1
|
Bhardwaj A, Pagaduan JN, Yu YG, Einck VJ, Nuguri S, Katsumata R, Watkins JJ. Large-Pore Ordered Mesoporous Turbostratic Carbon Films Prepared Using Rapid Thermal Annealing for High-Performance Micro-pseudocapacitors. ACS APPLIED MATERIALS & INTERFACES 2021; 13:61027-61038. [PMID: 34913685 DOI: 10.1021/acsami.1c16666] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Carbonization by rapid thermal annealing (RTA) of precursor films structured by a brush block copolymer-mediated self-assembly enabled the preparation of large-pore (40 nm) ordered mesoporous carbon (MPC)-based micro-supercapacitors within minutes. The large pore size of the fabricated films facilitates both rapid electrolyte diffusion for carbon-based electric double-layer capacitors and conformal deposition of V2O5 without pore blockage for pseudocapacitors. The pores were templated using bottlebrush block copolymers (BBCPs) via cooperative assembly of phenol-formaldehyde resin to produce microphase-segregated carbon precursor films on a variety of substrates. Ultrafast RTA processing (∼50 °C/s) at elevated temperatures (up to 1000 °C) then generated stable, conductive, turbostratic MPC films, resolving a significant bottleneck in rapid fabrication. MPC prepared on stainless steel at 900 °C demonstrated exceptionally high areal and volumetric capacitances of 6.3 mF/cm2 and 126 F/cm3 (at 0.8 mA/cm2 using 6 M KOH as the electrolyte), respectively, and 91% capacitance retention after 10,000 galvanostatic charge/discharge cycles. Post-RTA conformal V2O5 deposition yielded pseudocapacitors with 10-fold increase in energy density (20 μW h cm-2 μm-1) without adversely affecting the high power density (450 μW cm-2 μm-1). The use of RTA coupled with BBCP templating opens avenues for scalable, rapid fabrication of high-performance carbon-based micro-pseudocapacitors.
Collapse
Affiliation(s)
- Ayush Bhardwaj
- Polymer Science and Engineering Department, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - James Nicolas Pagaduan
- Polymer Science and Engineering Department, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Yong-Guen Yu
- Polymer Science and Engineering Department, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Vincent J Einck
- Polymer Science and Engineering Department, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Sravya Nuguri
- Polymer Science and Engineering Department, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Reika Katsumata
- Polymer Science and Engineering Department, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - James J Watkins
- Polymer Science and Engineering Department, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
2
|
Hwang SH, Kim YK, Seo HJ, Jeong SM, Kim J, Lim SK. The Enhanced Hydrogen Storage Capacity of Carbon Fibers: The Effect of Hollow Porous Structure and Surface Modification. NANOMATERIALS 2021; 11:nano11071830. [PMID: 34361215 PMCID: PMC8308342 DOI: 10.3390/nano11071830] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/07/2021] [Accepted: 07/12/2021] [Indexed: 11/16/2022]
Abstract
In this study, highly porous carbon fiber was prepared for hydrogen storage. Porous carbon fiber (PCF) and activated porous carbon fiber (APCF) were derived by carbonization and chemical activation after selectively removing polyvinyl alcohol from a bi-component fiber composed of polyvinyl alcohol and polyacrylonitrile (PAN). The chemical activation created more pores on the surface of the PCF, and consequently, highly porous APCF was obtained with an improved BET surface area (3058 m2 g−1) and micropore volume (1.18 cm3 g−1) compare to those of the carbon fiber, which was prepared by calcination of monocomponent PAN. APCF was revealed to be very efficient for hydrogen storage, its hydrogen capacity of 5.14 wt% at 77 K and 10 MPa. Such hydrogen storage capacity is much higher than that of activated carbon fibers reported previously. To further enhance hydrogen storage capacity, catalytic Pd nanoparticles were deposited on the surface of the APCF. The Pd-deposited APCF exhibits a high hydrogen storage capacity of 5.45 wt% at 77 K and 10 MPa. The results demonstrate the potential of Pd-deposited APCF for efficient hydrogen storage.
Collapse
Affiliation(s)
- Sung-Ho Hwang
- Division of Energy Technology, DGIST, Daegu 42988, Korea; (S.-H.H.); (Y.K.K.); (H.-J.S.); (S.M.J.)
| | - Young Kwang Kim
- Division of Energy Technology, DGIST, Daegu 42988, Korea; (S.-H.H.); (Y.K.K.); (H.-J.S.); (S.M.J.)
| | - Hye-Jin Seo
- Division of Energy Technology, DGIST, Daegu 42988, Korea; (S.-H.H.); (Y.K.K.); (H.-J.S.); (S.M.J.)
| | - Soon Moon Jeong
- Division of Energy Technology, DGIST, Daegu 42988, Korea; (S.-H.H.); (Y.K.K.); (H.-J.S.); (S.M.J.)
| | - Jongwon Kim
- Department of Fiber System Engineering, Yeungnam University, Gyeongsan 38541, Korea
- Correspondence: (J.K.); (S.K.L.)
| | - Sang Kyoo Lim
- Division of Energy Technology, DGIST, Daegu 42988, Korea; (S.-H.H.); (Y.K.K.); (H.-J.S.); (S.M.J.)
- Department of Interdisciplinary Engineering, DGIST, Daegu 42988, Korea
- Correspondence: (J.K.); (S.K.L.)
| |
Collapse
|
3
|
Lee WH, Bae JY, Yushkin A, Efimov M, Jung JT, Volkov A, Lee YM. Energy and time efficient infrared (IR) irradiation treatment for preparing thermally rearranged (TR) and carbon molecular sieve (CMS) membranes for gas separation. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118477] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
4
|
Salonen J, Mäkilä E. Thermally Carbonized Porous Silicon and Its Recent Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1703819. [PMID: 29484727 DOI: 10.1002/adma.201703819] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 09/08/2017] [Indexed: 06/08/2023]
Abstract
Recent progress in research on thermally carbonized porous silicon (TCPSi) and its applications is reported. Despite a slow start, thermal carbonization has now started to gain interest mainly due to new emerging areas for applications. These new areas, such as optical sensing, drug delivery, and energy storage, require stable surface chemistry and physical properties. TCPSi is known to have all of these desired properties. Herein, the above-listed properties of TCPSi are summarized, and the carbonization processes, functionalization, and characterization of TCPSi are reviewed. Moreover, some of the emerging fields of TCPSi applications are discussed and recent advances in the fields are introduced.
Collapse
Affiliation(s)
- Jarno Salonen
- Industrial Physics Laboratory, Department of Physics and Astronomy, University of Turku, FI-20014, Turku, Finland
| | - Ermei Mäkilä
- Industrial Physics Laboratory, Department of Physics and Astronomy, University of Turku, FI-20014, Turku, Finland
| |
Collapse
|
5
|
Mireles M, Gaborski TR. Fabrication techniques enabling ultrathin nanostructured membranes for separations. Electrophoresis 2017; 38:2374-2388. [PMID: 28524241 PMCID: PMC5909070 DOI: 10.1002/elps.201700114] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 05/01/2017] [Accepted: 05/11/2017] [Indexed: 11/09/2022]
Abstract
The fabrication of nanostructured materials is an area of continuous improvement and innovative techniques that fulfill the demand of many fields of research and development. The continuously decreasing size of the smallest patternable feature has expanded the catalog of methods enabling the fabrication of nanostructured materials. Several of these nanofabrication techniques have sprouted from applications requiring nanoporous membranes such as molecular separations, cell culture, and plasmonics. This review summarizes methods that successfully produce through-pores in ultrathin films exhibiting an approximate pore size to thickness ratio of one, which has been shown to be beneficial due to high permeability and improved separation potential. The material reviewed includes large-area, parallel, and affordable approaches such as self-organizing polymers, nanosphere lithography, anodization, nanoimprint lithography as well as others such as solid phase crystallization and nanosphere lens lithography. The aim of this review is to provide a set of inexpensive fabrication techniques to produce nanostructured materials exhibiting pores ranging from 10 to 350 nm and a pore size to thickness ratio close to one. The fabrication methods described in this work have reported the successful manufacture of nanoporous membranes exhibiting the ideal characteristics to improve selectivity and permeability when applied as separation media in ultrafiltration.
Collapse
Affiliation(s)
- Marcela Mireles
- Biomedical Engineering Department, Rochester Institute of Technology, Rochester, NY, USA
| | - Thomas R Gaborski
- Biomedical Engineering Department, Rochester Institute of Technology, Rochester, NY, USA
| |
Collapse
|
6
|
Lee DS, Park S, Han YD, Lee JE, Jeong HY, Yoon HC, Jung MY, Kim SO, Choi SY. Selective protein transport through ultra-thin suspended reduced graphene oxide nanopores. NANOSCALE 2017; 9:13457-13464. [PMID: 28682407 DOI: 10.1039/c7nr01889d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The nanoporous free-standing graphene membrane is of great interest in high performance separation technology. In particular, the separation of biological molecules with similar sizes is one of the key challenges in the purification of biomaterials. Here, we report a reliable, cost-effective, and facile method for the fabrication of a graphene-based nanosieve and its application in the separation of similar-size proteins. A suspended reduced graphene oxide (rGO) nanosieve with ultra-thin, large-area, well-ordered, and dense 15 nm-sized pores was fabricated using block copolymer (BCP) lithography. The fabricated 5 nm-ultrathin nanosieve with an area of 200 μm × 200 μm (an ultra-high aspect ratio of ∼40 000) endured pressure up to 1 atm, and effectively separated hemoglobin (Hb) from a mixture of hemoglobin and immunoglobulin G (IgG), the common proteins in human blood, in a highly selective and rapid manner. The use of the suspended rGO nanosieve is expected to provide a simple and manufacturable platform for practical biomolecule separation offering high selectivity and a large throughput.
Collapse
Affiliation(s)
- Dae-Sik Lee
- Electronics and Telecommunications Research Institute (ETRI), 218 Gajeongno, Yuseong-gu, Daejeon, 34129, Republic of Korea.
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Gao P, Tang H, Xing A, Bao Z. Porous silicon from the magnesiothermic reaction as a high-performance anode material for lithium ion battery applications. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.01.119] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Qi C, Striemer CC, Gaborski TR, McGrath JL, Fauchet PM. Influence of silicon dioxide capping layers on pore characteristics in nanocrystalline silicon membranes. NANOTECHNOLOGY 2015; 26:055706. [PMID: 25590751 DOI: 10.1088/0957-4484/26/5/055706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Porous nanocrystalline silicon (pnc-Si) membranes are a new class of membrane material with promising applications in biological separations. Pores are formed in a silicon film sandwiched between nm thick silicon dioxide layers during rapid thermal annealing. Controlling pore size is critical in the size-dependent separation applications. In this work, we systematically studied the influence of the silicon dioxide capping layers on pnc-Si membranes. Even a single nm thick top oxide layer is enough to switch from agglomeration to pore formation after annealing. Both the pore size and porosity increase with the thickness of the top oxide, but quickly reach a plateau after 10 nm of oxide. The bottom oxide layer acts as a barrier layer to prevent the a-Si film from undergoing homo-epitaxial growth during annealing. Both the pore size and porosity decrease as the thickness of the bottom oxide layer increases to 100 nm. The decrease of the pore size and porosity is correlated with the increased roughness of the bottom oxide layer, which hinders nanocrystal nucleation and nanopore formation.
Collapse
Affiliation(s)
- Chengzhu Qi
- Materials Science Program, University of Rochester, Rochester, NY 14627, USA. Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN 37235, USA
| | | | | | | | | |
Collapse
|
9
|
Chung HH, Chan CK, Khire TS, Marsh GA, Clark A, Waugh RE, McGrath JL. Highly permeable silicon membranes for shear free chemotaxis and rapid cell labeling. LAB ON A CHIP 2014; 14:2456-68. [PMID: 24850320 PMCID: PMC4540053 DOI: 10.1039/c4lc00326h] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Microfluidic systems are powerful tools for cell biology studies because they enable the precise addition and removal of solutes in small volumes. However, the fluid forces inherent in the use of microfluidics for cell cultures are sometimes undesirable. An important example is chemotaxis systems where fluid flow creates well-defined and steady chemotactic gradients but also pushes cells downstream. Here we demonstrate a chemotaxis system in which two chambers are separated by a molecularly thin (15 nm), transparent, and nanoporous silicon membrane. One chamber is a microfluidic channel that carries a flow-generated gradient while the other chamber is a shear-free environment for cell observation. The molecularly thin membranes provide effectively no resistance to molecular diffusion between the two chambers, making them ideal elements for creating flow-free chambers in microfluidic systems. Analytical and computational flow models that account for membrane and chamber geometry, predict shear reduction of more than five orders of magnitude. This prediction is confirmed by observing the pure diffusion of nanoparticles in the cell-hosting chamber despite high input flow (Q = 10 μL min(-1); vavg ~ 45 mm min(-1)) in the flow chamber only 15 nm away. Using total internal reflection fluorescence (TIRF) microscopy, we show that a flow-generated molecular gradient will pass through the membrane into the quiescent cell chamber. Finally we demonstrate that our device allows us to expose migrating neutrophils to a chemotactic gradient or fluorescent label without any influence from flow.
Collapse
Affiliation(s)
- Henry H Chung
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA.
| | | | | | | | | | | | | |
Collapse
|
10
|
Electron beam-assisted healing of nanopores in magnesium alloys. Sci Rep 2014; 3:1920. [PMID: 23719630 PMCID: PMC3667491 DOI: 10.1038/srep01920] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Accepted: 05/16/2013] [Indexed: 11/08/2022] Open
Abstract
Nanopore-based sensing has emerged as a promising candidate for affordable and powerful DNA sequencing technologies. Herein, we demonstrate that nanopores can be successfully fabricated in Mg alloys via focused electron beam (e-beam) technology. Employing in situ high-resolution transmission electron microscopy techniques, we obtained unambiguous evidence that layer-by-layer growth of atomic planes at the nanopore periphery occurs when the e-beam is spread out, leading to the shrinkage and eventual disappearance of nanopores. The proposed healing process was attributed to the e-beam-induced anisotropic diffusion of Mg atoms in the vicinity of nanopore edges. A plausible diffusion mechanism that describes the observed phenomena is discussed. Our results constitute the first experimental investigation of nanopores in Mg alloys. Direct evidence of the healing process has advanced our fundamental understanding of surface science, which is of great practical importance for many technological applications, including thin film deposition and surface nanopatterning.
Collapse
|
11
|
Abstract
Here we review the recent applications of ion transfer (IT) at the interface between two immiscible electrolyte solutions (ITIES) for electrochemical sensing and imaging. In particular, we focus on the development and recent applications of the nanopipet-supported ITIES and double-polymer-modified electrode, which enable the dynamic electrochemical measurements of IT at nanoscopic and macroscopic ITIES, respectively. High-quality IT voltammograms are obtainable using either technique to quantitatively assess the kinetics and dynamic mechanism of IT at the ITIES. Nanopipet-supported ITIES serves as an amperometric tip for scanning electrochemical microscopy to allow for unprecedentedly high-resolution electrochemical imaging. Voltammetric ion sensing at double-polymer-modified electrodes offers high sensitivity and unique multiple-ion selectivity. The promising future applications of these dynamic approaches for bioanalysis and electrochemical imaging are also discussed.
Collapse
|
12
|
Porous Si coated with S-doped carbon as anode material for lithium ion batteries. J Solid State Electrochem 2012. [DOI: 10.1007/s10008-012-1944-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
13
|
Mäkilä E, Bimbo LM, Kaasalainen M, Herranz B, Airaksinen AJ, Heinonen M, Kukk E, Hirvonen J, Santos HA, Salonen J. Amine modification of thermally carbonized porous silicon with silane coupling chemistry. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:14045-54. [PMID: 22967052 DOI: 10.1021/la303091k] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Thermally carbonized porous silicon (TCPSi) microparticles were chemically modified with organofunctional alkoxysilane molecules using a silanization process. Before the silane coupling, the TCPSi surface was activated by immersion in hydrofluoric acid (HF). Instead of regeneration of the silicon hydride species, the HF immersion of silicon carbide structure forms a silanol termination (Si-OH) on the surface required for silanization. Subsequent functionalization with 3-aminopropyltriethoxysilane provides the surface with an amine (-NH(2)) termination, while the SiC-type layer significantly stabilizes the functionalized structure both mechanically and chemically. The presence of terminal amine groups was verified with FTIR, XPS, CHN analysis, and electrophoretic mobility measurements. The overall effects of the silanization to the morphological properties of the initial TCPSi were analyzed and they were found to be very limited, making the treatment effects highly predictable. The maximum obtained number of amine groups on the surface was calculated to be 1.6 groups/nm(2), corresponding to 79% surface coverage. The availability of the amine groups for further biofunctionalization was confirmed by successful biotinylation. The isoelectric point (IEP) of amine-terminated TCPSi was measured to be at pH 7.7, as opposed to pH 2.6 for untreated TCPSi. The effects of the surface amine termination on the cell viability of Caco-2 and HT-29 cells and on the in vitro fenofibrate release profiles were also assessed. The results indicated that the surface modification did not alter the loading of the drug inside the pores and also retained the beneficial enhanced dissolution characteristics similar to TCPSi. Cellular viability studies also showed that the surface modification had only a limited effect on the biocompatibility of the PSi.
Collapse
Affiliation(s)
- Ermei Mäkilä
- Laboratory of Industrial Physics, Department of Physics and Astronomy, University of Turku, Turku FI-20014, Finland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Choi DH, Han YD, Lee BK, Choi SJ, Yoon HC, Lee DS, Yoon JB. Use of a columnar metal thin film as a nanosieve with sub-10 nm pores. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2012; 24:4408-13. [PMID: 22729900 DOI: 10.1002/adma.201200755] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 04/18/2012] [Indexed: 05/15/2023]
Abstract
A columnar-structured nanosieve is unique in the sense that it is a general thin film formed by physical vapor deposition (PVD). Instead of additional processes to make nanopores, the numerous voids naturally formed among columnar grains during PVD are used as nanopores. Since the thin film formed by PVD has vertically grown columnar grains, the fabricated nanosieve has numerous straight-opened nanopores, which is an ideal structure for a nanosieve.
Collapse
Affiliation(s)
- Dong-Hoon Choi
- Department of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 305-701, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
15
|
Shen M, Ishimatsu R, Kim J, Amemiya S. Quantitative imaging of ion transport through single nanopores by high-resolution scanning electrochemical microscopy. J Am Chem Soc 2012; 134:9856-9. [PMID: 22655578 PMCID: PMC3380141 DOI: 10.1021/ja3023785] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Here we report on the unprecedentedly high resolution imaging of ion transport through single nanopores by scanning electrochemical microscopy (SECM). The quantitative SECM image of single nanopores allows for the determination of their structural properties, including their density, shape, and size, which are essential for understanding the permeability of the entire nanoporous membrane. Nanoscale spatial resolution was achieved by scanning a 17 nm radius pipet tip at a distance as low as 1.3 nm from a highly porous nanocrystalline silicon membrane in order to obtain the peak current response controlled by the nanopore-mediated diffusional transport of tetrabutylammonium ions to the nanopipet-supported liquid-liquid interface. A 280 nm × 500 nm image resolved 13 nanopores, which corresponds to a high density of 93 nanopores/μm(2). A finite element simulation of the SECM image was performed to assess quantitatively the spatial resolution limited by the tip diameter in resolving two adjacent pores and to determine the actual size of a nanopore, which was approximated as an elliptical cylinder with a depth of 30 nm and major and minor axes of 53 and 41 nm, respectively. These structural parameters were consistent with those determined by transmission electron microscopy, thereby confirming the reliability of quantitative SECM imaging at the nanoscale level.
Collapse
Affiliation(s)
- Mei Shen
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | | | - Jiyeon Kim
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Shigeru Amemiya
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| |
Collapse
|
16
|
Kavalenka MN, Striemer CC, Fang DZ, Gaborski TR, McGrath JL, Fauchet PM. Ballistic and non-ballistic gas flow through ultrathin nanopores. NANOTECHNOLOGY 2012; 23:145706. [PMID: 22433182 DOI: 10.1088/0957-4484/23/14/145706] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
We show that ultrathin porous nanocrystalline silicon membranes exhibit gas permeance that is several orders of magnitude higher than other membranes. Using these membranes, gas flow obeying Knudsen diffusion has been studied in pores with lengths and diameters in the tens of nanometers regime. The components of the flow due to ballistic transport and transport after reflection from the pore walls were separated and quantified as a function of pore diameter. These results were obtained in pores made in silicon. We demonstrate that changing the pore interior to carbon leads to flow enhancement resulting from a change in the nature of molecule-pore wall interactions. This result confirms previously published flow enhancement results obtained in carbon nanotubes.
Collapse
Affiliation(s)
- M N Kavalenka
- Department of Electrical and Computer Engineering, University of Rochester, Rochester, NY 14627, USA
| | | | | | | | | | | |
Collapse
|