1
|
Pileni MP. "Nano-egg" superstructures of hydrophobic nanocrystals dispersed in water. Phys Chem Chem Phys 2024; 26:16931-16941. [PMID: 38835199 DOI: 10.1039/d4cp01299b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
In this feature article, we use hydrophobic ferrite (Fe3O4) nanocrystal shells filled with Au nanocrystals self-assembled into 3D superlattices and dispersed in water. These superstructures act as nano-heaters. The stability of such superstructures is very high, even for several years, when stored at room temperature. When subjected to an electron beam, the inverted structure of Fe3O4 structures is gradually dissolved due to the formation of hydrated electrons and hydroxyl radicals.
Collapse
Affiliation(s)
- M P Pileni
- Sorbonne Université, Department of Chemistry, 4 Place Jussieu, 75005 Paris, France.
| |
Collapse
|
2
|
Pileni MP. Superstructures of water-dispersive hydrophobic nanocrystals: specific properties. MATERIALS HORIZONS 2023; 10:4746-4756. [PMID: 37740284 DOI: 10.1039/d3mh00949a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Here, we describe water-soluble superstructures of hydrophobic nanocrystals that have been developed in recent years. We will also report on some of their properties which are still in their infancy. One of these structures, called "cluster structures", consists of hydrophobic 3D superlattices of Co or Au nanocrystals, covered with organic molecules acting like parachutes. The magnetic properties of Co "cluster structures" a retained when the superstructures is dispersed in aqueous solution. With Au "cluster structures", the longer wavelength optical scattered spectra are very broad and red-shifted, while at shorter wavelengths the localized surface plasmonic resonance of the scattered nanocrystals is retained. Moreover, the maximum of the long-wavelength signal spectra is linearly dependent on the increase in assembly size. The second superstructure was based on liquid-liquid instabilities favoring the formation of Fe3O4 nanocrystal shells (colloidosomes) filled or unfilled with Au 3D superlattices and also spherical solid crystal structures are called supraballs. Colloidosomes and supraballs in contact with cancer cells increase the density of nanocrystals in lysosomes and near the lysosomal membrane. Importantly, the structure of their organization is maintained in lysosomes for up to 8 days after internalization, while the initially dispersed hydrophilic nanocrystals are randomly aggregated. These two structures act as nanoheaters. Indeed, due to the dilution of the metallic phase, the penetration depth of visible light is much greater than that of homogeneous metallic nanoparticles of similar size. This allows for a high average heat load overall. Thus, the organic matrix acts as an internal reservoir for efficient energy accumulation within a few hundred picoseconds. A similar behavior was observed with colloidosomes, supraballs and "egg" structures, making these superstructures universal nanoheaters, and the same behavior is not observed when they are not dispersed in water (dried and deposited on a substrate). Note that colloidosomes and supraballs trigger local photothermal damage inaccessible to isolated nanocrystals and not predicted by global temperature measurements.
Collapse
Affiliation(s)
- M P Pileni
- Sorbonne Université département de chimie, 4 Place Jussieu, 75005 Paris, France.
| |
Collapse
|
3
|
Taplick M, Ruhmlieb C, Kipp T, Mews A. Two-Dimensional Superstructures from the Gas Phase: Directed Assembly of Copper-Sulfide Nanoplatelets. NANO LETTERS 2023; 23:1313-1319. [PMID: 36758116 DOI: 10.1021/acs.nanolett.2c04531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
We report on a novel plasma-assisted approach for the deposition of free-standing two-dimensional superstructures via directed assembly of copper-sulfide nanoplatelets in the gas phase. For this, the copper-organic complex bis-[bis(N,N-diethyldithiocarbamato)-copper(II)] is thermally evaporated and transported into a capacitively coupled rf plasma to form two-dimensional nanoplatelets upon fragmentation. On a substrate, the highly anisotropic platelets are attached in a directed edge-to-edge configuration. We found that a high substrate temperature of 400 °C is necessary for the 2D vertical growth of copper sulfide. Using plasma reinforces the directional assembly and leads to nanowalls which are several micrometers high with the thickness of a single nanoplatelet. The morphology and crystallographic composition of the emerging superstructures were extensively investigated via scanning and transmission electron microscopy as well as electron diffraction. The data reveal the (010) plane to be the preferred axis for the arrangement of the nanoplatelets.
Collapse
Affiliation(s)
- Maria Taplick
- University of Hamburg, Institute of Physical Chemistry, Grindelallee 117, 20146 Hamburg, Germany
| | - Charlotte Ruhmlieb
- University of Hamburg, Institute of Physical Chemistry, Grindelallee 117, 20146 Hamburg, Germany
| | - Tobias Kipp
- University of Hamburg, Institute of Physical Chemistry, Grindelallee 117, 20146 Hamburg, Germany
| | - Alf Mews
- University of Hamburg, Institute of Physical Chemistry, Grindelallee 117, 20146 Hamburg, Germany
| |
Collapse
|
4
|
Muhammed MM, Alrebdi TA, Chamkha AJ, Mokkath JH. Coupled plasmons in aluminum nanoparticle superclusters. Phys Chem Chem Phys 2022; 24:29528-29538. [PMID: 36448566 DOI: 10.1039/d2cp04298c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Metallic nanoparticles can self-assemble into highly ordered superclusters for potential applications in optics and catalysis. Here, using first-principles quantum mechanical calculations, we investigate plasmon coupling in superclusters made of aluminum nanoparticles. More specifically, we study/compare the plasmon coupling in close-pack FCC (face-centered-cubic) and non-close-pack BCC (body-centered-cubic) superclusters. We demonstrate that the optical properties of these clusters can be fine-tuned with respect to the packing arrangement. As a key result of this work, plasmon coupling is found to be enhanced (diminished) in FCC (BCC) superclusters due to constructive (destructive) plasmon coupling. Our quantum calculations would help in the design of Al-based superclusters beneficial for plasmonics applications.
Collapse
Affiliation(s)
| | - Tahani A Alrebdi
- Department of Physics, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Ali J Chamkha
- Faculty of Engineering, Kuwait College of Science and Technology, Doha District, 35004, Kuwait
| | - Junais Habeeb Mokkath
- Quantum Nanophotonics Simulations Lab, Department of Physics, Kuwait College of Science And Technology, Doha Area, 7th Ring Road, P.O. Box 27235, Kuwait.
| |
Collapse
|
5
|
Liu J, Wei J, Yang Z. Building ordered nanoparticle assemblies inspired by atomic epitaxy. Phys Chem Chem Phys 2021; 23:20028-20037. [PMID: 34498628 DOI: 10.1039/d1cp02373j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Self-assembly of inorganic nanoparticles into mesoscopic or macroscopic nanoparticle assemblies is an efficient strategy to fabricate advanced devices with emergent nanoscale functionalities. Furthermore, assembly of nanoparticles onto substrates may enable the fabrication of substrate-integrated devices, akin to atomic crystal growth on a substrate. Recent progress in nanoparticle assembly suggests that ordered nanoparticle assemblies could be well produced on a selected substrate, referred to as soft epitaxial growth. Herein, recent advances in soft epitaxial growth of a nanoparticle assembly are presented, including the assembly strategies, the choice of substrate and the epitaxial modes. Perspectives are also discussed for the material design based on substrate-integrated soft epitaxial growth.
Collapse
Affiliation(s)
- Jiaming Liu
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China.
| | - Jingjing Wei
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China.
| | - Zhijie Yang
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China.
| |
Collapse
|
6
|
Bagiński M, Pedrazo-Tardajos A, Altantzis T, Tupikowska M, Vetter A, Tomczyk E, Suryadharma RN, Pawlak M, Andruszkiewicz A, Górecka E, Pociecha D, Rockstuhl C, Bals S, Lewandowski W. Understanding and Controlling the Crystallization Process in Reconfigurable Plasmonic Superlattices. ACS NANO 2021; 15:4916-4926. [PMID: 33621046 PMCID: PMC8028333 DOI: 10.1021/acsnano.0c09746] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The crystallization of nanomaterials is a primary source of solid-state, photonic structures. Thus, a detailed understanding of this process is of paramount importance for the successful application of photonic nanomaterials in emerging optoelectronic technologies. While colloidal crystallization has been thoroughly studied, for example, with advanced in situ electron microscopy methods, the noncolloidal crystallization (freezing) of nanoparticles (NPs) remains so far unexplored. To fill this gap, in this work, we present proof-of-principle experiments decoding a crystallization of reconfigurable assemblies of NPs at a solid state. The chosen material corresponds to an excellent testing bed, as it enables both in situ and ex situ investigation using X-ray diffraction (XRD), transmission electron microscopy (TEM), high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), atomic force microscopy (AFM), and optical spectroscopy in visible and ultraviolet range (UV-vis) techniques. In particular, ensemble measurements with small-angle XRD highlighted the dependence of the correlation length in the NPs assemblies on the number of heating/cooling cycles and the rate of cooling. Ex situ TEM imaging further supported these results by revealing a dependence of domain size and structure on the sample preparation route and by showing we can control the domain size over 2 orders of magnitude. The application of HAADF-STEM tomography, combined with in situ thermal control, provided three-dimensional single-particle level information on the positional order evolution within assemblies. This combination of real and reciprocal space provides insightful information on the anisotropic, reversibly reconfigurable assemblies of NPs. TEM measurements also highlighted the importance of interfaces in the polydomain structure of nanoparticle solids, allowing us to understand experimentally observed differences in UV-vis extinction spectra of the differently prepared crystallites. Overall, the obtained results show that the combination of in situ heating HAADF-STEM tomography with XRD and ex situ TEM techniques is a powerful approach to study nanoparticle freezing processes and to reveal the crucial impact of disorder in the solid-state aggregates of NPs on their plasmonic properties.
Collapse
Affiliation(s)
- Maciej Bagiński
- Faculty
of Chemistry, University of Warsaw, 1 Pasteura St., 02-093 Warsaw, Poland
| | - Adrián Pedrazo-Tardajos
- Electron
Microscopy for Materials Research, University
of Antwerp, Groenenborgerlaan, 171, 2020 Antwerp, Belgium
| | - Thomas Altantzis
- Electron
Microscopy for Materials Research, University
of Antwerp, Groenenborgerlaan, 171, 2020 Antwerp, Belgium
| | - Martyna Tupikowska
- Faculty
of Chemistry, University of Warsaw, 1 Pasteura St., 02-093 Warsaw, Poland
| | - Andreas Vetter
- Institute
of Theoretical Solid State Physics, Karlsruhe
Institute of Technology, 76131 Karlsruhe, Germany
| | - Ewelina Tomczyk
- Faculty
of Chemistry, University of Warsaw, 1 Pasteura St., 02-093 Warsaw, Poland
| | - Radius N.S. Suryadharma
- Institute
of Theoretical Solid State Physics, Karlsruhe
Institute of Technology, 76131 Karlsruhe, Germany
| | - Mateusz Pawlak
- Faculty
of Chemistry, University of Warsaw, 1 Pasteura St., 02-093 Warsaw, Poland
| | - Aneta Andruszkiewicz
- Faculty
of Chemistry, University of Warsaw, 1 Pasteura St., 02-093 Warsaw, Poland
- Department
of Chemistry, Uppsala Universitet, Lägerhyddsvägen 1, 751 20 Uppsala, Sweden
| | - Ewa Górecka
- Faculty
of Chemistry, University of Warsaw, 1 Pasteura St., 02-093 Warsaw, Poland
| | - Damian Pociecha
- Faculty
of Chemistry, University of Warsaw, 1 Pasteura St., 02-093 Warsaw, Poland
| | - Carsten Rockstuhl
- Institute
of Theoretical Solid State Physics, Karlsruhe
Institute of Technology, 76131 Karlsruhe, Germany
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology, 76021 Karlsruhe, Germany
| | - Sara Bals
- Electron
Microscopy for Materials Research, University
of Antwerp, Groenenborgerlaan, 171, 2020 Antwerp, Belgium
- (S.B.)
| | - Wiktor Lewandowski
- Faculty
of Chemistry, University of Warsaw, 1 Pasteura St., 02-093 Warsaw, Poland
- (W.L.)
| |
Collapse
|
7
|
Gillet A, Cher S, Tassé M, Blon T, Alves S, Izzet G, Chaudret B, Proust A, Demont P, Volatron F, Tricard S. Polarizability is a key parameter for molecular electronics. NANOSCALE HORIZONS 2021; 6:271-276. [PMID: 33507203 DOI: 10.1039/d0nh00583e] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Identifying descriptors that govern charge transport in molecular electronics is of prime importance for the elaboration of devices. The effects of molecule characteristics, such as size, bulkiness or charge, have been widely reported. Herein, we show that the molecule polarizability can be a crucial parameter to consider. To this end, platinum nanoparticle self-assemblies (PtNP SAs) are synthesized in solution, including a series of polyoxometalates (POMs). The charge of the POM unit can be modified according to the nature of the central heteroatom while keeping its size constant. POM hybrids that display remote terminal thiol functions strongly anchor the PtNP surface to form robust SAs. IV curves, recorded by conductive AFM, show a decrease in Coulomb blockade as the dielectric constant of the POMs increases. In this system, charge transport across molecular junctions can be interpreted as variations in polarizability, which is directly related to the dielectric constant.
Collapse
Affiliation(s)
- Angélique Gillet
- Laboratoire de Physique et Chimie des Nano-Objets, INSA, CNRS, Université de Toulouse, Toulouse, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Structural order enhances charge carrier transport in self-assembled Au-nanoclusters. Nat Commun 2020; 11:6188. [PMID: 33273476 PMCID: PMC7713068 DOI: 10.1038/s41467-020-19461-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 10/01/2020] [Indexed: 11/08/2022] Open
Abstract
The collective properties of self-assembled nanoparticles with long-range order bear immense potential for customized electronic materials by design. However, to mitigate the shortcoming of the finite-size distribution of nanoparticles and thus, the inherent energetic disorder within assemblies, atomically precise nanoclusters are the most promising building blocks. We report an easy and broadly applicable method for the controlled self-assembly of atomically precise Au32(nBu3P)12Cl8 nanoclusters into micro-crystals. This enables the determination of emergent optoelectronic properties which resulted from long-range order in such assemblies. Compared to the same nanoclusters in glassy, polycrystalline ensembles, we find a 100-fold increase in the electric conductivity and charge carrier mobility as well as additional optical transitions. We show that these effects are due to a vanishing energetic disorder and a drastically reduced activation energy to charge transport in the highly ordered assemblies. This first correlation of structure and electronic properties by comparing glassy and crystalline self-assembled superstructures of atomically precise gold nanoclusters paves the way towards functional materials with novel collective optoelectronic properties.
Collapse
|
9
|
García-Lojo D, Núñez-Sánchez S, Gómez-Graña S, Grzelczak M, Pastoriza-Santos I, Pérez-Juste J, Liz-Marzán LM. Plasmonic Supercrystals. Acc Chem Res 2019; 52:1855-1864. [PMID: 31243968 DOI: 10.1021/acs.accounts.9b00213] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
For decades, plasmonic nanoparticles have been extensively studied due to their extraordinary properties, related to localized surface plasmon resonances. A milestone in the field has been the development of the so-called seed-mediated growth method, a synthetic route that provided access to an extraordinary diversity of metal nanoparticles with tailored size, geometry and composition. Such a morphological control came along with an exquisite definition of the optical response of plasmonic nanoparticles, thereby increasing their prospects for implementation in various fields. The susceptibility of surface plasmons to respond to small changes in the surrounding medium or to perturb (enhance/quench) optical processes in nearby molecules, has been exploited for a wide range of applications, from biomedicine to energy harvesting. However, the possibilities offered by plasmonic nanoparticles can be expanded even further by their careful assembly into either disordered or ordered structures, in 2D and 3D. The assembly of plasmonic nanoparticles gives rise to coupling/hybridization effects, which are strongly dependent on interparticle spacing and orientation, generating extremely high electric fields (hot spots), confined at interparticle gaps. Thus, the use of plasmonic nanoparticle assemblies as optical sensors have led to improving the limits of detection for a wide variety of (bio)molecules and ions. Importantly, in the case of highly ordered plasmonic arrays, other novel and unique optical effects can be generated. Indeed, new functional materials have been developed via the assembly of nanoparticles into highly ordered architectures, ranging from thin films (2D) to colloidal crystals or supercrystals (3D). The progress in the design and fabrication of 3D supercrystals could pave the way toward next generation plasmonic sensors, photocatalysts, optomagnetic components, metamaterials, etc. In this Account, we summarize selected recent advancements in the field of highly ordered 3D plasmonic superlattices. We first analyze their fascinating optical properties for various systems with increasing degrees of complexity, from an individual metal nanoparticle through particle clusters with low coordination numbers to disordered self-assembled structures and finally to supercrystals. We then describe recent progress in the fabrication of 3D plasmonic supercrystals, focusing on specific strategies but without delving into the forces governing the self-assembly process. In the last section, we provide an overview of the potential applications of plasmonic supercrystals, with a particular emphasis on those related to surface-enhanced Raman scattering (SERS) sensing, followed by a brief highlight of the main conclusions and remaining challenges.
Collapse
Affiliation(s)
- Daniel García-Lojo
- Department of Physical Chemistry and Biomedical Research Center (CINBIO), University of Vigo, As Lagoas-Marcosende, 36310 Vigo, Spain
| | - Sara Núñez-Sánchez
- Department of Physical Chemistry and Biomedical Research Center (CINBIO), University of Vigo, As Lagoas-Marcosende, 36310 Vigo, Spain
| | - Sergio Gómez-Graña
- Department of Physical Chemistry and Biomedical Research Center (CINBIO), University of Vigo, As Lagoas-Marcosende, 36310 Vigo, Spain
| | - Marek Grzelczak
- Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, Donostia−San Sebastián 20018, Spain
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Isabel Pastoriza-Santos
- Department of Physical Chemistry and Biomedical Research Center (CINBIO), University of Vigo, As Lagoas-Marcosende, 36310 Vigo, Spain
| | - Jorge Pérez-Juste
- Department of Physical Chemistry and Biomedical Research Center (CINBIO), University of Vigo, As Lagoas-Marcosende, 36310 Vigo, Spain
| | - Luis M. Liz-Marzán
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
- CIC biomaGUNE and CIBER-BBN, Paseo de Miramón 182, 20014 Donostia−San Sebastián, Spain
| |
Collapse
|
10
|
Pileni MP. Au Supracrystal Growth Processes: Unexpected Morphologies. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2019. [DOI: 10.1246/bcsj.20180310] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- M. P. Pileni
- Sorbonne University, Department of Chemistry, 4 place Jussieu 75005, Paris, France
| |
Collapse
|
11
|
Wei J, Deeb C, Pelouard JL, Pileni MP. Influence of Cracks on the Optical Properties of Silver Nanocrystals Supracrystal Films. ACS NANO 2019; 13:573-581. [PMID: 30557505 DOI: 10.1021/acsnano.8b07435] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Physical properties of nanocrystals self-assembled into 3D superlattices called supracrystals are highly specific with unexpected behavior. The best example to support such a claim was given through STM/STS experiments at low temperature of very thick supracrystals (around 1000 layers) where it was possible to image the surpracrystal surface and study their electronic properties. From previous studies, we know the optical properties of Ag nanocrystals self-assembled in a hexagonal network two-dimensional (2D) or by forming small 3D superlattices (from around 2 to 7 layers) are governed by dipolar interactions. Here, we challenge to study the optical properties of Ag supracrystals film characterized by large thicknesses (from around 27 to 180 Ag nanocrystals layers). In such experimental conditions, according to the classical Beer-Lambert law, the absorption of Ag films is expected to be very large, and the film transmission is close to zero. Very surprisingly, we observe reduced transmission intensity with an increase of the notch line width, in the 300-800 nm wavelength range, as the supracrystal film thickness increased. By calculating the transmission through the supracrystal films, we deduced that the films were dominated by the presence of cracks with wetting layers existing at their bottoms. This result was also confirmed by optical micrographs. The cracks widths increased with increasing the film thickness leading to more complex wetting layers. We also demonstrated the formation of small Ag clusters at the nanocrystal surface. These results provide some implications toward the design of plasmonic materials.
Collapse
Affiliation(s)
- Jingjing Wei
- Department of Chemistry , Sorbonne University , 4 Place Jussieu , 75005 Paris , France
| | - Claire Deeb
- MiNaO-Center for Nanoscience and Nanotechnology C2N, CNRS , Université Paris-Sud, Université Paris-Saclay , Boulevard Thomas Gobert, 91120 Palaiseau , France
| | - Jean-Luc Pelouard
- MiNaO-Center for Nanoscience and Nanotechnology C2N, CNRS , Université Paris-Sud, Université Paris-Saclay , Boulevard Thomas Gobert, 91120 Palaiseau , France
| | | |
Collapse
|
12
|
Yang N, Deeb C, Pelouard JL, Felidj N, Pileni MP. Water-Dispersed Hydrophobic Au Nanocrystal Assemblies with a Plasmon Fingerprint. ACS NANO 2017; 11:7797-7806. [PMID: 28745866 DOI: 10.1021/acsnano.7b01605] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Hydrophobic Au nanocrystal assemblies (both ordered and amorphous) were dispersed in aqueous solution via the assistance of lipid vesicles. The intertwine between vesicles and Au assemblies was made possible through a careful selection of the length of alkyl chains on Au nanocrystals. Extinction spectra of Au assemblies showed two peaks that were assigned to a scattering mode that red-shifted with increasing the assembly size and an absorption mode associated with localized surface plasmon that was independent of their size. This plasmon fingerprint could be used as a probe for investigating the optical properties of such assemblies. Our water-soluble assemblies enable exploring a variety of potential applications including solar energy and biomedicine.
Collapse
Affiliation(s)
- Nailiang Yang
- Sorbonne Universités , UPMC Univ Paris 06, UMR 8233, MONARIS, F-75005 Paris, France
- CNRS , UMR 8233, MONARIS, F-75005 Paris, France
| | - Claire Deeb
- MiNaO-Center for Nanoscience and Nanotechnology C2N, CNRS, University Paris-Sud, Université Paris-Saclay , 91460 Marcoussis, France
| | - Jean-Luc Pelouard
- MiNaO-Center for Nanoscience and Nanotechnology C2N, CNRS, University Paris-Sud, Université Paris-Saclay , 91460 Marcoussis, France
| | - Nordin Felidj
- Interfaces, Traitements, Organisation et Dynamique des Systèmes, Université Paris Diderot, Sorbonne Paris Cité, CNRS UMR 7086 , 15 rue Jean de Baïf, 75205 Paris Cedex 13, France
| | | |
Collapse
|
13
|
Pileni MP. Impact of the Metallic Crystalline Structure on the Properties of Nanocrystals and Their Mesoscopic Assemblies. Acc Chem Res 2017; 50:1946-1955. [PMID: 28726381 DOI: 10.1021/acs.accounts.7b00093] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The spontaneous assembly of uniform-sized globular entities into ordered arrays is a universal phenomenon observed for objects with diameters spanning a broad range of length scales. These extend from the atomic scale (10-8 cm), through molecular and macromolecular scales with proteins, synthetic low polymers, and colloidal crystals (∼10-6 cm), to the wavelength of visible light (∼10-5 cm). The associated concepts of sphere packing have had an influence in diverse fields ranging from pure geometrical analysis to architectural models or ideals. Self-assembly of atoms, supramolecules, or nanocrystals into ordered functional superstructures is a universal process and prevalent topic in science. About five billion years ago in the early solar system, highly uniform magnetite particles of a few hundred nanometers in size were assembled in 3D arrays.1 Thirty million years ago, silicate particles with submicrometer size were self-organized in the form of opal.2 Opal is colorless when composed of disordered silicate microparticles whereas it shows specific reflectivity when particles order in arrays. Nowadays, nanocrystals, characterized by a narrow size distribution and coated with alkyl chains to maintain their integrity, self-assemble to form crystallographic orders called supracrystals. Nanocrystals and supracrystals are arrangements of highly ordered atoms and nanocrystals, respectively. The morphologies of nanocrystals, supracrystals, and minerals are similar at various scales from nanometer to millimeter scale.3,4 Such suprastructures, which enable the design of novel materials, are expected to become one of the main driving forces in material research for the 21st century.5,6 Nanocrystals vibrate coherently in a supracrystal as atoms in a nanocrystal. Longitudinal acoustic phonons are detected in supracrystals as with atomic crystals, where longitudinal acoustic phonons propagate through coherent movements of atoms of the lattice out of their equilibrium positions. These vibrational properties show a full analogy with atomic crystals: In supracrystals, atoms are replaced by (uncompressible) nanocrystals and atomic bonds by coating agents (carbon chains), which act like mechanical springs holding together the nanocrystals. Electronic properties of very thick (more than a few micrometers) supracrystals reveal homogeneous conductance with the fingerprint of the isolated nanocrystal. Triangular single crystals formed by heat-induced (50 °C) coalescence of thin supracrystals deposited on a substrate as epitaxial growth of metal particles on a substrate with specific orientation produced by ultrahigh vacuum (UHV). Here we demonstrate that marked changes can occur in the chemical and physical properties of nanocrystals differing by their nanocrystallinity, that is, their crystalline structure. Furthermore, the properties (mechanical, growth processes) of supracrystals also change with the nanocrystallinity of the nanoparticles used as building blocks.
Collapse
|
14
|
Çolak A, Wei J, Arfaoui I, Pileni MP. Coating agent-induced mechanical behavior of 3D self-assembled nanocrystals. Phys Chem Chem Phys 2017; 19:23887-23897. [DOI: 10.1039/c7cp02649h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The Young's modulus of three-dimensional self-assembled Ag nanocrystals, as so-called supracrystals, is correlated with the type of coating agent as well as the nanocrystal morphology.
Collapse
Affiliation(s)
- Arzu Çolak
- Sorbonne Universités
- UPMC Univ Paris 06
- UMR 8233
- MONARIS
- Paris
| | - Jingjing Wei
- Sorbonne Universités
- UPMC Univ Paris 06
- UMR 8233
- MONARIS
- Paris
| | - Imad Arfaoui
- Sorbonne Universités
- UPMC Univ Paris 06
- UMR 8233
- MONARIS
- Paris
| | | |
Collapse
|
15
|
Yang N, Yang Z, Held M, Bonville P, Albouy PA, Lévy R, Pileni MP. Dispersion of Hydrophobic Co Supracrystal in Aqueous Solution. ACS NANO 2016; 10:2277-2286. [PMID: 26812588 DOI: 10.1021/acsnano.5b06966] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Assembly of nanoparticles into supracrystals provides a class of materials with interesting optical and magnetic properties. However, supracrystals are mostly obtained from hydrophobic particles and therefore cannot be manipulated in aqueous systems, limiting their range of applications. Here, we show that hydrophobic-shaped supracrystals self-assembled from 8.2 nm cobalt nanoparticles can be dispersed in water by coating the supracrystals with lipid vesicles. A careful characterization of these composite objects provides insights into their structure at different length scales. This composite, suspended in water, retains the crystalline structure and paramagnetic properties of the starting material, which can be moved with an applied magnetic field.
Collapse
Affiliation(s)
- Nailiang Yang
- Sorbonne Universités , UPMC Univ Paris 06, UMR 8233, MONARIS, F-75005 Paris, France
- CNRS, UMR 8233, MONARIS, F-75005 Paris, France
| | - Zhijie Yang
- Sorbonne Universités , UPMC Univ Paris 06, UMR 8233, MONARIS, F-75005 Paris, France
- CNRS, UMR 8233, MONARIS, F-75005 Paris, France
| | - Marie Held
- Institute of Integrative Biology, University of Liverpool , Crown Street, L69 7ZB Liverpool, United Kingdom
| | | | - Pierre-Antoine Albouy
- CNRS, UMR 8502 Laboratoire de Physique des Solides, Université Paris-Sud , 91405 Orsay, France
| | - Raphaël Lévy
- Institute of Integrative Biology, University of Liverpool , Crown Street, L69 7ZB Liverpool, United Kingdom
| | - Marie-Paule Pileni
- Sorbonne Universités , UPMC Univ Paris 06, UMR 8233, MONARIS, F-75005 Paris, France
- CNRS, UMR 8233, MONARIS, F-75005 Paris, France
- CEA/IRAMIS, CEA Saclay, 91191, Gif-sur-Yvette, France
| |
Collapse
|
16
|
Kim JY, Kwon SJ, Chang JB, Ross CA, Hatton TA, Stellacci F. Two-Dimensional Nanoparticle Supracrystals: A Model System for Two-Dimensional Melting. NANO LETTERS 2016; 16:1352-8. [PMID: 26756789 DOI: 10.1021/acs.nanolett.5b04763] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
In a Langmuir trough, successive compression cycles can drive a two-dimensional (2D) nanoparticle supracrystal (NPSC) closer to its equilibrium structure. Here, we show a series of equilibrated 2D NPSCs consisting of gold NPs of uniform size, varying solely in the length of their alkanethiol ligands. The ordering of the NPSC is governed by the ligand length, thus providing a model system to investigate the nature of 2D melting in a system of NPs. As the ligand length increases the supracrystal transitions from a crystalline to a liquid-like phase with evidence of a hexatic phase at an intermediate ligand length. The phase change is interpreted as an entropy-driven phenomenon associated with steric constraints between ligand shells. The density of topological defects scales with ligand length, suggesting an equivalence between ligand length and temperature in terms of melting behavior. On the basis of this equivalence, the experimental evidence indicates a two-stage 2D melting of NPSCs.
Collapse
Affiliation(s)
| | | | | | | | | | - Francesco Stellacci
- Institute of Materials, École Polytechnique Fédérale de Lausanne , MXG Station 12, 1015 Lausanne, Switzerland
| |
Collapse
|
17
|
Sweetman A, Goubet N, Lekkas I, Pileni MP, Moriarty P. Nano-contact microscopy of supracrystals. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2015; 6:1229-36. [PMID: 26114081 PMCID: PMC4462851 DOI: 10.3762/bjnano.6.126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 05/04/2015] [Indexed: 05/13/2023]
Abstract
BACKGROUND Highly ordered three-dimensional colloidal crystals (supracrystals) comprised of 7.4 nm diameter Au nanocrystals (with a 5% size dispersion) have been imaged and analysed using a combination of scanning tunnelling microscopy and dynamic force microscopy. RESULTS By exploring the evolution of both the force and tunnel current with respect to tip-sample separation, we arrive at the surprising finding that single nanocrystal resolution is readily obtained in tunnelling microscopy images acquired more than 1 nm into the repulsive (i.e., positive force) regime of the probe-nanocrystal interaction potential. Constant height force microscopy has been used to map tip-sample interactions in this regime, revealing inhomogeneities which arise from the convolution of the tip structure with the ligand distribution at the nanocrystal surface. CONCLUSION Our combined STM-AFM measurements show that the contrast mechanism underpinning high resolution imaging of nanoparticle supracrystals involves a form of nanoscale contact imaging, rather than the through-vacuum tunnelling which underpins traditional tunnelling microscopy and spectroscopy.
Collapse
Affiliation(s)
- Adam Sweetman
- The School of Physics and Astronomy, The University of Nottingham, Nottingham, NG7 2RD, U.K
| | - Nicolas Goubet
- Sorbonne Universités, UPMC Univ Paris 06, UMR 8233, Monaris, F-75005, Paris, France
- CNRS, UMR 8233, Monaris, F-75005, Paris, France
| | - Ioannis Lekkas
- The School of Physics and Astronomy, The University of Nottingham, Nottingham, NG7 2RD, U.K
| | - Marie Paule Pileni
- Sorbonne Universités, UPMC Univ Paris 06, UMR 8233, Monaris, F-75005, Paris, France
- CNRS, UMR 8233, Monaris, F-75005, Paris, France
- CEA/IRAMIS, CEA Saclay, 91191, Gif-sur-Yvette, France
| | - Philip Moriarty
- The School of Physics and Astronomy, The University of Nottingham, Nottingham, NG7 2RD, U.K
| |
Collapse
|
18
|
Bodappa N, Fluch U, Fu Y, Mayor M, Moreno-García P, Siegenthaler H, Wandlowski T. Controlled assembly and single electron charging of monolayer protected Au144 clusters: an electrochemistry and scanning tunneling spectroscopy study. NANOSCALE 2014; 6:15117-15126. [PMID: 25372883 DOI: 10.1039/c4nr03793f] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Single gold particles may serve as room temperature single electron memory units because of their size dependent electronic level spacing. Here, we present a proof-of-concept study by electrochemically controlled scanning probe experiments performed on tailor-made Au particles of narrow dispersity. In particular, the charge transport characteristics through chemically synthesized hexane-1-thiol and 4-pyridylbenzene-1-thiol mixed monolayer protected Au(144) clusters (MPCs) by differential pulse voltammetry (DPV) and electrochemical scanning tunneling spectroscopy (EC-STS) are reported. The pyridyl groups exposed by the Au-MPCs enable their immobilization on Pt(111) substrates. By varying the humidity during their deposition, samples coated by stacks of compact monolayers of Au-MPCs or decorated with individual, laterally separated Au-MPCs are obtained. DPV experiments with stacked monolayers of Au(144)-MPCs and EC-STS experiments with laterally separated individual Au(144)-MPCs are performed both in aqueous and ionic liquid electrolytes. Lower capacitance values were observed for individual clusters compared to ensemble clusters. This trend remains the same irrespective of the composition of the electrolyte surrounding the Au(144)-MPC. However, the resolution of the energy level spacing of the single clusters is strongly affected by the proximity of neighboring particles.
Collapse
Affiliation(s)
- Nataraju Bodappa
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
19
|
Goubet N, Yang J, Albouy PA, Pileni MP. Spontaneous formation of high-index planes in gold single domain nanocrystal superlattices. NANO LETTERS 2014; 14:6632-6638. [PMID: 25337812 DOI: 10.1021/nl503289a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Crystals of nanocrystals, also called supracrystals and nanocrystal superlattices, are expected to exhibit specific properties that differ from both the corresponding bulk material and nanosized elementary units. In particular, their surfaces have a great potential as nanoscale interaction plateforms. However, control of the symmetry, compacity, and roughness of their surfaces remains an open question. Here, we describe the spontaneous formation of upper vicinal surfaces for supracrystals of Au nanocrystals grown on a sublayer of ordered Co nanocrystals. Stepped or kinked surfaces vicinal to the {100}, {110}, and {111} planes are observed to be extended on the micrometer range. The formation of such high-index planes is explained by a heteroepitaxial relationship between both Co and Au nanocrystal superlattice.
Collapse
Affiliation(s)
- Nicolas Goubet
- Sorbonne Universités, UPMC Univ Paris 06, UMR 8233, MONARIS , F-75005, Paris, France
| | | | | | | |
Collapse
|
20
|
Li N, Zhao P, Astruc D. Anisotrope Gold-Nanopartikel: Synthese, Eigenschaften, Anwendungen und Toxizität. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201300441] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
21
|
Li N, Zhao P, Astruc D. Anisotropic Gold Nanoparticles: Synthesis, Properties, Applications, and Toxicity. Angew Chem Int Ed Engl 2014; 53:1756-89. [DOI: 10.1002/anie.201300441] [Citation(s) in RCA: 691] [Impact Index Per Article: 69.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 03/26/2013] [Indexed: 12/26/2022]
|
22
|
Bahrig L, Hickey SG, Eychmüller A. Mesocrystalline materials and the involvement of oriented attachment – a review. CrystEngComm 2014. [DOI: 10.1039/c4ce00882k] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work the oriented attachment and mesocrystal formation via non-classical pathways have been reviewed with particular emphasis being placed on their self-assembly mechanisms as well as the new collective properties of the resulting crystalline nanoparticular arrangements and their potential uses in applications.
Collapse
Affiliation(s)
- Lydia Bahrig
- Physical Chemistry
- TU Dresden
- 01062 Dresden, Germany
| | | | | |
Collapse
|
23
|
Yang P, Arfaoui I, Cren T, Goubet N, Pileni MP. Electronic properties of supracrystals of Au nanocrystals: influence of thickness and nanocrystallinity. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2013; 25:335302. [PMID: 23883620 DOI: 10.1088/0953-8984/25/33/335302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Well-defined superlattices of colloidal nanocrystals, called supracrystals, are expected to have interesting physical properties. While the electronic properties of thin supracrystals have been extensively studied in the planar configuration, little is known about electron transport through micrometer-thick supracrystals. Here, we investigate the electronic properties of supracrystals made of Au nanocrystals with diameters of 5, 6, 7 and 8 nm using scanning tunneling microscopy/spectroscopy at low temperatures. The current-voltage characteristics show power-law dependences with exponents varying strongly with supracrystal thicknesses from 30 nm to a few microns. The crystallinity of these nanocrystals, called nanocrystallinity, is exclusively single domain for 5 nm nanocrystals and a mixture of single and polycrystalline phase for 6, 7 and 8 nm nanocrystals. We observed that supracrystals made of 5 nm nanocrystals have a different behavior than supracrystals made of 6, 7 and 8 nm nanocrystals and this might be related to the nanocrystallinity. These results help us to better understand the electron transport mechanism in such miniscule structures built from a bottom-up approach.
Collapse
Affiliation(s)
- P Yang
- Laboratoire des Matériaux Mésoscopiques et Nanométriques, Université Pierre et Marie Curie, and CNRS UMR 7070, 4 Place Jussieu, F-75005 Paris, France
| | | | | | | | | |
Collapse
|
24
|
Yu Q, Cui L, Lequeux N, Zimmers A, Ulysse C, Rebuttini V, Pinna N, Aubin H. In-vacuum projection of nanoparticles for on-chip tunneling spectroscopy. ACS NANO 2013; 7:1487-1494. [PMID: 23327528 DOI: 10.1021/nn305264g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Starting with a discussion of the percolation problem applied to the trapping of conducting nanoparticles between nanometer-spaced electrodes, we show that a good strategy to trap a single nanoparticle between the electrodes is to prepare chips with low coverage of nanoparticles to avoid percolating current paths. To increase the probability of trapping a single nanoparticle, we developed a new method where nanoparticles are projected in-vacuum on the chip, followed by a measure of the tunnel current, in a cycle that is repeated up to a few thousand times until a preset threshold value is reached. A plot of the tunneling current as a function of time allows discriminating between the two possible current paths, i.e., a single nanoparticle trapped between the electrodes or a percolating path across many nanoparticles. We applied the method to prepare chip circuits with single gold nanoparticles, as demonstrated by the observation of Coulomb blockade. Furthermore, we applied the method to trap single magnetite nanoparticles for the study of electric-field-induced switching from insulator to metal in single nanoparticles.
Collapse
Affiliation(s)
- Qian Yu
- Laboratoire de Physique et d'Etude des Matériaux, UMR 8213, ESPCI-ParisTech-CNRS-UPMC, 10 Rue Vauquelin, 75231 Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Wu R, Kong QC, Fu C, Lai SQ, Ye C, Liu JY, Chen Y, Hu JQ. One-pot synthesis and enhanced catalytic performance of Pd and Pt nanocages via galvanic replacement reactions. RSC Adv 2013. [DOI: 10.1039/c3ra23273e] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
26
|
|
27
|
Pileni MP. Supra- and nanocrystallinity: specific properties related to crystal growth mechanisms and nanocrystallinity. Acc Chem Res 2012; 45:1965-72. [PMID: 23003577 DOI: 10.1021/ar3000597] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The natural arrangement of atoms or nanocrystals either in well-defined assemblies or in a disordered fashion induces changes in their physical properties. For example, diamond and graphite show marked differences in their physical properties though both are composed of carbon atoms. Natural colloidal crystals have existed on earth for billions of years. Very interestingly, these colloidal crystals are made of a fixed number of polyhedral magnetite particles uniform in size. Hence, opals formed of assemblies of silicate particles in the micrometer size range exhibit interesting intrinsic optical properties. A colorless opal is composed of disordered particles, but changes in size segregation within the self-ordered silica particles can lead to distinct color changes and patterning. In this Account, we rationalize two simultaneous supracrystal growth processes that occur under saturated conditions, which form both well-defined 3D superlattices at the air-liquid interface and precipitated 3D assemblies with well-defined shapes. The growth processes of these colloidal crystals, called super- or supracrystals, markedly change the mechanical properties of these assemblies and induce the crystallinity segregation of nanocrystals. Therefore, single domain nanocrystals are the primary basis in the formation of these supracrystals, while multiply twinned particles (MTPs) and polycrystals remain dispersed within the colloidal suspension. Nanoindentation measurements show a drop in the Young's moduli for interfacial supracrystals in comparison with the precipitated supracrystals. In addition, the value of the Young's modulus changes markedly with the supracrystal growth mechanism. Using scanning tunneling microscopy/spectroscopy, we successfully imaged very thick supracrystals (from 200 nm up to a few micrometers) with remarkable conductance homogeneity and showed electronic fingerprints of isolated nanocrystals. This discovery of nanocrystal fingerprints within supracrystals could lead to promising applications in nanotechnology.
Collapse
Affiliation(s)
- M. P. Pileni
- Laboratoire des Matériaux Mesoscopiques et Nanométriques (LM2N), UMR CNRS 7070, Université Pierre et Marie Curie, bât F, BP 52, 4 place Jussieu, 75252 Paris Cedex 05, France
| |
Collapse
|