1
|
Huang L, Gan Y. A review on SEM imaging of graphene layers. Micron 2024; 187:103716. [PMID: 39276729 DOI: 10.1016/j.micron.2024.103716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/03/2024] [Accepted: 09/06/2024] [Indexed: 09/17/2024]
Abstract
Atomic-thick graphene has stimulated great interests for exploring fundamental science and technological applications due to its promising electronic, mechanical and thermal properties. It is important to gain a deeper understanding of geometrical/structural characteristics of graphene and its properties/performance. Scanning electron microscopy (SEM) is indispensable for characterizing graphene layers. This review details SEM imaging of graphene layer, including the SEM image contrast mechanism of graphene layers, imaging parameter-dependent contrast of graphene layers and the influence of polycrystalline substrates on image contrast. Furthermore, a summary of SEM applications in imaging graphene layers is also provided, including layer-number determinations, study of chemical vapor deposition (CVD)-growth mechanism, and reveal of anti-corrosive failure mechanism of graphene layers. This review will provide a systematic and comprehensive understanding on SEM imaging of graphene layers for graphene community.
Collapse
Affiliation(s)
- Li Huang
- School of Electronics and Information Engineering, Hebei University of Technology, Tianjin 300130, PR China; Tianjin Key Laboratory of Electronic Materials and Devices, Hebei University of Technology, Tianjin 300130, PR China.
| | - Yang Gan
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, PR China; MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, PR China
| |
Collapse
|
2
|
Yang M, Bai B, Bai H, Wei Z, Cao H, Zuo Z, Gao Z, Vinokurov VA, Zuo J, Wang Q, Huang W. On the nature of Cu-carbon interaction through N-modification for enhanced ethanol synthesis from syngas and methanol. Phys Chem Chem Phys 2024. [PMID: 39027937 DOI: 10.1039/d4cp01599a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Direct conversion of syngas into ethanol is an attractive process because of its short route and high-added value, but remains an enormous challenge due to the low selectivity caused by unclear active sites. Here, the Cu(111) supported N-modified graphene fragments C13-mNm/Cu(111) (m = 0-2) are demonstrated to be an efficient catalyst for fabricating ethanol from syngas and methanol. Our results suggest that the Cu-carbon interaction not only facilitates CO activation, but also significantly affects the adsorption stability of C2 intermediates and finally changes the fundamental reaction mechanism. The impeded hydrogenation performance of C13/Cu(111) due to the introduced Cu-carbon interaction is dramatically improved by N-doping. Multiple analyses reveal that the promoted electron transfer and the enhanced electron endowing ability of C13-mNm/Cu(111) (m = 1-2) to the co-adsorbed CH3CHxOH (x = 0-1) and H are deemed to be mainly responsible for the remarkable enhancement in hydrogenation ability. From the standpoint of the frontier molecular orbital, the decreased HOMO-LUMO gap and the increased overlap extent of HOMO and LUMO with the doping of N atoms also further verify the more facile hydrogenation reactions. Clearly, the Cu-carbon interaction through N-modification is of critical importance in ethanol formation. The final hydrogenation reaction during ethanol formation is deemed to be the rate-controlling step. The insights gained here could shed new light on the nature of Cu-carbon interaction in carbon material modified Cu-based catalysts for ethanol synthesis, which could be extended to design and modify other metal-carbon catalysts.
Collapse
Affiliation(s)
- Mingxue Yang
- State Key Laboratory of Clean and Efficient Coal Utilization, college of chemical engineering and technology, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China.
| | - Bing Bai
- State Key Laboratory of Clean and Efficient Coal Utilization, college of chemical engineering and technology, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China.
| | - Hui Bai
- State Key Laboratory of Clean and Efficient Coal Utilization, college of chemical engineering and technology, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China.
| | - Zhongzeng Wei
- State Key Laboratory of Clean and Efficient Coal Utilization, college of chemical engineering and technology, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China.
| | - Haojie Cao
- State Key Laboratory of Clean and Efficient Coal Utilization, college of chemical engineering and technology, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China.
| | - Zhijun Zuo
- State Key Laboratory of Clean and Efficient Coal Utilization, college of chemical engineering and technology, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China.
| | - Zhihua Gao
- State Key Laboratory of Clean and Efficient Coal Utilization, college of chemical engineering and technology, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China.
| | - Vladimir A Vinokurov
- Department of Physical and Colloid Chemistry, Gubkin Russian State University of Oil and Gas (National Research University), Leninskiy prospect 65/1, Moscow, 119991, Russia
| | - Jianping Zuo
- School of Mechanics and Civil Engineering, China University of Mining and Technology, Beijing 100083, China
| | - Qiang Wang
- National Key Laboratory of High Efficiency and Low Carbon Utilization of Coal, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
| | - Wei Huang
- State Key Laboratory of Clean and Efficient Coal Utilization, college of chemical engineering and technology, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China.
| |
Collapse
|
3
|
Hossen MF, Shendokar S, Aravamudhan S. Defects and Defect Engineering of Two-Dimensional Transition Metal Dichalcogenide (2D TMDC) Materials. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:410. [PMID: 38470741 DOI: 10.3390/nano14050410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/04/2024] [Accepted: 02/18/2024] [Indexed: 03/14/2024]
Abstract
As layered materials, transition metal dichalcogenides (TMDCs) are promising two-dimensional (2D) materials. Interestingly, the characteristics of these materials are transformed from bulk to monolayer. The atomically thin TMDC materials can be a good alternative to group III-V and graphene because of their emerging tunable electrical, optical, and magnetic properties. Although 2D monolayers from natural TMDC materials exhibit the purest form, they have intrinsic defects that limit their application. However, the synthesis of TMDC materials using the existing fabrication tools and techniques is also not immune to defects. Additionally, it is difficult to synthesize wafer-scale TMDC materials for a multitude of factors influencing grain growth mechanisms. While defect engineering techniques may reduce the percentage of defects, the available methods have constraints for healing defects at the desired level. Thus, this holistic review of 2D TMDC materials encapsulates the fundamental structure of TMDC materials, including different types of defects, named zero-dimensional (0D), one-dimensional (1D), and two-dimensional (2D). Moreover, the existing defect engineering methods that relate to both formation of and reduction in defects have been discussed. Finally, an attempt has been made to correlate the impact of defects and the properties of these TMDC materials.
Collapse
Affiliation(s)
- Moha Feroz Hossen
- Joint School of Nanoscience and Nanoengineering, 2907 E Gate City Blvd, Greensboro, NC 27401, USA
- Department of Nanoengineering, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA
| | - Sachin Shendokar
- Joint School of Nanoscience and Nanoengineering, 2907 E Gate City Blvd, Greensboro, NC 27401, USA
- Department of Nanoengineering, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA
| | - Shyam Aravamudhan
- Joint School of Nanoscience and Nanoengineering, 2907 E Gate City Blvd, Greensboro, NC 27401, USA
- Department of Nanoengineering, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA
| |
Collapse
|
4
|
Chen H, Liu X, Huang Y, Li G, Yu F, Xiong F, Zhang M, Sun L, Yang Q, Jia K, Zou R, Li H, Meng S, Lin L, Zhang J, Peng H, Liu Z. Oxidization-Temperature-Triggered Rapid Preparation of Large-Area Single-Crystal Cu(111) Foil. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209755. [PMID: 37005372 DOI: 10.1002/adma.202209755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/23/2022] [Indexed: 05/05/2023]
Abstract
The controlled preparation of single-crystal Cu(111) is intensively investigated owing to the superior properties of Cu(111) and its advantages in synthesizing high-quality 2D materials, especially graphene. However, the accessibility of large-area single-crystal Cu(111) is still hindered by time-consuming, complicated, and high-cost preparation methods. Here, the oxidization-temperature-triggered rapid preparation of large-area single-crystal Cu(111) in which an area up to 320 cm2 is prepared within 60 min, and where low-temperature oxidization of polycrystalline Cu foil surface plays a vital role, is reported. A mechanism is proposed, by which the thin Cux O layer transforms to a Cu(111) seed layer on the surface of Cu to induce the formation of a large-area Cu(111) foil, which is supported by both experimental data and molecular dynamics simulation results. In addition, a large-size high-quality graphene film is synthesized on the single-crystal Cu(111) foil surface and the graphene/Cu(111) composites exhibit enhanced thermal conductivity and ductility compared to their polycrystalline counterpart. This work, therefore, not only provides a new avenue toward the monocrystallinity of Cu with specific planes but also contributes to improving the mass production of high-quality 2D materials.
Collapse
Affiliation(s)
- Heng Chen
- Center for Nanochemistry, Beijing Science and Engineering Centre for Nanocarbons, Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
- Beijing Graphene Institute, Beijing, 100095, P. R. China
| | - Xiaoting Liu
- Center for Nanochemistry, Beijing Science and Engineering Centre for Nanocarbons, Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
- Beijing Graphene Institute, Beijing, 100095, P. R. China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, P. R. China
| | - Yongfeng Huang
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, P. R. China
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Guangliang Li
- Beijing Graphene Institute, Beijing, 100095, P. R. China
| | - Feng Yu
- Center for Nanochemistry, Beijing Science and Engineering Centre for Nanocarbons, Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
- Beijing Graphene Institute, Beijing, 100095, P. R. China
| | - Feng Xiong
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Mengqi Zhang
- Beijing Graphene Institute, Beijing, 100095, P. R. China
| | - Luzhao Sun
- Center for Nanochemistry, Beijing Science and Engineering Centre for Nanocarbons, Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
- Beijing Graphene Institute, Beijing, 100095, P. R. China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, P. R. China
| | - Qian Yang
- Center for Nanochemistry, Beijing Science and Engineering Centre for Nanocarbons, Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
- Beijing Graphene Institute, Beijing, 100095, P. R. China
| | - Kaicheng Jia
- Center for Nanochemistry, Beijing Science and Engineering Centre for Nanocarbons, Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
- Beijing Graphene Institute, Beijing, 100095, P. R. China
| | - Ruqiang Zou
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Huanxin Li
- Department of Engineering, University of Cambridge, Cambridge, CB3 0FA, UK
| | - Sheng Meng
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, P. R. China
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Li Lin
- Beijing Graphene Institute, Beijing, 100095, P. R. China
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Jincan Zhang
- Center for Nanochemistry, Beijing Science and Engineering Centre for Nanocarbons, Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
- Beijing Graphene Institute, Beijing, 100095, P. R. China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, P. R. China
- Department of Engineering, University of Cambridge, Cambridge, CB3 0FA, UK
| | - Hailin Peng
- Center for Nanochemistry, Beijing Science and Engineering Centre for Nanocarbons, Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
- Beijing Graphene Institute, Beijing, 100095, P. R. China
| | - Zhongfan Liu
- Center for Nanochemistry, Beijing Science and Engineering Centre for Nanocarbons, Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
- Beijing Graphene Institute, Beijing, 100095, P. R. China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, P. R. China
| |
Collapse
|
5
|
Hu L, Dong Y, Xie Y, Qian F, Chang P, Fan M, Deng J, Xu C. In Situ Growth of Graphene Catalyzed by a Phase-Change Material at 400 °C for Wafer-Scale Optoelectronic Device Application. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206738. [PMID: 36592430 DOI: 10.1002/smll.202206738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/08/2022] [Indexed: 06/17/2023]
Abstract
The use of metal foil catalysts in the chemical vapor deposition of graphene films makes graphene transfer an ineluctable part of graphene device fabrication, which greatly limits industrialization. Here, an oxide phase-change material (V2 O5 ) is found to have the same catalytic effect on graphene growth as conventional metals. A uniform large-area graphene film can be obtained on a 10 nm V2 O5 film. Density functional theory is used to quantitatively analyze the catalytic effect of V2 O5 . Due to the high resistance property of V2 O5 at room temperature, the obtained graphene can be directly used in devices with V2 O5 as an intercalation layer. A wafer-scale graphene-V2 O5 -Si (GVS) Schottky photodetector array is successfully fabricated. When illuminated by a 792 nm laser, the responsivity of the photodetector can reach 266 mA W-1 at 0 V bias and 420 mA W-1 at 2 V. The transfer-free device fabrication process enables high feasibility for industrialization.
Collapse
Affiliation(s)
- Liangchen Hu
- Key Laboratory of Optoelectronics Technology, Beijing University of Technology, Ministry of Education, Beijing, 100124, China
| | - Yibo Dong
- Institute of Photonic Chips, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Yiyang Xie
- Key Laboratory of Optoelectronics Technology, Beijing University of Technology, Ministry of Education, Beijing, 100124, China
| | - Fengsong Qian
- Key Laboratory of Optoelectronics Technology, Beijing University of Technology, Ministry of Education, Beijing, 100124, China
| | - Pengying Chang
- Key Laboratory of Optoelectronics Technology, Beijing University of Technology, Ministry of Education, Beijing, 100124, China
| | - Mengqi Fan
- School of Integrated Circuits, Peking University, Beijing, 100871, China
| | - Jun Deng
- Key Laboratory of Optoelectronics Technology, Beijing University of Technology, Ministry of Education, Beijing, 100124, China
| | - Chen Xu
- Key Laboratory of Optoelectronics Technology, Beijing University of Technology, Ministry of Education, Beijing, 100124, China
| |
Collapse
|
6
|
Unexpectedly Spontaneous Water Dissociation on Graphene Oxide Supported by Copper Substrate. J Colloid Interface Sci 2023; 642:112-119. [PMID: 37001450 DOI: 10.1016/j.jcis.2023.03.093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 03/10/2023] [Accepted: 03/15/2023] [Indexed: 03/22/2023]
Abstract
Water dissociation is of fundamental importance in scientific fields and has drawn considerable interest in diverse technological applications. However, the high activation barrier of breaking the OH bond within the water molecule has been identified as the bottleneck, even for the water adsorbed on the graphene oxide (GO). Herein, using the density functional theory calculations, we demonstrate that the water molecule can be spontaneously dissociated on GO supported by the (111) surface of the copper substrate (Copper-GO). This process involves a proton transferring from water to the interfacial oxygen group, and a hydroxide covalently bonding to GO. Compared to that on GO, the water dissociation barrier on Copper-GO is significantly decreased to be less than or comparable to thermal fluctuations. This is ascribed to the orbital-hybridizing interaction between copper substrate and GO, which enhances the reaction activity of interfacial oxygen groups along the basal plane of GO for water dissociation. Our work provides a novel strategy to access water dissociation via the substrate-enhanced reaction activity of interfacial oxygen groups on GO and indicates that the substrate can serve as an essential key to tuning the catalytic performance of various two-dimensional material devices.
Collapse
|
7
|
Yutomo EB, Noor FA, Winata T. Effect of Ni atomic fraction on active species of graphene growth on Cu–Ni alloy catalysts: a density functional theory study. Phys Chem Chem Phys 2023; 25:708-723. [DOI: 10.1039/d2cp04621k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The CH and C monomers on the surface are the active species on Cu–Ni catalysts with low Ni atomic fractions. In contrast, the C monomer species on the subsurface acts as an active species on a Cu–Ni catalyst with a high Ni atomic fraction.
Collapse
Affiliation(s)
- Erik Bhekti Yutomo
- Physics of Electronic Materials Research Division, Department of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Bandung, 40132, Indonesia
| | - Fatimah Arofiati Noor
- Physics of Electronic Materials Research Division, Department of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Bandung, 40132, Indonesia
| | - Toto Winata
- Physics of Electronic Materials Research Division, Department of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Bandung, 40132, Indonesia
| |
Collapse
|
8
|
Urade AR, Lahiri I, Suresh KS. Graphene Properties, Synthesis and Applications: A Review. JOM (WARRENDALE, PA. : 1989) 2022; 75:614-630. [PMID: 36267692 PMCID: PMC9568937 DOI: 10.1007/s11837-022-05505-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 08/29/2022] [Indexed: 06/12/2023]
Abstract
We have evaluated some of the most recent breakthroughs in the synthesis and applications of graphene and graphene-based nanomaterials. This review includes three major categories. The first section consists of an overview of the structure and properties, including thermal, optical, and electrical transport. Recent developments in the synthesis techniques are elaborated in the second section. A number of top-down strategies for the synthesis of graphene, including exfoliation and chemical reduction of graphene oxide, are discussed. A few bottom-up synthesis methods for graphene are also covered, including thermal chemical vapor deposition, plasma-enhanced chemical vapor deposition, thermal decomposition of silicon, unzipping of carbon nanotubes, and others. The final section provides the recent innovations in graphene applications and the commercial availability of graphene-based devices.
Collapse
Affiliation(s)
- Akanksha R. Urade
- Centre of Excellence: Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667 India
| | - Indranil Lahiri
- Centre of Excellence: Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667 India
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Roorkee, Roorkee, 247667 India
| | - K. S. Suresh
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Roorkee, Roorkee, 247667 India
| |
Collapse
|
9
|
Zhang Q, Xiao X, Li L, Geng D, Chen W, Hu W. Additive-Assisted Growth of Scaled and Quality 2D Materials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107241. [PMID: 35092150 DOI: 10.1002/smll.202107241] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/19/2021] [Indexed: 06/14/2023]
Abstract
2D materials are increasingly becoming key components in modern electronics because of their prominent electronic and optoelectronic properties. The central and premise to the entire discipline of 2D materials lie in the high-quality and scaled preparations. The chemical vapor deposition (CVD) method offers compelling benefits in terms of scalability and controllability in shaping large-area and high-quality 2D materials. The past few years have witnessed development of numerous CVD growth strategies, with the use of additives attracting substantial attention in the production of scaled 2D crystals. This review provides an overview of different additives used in CVD growth of 2D materials, as well as a methodical demonstration of their vital roles. In addition, the intrinsic mechanisms of the production of scaled 2D crystals with additives are also discussed. Lastly, reliable guidance on the future design of optimal CVD synthesis routes is provided by analyzing the accessibility, pricing, by-products, controllability, universality, and commercialization of various additives.
Collapse
Affiliation(s)
- Qing Zhang
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou, 350207, China
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| | - Xixi Xiao
- Department of Chemistry, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Lin Li
- Institute of Molecular Plus, Tianjin University, Tianjin, 300072, China
| | - Dechao Geng
- Department of Chemistry, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Wei Chen
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou, 350207, China
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| | - Wenping Hu
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou, 350207, China
- Department of Chemistry, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| |
Collapse
|
10
|
Zhang K, Ban C, Yuan Y, Huang L, Gan Y. Nanoscale imaging of oxidized copper foil covered with CVD‐grown graphene layers. SURF INTERFACE ANAL 2022. [DOI: 10.1002/sia.7096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Kai Zhang
- School of Electronics and Information Engineering Hebei University of Technology Tianjin P. R. China
| | - Chun‐guang Ban
- School of Materials Science and Technology Hebei University of Technology Tianjin P. R. China
| | - Ye Yuan
- School of Materials Science and Technology Hebei University of Technology Tianjin P. R. China
| | - Li Huang
- School of Electronics and Information Engineering Hebei University of Technology Tianjin P. R. China
| | - Yang Gan
- School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin P. R. China
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin P. R. China
| |
Collapse
|
11
|
Growth and Characterization of Graphene Layers on Different Kinds of Copper Surfaces. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27061789. [PMID: 35335154 PMCID: PMC8956068 DOI: 10.3390/molecules27061789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 02/26/2022] [Accepted: 03/07/2022] [Indexed: 11/17/2022]
Abstract
Graphene films were grown by chemical vapor deposition on Cu foil. The obtained samples were characterized by Raman spectroscopy, ellipsometry, X-ray photoelectron spectroscopy and electron back-scatter diffraction. We discuss the time-dependent changes in the samples, estimate the thickness of emerging Cu2O beneath the graphene and check the orientation-dependent affinity to oxidation of distinct Cu grains, which also governs the manner in which the initial strong Cu-graphene coupling and strain in the graphene lattice is released. Effects of electropolishing on the quality and the Raman response of the grown graphene layers are studied by microtexture polarization analysis. The obtained data are compared with the Raman signal of graphene after transfer on glass substrate revealing the complex interaction of graphene with the Cu substrate.
Collapse
|
12
|
Pedrazzetti L, Gibertini E, Bizzoni F, Russo V, Lucotti A, Nobili L, Magagnin L. Graphene Growth on Electroformed Copper Substrates by Atmospheric Pressure CVD. MATERIALS 2022; 15:ma15041572. [PMID: 35208110 PMCID: PMC8878375 DOI: 10.3390/ma15041572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 11/29/2022]
Abstract
Chemical vapor deposition (CVD) is regarded as the most promising technique for the mass production of graphene. CVD synthesis under vacuum is the most employed process, because the slower kinetics give better control on the graphene quality, but the requirement for high-vacuum equipment heavily affects the overall energy cost. In this work, we explore the possibility of using electroformed Cu substrate as a catalyst for atmospheric-pressure graphene growth. Electrochemical processes can produce high purity, freestanding metallic films, avoiding the surface defects that characterize the rolled foils. It was found that the growth mode of graphene on the electroformed catalyst was related to the surface morphology, which, in turn, was affected by the preliminary treatment of the substrate material. Suitable conditions for growing single layer graphene were identified.
Collapse
Affiliation(s)
- Lorenzo Pedrazzetti
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, 20131 Milano, Italy; (L.P.); (E.G.); (F.B.); (A.L.); (L.M.)
| | - Eugenio Gibertini
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, 20131 Milano, Italy; (L.P.); (E.G.); (F.B.); (A.L.); (L.M.)
| | - Fabio Bizzoni
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, 20131 Milano, Italy; (L.P.); (E.G.); (F.B.); (A.L.); (L.M.)
| | - Valeria Russo
- Energy Department, Politecnico di Milano, 20133 Milano, Italy;
| | - Andrea Lucotti
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, 20131 Milano, Italy; (L.P.); (E.G.); (F.B.); (A.L.); (L.M.)
| | - Luca Nobili
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, 20131 Milano, Italy; (L.P.); (E.G.); (F.B.); (A.L.); (L.M.)
- Correspondence:
| | - Luca Magagnin
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, 20131 Milano, Italy; (L.P.); (E.G.); (F.B.); (A.L.); (L.M.)
| |
Collapse
|
13
|
Yao W, Zhang J, Ji J, Yang H, Zhou B, Chen X, Bøggild P, Jepsen PU, Tang J, Wang F, Zhang L, Liu J, Wu B, Dong J, Liu Y. Bottom-Up-Etching-Mediated Synthesis of Large-Scale Pure Monolayer Graphene on Cyclic-Polishing-Annealed Cu(111). ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108608. [PMID: 34820918 DOI: 10.1002/adma.202108608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/22/2021] [Indexed: 06/13/2023]
Abstract
Synthesis of large-scale single-crystalline graphene monolayers without multilayers involves the fabrication of proper single-crystalline substrates and the ubiquitous formation of multilayered graphene islands during chemical vapor deposition. Here, a method of cyclic electrochemical polishing combined with thermal annealing, which allows the conversion of commercial polycrystalline Cu foils to single-crystal Cu(111) with an almost 100% yield, is presented. A global "bottom-up-etching" method that is capable of fabricating large-area pure single-crystalline graphene monolayers without multilayers through selectively etching bottom multilayered graphene underneath large area as-grown graphene monolayer on Cu(111) surface is demonstrated. Terahertz time-domain spectroscopy (THz-TDS) measurement of the pure monolayer graphene film shows a high average sheet conductivity of 2.8 mS and mean carrier mobility of 6903 cm2 V-1 s-1 over a large area. Density functional theory (DFT) calculations show that the selective etching is induced by the much easier diffusion of hydrogen atoms than hydrocarbon radicals across the edges of the top graphene layer, and the simulated selective etching processes based on phase field modeling are well consistent with experimental observations. This work provides new ways toward the production of single-crystal Cu(111) and the synthesis of pure monolayer graphene with high electronic quality.
Collapse
Affiliation(s)
- Wenqian Yao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Beijing, 100190, P. R. China
- Sino-Danish Center for Education and Research, Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianing Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Beijing, 100190, P. R. China
- Sino-Danish Center for Education and Research, Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jie Ji
- Department of Physics, Technical University of Denmark, Kongens Lyngby, DK-2800, Denmark
| | - He Yang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Beijing, 100190, P. R. China
| | - Binbin Zhou
- Department of Photonics, Technical University of Denmark, Kongens Lyngby, DK-2800, Denmark
| | - Xin Chen
- Department of Physics, Technical University of Denmark, Kongens Lyngby, DK-2800, Denmark
| | - Peter Bøggild
- Department of Physics, Technical University of Denmark, Kongens Lyngby, DK-2800, Denmark
| | - Peter U Jepsen
- Department of Photonics, Technical University of Denmark, Kongens Lyngby, DK-2800, Denmark
| | - Jilin Tang
- Beijing National Laboratory for Molecular Sciences, National Centre for Mass Spectrometry in Beijing, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Fuyi Wang
- Beijing National Laboratory for Molecular Sciences, National Centre for Mass Spectrometry in Beijing, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Li Zhang
- Analytical Instrumentation Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Jiahui Liu
- Analytical Instrumentation Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Bin Wu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Beijing, 100190, P. R. China
| | - Jichen Dong
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Beijing, 100190, P. R. China
| | - Yunqi Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Beijing, 100190, P. R. China
- Sino-Danish Center for Education and Research, Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
14
|
Alzahrani A, Alruqi A, Karki B, Kalutara Koralalage M, Jasinski J, Sumanasekera G. Direct fabrication and characterization of vertically stacked Graphene/h-BN/Graphene tunnel junctions. NANO EXPRESS 2021. [DOI: 10.1088/2632-959x/ac2e9e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Abstract
We have used a lithography free technique for the direct fabrication of vertically stacked two-dimensional (2D) material-based tunnel junctions and characterized by Raman, AFM, XPS. We fabricated Graphene/h-BN/Graphene devices by direct deposition of graphene (bottom layer), h-BN (insulating barrier) and graphene (top layer) sequentially using a plasma enhanced chemical vapor deposition on Si/SiO2 substrates. The thickness of the h-BN insulating layer was varied by tuning the plasma power and the deposition time. Samples were characterized by Raman, AFM, and XPS. The I-V data follows the barrier thickness dependent quantum tunneling behavior for equally doped graphene layers. The resonant tunneling behavior was observed at room temperature for oppositely doped graphene layers where hydrazine and ammonia were used for n-doping of one of the graphene layers. The resonance with negative differential conductance occurs when the band structures of the two electrodes are aligned. The doping effect of the resonant peak is observed for varying doping levels. The results are explained according to the Bardeen tunneling model.
Collapse
|
15
|
Zhao Y, Tao Y, Xu W, Huang S, Guo M, Sha J, Yang J, Chen Y. Modulating thermal conductance across the metal/graphene/SiO 2 interface with ion irradiation. Phys Chem Chem Phys 2021; 23:22760-22767. [PMID: 34608903 DOI: 10.1039/d1cp03563k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Optimizing the efficiency of heat dissipation across an interface is a great challenge with the continuously increasing integration of microelectronic devices. In this work, an effective method in tuning the heat conduction across the Al/graphene/SiO2 interface is reported. It was found that the interfacial thermal conductance of Al/irradiated graphene/SiO2 can be increased by a factor of 3, as compared with that of Al/pristine graphene/SiO2. The X-ray photoelectron spectroscopy (XPS) analysis indicates that ion irradiation may promote the formation of CO bonds on the irradiated graphene surface, which is beneficial to the enhancement of interfacial thermal conductance. The density functional theory (DFT) calculations reveal that in addition to the formed bonds between O atoms and Al atoms, the adsorption strength between Al and irradiated graphene is intensified, which plays a dominant role in enhancing the interfacial thermal conductance of Al/graphene/SiO2.
Collapse
Affiliation(s)
- Yu Zhao
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211189, China.
| | - Yi Tao
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211189, China.
| | - Wei Xu
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211189, China.
| | - Shuyu Huang
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211189, China.
| | - Ming Guo
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211189, China.
| | - Jingjie Sha
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211189, China.
| | - Juekuan Yang
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211189, China.
| | - Yunfei Chen
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211189, China.
| |
Collapse
|
16
|
Hakami M, Deokar G, Smajic J, Batra NM, Costa PMFJ. Can a Procedure for the Growth of Single-layer Graphene on Copper be used in Different Chemical Vapor Deposition Reactors? Chem Asian J 2021; 16:1466-1474. [PMID: 33848403 DOI: 10.1002/asia.202100199] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/12/2021] [Indexed: 02/03/2023]
Abstract
In the last decade, catalytic chemical vapor deposition (CVD) has been intensively explored for the growth of single-layer graphene (SLG). Despite the scattering of guidelines and procedures, variables such as the surface texture/chemistry of catalyst metal foils, carbon feedstock, and growth process parameters have been well-scrutinized. Still, questions remain on how best to standardize the growth procedure. The possible correlation of procedures between different CVD setups is an example. Here, two thermal CVD reactors were explored to grow graphene on Cu foil. The design of these setups was entirely distinct, one being a "showerhead" cold-wall type, whereas the other represented the popular "tubular" hot-wall type. Upon standardizing the Cu foil surface, it was possible to develop a procedure for cm2 -scale SLG growth that differed only by the carrier gas flow rate used in the two reactors.
Collapse
Affiliation(s)
- Mariam Hakami
- King Abdullah University of Science and Technology (KAUST), Physical Science and Engineering Division, Thuwal, 23955-6900, Saudi Arabia
| | - Geetanjali Deokar
- King Abdullah University of Science and Technology (KAUST), Physical Science and Engineering Division, Thuwal, 23955-6900, Saudi Arabia
| | - Jasmin Smajic
- King Abdullah University of Science and Technology (KAUST), Physical Science and Engineering Division, Thuwal, 23955-6900, Saudi Arabia
| | - Nitin M Batra
- King Abdullah University of Science and Technology (KAUST), Physical Science and Engineering Division, Thuwal, 23955-6900, Saudi Arabia
| | - Pedro M F J Costa
- King Abdullah University of Science and Technology (KAUST), Physical Science and Engineering Division, Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
17
|
Fan Y, Li L, Yu G, Geng D, Zhang X, Hu W. Recent Advances in Growth of Large-Sized 2D Single Crystals on Cu Substrates. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2003956. [PMID: 33191567 DOI: 10.1002/adma.202003956] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/13/2020] [Indexed: 06/11/2023]
Abstract
Large-scale and high-quality 2D materials have been an emerging and promising choice for use in modern chemistry and physics owing to their fascinating property profile. The past few years have witnessed inspiringly progressing development in controlled fabrication of large-sized and single-crystal 2D materials. Among those production methods, chemical vapor deposition (CVD) has drawn the most attention because of its fine control over size and quality of 2D materials by modulating the growth conditions. Meanwhile, Cu has been widely accepted as the most popular catalyst due to its significant merit in growing monolayer 2D materials in the CVD process. Herein, very recent advances in preparing large-sized 2D single crystals on Cu substrates by CVD are presented. First, the unique features of Cu will be given in terms of ultralow precursor solubility and feasible surface engineering. Then, scaled growth of graphene and hexagonal boron nitride (h-BN) crystals on Cu substrates is demonstrated, wherein different kinds of Cu surfaces have been employed. Furthermore, the growth mechanism for the growth of 2D single crystals is exhibited, offering a guideline to elucidate the in-depth growth dynamics and kinetics. Finally, relevant issues for industrial-scale mass production of 2D single crystals are discussed and a promising future is expected.
Collapse
Affiliation(s)
- Yixuan Fan
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University and Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, China
| | - Lin Li
- Institute of Molecular Plus, Tianjin University, Tianjin, 300072, China
| | - Gui Yu
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dechao Geng
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University and Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, China
| | - Xiaotao Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University and Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, China
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University and Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, China
- Joint School of National University of Singapore and Tianjin University, Fuzhou International Campus, Tianjin University, Binhai New City, Fuzhou, 350207, China
| |
Collapse
|
18
|
Braeuninger-Weimer P, Burton OJ, Zeller P, Amati M, Gregoratti L, Weatherup RS, Hofmann S. Crystal Orientation Dependent Oxidation Modes at the Buried Graphene-Cu Interface. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2020; 32:7766-7776. [PMID: 32982043 PMCID: PMC7513576 DOI: 10.1021/acs.chemmater.0c02296] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/25/2020] [Indexed: 06/11/2023]
Abstract
We combine spatially resolved scanning photoelectron spectroscopy with confocal Raman and optical microscopy to reveal how the oxidation of the buried graphene-Cu interface relates to the Cu crystallographic orientation. We analyze over 100 different graphene covered Cu (high and low index) orientations exposed to air for 2 years. Four general oxidation modes are observed that can be mapped as regions onto the polar plot of Cu surface orientations. These modes are (1) complete, (2) irregular, (3) inhibited, and (4) enhanced wrinkle interface oxidation. We present a comprehensive characterization of these modes, consider the underlying mechanisms, compare air and water mediated oxidation, and discuss this in the context of the diverse prior literature in this area. This understanding incorporates effects from across the wide parameter space of 2D material interface engineering, relevant to key challenges in their emerging applications, ranging from scalable transfer to electronic contacts, encapsulation, and corrosion protection.
Collapse
Affiliation(s)
| | - Oliver J. Burton
- Department
of Engineering, University of Cambridge, Cambridge CB3 0FA, United Kingdom
| | - Patrick Zeller
- Elettra-Sincrotrone
Trieste S.C.p.A., AREA Science Park, S.S. 14 km 163.5, 34149 Trieste, Italy
| | - Matteo Amati
- Elettra-Sincrotrone
Trieste S.C.p.A., AREA Science Park, S.S. 14 km 163.5, 34149 Trieste, Italy
| | - Luca Gregoratti
- Elettra-Sincrotrone
Trieste S.C.p.A., AREA Science Park, S.S. 14 km 163.5, 34149 Trieste, Italy
| | - Robert S. Weatherup
- Department
of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, United
Kingdom
| | - Stephan Hofmann
- Department
of Engineering, University of Cambridge, Cambridge CB3 0FA, United Kingdom
| |
Collapse
|
19
|
Jia L, Zheng W, Lin R, Huang F. Ultra-high Photovoltage (2.45 V) Forming in Graphene Heterojunction via Quasi-Fermi Level Splitting Enhanced Effect. iScience 2020; 23:100818. [PMID: 32004991 PMCID: PMC6995729 DOI: 10.1016/j.isci.2020.100818] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/19/2019] [Accepted: 01/02/2020] [Indexed: 11/05/2022] Open
Abstract
Owing to the fast response speed and low energy consumption, photovoltaic vacuum-ultraviolet (VUV) photodetectors show prominent advantages in the field of space science, high-energy physics, and electronics industry. For photovoltaic devices, it is imperative to boost their open-circuit voltage, which is the most direct indicator to measure the photoelectric conversion capability. In this report, a quasi-Fermi level splitting enhanced effect under illumination, benefiting from the variable Fermi level of graphene, is proposed to significantly increase the potential difference up to 2.45 V between the two ends of p-Gr/i-AlN/n-SiC heterojunction photovoltaic device. In addition, the highest external quantum efficiency of 56.1% (under the VUV irradiation of 172 nm) at 0 V bias and the ultra-fast photoresponse of 45 ns further demonstrate the superiority of high-open-circuit-voltage devices. The proposed device design strategy and the adopted effect provide a referential way for the construction of various photovoltaic devices. An open-circuit voltage up to 2.45 V is achieved by the graphene heterojunction device An efficient band assembly is designed to induce the larger quasi-Fermi level splitting An EQE as high as 56.1% (172 nm) and a rise time as short as 45 ns are achieved The adopted effect provides a referential way for various photovoltaic devices
Collapse
Affiliation(s)
- Lemin Jia
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials, Sun Yat-sen University, Guangzhou 510275, China
| | - Wei Zheng
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials, Sun Yat-sen University, Guangzhou 510275, China.
| | - Richeng Lin
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials, Sun Yat-sen University, Guangzhou 510275, China
| | - Feng Huang
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
20
|
Luo M, Li BL, Li D. Effects of Divacancy and Extended Line Defects on the Thermal Transport Properties of Graphene Nanoribbons. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1609. [PMID: 31766154 PMCID: PMC6915358 DOI: 10.3390/nano9111609] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/07/2019] [Accepted: 11/09/2019] [Indexed: 12/19/2022]
Abstract
The effects of divacancy, including isolated defects and extended line defects (ELD), on the thermal transport properties of graphene nanoribbons (GNRs) are investigated using the Nonequilibrium Green's function method. Different divacancy defects can effectively tune the thermal transport of GNRs and the thermal conductance is significantly reduced. The phonon scattering of a single divacancy is mostly at high frequencies while the phonon scattering at low frequencies is also strong for randomly distributed multiple divacancies. The collective effect of impurity scattering and boundary scattering is discussed, which makes the defect scattering vary with the boundary condition. The effect on thermal transport properties of a divacancy is also shown to be closely related to the cross section of the defect, the internal structure and the bonding strength inside the defect. Both low frequency and high frequency phonons are scattered by 48, d5d7 and t5t7 ELD. However, the 585 ELD has almost no influence on phonon scattering at low frequency region, resulting in the thermal conductance of GNRs with 585 ELD being 50% higher than that of randomly distributed 585 defects. All these results are valuable for the design and manufacture of graphene nanodevices.
Collapse
Affiliation(s)
- Min Luo
- Chongqing Key Laboratory of Extraordinary Bond Engineering and Advanced Materials Technology (EBEAM), Yangtze Normal University, Chongqing 408100, China;
- School of Science, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Bo-Lin Li
- Chongqing Key Laboratory of Extraordinary Bond Engineering and Advanced Materials Technology (EBEAM), Yangtze Normal University, Chongqing 408100, China;
| | - Dengfeng Li
- School of Science, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| |
Collapse
|
21
|
Zhang Y, Yao Y, Sendeku MG, Yin L, Zhan X, Wang F, Wang Z, He J. Recent Progress in CVD Growth of 2D Transition Metal Dichalcogenides and Related Heterostructures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1901694. [PMID: 31402526 DOI: 10.1002/adma.201901694] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/20/2019] [Indexed: 06/10/2023]
Abstract
In recent years, 2D layered materials have received considerable research interest on account of their substantial material systems and unique physicochemical properties. Among them, 2D layered transition metal dichalcogenides (TMDs), a star family member, have already been explored over the last few years and have exhibited excellent performance in electronics, catalysis, and other related fields. However, to fulfill the requirement for practical application, the batch production of 2D TMDs is essential. Recently, the chemical vapor deposition (CVD) technique was considered as an elegant alternative for successfully growing 2D TMDs and their heterostructures. The latest research advances in the controllable synthesis of 2D TMDs and related heterostructures/superlattices via the CVD approach are illustrated here. The controlled growth behavior, preparation strategies, and breakthroughs on the synthesis of new 2D TMDs and their heterostructures, as well as their unique physical phenomena, are also discussed. Recent progress on the application of CVD-grown 2D materials is revealed with particular attention to electronics/optoelectronic devices and catalysts. Finally, the challenges and future prospects are considered regarding the current development of 2D TMDs and related heterostructures.
Collapse
Affiliation(s)
- Yu Zhang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Yuyu Yao
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, China
- Sino-Danish College, University of Chinese Academy of Science, Beijing, 100049, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Science, Beijing, 100049, China
| | - Marshet Getaye Sendeku
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Science, Beijing, 100049, China
| | - Lei Yin
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Science, Beijing, 100049, China
| | - Xueying Zhan
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Feng Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Zhenxing Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Jun He
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, China
- School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
22
|
Luo D, Wang M, Li Y, Kim C, Yu KM, Kim Y, Han H, Biswal M, Huang M, Kwon Y, Goo M, Camacho-Mojica DC, Shi H, Yoo WJ, Altman MS, Shin HJ, Ruoff RS. Adlayer-Free Large-Area Single Crystal Graphene Grown on a Cu(111) Foil. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1903615. [PMID: 31264306 DOI: 10.1002/adma.201903615] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Indexed: 06/09/2023]
Abstract
To date, thousands of publications have reported chemical vapor deposition growth of "single layer" graphene, but none of them has described truly single layer graphene over large area because a fraction of the area has adlayers. It is found that the amount of subsurface carbon (leading to additional nuclei) in Cu foils directly correlates with the extent of adlayer growth. Annealing in hydrogen gas atmosphere depletes the subsurface carbon in the Cu foil. Adlayer-free single crystal and polycrystalline single layer graphene films are grown on Cu(111) and polycrystalline Cu foils containing no subsurface carbon, respectively. This single crystal graphene contains parallel, centimeter-long ≈100 nm wide "folds," separated by 20 to 50 µm, while folds (and wrinkles) are distributed quasi-randomly in the polycrystalline graphene film. High-performance field-effect transistors are readily fabricated in the large regions between adjacent parallel folds in the adlayer-free single crystal graphene film.
Collapse
Affiliation(s)
- Da Luo
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
| | - Meihui Wang
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Yunqing Li
- School of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Changsik Kim
- SKKU Advanced Institute of Nano-Technology (SAINT), Sungkyunkwan University (SKKU), Gyeonggi-do, 16419, Republic of Korea
| | - Ka Man Yu
- Department of Physics, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Yohan Kim
- School of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Huijun Han
- School of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Mandakini Biswal
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
| | - Ming Huang
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
| | - Youngwoo Kwon
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
| | - Min Goo
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Dulce C Camacho-Mojica
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
| | - Haofei Shi
- Chongqing Key Laboratory of Multi-scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Won Jong Yoo
- SKKU Advanced Institute of Nano-Technology (SAINT), Sungkyunkwan University (SKKU), Gyeonggi-do, 16419, Republic of Korea
| | - Michael S Altman
- Department of Physics, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Hyung-Joon Shin
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
- School of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Rodney S Ruoff
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
- School of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| |
Collapse
|
23
|
Zhu Z, Liu Y, Ju Z, Luo J, Sheng O, Nai J, Liu T, Zhou Y, Wang Y, Tao X. Synthesis of Diverse Green Carbon Nanomaterials through Fully Utilizing Biomass Carbon Source Assisted by KOH. ACS APPLIED MATERIALS & INTERFACES 2019; 11:24205-24211. [PMID: 31250624 DOI: 10.1021/acsami.9b08420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
With multiple properties, green carbon nanomaterials with high specific surface area have become extensively attractive as energy storage devices with environmental-friendly features. The primary synthesis attempts were based on alkalis activation, which, however, faced the dilemma of low utilization rate of carbon sources. Herein, the green carbon with ultrahigh surface area (up to 3560 m2/g) was prepared by the KOH-assisted biomass carbonization. Moreover, the redundant K2O steam and CxHy flow were further utilized; as a result, the carbon materials with a wide range of morphological diversity were collected on the Cu foam. Accordingly, we carried out density functional theory simulations to reveal the mechanism of O-adatom-promoted CH4 dissociation over the Cu surface for carbon formation. The electrodes of electrochemical capacitor fabricated by carbon synthesis possess a 170% higher specific capacitance compared with commercial carbon electrodes. As such, this strategy might be promising in developing hierarchical carbons along with sufficient carbon sources for broadening their potential applications.
Collapse
Affiliation(s)
- Zehao Zhu
- College of Materials Science and Engineering , Zhejiang University of Technology , Hangzhou 310014 , P. R. China
| | - Yujing Liu
- College of Materials Science and Engineering , Zhejiang University of Technology , Hangzhou 310014 , P. R. China
| | - Zhijin Ju
- College of Materials Science and Engineering , Zhejiang University of Technology , Hangzhou 310014 , P. R. China
| | - Jianmin Luo
- College of Materials Science and Engineering , Zhejiang University of Technology , Hangzhou 310014 , P. R. China
| | - Ouwei Sheng
- College of Materials Science and Engineering , Zhejiang University of Technology , Hangzhou 310014 , P. R. China
| | - Jianwei Nai
- College of Materials Science and Engineering , Zhejiang University of Technology , Hangzhou 310014 , P. R. China
| | - Tiefeng Liu
- College of Materials Science and Engineering , Zhejiang University of Technology , Hangzhou 310014 , P. R. China
| | - Yangxin Zhou
- Zhejiang Energy Group Research Institute , Hangzhou 310007 , P. R. China
| | - Yao Wang
- College of Materials Science and Engineering , Zhejiang University of Technology , Hangzhou 310014 , P. R. China
| | - Xinyong Tao
- College of Materials Science and Engineering , Zhejiang University of Technology , Hangzhou 310014 , P. R. China
| |
Collapse
|
24
|
Dong J, Geng D, Liu F, Ding F. Formation of Twinned Graphene Polycrystals. Angew Chem Int Ed Engl 2019; 58:7723-7727. [DOI: 10.1002/anie.201902441] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 03/20/2019] [Indexed: 11/05/2022]
Affiliation(s)
- Jichen Dong
- Center for Multidimensional Carbon MaterialsInstitute for Basic Science Ulsan 44919 Republic of Korea
| | - Dechao Geng
- Pillar of Engineering Product DevelopmentSingapore University of Technology and Design Singapore 487372 Singapore
| | - Fengning Liu
- Center for Multidimensional Carbon MaterialsInstitute for Basic Science Ulsan 44919 Republic of Korea
- School of Materials Science and EngineeringUlsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republic of Korea
| | - Feng Ding
- Center for Multidimensional Carbon MaterialsInstitute for Basic Science Ulsan 44919 Republic of Korea
- School of Materials Science and EngineeringUlsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republic of Korea
| |
Collapse
|
25
|
Schulzendorf M, Hinaut A, Kisiel M, Jöhr R, Pawlak R, Restuccia P, Meyer E, Righi MC, Glatzel T. Altering the Properties of Graphene on Cu(111) by Intercalation of Potassium Bromide. ACS NANO 2019; 13:5485-5492. [PMID: 30983325 DOI: 10.1021/acsnano.9b00278] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The catalytic growth on transition metal surfaces provides a clean and controllable route to obtain defect-free, monocrystalline graphene. However, graphene's optical and electronic properties are diminished by the interaction with the metal substrate. One way to overcome this obstacle is the intercalation of atoms and molecules decoupling the graphene and restoring its electronic structure. We applied noncontact atomic force microscopy to study the structural and electric properties of graphene on clean Cu(111) and after the adsorption of KBr or NaCl. By means of Kelvin probe force microscopy, a change in graphene's work function has been observed after the deposition of KBr, indicating a changed graphene-substrate interaction. Further measurements of single-electron charging events as well as X-ray photoelectron spectroscopy confirmed an electronic decoupling of the graphene islands by KBr intercalation. The results have been compared with density functional theory calculations, supporting our experimental findings.
Collapse
Affiliation(s)
- Mathias Schulzendorf
- Department of Physics , University of Basel , Klingelbergstr. 82 , 4056 Basel , Switzerland
| | - Antoine Hinaut
- Department of Physics , University of Basel , Klingelbergstr. 82 , 4056 Basel , Switzerland
| | - Marcin Kisiel
- Department of Physics , University of Basel , Klingelbergstr. 82 , 4056 Basel , Switzerland
| | - Res Jöhr
- Department of Physics , University of Basel , Klingelbergstr. 82 , 4056 Basel , Switzerland
- Lehrstuhl für Angewandte Physik and Center for Nanoscience , Ludwig-Maximilians-University , Amalienstr. 54 , 80799 Munich , Germany
| | - Rémy Pawlak
- Department of Physics , University of Basel , Klingelbergstr. 82 , 4056 Basel , Switzerland
| | - Paolo Restuccia
- Dipartimento di Scienze Fisiche, Informatiche e Matematiche , Università di Modena e Reggio Emilia , Via Campi 213/A , 41125 Modena , Italy
| | - Ernst Meyer
- Department of Physics , University of Basel , Klingelbergstr. 82 , 4056 Basel , Switzerland
| | - Maria Clelia Righi
- Dipartimento di Scienze Fisiche, Informatiche e Matematiche , Università di Modena e Reggio Emilia , Via Campi 213/A , 41125 Modena , Italy
| | - Thilo Glatzel
- Department of Physics , University of Basel , Klingelbergstr. 82 , 4056 Basel , Switzerland
| |
Collapse
|
26
|
Affiliation(s)
- Jichen Dong
- Center for Multidimensional Carbon MaterialsInstitute for Basic Science Ulsan 44919 Republic of Korea
| | - Dechao Geng
- Pillar of Engineering Product DevelopmentSingapore University of Technology and Design Singapore 487372 Singapore
| | - Fengning Liu
- Center for Multidimensional Carbon MaterialsInstitute for Basic Science Ulsan 44919 Republic of Korea
- School of Materials Science and EngineeringUlsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republic of Korea
| | - Feng Ding
- Center for Multidimensional Carbon MaterialsInstitute for Basic Science Ulsan 44919 Republic of Korea
- School of Materials Science and EngineeringUlsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republic of Korea
| |
Collapse
|
27
|
Kim SY, Kwak J, Ciobanu CV, Kwon SY. Recent Developments in Controlled Vapor-Phase Growth of 2D Group 6 Transition Metal Dichalcogenides. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1804939. [PMID: 30706541 DOI: 10.1002/adma.201804939] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/20/2018] [Indexed: 06/09/2023]
Abstract
An overview of recent developments in controlled vapor-phase growth of 2D transition metal dichalcogenide (2D TMD) films is presented. Investigations of thin-film formation mechanisms and strategies for realizing 2D TMD films with less-defective large domains are of central importance because single-crystal-like 2D TMDs exhibit the most beneficial electronic and optoelectronic properties. The focus is on the role of the various growth parameters, including strategies for efficiently delivering the precursors, the selection and preparation of the substrate surface as a growth assistant, and the introduction of growth promoters (e.g., organic molecules and alkali metal halides) to facilitate the layered growth of (Mo, W)(S, Se, Te)2 atomic crystals on inert substrates. Critical factors governing the thermodynamic and kinetic factors related to chemical reaction pathways and the growth mechanism are reviewed. With modification of classical nucleation theory, strategies for designing and growing various vertical/lateral TMD-based heterostructures are discussed. Then, several pioneering techniques for facile observation of structural defects in TMDs, which substantially degrade the properties of macroscale TMDs, are introduced. Technical challenges to be overcome and future research directions in the vapor-phase growth of 2D TMDs for heterojunction devices are discussed in light of recent advances in the field.
Collapse
Affiliation(s)
- Se-Yang Kim
- School of Materials Science and Engineering & Low-Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Jinsung Kwak
- School of Materials Science and Engineering & Low-Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Cristian V Ciobanu
- Department of Mechanical Engineering & Materials Science Program, Colorado School of Mines, CO, 80401, USA
| | - Soon-Yong Kwon
- School of Materials Science and Engineering & Low-Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| |
Collapse
|
28
|
Lu JY, Olukan T, Tamalampudi SR, Al-Hagri A, Lai CY, Ali Al Mahri M, Apostoleris H, Almansouri I, Chiesa M. Insights into graphene wettability transparency by locally probing its surface free energy. NANOSCALE 2019; 11:7944-7951. [PMID: 30968091 DOI: 10.1039/c9nr00155g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this work, we study the surface energy of monolayer, bilayer and multilayer graphene coatings, produced through exfoliation of natural graphite flakes and chemical vapor deposition. We employ bimodal atomic force microscopy and micro-Raman spectroscopy for high spatial resolution and large area scanning of force of adhesion on the regions of the graphene/SiO2 surface with different graphene layers. Our measurements show that the interface conditions between graphene and SiO2 dominate the experimentally observed graphene surface energy. This finding sheds new light on the controversy surrounding graphene transparency studies. By separating the surface energy into polar and non-polar interactions, our findings suggest that monolayer graphene is nearly van der Waals opaque but partially transparent (near 60%) to polar interactions, which is further supported by characterizing graphene on the copper surface and two levels of density functional theory simulation. In addition to providing quantitative insight into the surface interactions of complicated graphene coatings, this work demonstrates a new route to nondestructively monitor the interface between graphene and coated substrates.
Collapse
Affiliation(s)
- Jin-You Lu
- Laboratory for Energy and Nano Science, Department of Mechanical and Materials Engineering, Khalifa University, Abu Dhabi, United Arab Emirates.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Lakshad Wimalananda MDS, Kim JK, Lee JM. Selective growth of monolayer and bilayer graphene patterns by a rapid growth method. NANOSCALE 2019; 11:6727-6736. [PMID: 30901015 DOI: 10.1039/c9nr01011d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The use of next-generation graphene requires the control of the number of deposition layers together with its fast synthesis for its use in advanced and miniaturized devices. Here, this article describes a novel technique for the selective growth of a continuous film of a graphene pattern (controlled monolayer/multilayer design) by the chemical vapor deposition (CVD) method on Cu foils modified by different plasma treatments. Ex situ Ar plasma treatment is the preferred treatment for monolayer graphene (I2D/IG = 1.81) synthesis. Bilayer graphene (I2D/IG = 1.05) growth was influenced by applying an additional oxygen plasma treatment, which led to different morphologies and control of the surface-active nature of Cu. The required design was achieved by a photolithography process. Graphene synthesis was performed by a short annealing process (60 s) followed by a single-step short burst of graphene growth (60 s). Relatively high density graphene nuclei with faster graphene growth resulted in monolayer graphene in the Ar plasma-treated area. Ex situ oxygen plasma treatment in selected areas was capable of controlling the amount of graphene nuclei formation, while the kink structure was capable of bolstering the adsorption of a relatively high amount of carbon adatoms, resulting in bilayer graphene.
Collapse
|
30
|
Şimşek B. TOPSIS based Taguchi design optimization for CVD growth of graphene using different carbon sources: Graphene thickness, defectiveness and homogeneity. Chin J Chem Eng 2019. [DOI: 10.1016/j.cjche.2018.08.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
31
|
Chen Z, Qi Y, Chen X, Zhang Y, Liu Z. Direct CVD Growth of Graphene on Traditional Glass: Methods and Mechanisms. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1803639. [PMID: 30443937 DOI: 10.1002/adma.201803639] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 08/08/2018] [Indexed: 06/09/2023]
Abstract
Chemical vapor deposition (CVD) on catalytic metal surfaces is considered to be the most effective way to obtain large-area, high-quality graphene films. For practical applications, a transfer process from metal catalysts to target substrates (e.g., poly(ethylene terephthalate) (PET), glass, and SiO2 /Si) is unavoidable and severely degrades the quality of graphene. In particular, the direct growth of graphene on glass can avoid the tedious transfer process and endow traditional glass with prominent electrical and thermal conductivities. Such a combination of graphene and glass creates a new type of glass, the so-called "super graphene glass," which has attracted great interest from the viewpoints of both fundamental research and daily-life applications. In the last few years, great progress has been achieved in pursuit of this goal. Here, these growth methods as well as the specific growth mechanisms of graphene on glass surfaces are summarized. The typical techniques developed include direct thermal CVD growth, molten-bed CVD growth, metal-catalyst-assisted growth, and plasma-enhanced growth. Emphasis is placed on the strategy of growth corresponding to the different natures of glass substrates. A comprehensive understanding of graphene growth on nonmetal glass substrates and the latest status of "super graphene glass" production are provided.
Collapse
Affiliation(s)
- Zhaolong Chen
- Center for Nanochemistry (CNC), College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Yue Qi
- Center for Nanochemistry (CNC), Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Xudong Chen
- Center for Nanochemistry (CNC), College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Yanfeng Zhang
- Center for Nanochemistry (CNC), Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing, 100871, China
| | - Zhongfan Liu
- Center for Nanochemistry (CNC), College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
- Center for Nanochemistry (CNC), Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
- Beijing Graphene Institute (BGI), Beijing, 100095, China
| |
Collapse
|
32
|
Mendes RG, Pang J, Bachmatiuk A, Ta HQ, Zhao L, Gemming T, Fu L, Liu Z, Rümmeli MH. Electron-Driven In Situ Transmission Electron Microscopy of 2D Transition Metal Dichalcogenides and Their 2D Heterostructures. ACS NANO 2019; 13:978-995. [PMID: 30673226 DOI: 10.1021/acsnano.8b08079] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Investigations on monolayered transition metal dichalcogenides (TMDs) and TMD heterostructures have been steadily increasing over the past years due to their potential application in a wide variety of fields such as microelectronics, sensors, batteries, solar cells, and supercapacitors, among others. The present work focuses on the characterization of TMDs using transmission electron microscopy, which allows not only static atomic resolution but also investigations into the dynamic behavior of atoms within such materials. Herein, we present a body of recent research from the various techniques available in the transmission electron microscope to structurally and analytically characterize layered TMDs and briefly compare the advantages of TEM with other characterization techniques. Whereas both static and dynamic aspects are presented, special emphasis is given to studies on the electron-driven in situ dynamic aspects of these materials while under investigation in a transmission electron microscope. The collection of the presented results points to a future prospect where electron-driven nanomanipulation may be routinely used not only in the understanding of fundamental properties of TMDs but also in the electron beam engineering of nanocircuits and nanodevices.
Collapse
Affiliation(s)
- Rafael G Mendes
- Leibniz Institute for Solid State and Materials Research Dresden , P.O. Box 270116, Dresden D-01171 , Germany
| | - Jinbo Pang
- Leibniz Institute for Solid State and Materials Research Dresden , P.O. Box 270116, Dresden D-01171 , Germany
| | - Alicja Bachmatiuk
- Leibniz Institute for Solid State and Materials Research Dresden , P.O. Box 270116, Dresden D-01171 , Germany
- Centre of Polymer and Carbon Materials , Polish Academy of Sciences , M. Curie-Skłodowskiej 34 , Zabrze 41-819 , Poland
| | | | | | - Thomas Gemming
- Leibniz Institute for Solid State and Materials Research Dresden , P.O. Box 270116, Dresden D-01171 , Germany
| | - Lei Fu
- College of Chemistry and Molecular Science , Wuhan University , Wuhan 430072 , China
| | - Zhongfan Liu
- Center for Nanochemistry, Beijing Science and Engineering Centre for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China
| | - Mark H Rümmeli
- Leibniz Institute for Solid State and Materials Research Dresden , P.O. Box 270116, Dresden D-01171 , Germany
- Centre of Polymer and Carbon Materials , Polish Academy of Sciences , M. Curie-Skłodowskiej 34 , Zabrze 41-819 , Poland
| |
Collapse
|
33
|
Gilardi C, Pedrinazzi P, Patel KA, Anzi L, Luo B, Booth TJ, Bøggild P, Sordan R. Graphene-Si CMOS oscillators. NANOSCALE 2019; 11:3619-3625. [PMID: 30741298 DOI: 10.1039/c8nr07862a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Graphene field-effect transistors (GFETs) offer a possibility of exploiting unique physical properties of graphene in realizing novel electronic circuits. However, graphene circuits often lack the voltage swing and switchability of Si complementary metal-oxide-semiconductor (CMOS) circuits, which are the main building block of modern electronics. Here we introduce graphene in Si CMOS circuits to exploit favorable electronic properties of both technologies and realize a new class of simple oscillators using only a GFET, Si CMOS D latch, and timing RC circuit. The operation of the two types of realized oscillators is based on the ambipolarity of graphene, i.e., the symmetry of the transfer curve of GFETs around the Dirac point. The ambipolarity of graphene also allowed to turn the oscillators into pulse-width modulators (with a duty cycle ratio ∼1 : 4) and voltage-controlled oscillators (with a frequency ratio ∼1 : 8) without any circuit modifications. The oscillation frequency was in the range from 4 kHz to 4 MHz and limited only by the external circuit connections, rather than components themselves. The demonstrated graphene-Si CMOS hybrid circuits pave the way to the more widespread adoption of graphene in electronics.
Collapse
Affiliation(s)
- Carlo Gilardi
- L-NESS, Department of Physics, Politecnico di Milano, Via Anzani 42, 22100 Como, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Properties of Nitrogen/Silicon Doped Vertically Oriented Graphene Produced by ICP CVD Roll-to-Roll Technology. COATINGS 2019. [DOI: 10.3390/coatings9010060] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Simultaneous mass production of high quality vertically oriented graphene nanostructures and doping them by using an inductively coupled plasma chemical vapor deposition (ICP CVD) is a technological problem because little is understood about their growth mechanism over enlarged surfaces. We introduce a new method that combines the ICP CVD with roll-to-roll technology to enable the in-situ preparation of vertically oriented graphene by using propane as a precursor gas and nitrogen or silicon as dopants. This new technology enables preparation of vertically oriented graphene with distinct morphology and composition on a moving copper foil substrate at a lower cost. The technological parameters such as deposition time (1–30 min), gas partial pressure, composition of the gas mixture (propane, argon, nitrogen or silane), heating treatment (1–60 min) and temperature (350–500 °C) were varied to reveal the nanostructure growth, the evolution of its morphology and heteroatom’s intercalation by nitrogen or silicon. Unique nanostructures were examined by FE-SEM microscopy, Raman spectroscopy and energy dispersive X-Ray scattering techniques. The undoped and nitrogen- or silicon-doped nanostructures can be prepared with the full area coverage of the copper substrate on industrially manufactured surface defects. Longer deposition time (30 min, 450 °C) causes carbon amorphization and an increased fraction of sp3-hybridized carbon, leading to enlargement of vertically oriented carbonaceous nanostructures and growth of pillars.
Collapse
|
35
|
Anagnostopoulos G, Sygellou L, Paterakis G, Polyzos I, Aggelopoulos CA, Galiotis C. Enhancing the adhesion of graphene to polymer substrates by controlled defect formation. NANOTECHNOLOGY 2019; 30:015704. [PMID: 30362463 DOI: 10.1088/1361-6528/aae683] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The mechanical integrity of composite materials depends primarily on the interface strength and the defect density of the reinforcement which is the provider of enhanced strength and stiffness. In the case of graphene/polymer nanocomposites which are characterized by an extremely large interface region, any defects in the inclusion (such as folds, cracks, holes, etc) will have a detrimental effect to the internal strain distribution and the resulting mechanical performance. This conventional wisdom, however, can be challenged if the defect size is reduced beyond the critical size for crack formation to the level of atomic vacancies. In that case, there should be no practical effect on crack propagation and depending on the nature of the vacancies the interface strength may in fact increase. In this work we employed argon ion (Ar+) bombardment and subsequent exposure to hydrogen (H2) to induce (as revealed by x-ray and ultraviolet photoelectron spectroscopy and Raman spectroscopy) passivated atomic single vacancies to CVD graphene. The modified graphene was subsequently transferred to PMMA bars and the morphology, wettability and the interface adhesion of the CVD graphene/PMMA system were investigated with atomic force microscopy technique and Raman analysis. The results obtained showed clearly an overall improved mechanical behavior of graphene/polymer interface, since an increase as well as a more uniform shift distribution with strain is observed. This paves the way for interface engineering in graphene/polymer systems which, in pristine condition, suffer from premature graphene slippage and subsequent failure.
Collapse
Affiliation(s)
- George Anagnostopoulos
- Institute of Chemical Engineering Sciences, Foundation for Research and Technology-Hellas (FORTH/ICE-HT), Patras 265 04, Greece
| | | | | | | | | | | |
Collapse
|
36
|
Transparent Conductive Electrodes Based on Graphene-Related Materials. MICROMACHINES 2018; 10:mi10010013. [PMID: 30587828 PMCID: PMC6356588 DOI: 10.3390/mi10010013] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 12/14/2018] [Accepted: 12/18/2018] [Indexed: 11/17/2022]
Abstract
Transparent conducting electrodes (TCEs) are the most important key component in photovoltaic and display technology. In particular, graphene has been considered as a viable substitute for indium tin oxide (ITO) due to its optical transparency, excellent electrical conductivity, and chemical stability. The outstanding mechanical strength of graphene also provides an opportunity to apply it as a flexible electrode in wearable electronic devices. At the early stage of the development, TCE films that were produced only with graphene or graphene oxide (GO) were mainly reported. However, since then, the hybrid structure of graphene or GO mixed with other TCE materials has been investigated to further improve TCE performance by complementing the shortcomings of each material. This review provides a summary of the fabrication technology and the performance of various TCE films prepared with graphene-related materials, including graphene that is grown by chemical vapor deposition (CVD) and GO or reduced GO (rGO) dispersed solution and their composite with other TCE materials, such as carbon nanotubes, metal nanowires, and other conductive organic/inorganic material. Finally, several representative applications of the graphene-based TCE films are introduced, including solar cells, organic light-emitting diodes (OLEDs), and electrochromic devices.
Collapse
|
37
|
Anagnostopoulos G, Paterakis G, Polyzos I, Pappas PN, Kouroupis-Agalou K, Mirotta N, Scidà A, Palermo V, Parthenios J, Papagelis K, Galiotis C. Strain Engineering in Highly Wrinkled CVD Graphene/Epoxy Systems. ACS APPLIED MATERIALS & INTERFACES 2018; 10:43192-43202. [PMID: 30406999 DOI: 10.1021/acsami.8b14698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Chemical vapor deposition (CVD) is regarded as a promising fabrication method for the automated, large-scale, production of graphene and other two-dimensional materials. However, its full commercial exploitation is limited by the presence of structural imperfections such as folds, wrinkles, and even cracks that downgrade its physical and mechanical properties. For example, as shown here by means of Raman spectroscopy, the stress transfer from an epoxy matrix to CVD graphene is on average 30% of that of exfoliated monolayer graphene of over 10 μm in dimensions. However, in terms of electrical response, the situation is reversed; the resistance has been found here to decrease by the imposition of mechanical deformation possibly due to the opening up of the structure and the associated increase of electron mobility. This finding paves the way for employing CVD graphene/epoxy composites or coatings as conductive "networks" or bridges in cases for which the conductivity needs to be increased or at least retained when the system is under deformation. The tuning/control of such systems and their operative limitations are discussed here.
Collapse
Affiliation(s)
- George Anagnostopoulos
- Institute of Chemical Engineering Sciences, Foundation for Research and Technology-Hellas (FORTH/ ICE-HT) , Patras 265 04 , Greece
| | - George Paterakis
- Institute of Chemical Engineering Sciences, Foundation for Research and Technology-Hellas (FORTH/ ICE-HT) , Patras 265 04 , Greece
| | - Ioannis Polyzos
- Institute of Chemical Engineering Sciences, Foundation for Research and Technology-Hellas (FORTH/ ICE-HT) , Patras 265 04 , Greece
| | - Panagiotis-Nektarios Pappas
- Institute of Chemical Engineering Sciences, Foundation for Research and Technology-Hellas (FORTH/ ICE-HT) , Patras 265 04 , Greece
| | - Kostantinos Kouroupis-Agalou
- ISOF-Istituto per la Sintesi Organica e la Fotoreattivita-Consiglio Nazionale delle Ricerche , via Gobetti 101 , 40129 Bologna , Italy
| | - Nicola Mirotta
- ISOF-Istituto per la Sintesi Organica e la Fotoreattivita-Consiglio Nazionale delle Ricerche , via Gobetti 101 , 40129 Bologna , Italy
| | - Alessandra Scidà
- ISOF-Istituto per la Sintesi Organica e la Fotoreattivita-Consiglio Nazionale delle Ricerche , via Gobetti 101 , 40129 Bologna , Italy
| | - Vincenzo Palermo
- ISOF-Istituto per la Sintesi Organica e la Fotoreattivita-Consiglio Nazionale delle Ricerche , via Gobetti 101 , 40129 Bologna , Italy
- Department of Industrial and Materials Science , Chalmers University of Technology , SE-412 96 Gothenburg , Sweden
| | - John Parthenios
- Institute of Chemical Engineering Sciences, Foundation for Research and Technology-Hellas (FORTH/ ICE-HT) , Patras 265 04 , Greece
| | - Konstantinos Papagelis
- Institute of Chemical Engineering Sciences, Foundation for Research and Technology-Hellas (FORTH/ ICE-HT) , Patras 265 04 , Greece
- Department of Solid State Physics, School of Physics , Aristotle University of Thessaloniki , Thessaloniki 54124 , Greece
| | - Costas Galiotis
- Institute of Chemical Engineering Sciences, Foundation for Research and Technology-Hellas (FORTH/ ICE-HT) , Patras 265 04 , Greece
- Department of Chemical Engineering , University of Patras , Patras 26504 , Greece
| |
Collapse
|
38
|
Teng Y, Tong S, Zhang M. Secondary-Transferring Graphene Electrode for Stable FOLED. NANOSCALE RESEARCH LETTERS 2018; 13:352. [PMID: 30402802 PMCID: PMC6219997 DOI: 10.1186/s11671-018-2767-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 10/17/2018] [Indexed: 06/08/2023]
Abstract
In this work, sharp wrinkles on graphene films, caused by graphene duplicating the grain boundary cracks of copper foil during the preparation process, were carefully explored. A secondary-transferring graphene film process was proposed to re-transform the "Peak" morphology of graphene surface into "Valley" form. The process we have developed is highly effective and almost nondestructive to the graphene through testing the surface morphology and photo-electric properties before and after the secondary-transferring process. Flexible organic light-emitting device (FOLED) with PEDOT:PSS/SLG/NOA63 framework as a targeted application was fabricated to illustrate the value of our proposed method in fabricating stable devices, the maximum luminance can reach about 35000 cd/m2, and the maximum current efficiency was 16.19 cd/A. This method can also be applied to the roll-to-roll preparation of large area high-quality graphene.
Collapse
Affiliation(s)
- Yunjie Teng
- College of Opto-Electronic Engineering, Changchun University of Science and Technology, Changchun, 130012 People’s Republic of China
| | - Shoufeng Tong
- Institute of Space Photo-Electronic Technology, Changchun University of Science and Technology, Changchun, 130012 People’s Republic of China
| | - Min Zhang
- Institute of Space Photo-Electronic Technology, Changchun University of Science and Technology, Changchun, 130012 People’s Republic of China
| |
Collapse
|
39
|
Zhan L, Wang Y, Chang H, Stehle R, Xu J, Gao L, Zhang W, Jia Y, Qing F, Li X. Preparation of Ultra-Smooth Cu Surface for High-Quality Graphene Synthesis. NANOSCALE RESEARCH LETTERS 2018; 13:340. [PMID: 30361958 PMCID: PMC6202303 DOI: 10.1186/s11671-018-2740-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 10/01/2018] [Indexed: 06/08/2023]
Abstract
As grown graphene by chemical vapor deposition typically degrades greatly due to the presence of grain boundaries, which limit graphene's excellent properties and integration into advanced applications. It has been demonstrated that there is a strong correlation between substrate morphology and graphene domain density. Here, we investigate how thermal annealing and electro-polishing affects the morphology of Cu foils. Ultra-smooth Cu surfaces can be achieved and maintained at elevated temperatures by electro-polishing after a pre-annealing treatment. This technique has shown to be more effective than just electro-polishing the Cu substrate without pre-annealing. This may be due to the remaining dislocations and point defects within the Cu bulk material moving to the surface when the Cu is heated. Likewise, a pre-annealing step may release them. Graphene grown on annealed electro-polished Cu substrates show a better quality in terms of lower domain density and higher layer uniformity than those grown on Cu substrates with only annealing or only electro-polishing treatment.
Collapse
Affiliation(s)
- Longlong Zhan
- State Key Laboratory of Electronic Thin Films and Integrated Devices & School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054 People’s Republic of China
| | - Yue Wang
- State Key Laboratory of Electronic Thin Films and Integrated Devices & School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054 People’s Republic of China
| | - Huicong Chang
- Qian Xuesen Laboratory of Space Technology, China Academy of Space Technology, Beijing, 100094 People’s Republic of China
| | - Richard Stehle
- Mechanical Engineering Department, Sichuan University-Pittsburgh Institute, Sichuan University Jiang’an Campus, Chengdu, 610207 People’s Republic of China
| | - Jie Xu
- National Laboratory of Solid State Microstructures, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093 China
| | - Libo Gao
- National Laboratory of Solid State Microstructures, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093 China
| | - Wanli Zhang
- State Key Laboratory of Electronic Thin Films and Integrated Devices & School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054 People’s Republic of China
| | - Yi Jia
- Qian Xuesen Laboratory of Space Technology, China Academy of Space Technology, Beijing, 100094 People’s Republic of China
| | - Fangzhu Qing
- State Key Laboratory of Electronic Thin Films and Integrated Devices & School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054 People’s Republic of China
- National Engineering Research Center of Electromagnetic Radiation Control Materials, University of Electronic Science and Technology of China, Chengdu, 610054 People’s Republic of China
| | - Xuesong Li
- State Key Laboratory of Electronic Thin Films and Integrated Devices & School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054 People’s Republic of China
| |
Collapse
|
40
|
Park H, Lim C, Lee CJ, Kang J, Kim J, Choi M, Park H. Optimized poly(methyl methacrylate)-mediated graphene-transfer process for fabrication of high-quality graphene layer. NANOTECHNOLOGY 2018; 29:415303. [PMID: 30028310 DOI: 10.1088/1361-6528/aad4d9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Graphene grown on a copper (Cu) substrate by chemical vapor deposition (CVD) is typically required to be transferred to another substrate for the fabrication of various electrical devices. PMMA-mediated wet process is the most widely used method for CVD-graphene-transfer. However, PMMA residue and wrinkles that inevitably remain on the graphene surface during the transfer process are critical issues degrading the electrical properties of graphene. In this paper, we report on a PMMA-mediated graphene-transfer method that can effectively reduce the density and size of the PMMA residue and the height of wrinkles on the transferred graphene layer. We found out that acetic acid is the most effective PMMA stripper among the typically used solutions to remove the PMMA residue. In addition, we observed that an optimized annealing process can reduce the height of the wrinkles on the transferred graphene layer without degrading the graphene quality. The effects of the suggested wet transfer process were also investigated by evaluating the electrical properties of field-effect transistors fabricated on the transferred graphene layer. The results of this work will contribute to the development of fabrication processes for high-quality graphene devices, given that the transfer of graphene from the Cu substrate is essential process to the application of CVD-graphene.
Collapse
Affiliation(s)
- Honghwi Park
- School of Electronics Engineering, Kyungpook National University, Daegu 702-701, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
41
|
Zhou S, Wang S, Shi Z, Sawada H, Kirkland AI, Li J, Warner JH. Atomically sharp interlayer stacking shifts at anti-phase grain boundaries in overlapping MoS 2 secondary layers. NANOSCALE 2018; 10:16692-16702. [PMID: 30155545 DOI: 10.1039/c8nr04486d] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
When secondary domains nucleate and grow on the surface of monolayer MoS2, they can extend across grain boundaries in the underlying monolayer MoS2 and form overlapping sections. We present an atomic level study of overlapping antiphase grain boundaries (GBs) in MoS2 monolayer-bilayers using aberration-corrected annular dark field scanning transmission electron microscopy. In particular we focus on the antiphase GB within a monolayer and track its propagation through an overlapping bilayer domain. We show that this leads to an atomically sharp interface between 2H and 3R interlayer stacking in the bilayer region. We have studied the micro-nanoscale "meandering" of the antiphase GB in MoS2, which shows a directional dependence on the density of 4 and 8 member ring defects, as well as sharp turning angles 90°-100° that are mediated by a special 8-member ring defect. Density functional theory has been used to explore the overlapping interlayer stacking around the antiphase GBs, confirming our experimental findings. These results show that overlapping secondary bilayer MoS2 domains cause atomic structure modification to underlying anti-phase GB sites to accommodate the van der Waals interactions.
Collapse
Affiliation(s)
- Si Zhou
- Department of Materials, University of Oxford, 16 Parks Road, Oxford, OX1 3PH, UK.
| | | | | | | | | | | | | |
Collapse
|
42
|
Graphene Film-Supported Oriented 1.1.1 Gold(0) Versus 2.0.0 Copper(I) Nanoplatelets as Very Efficient Catalysts for Coupling Reactions. Top Catal 2018. [DOI: 10.1007/s11244-018-1043-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
43
|
Nguyen P, Behura SK, Seacrist MR, Berry V. Intergrain Diffusion of Carbon Radical for Wafer-Scale, Direct Growth of Graphene on Silicon-Based Dielectrics. ACS APPLIED MATERIALS & INTERFACES 2018; 10:26517-26525. [PMID: 30009598 DOI: 10.1021/acsami.8b07655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Graphene intrinsically hosts charge-carriers with ultrahigh mobility and possesses a high quantum capacitance, which are attractive attributes for nanoelectronic applications requiring graphene-on-substrate base architecture. Most of the current techniques for graphene production rely on the growth on metal catalyst surfaces, followed by a contamination-prone transfer process to put graphene on a desired dielectric substrate. Therefore, a direct graphene deposition process on dielectric surfaces is crucial to avoid polymer-adsorption-related contamination from the transfer process. Here, we present a chemical-diffusion mechanism of a process for transfer-free growth of graphene on silicon-based gate-dielectric substrates via low-pressure chemical vapor deposition. The process relies on the diffusion of catalytically produced carbon radicals through polycrystalline copper (Cu) grain boundaries and their crystallization at the interface of Cu and underneath silicon-based gate-dielectric substrates. The graphene produced exhibits low-defect multilayer domains ( La ∼ 140 nm) with turbostratic orientations as revealed by selected area electron diffraction. Further, graphene growth between Cu and the substrate was 2-fold faster on SiO2/Si(111) substrate than on SiO2/Si(100). The process parameters such as growth temperature and gas compositions (hydrogen (H2)/methane (CH4) flow rate ratio) play critical roles in the formation of high-quality graphene films. The low-temperature back-gating charge transport measurements of the interfacial graphene show density-independent mobility for holes and electrons. Consequently, the analysis of electronic transport at various temperatures reveals a dominant Coulombic scattering, a thermal activation energy (2.0 ± 0.2 meV), and two-dimensional hopping conduction in the graphene field-effect transistor. A band overlapping energy of 2.3 ± 0.4 meV is estimated by employing the simple two-band model.
Collapse
Affiliation(s)
- Phong Nguyen
- Department of Chemical Engineering , University of Illinois at Chicago , 810 S Clinton Street , Chicago , Illinois 60607 , United States
| | - Sanjay K Behura
- Department of Chemical Engineering , University of Illinois at Chicago , 810 S Clinton Street , Chicago , Illinois 60607 , United States
| | - Michael R Seacrist
- SunEdison Semiconductor , 501 Pearl Drive , Saint Peters , Missouri 63376 , United States
| | - Vikas Berry
- Department of Chemical Engineering , University of Illinois at Chicago , 810 S Clinton Street , Chicago , Illinois 60607 , United States
| |
Collapse
|
44
|
Dong J, Zhang L, Zhang K, Ding F. How graphene crosses a grain boundary on the catalyst surface during chemical vapour deposition growth. NANOSCALE 2018; 10:6878-6883. [PMID: 29633768 DOI: 10.1039/c7nr06840a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The chemical vapour deposition (CVD) growth of graphene is normally an epitaxial process, where the atomic structure of the adlayer should copy the texture of the substrate. However, it has been widely observed that single crystalline graphene grown on metal foil may cross a grain boundary (GB) of the substrate without forming any line defect, a necessary condition to change its crystalline orientation and maintain the structure registry with the substrate on the other side of the GB. Here, we present a comprehensive theoretical study on graphene growth behavior on polycrystalline metal substrates. Our density functional theory (DFT) calculations reveal that for graphene growth on most metal surfaces, the binding energy difference between the epitaxial and non-epitaxial graphene on the substrate is not large enough to compensate for the formation energy of a GB in graphene and therefore, during the CVD process, the growing graphene can pass through a GB on the metal surface without changing its crystalline orientation. Hence, graphene CVD growth cannot be strictly regarded as an epitaxial process; this conclusion is further verified by atomic simulations. The present study shows that the growth of graphene on a metal catalyst surface should be regarded rather as a quasi-epitaxial process, where a graphene domain is aligned only on the single crystalline metal facet on which it nucleates, but this structural registry with the metal substrate may be lost when the graphene crosses a GB on the metal surface.
Collapse
Affiliation(s)
- Jichen Dong
- Center for Multidimensional Carbon Materials, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea.
| | | | | | | |
Collapse
|
45
|
Zhang CY, Yu M. Theoretical prediction of sandwiched two-dimensional phosphide binary compound sheets with tunable bandgaps and anisotropic physical properties. NANOTECHNOLOGY 2018; 29:095703. [PMID: 29368692 DOI: 10.1088/1361-6528/aaa63b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Atomic layers of GaP and InP binary compounds with unique anisotropic structural, electronic and mechanical properties have been predicted from first-principle molecular dynamics simulations. These new members of the phosphide binary compound family stabilize to a sandwiched two-dimensional (2D) crystalline structure with orthorhombic lattice symmetry and high buckling of 2.14 Å-2.46 Å. Their vibration modes are similar to those of phosphorene with six Raman active modes ranging from ∼80 cm-1 to 400 cm-1. The speeds of sound in their phonon dispersions reflect anisotropy in their elastic constants, which was further confirmed by their strong directional dependence of Young's moduli and effective nonlinear elastic moduli. They show wide bandgap semiconductor behavior with fundamental bandgaps of 2.89 eV for GaP and 2.59 eV for InP, respectively, even wider than their bulk counterparts. Such bandgaps were found to be tunable under strain. In particular, a direct-indirect bandgap transition was found under certain strains along zigzag or biaxial orientations, reflecting their promising applications in strain-induced bandgap engineering in nanoelectronics and photovoltaics. Feasible pathways to realize these novel 2D phosphide compounds are also proposed.
Collapse
Affiliation(s)
- C Y Zhang
- Department of Physics and Astronomy, University of Louisville, Louisville, KY 40292, United States of America
| | | |
Collapse
|
46
|
Rahmani Didar B, Balbuena PB. Adsorption of Carbon on Partially Oxidized Low-Index Cu Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:1311-1320. [PMID: 29275634 DOI: 10.1021/acs.langmuir.7b03456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We use first-principles calculations to study the carbon adsorption on copper slabs of (100) and (111) surfaces predosed by oxygen atoms. Our results show that on both surfaces, an incoming carbon atom has the ability to replace and completely desorb a previously surface-adsorbed oxygen atom producing CO and CO2 molecules in the gas phase. By comparison, the (111) surface is better suited for oxygen desorption, and an incoming carbon atom can more easily bond to and desorb oxygen atoms even at low oxygen coverages. We examine this mechanism at two different temperatures for both surfaces at 0.5 ML oxygen coverage. An implication of this process is the experimentally proven cleaning effect of predosing copper surfaces with oxygen before graphene growth in the chemical vapor deposition process. Conversely, adsorption and diffusion of carbon atoms, both of which are necessary for the nucleation and growth of carbon nanotubes, may be hindered by the presence of the oxidized or partially oxidized surfaces.
Collapse
Affiliation(s)
- Behnaz Rahmani Didar
- Department of Chemical Engineering, Texas A&M University , College Station, Texas 77843, United States
| | - Perla B Balbuena
- Department of Chemical Engineering, Texas A&M University , College Station, Texas 77843, United States
| |
Collapse
|
47
|
Shao H, Zhang X, Huang H, Zhang K, Wang M, Zhang C, Yang Y, Wen M, Zheng W. Magnetron Sputtering Deposition Cu@Onion-like N-C as High-Performance Electrocatalysts for Oxygen Reduction Reaction. ACS APPLIED MATERIALS & INTERFACES 2017; 9:41945-41954. [PMID: 29148708 DOI: 10.1021/acsami.7b16682] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The idea of a core-shell structure can promote the utilization of nonprecious metallic catalysts by enhancing their activity and stability for the oxygen reduction reaction (ORR). Developing a low-cost, high-efficiency, and high-reproducibility method for synthesizing core-shell-structured materials represents an urgent challenge. Here, we fabricate encapsulated Cu nanoparticles with nitrogen-doped onion-like graphite nanoshells (Cu@onion-like N-C) as an efficient ORR catalyst by magnetron sputtering, in which the graphite shells grow by an in situ self-assembly process activated by the surface-catalyzed behavior with Cu nanoparticles. The results show that the CuCN-650 °C catalyst achieves the optimized Cu@onion-like N-C structure with small-sized Cu nanoparticles and a few-layer nanoshells and exhibits excellent ORR electrocatalytic properties, including a half-wave potential and onset potential similar to those of commercial Pt/C, coupled with better stability and higher methanol tolerance than for commercial Pt/C in alkaline electrolytes. The internal Cu nanoparticles in the core-shell structure not only promote the formation of a high content of pyridinic N but also donate the electronic charges to outer N-doped C shells, and thus the synergistic effect between the encapsulated Cu nanoparticles and N-doped C shells is responsible for the excellent electrocatalytic activity for the ORR.
Collapse
Affiliation(s)
- Hongyang Shao
- State Key Laboratory of Superhard Materials, Department of Materials Science and Key Laboratory of Automobile Materials, MOE, Jilin University , Changchun 130012, People's Republic of China
| | - Xiaoming Zhang
- Division of Fuel Cell & Battery, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, China
| | - Hao Huang
- AECC Beijing Institute of Aeronautical Materials , Beijing81-15 100095, People's Republic of China
| | - Kan Zhang
- State Key Laboratory of Superhard Materials, Department of Materials Science and Key Laboratory of Automobile Materials, MOE, Jilin University , Changchun 130012, People's Republic of China
| | - Menglong Wang
- State Key Laboratory of Superhard Materials, Department of Materials Science and Key Laboratory of Automobile Materials, MOE, Jilin University , Changchun 130012, People's Republic of China
| | - Cai Zhang
- State Key Laboratory of Superhard Materials, Department of Materials Science and Key Laboratory of Automobile Materials, MOE, Jilin University , Changchun 130012, People's Republic of China
| | - Yifan Yang
- State Key Laboratory of Superhard Materials, Department of Materials Science and Key Laboratory of Automobile Materials, MOE, Jilin University , Changchun 130012, People's Republic of China
| | - Mao Wen
- State Key Laboratory of Superhard Materials, Department of Materials Science and Key Laboratory of Automobile Materials, MOE, Jilin University , Changchun 130012, People's Republic of China
| | - Weitao Zheng
- State Key Laboratory of Superhard Materials, Department of Materials Science and Key Laboratory of Automobile Materials, MOE, Jilin University , Changchun 130012, People's Republic of China
| |
Collapse
|
48
|
Shihommatsu K, Takahashi J, Momiuchi Y, Hoshi Y, Kato H, Homma Y. Formation Mechanism of Secondary Electron Contrast of Graphene Layers on a Metal Substrate. ACS OMEGA 2017; 2:7831-7836. [PMID: 31457340 PMCID: PMC6645151 DOI: 10.1021/acsomega.7b01550] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 10/31/2017] [Indexed: 05/31/2023]
Abstract
Scanning electron microscopy (SEM) is widely used to observe graphene on metal substrates. However, the origin of the SEM image contrast of graphene is not well understood. In this work, we performed in situ SEM imaging of layer-number-controlled graphene on a Ni substrate using a high-pass energy filter for secondary electrons. We found that the graphene layer contrast was maximized at 15-20 eV, corresponding to the π-σ* interband transition in graphene. Our results indicate that the SEM image of graphene is produced by attenuation of the electrons emitted from the metal substrate by the monoatomic layers of graphene.
Collapse
|
49
|
Zhang Z, Xu X, Qiu L, Wang S, Wu T, Ding F, Peng H, Liu K. The Way towards Ultrafast Growth of Single-Crystal Graphene on Copper. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2017; 4:1700087. [PMID: 28932670 PMCID: PMC5604388 DOI: 10.1002/advs.201700087] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 04/08/2017] [Indexed: 05/03/2023]
Abstract
The exceptional properties of graphene make it a promising candidate in the development of next-generation electronic, optoelectronic, photonic and photovoltaic devices. A holy grail in graphene research is the synthesis of large-sized single-crystal graphene, in which the absence of grain boundaries guarantees its excellent intrinsic properties and high performance in the devices. Nowadays, most attention has been drawn to the suppression of nucleation density by using low feeding gas during the growth process to allow only one nucleus to grow with enough space. However, because the nucleation is a random event and new nuclei are likely to form in the very long growth process, it is difficult to achieve industrial-level wafer-scale or beyond (e.g. 30 cm in diameter) single-crystal graphene. Another possible way to obtain large single-crystal graphene is to realize ultrafast growth, where once a nucleus forms, it grows up so quickly before new nuclei form. Therefore ultrafast growth provides a new direction for the synthesis of large single-crystal graphene, and is also of great significance to realize large-scale production of graphene films (fast growth is more time-efficient and cost-effective), which is likely to accelerate various graphene applications in industry.
Collapse
Affiliation(s)
- Zhihong Zhang
- State Key Laboratory for Mesoscopic PhysicsSchool of PhysicsCollaborative Innovation Center of Quantum MatterPeking UniversityBeijing100871China
- Academy for Advanced Interdisciplinary StudiesPeking UniversityBeijing100871China
| | - Xiaozhi Xu
- State Key Laboratory for Mesoscopic PhysicsSchool of PhysicsCollaborative Innovation Center of Quantum MatterPeking UniversityBeijing100871China
- Academy for Advanced Interdisciplinary StudiesPeking UniversityBeijing100871China
| | - Lu Qiu
- School of Materials Science and EngineeringUlsan National Institute of Science and Technology (UNIST)Ulsan689–798Republic of Korea
| | - Shaoxin Wang
- State Key Laboratory for Mesoscopic PhysicsSchool of PhysicsCollaborative Innovation Center of Quantum MatterPeking UniversityBeijing100871China
| | - Tianwei Wu
- State Key Laboratory for Mesoscopic PhysicsSchool of PhysicsCollaborative Innovation Center of Quantum MatterPeking UniversityBeijing100871China
| | - Feng Ding
- School of Materials Science and EngineeringUlsan National Institute of Science and Technology (UNIST)Ulsan689–798Republic of Korea
| | - Hailin Peng
- Centre for NanochemistryCollege of Chemistry and Molecular EngineeringBeijing Science and Engineering Center for NanocarbonsPeking UniversityBeijing100871China
| | - Kaihui Liu
- State Key Laboratory for Mesoscopic PhysicsSchool of PhysicsCollaborative Innovation Center of Quantum MatterPeking UniversityBeijing100871China
- Academy for Advanced Interdisciplinary StudiesPeking UniversityBeijing100871China
| |
Collapse
|
50
|
Lisi N, Dikonimos T, Buonocore F, Pittori M, Mazzaro R, Rizzoli R, Marras S, Capasso A. Contamination-free graphene by chemical vapor deposition in quartz furnaces. Sci Rep 2017; 7:9927. [PMID: 28855680 PMCID: PMC5577164 DOI: 10.1038/s41598-017-09811-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 07/19/2017] [Indexed: 11/13/2022] Open
Abstract
Although the growth of graphene by chemical vapor deposition is a production technique that guarantees high crystallinity and superior electronic properties on large areas, it is still a challenge for manufacturers to efficiently scale up the production to the industrial scale. In this context, issues related to the purity and reproducibility of the graphene batches exist and need to be tackled. When graphene is grown in quartz furnaces, in particular, it is common to end up with samples contaminated by heterogeneous particles, which alter the growth mechanism and affect graphene’s properties. In this paper, we fully unveil the source of such contaminations and explain how they create during the growth process. We further propose a modification of the widely used quartz furnace configuration to fully suppress the sample contamination and obtain identical and clean graphene batches on large areas.
Collapse
Affiliation(s)
- Nicola Lisi
- Energy Technologies Department (DTE), ENEA Casaccia, Via Anguillarese 301, 00123, Rome, Italy.
| | - Theodoros Dikonimos
- Energy Technologies Department (DTE), ENEA Casaccia, Via Anguillarese 301, 00123, Rome, Italy
| | - Francesco Buonocore
- Energy Technologies Department (DTE), ENEA Casaccia, Via Anguillarese 301, 00123, Rome, Italy
| | - Martina Pittori
- Department of Chemical Materials Environmental Engineering, Sapienza University of Rome, Via del Castro Laurenziano 7, 00161, Rome, Italy.,Institute for Microelectronics and Microsystems (IMM), National Research Council (CNR), Section of Bologna, Via Gobetti 101, 40129, Bologna, Italy
| | - Raffaello Mazzaro
- Institute for Microelectronics and Microsystems (IMM), National Research Council (CNR), Section of Bologna, Via Gobetti 101, 40129, Bologna, Italy.,Chemistry Department 'G. Ciamician', Bologna University, Via Selmi 2, 40126, Bologna, Italy
| | - Rita Rizzoli
- Institute for Microelectronics and Microsystems (IMM), National Research Council (CNR), Section of Bologna, Via Gobetti 101, 40129, Bologna, Italy
| | - Sergio Marras
- Istituto Italiano di Tecnologia, Materials Characterization Facility, Via Morego 30, 16163, Genova, Italy
| | - Andrea Capasso
- Istituto Italiano di Tecnologia, Graphene Labs, Via Morego 30, 16163, Genova, Italy.
| |
Collapse
|