nath Roy
- a Department of Bioengineering , National Institute of Technology , Agartala , Tripura , India
| | - Ritobrata Goswami
- b Division of Biological & Life Sciences , School of Arts & Sciences, Ahmedabad University , Ahmedabad , Gujarat , India , and
| | - Ayantika Pal
- c Department of Human Physiology , Tripura University , Suryamaninagar , Tripura , India
| |
Collapse
|
4
|
Perera AS, Wang H, Shrestha TB, Troyer DL, Bossmann SH. Nanoscopic surfactant behavior of the porin MspA in aqueous media. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2013; 4:278-284. [PMID: 23766950 PMCID: PMC3678404 DOI: 10.3762/bjnano.4.30] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 04/12/2013] [Indexed: 06/02/2023]
Abstract
The mycobacterial porin MspA is one of the most stable channel proteins known to date. MspA forms vesicles at low concentrations in aqueous buffers. Evidence from dynamic light scattering, transmission electron microscopy and zeta-potential measurements by electrophoretic light scattering indicate that MspA behaves like a nanoscale surfactant. The extreme thermostability of MspA allows these investigations to be carried out at temperatures as high as 343 K, at which most other proteins would quickly denature. The principles of vesicle formation of MspA as a function of temperature and the underlying thermodynamic factors are discussed here. The results obtained provide crucial evidence in support of the hypothesis that, during vesicle formation, nanoscopic surfactant molecules, such as MspA, deviate from the principles underlined in classical surface chemistry.
Collapse
Affiliation(s)
- Ayomi S Perera
- Kansas State University, Department of Chemistry, CBC Building 201, Manhattan, KS 66506, USA
| | - Hongwang Wang
- Kansas State University, Department of Chemistry, CBC Building 201, Manhattan, KS 66506, USA
| | - Tej B Shrestha
- Kansas State University, Department of Anatomy & Physiology, Coles 130, Manhattan, KS 66506, USA
| | - Deryl L Troyer
- Kansas State University, Department of Anatomy & Physiology, Coles 130, Manhattan, KS 66506, USA
| | - Stefan H Bossmann
- Kansas State University, Department of Chemistry, CBC Building 201, Manhattan, KS 66506, USA
| |
Collapse
|
5
|
Perera AS, Wang H, Basel MT, Pokhrel MR, Gamage PS, Kalita M, Wendel S, Sears B, Welideniya D, Liu Y, Turro C, Troyer DL, Bossmann SH. Channel blocking of MspA revisited. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:308-315. [PMID: 23214433 DOI: 10.1021/la3037296] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Porin A from Mycobacterium smegmatis (MspA) is a highly stable, octameric channel protein, which acts as the main transporter of electrolytes across the cell membrane. MspA features a narrow, negatively charged constriction zone, allowing stable binding of various analytes thereby blocking the channel. Investigation of channel blocking of mycobacterial porins is of significance in developing alternate treatment methods for tuberculosis. The concept that ruthenium(II)quaterpyridinium complexes have the capability to act as efficient channel blockers for MspA and related porins, emerged after very high binding constants were measured by high-performance liquid chromatography and steady-state luminescence studies. Consequently, the interactions between the ruthenium(II) complex RuC2 molecules and MspA, leading to RuC2@MspA assemblies, have been studied utilizing time-resolved absorption/emission, atomic force microscopy, dynamic light scattering, ζ potential measurements, and isothermal titration calorimetry. The results obtained provide evidence for the formation of clusters/large aggregates of RuC2 and MspA. The results are of interest with respect to utilizing prospective channel blockers in porins. The combination of results from conceptually different techniques shed some light onto the chemical nature of MspA-channel blocker interactions thus contributing to the development of a paradigm for channel blocking.
Collapse
Affiliation(s)
- Ayomi S Perera
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Abdelhalim MAK. Gold nanoparticles administration induces disarray of heart muscle, hemorrhagic, chronic inflammatory cells infiltrated by small lymphocytes, cytoplasmic vacuolization and congested and dilated blood vessels. Lipids Health Dis 2011; 10:233. [PMID: 22151883 PMCID: PMC3278398 DOI: 10.1186/1476-511x-10-233] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Accepted: 12/09/2011] [Indexed: 11/30/2022] Open
Abstract
Background Despite significant research efforts on cancer therapy, diagnostics and imaging, many challenges remain unsolved. There are many unknown details regarding the interaction of nanoparticles (NPs) and biological systems. The structure and properties of gold nanoparticles (GNPs) make them useful for a wide array of biological applications. However, for the application of GNPs in therapy and drug delivery, knowledge regarding their bioaccumulation and associated local or systemic toxicity is necessary. Information on the biological fate of NPs, including distribution, accumulation, metabolism, and organ specific toxicity is still minimal. Studies specifically dealing with the toxicity of NPs are rare. The aim of the present study was to investigate the effects of intraperitoneal administration of GNPs on histological alterations of the heart tissue of rats in an attempt to identify and understand the toxicity and the potential role of GNPs as a therapeutic and diagnostic tool. Methods A total of 40 healthy male Wistar-Kyoto rats received 50 μl infusions of 10, 20 and 50 nm GNPs for 3 or 7 days. Animals were randomly divided into groups: 6 GNP-treated rats groups and one control group (NG). Groups 1, 2 and 3 received infusions of 50 μl GNPs of size 10 nm (3 or 7 days), 20 nm (3 or 7 days) and 50 nm (3 or 7 days), respectively. Results In comparison with the respective control rats, exposure to GNPs doses produced heart muscle disarray with a few scattered chronic inflammatory cells infiltrated by small lymphocytes, foci of hemorrhage with extravasation of red blood cells, some scattered cytoplasmic vacuolization and congested and dilated blood vessels. None of the above alterations were observed in the heart muscle of any member of the control group. Conclusions The alterations induced by intraperitoneal administration of GNPs were size-dependent, with smaller ones inducing greater affects, and were also related to the time exposure to GNPs. These alterations may indicate scattered cytoplasmic vacuolization, which may induce the toxicity effect through an inability to deal with the accumulated residues resulting from metabolic and structural disturbances caused by these NPs. These histological alterations were more prominent with 10 nm size particles than with the larger ones. The interaction of GNPs with proteins and various cell types should be considered as part of the toxicological evaluation. Additional experiments related to plasma, tissues cytokine, antioxidant defense mechanism, lipid peroxidation, histomorphologcal and ultrastructure will be performed to identify and understand the toxicity and the potential use of GNPs as therapeutic and diagnostic tools.
Collapse
|
7
|
Abdelhalim MAK. Exposure to gold nanoparticles produces cardiac tissue damage that depends on the size and duration of exposure. Lipids Health Dis 2011; 10:205. [PMID: 22073987 PMCID: PMC3278471 DOI: 10.1186/1476-511x-10-205] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2011] [Accepted: 11/10/2011] [Indexed: 11/10/2022] Open
Abstract
Background Current research focuses on cancer therapy, diagnostics and imaging, although many challenges still need to be solved. However, for the application of gold nanoparticles (GNPs) in therapy and diagnostics it is necessary to know the bioaccumulation and local or systemic toxicity associated to them. The aim of the present study was to investigate the effects of intraperitoneal administration of GNPs on the histological alterations of the heart tissue of rats in an attempt to cover and understand the toxicity and the potential role of GNPs in the therapeutic and diagnostic applications. Methods Animals were randomly divided into 3 GNPs-treated rats groups and one control group (CG). The 10, 20 and 50 nm GNPs were administered intraperitonealy at the rate of 3 or 7 days as follows: Group 1: received infusion of 100 μl GNPs of size 10 nm for 3 or 7 days; Group 2: received infusion of 100 μl GNPs of size 20 nm for 3 or 7 days; Group 3: received infusion of 100 μl GNPs of size 50 nm for 3 or 7 days. Control group: received no GNPs. Results In comparison with the respective control rats, GNPs-treated rat received 100 μl of 10 and 20 nm particles for 3 days or 7 days demonstrating congested heart muscle with prominent dilated blood vessels, scattered and extravasations of red blood cells, focus of muscle hyalinosis, disturbed muscle fascicles, dense prominent focus of inflammatory cells infiltrate by small lymphocytes and few plasma cells while GNPs-treated rat received 100 μl of 50 nm particles for 3 or 7 days demonstrating benign normal looking heart muscle with normal muscle direction and fascicles, and very few scattered small lymphocytes. Conclusions The histological alterations induced by intraperitoneal administration of GNPs were size-dependent with smaller ones induced more affects and related with time exposure of GNPs. This study suggests that interaction of GNPs with proteins and various cell types might be evaluated as part of the toxicological assessment in addition to further experiments related to tissues antioxidant enzymes, oxidative parameters, lipid peroxidation, production of free radicals and/or ROS and cytokine, histomorphologcal and ultrastrucural will be performed to cover and understand the toxicity and the potential use of GNPs as therapeutic and diagnostic tool.
Collapse
|
8
|
Abdelhalim MAK, Jarrar BM. Gold nanoparticles administration induced prominent inflammatory, central vein intima disruption, fatty change and Kupffer cells hyperplasia. Lipids Health Dis 2011; 10:133. [PMID: 21819574 PMCID: PMC3169478 DOI: 10.1186/1476-511x-10-133] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Accepted: 08/05/2011] [Indexed: 11/13/2022] Open
Abstract
Background Advances in nanotechnology have identified promising candidates for many biological, biomedical and biomedicine applications. They are being increasingly exploited for medical uses and other industrial applications. The aim of the present study was to investigate the effects of administration of gold nanoparticles (GNPs) on inflammatory cells infiltration, central vein intima disruption, fatty change, and Kupffer cells hyperplasia in the hepatic tissue in an attempt to cover and understand the toxicity and the potential threat of their therapeutic and diagnostic use. Methods A total of 70 healthy male Wistar-Kyoto rats were exposed to GNPs received 50 or 100 μl of GNPs infusion of 10, 20 and 50 nm GNPs for 3 or 7 days. Animals were randomly divided into groups, 12 GNPs-treated rats groups and one control group (NG). Groups 1, 2 and 3 received infusion of 50 μl GNPs of size 10 nm (3 or 7 days), size 20 nm (3 or 7 days) and 50 nm (3 or 7 days), respectively; while groups 4, 5 and 6 received infusion of 100 μl GNPs of size 10 nm, size 20 nm and 50 nm, respectively. Results In comparison with respective control rats, exposure to GNPs doses has produced alterations in the hepatocytes, portal triads and sinusoids. The alterations in the hepatocytes were mainly vacuolar to hydropic degeneration, cytopasmic hyaline vacuolation, polymorphism, binucleation, karyopyknosis, karyolysis, karyorrhexis and necrosis. In addition, inflammatory cell infiltration, Kupffer cells hyperplasia, central veins intima disruption, hepatic strands dilatation and occasional fatty change together with a loss of normal architechiture of hepatic strands were also seen. Conclusions The alterations induced by the administration of GNPs were size-dependent with smaller ones induced more affects and related with time exposure of GNPs. These alterations might be an indication of injured hepatocytes due to GNPs toxicity that became unable to deal with the accumulated residues resulting from metabolic and structural disturbances caused by these NPs. These histological alterations may suggest that GNPs interact with proteins and enzymes of the hepatic tissue interfering with the antioxidant defense mechanism and leading to reactive oxygen species (ROS) generation which in turn may induce stress in the hepatocytes to undergo necrosis.
Collapse
|
9
|
van Rijn P, Böker A. Bionanoparticles and hybrid materials: tailored structural properties, self-assembly, materials and developments in the field. ACTA ACUST UNITED AC 2011. [DOI: 10.1039/c1jm11433f] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
Tedesco S, Doyle H, Blasco J, Redmond G, Sheehan D. Oxidative stress and toxicity of gold nanoparticles in Mytilus edulis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2010; 100:178-86. [PMID: 20382436 DOI: 10.1016/j.aquatox.2010.03.001] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2009] [Revised: 02/26/2010] [Accepted: 03/02/2010] [Indexed: 05/09/2023]
Abstract
Gold nanoparticles (AuNP) have potential applications in drug delivery, cancer diagnosis and therapy, food industry and environment remediation. However, little is known about their potential toxicity or fate in the environment. Mytilus edulis was exposed in tanks to 750 ppb AuNP (average diameter 5.3 ± 1 nm) for 24h to study in vivo biological effects of nanoparticles. Traditional biomarkers and an affinity procedure selective for thiol-containing proteins followed by two-dimensional electrophoresis (2DE) separations were used to study toxicity and oxidative stress responses. Results were compared to those obtained for treatment with cadmium chloride, a well known pro-oxidant. M. edulis mainly accumulated AuNP in digestive gland which also showed higher lipid peroxidation. One-dimensional SDS/PAGE (1DE) and 2DE analysis of digestive gland samples revealed decreased thiol-containing proteins for AuNP. Lysosomal membrane stability measured in haemolymph gave lower values for neutral red retention time (NRRT) in both treatments but was greater in AuNP. Oxidative stress occurred within 24h of AuNP exposure in M. edulis. Previously we showed that larger diameter AuNP caused modest effects, indicating that nanoparticle size is a key factor in biological responses to nanoparticles. This study suggests that M. edulis is a suitable model animal for environmental toxicology studies of nanoparticles.
Collapse
Affiliation(s)
- Sara Tedesco
- Environmental Research Institute of University College Cork, Cork, Ireland
| | | | | | | | | |
Collapse
|
11
|
Gamage P, Basel MT, Lovell K, Pokhrel MR, Battle D, Ito T, Pavlenok M, Niederweis M, Bossmann SH. Poly-N-Isopropylacrylamide/acrylic Acid Copolymers for the Generation of Nanostructures at Mica Surfaces and as Hydrophobic Host Systems for the Porin MspA from Mycobacterium smegmatis. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2009; 113:16485-16494. [PMID: 20161351 PMCID: PMC2776743 DOI: 10.1021/jp9057687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The work presented here aims at utilizing poly-N-isopropyl-acrylamide/acrylic acid copolymers to create nanostructured layers on mica surfaces by a simple spin-casting procedure. The average composition of the copolymers determined by elemental analysis correlates excellently with the feed composition indicating that the radical polymerization process is statistical. The resulting surfaces were characterized by Atomic Force Microscopy (magnetic AC-mode) at the copolymer/air interface. Postpolymerization modification of the acrylic acid functions with perfluoro-octyl-iodide decreased the tendency towards spontaneous formation of nanopores. Crosslinking of individual polymer chains permitted the generation of ultraflat layers, which hosted the mycobacterial channel protein MspA, without compromising its channel function. The comparison of copolymers of very similar chemical composition that have been prepared by living radical polymerization and classic radical polymerization indicated that differences in polydispersity played only a minor role when poly-N-isopropyl-acrylamide/acrylic acid copolymers were spincast, but a major role when copolymers featuring the strongly hydrophobic perfluoro-octyl-labels were used. The mean pore diameters were 23.8+/-4.4 nm for P[(NIPAM)(95.5)-co-(AA)(4.5)] (PDI (polydispersity index)=1.55) and 21.8+/-4.2 nm for P[(NIPAM)(95.3)-co-(AA)(4.7)] (PDI=1.25). The depth of the nanopores was approx. 4 nm. When depositing P[(NIPAM)(95)-co-(AA)(2.8)-AAC(8)F(17 2.2)] (PDI=1.29) on Mica, the resulting mean pore diameter was 35.8+/-7.1 nm, with a depth of only 2 nm.
Collapse
Affiliation(s)
- Pubudu Gamage
- Kansas State University, Department of Chemistry and Terry C. Johnson Center for Basic Cancer Research, The Midwest Institute for Comparative Stem Cell Biology, 213 CBC Building, Manhattan, KS 66506-0401, USA,
| | - Matthew T. Basel
- Kansas State University, Department of Chemistry and Terry C. Johnson Center for Basic Cancer Research, The Midwest Institute for Comparative Stem Cell Biology, 213 CBC Building, Manhattan, KS 66506-0401, USA,
| | - Kimberly Lovell
- Kansas State University, Department of Chemistry and Terry C. Johnson Center for Basic Cancer Research, The Midwest Institute for Comparative Stem Cell Biology, 213 CBC Building, Manhattan, KS 66506-0401, USA,
| | - Megh Raj Pokhrel
- Central Department of Chemistry, Tribhuvan-University, Kathmandu, Nepal,
| | - Deletria Battle
- Kansas State University, Department of Chemistry and Terry C. Johnson Center for Basic Cancer Research, The Midwest Institute for Comparative Stem Cell Biology, 213 CBC Building, Manhattan, KS 66506-0401, USA,
- Kansas State University, Department of Chemistry, 213 CBC Building, Manhattan, KS 66506-0401, USA,
| | - Takashi Ito
- Kansas State University, Department of Chemistry, 213 CBC Building, Manhattan, KS 66506-0401, USA,
| | - Mikhail Pavlenok
- Department of Microbiology, University of Alabama at Birmingham, BBRB 609, AL 35294-2170, USA,
| | - Michael Niederweis
- Department of Microbiology, University of Alabama at Birmingham, BBRB 609, AL 35294-2170, USA,
| | - Stefan H. Bossmann
- Kansas State University, Department of Chemistry and Terry C. Johnson Center for Basic Cancer Research, The Midwest Institute for Comparative Stem Cell Biology, 213 CBC Building, Manhattan, KS 66506-0401, USA,
| |
Collapse
|
12
|
Basel MT, Dani RK, Kang M, Pavlenok M, Chikan V, Smith PE, Niederweis M, Bossmann SH. Direct observation of gold nanoparticle assemblies with the porin MspA on mica. ACS NANO 2009; 3:462-466. [PMID: 19236086 PMCID: PMC2657223 DOI: 10.1021/nn800786p] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The octameric porin MspA from Mycobacterium smegmatis is sufficiently stable to form a nonmembrane-supported stand-alone porin on mica surfaces. About 98% of all MspA octamers were found to stand upright on mica, with their periplasmic loop regions bound to the hydrophilic mica surface. Both, small (d = 3.7 nm) and large (d = 17 nm) gold nanoparticles bind to MspA, however, in different positions: small gold nanoparticles bind within the MspA pore, whereas the large gold nanoparticles bind to the upper region of MspA. These experiments demonstrate that gold nanoparticles can be positioned at different, well-defined distances from the underlying surface using the MspA pore as a template. These findings represent a significant step toward the use of electrically insulating stable proteins in combination with metal nanoparticles in nanodevices.
Collapse
Affiliation(s)
- Matthew T. Basel
- Department of Chemistry, Kansas State University, Manhattan, KS 66506-3701
| | - Raj Kumar Dani
- Department of Chemistry, Kansas State University, Manhattan, KS 66506-3701
| | - Myungshim Kang
- Department of Chemistry, Kansas State University, Manhattan, KS 66506-3701
| | - Mikhail Pavlenok
- Mikhail Pavlenok and Michael Niederweis, Department of Microbiology, Bevill Biomedical Research Building, Birmingham, The University of Alabama at Birmingham, Birmingham, AL 35294-2170
| | - Viktor Chikan
- Department of Chemistry, Kansas State University, Manhattan, KS 66506-3701
| | - Paul E. Smith
- Department of Chemistry, Kansas State University, Manhattan, KS 66506-3701
| | - Michael Niederweis
- Mikhail Pavlenok and Michael Niederweis, Department of Microbiology, Bevill Biomedical Research Building, Birmingham, The University of Alabama at Birmingham, Birmingham, AL 35294-2170
| | - Stefan H. Bossmann
- Department of Chemistry, Kansas State University, Manhattan, KS 66506-3701
| |
Collapse
|