1
|
Huang J, Peng B, Zhu C, Xu M, Liu Y, Liu Z, Zhou J, Wang S, Duan X, Heinz H, Huang Y. Surface molecular pump enables ultrahigh catalyst activity. SCIENCE ADVANCES 2024; 10:eado3942. [PMID: 39241069 PMCID: PMC11378908 DOI: 10.1126/sciadv.ado3942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 07/31/2024] [Indexed: 09/08/2024]
Abstract
The performance of electrocatalysts is critical for renewable energy technologies. While the electrocatalytic activity can be modulated through structural and compositional engineering following the Sabatier principle, the insufficiently explored catalyst-electrolyte interface is promising to promote microkinetic processes such as physisorption and desorption. By combining experimental designs and molecular dynamics simulations with explicit solvent in high accuracy, we demonstrated that dimethylformamide can work as an effective surface molecular pump to facilitate the entrapment of oxygen and outflux of water. Dimethylformamide disrupts the interfacial network of hydrogen bonds, leading to enhanced activity of the oxygen reduction reaction by a factor of 2 to 3. This strategy works generally for platinum-alloy catalysts, and we introduce an optimal model PtCuNi catalyst with an unprecedented specific activity of 21.8 ± 2.1 mA/cm2 at 0.9 V versus the reversible hydrogen electrode, nearly double the previous record, and an ultrahigh mass activity of 10.7 ± 1.1 A/mgPt.
Collapse
Affiliation(s)
- Jin Huang
- Department of Materials Science and Engineering, University of California, Los Angeles, CA 90095, USA
| | - Bosi Peng
- Department of Materials Science and Engineering, University of California, Los Angeles, CA 90095, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Cheng Zhu
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Mingjie Xu
- Irvine Materials Research Institute, University of California, Irvine, CA 92697, USA
- Department of Materials Science, University of California, Irvine, CA 92697, USA
| | - Yang Liu
- Department of Materials Science and Engineering, University of California, Los Angeles, CA 90095, USA
| | - Zeyan Liu
- Department of Materials Science and Engineering, University of California, Los Angeles, CA 90095, USA
| | - Jingxuan Zhou
- Department of Materials Science and Engineering, University of California, Los Angeles, CA 90095, USA
| | - Sibo Wang
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Xiangfeng Duan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Hendrik Heinz
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80309, USA
- Materials Science and Engineering Program, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Yu Huang
- Department of Materials Science and Engineering, University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
2
|
Vigil T, Spangler LC. Understanding Biomineralization Mechanisms to Produce Size-Controlled, Tailored Nanocrystals for Optoelectronic and Catalytic Applications: A Review. ACS APPLIED NANO MATERIALS 2024; 7:18626-18654. [PMID: 39206356 PMCID: PMC11348323 DOI: 10.1021/acsanm.3c04277] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/25/2024] [Accepted: 01/25/2024] [Indexed: 09/04/2024]
Abstract
Biomineralization, the use of biological systems to produce inorganic materials, has recently become an attractive approach for the sustainable manufacturing of functional nanomaterials. Relying on proteins or other biomolecules, biomineralization occurs under ambient temperatures and pressures, which presents an easily scalable, economical, and environmentally friendly method for nanoparticle synthesis. Biomineralized nanocrystals are quickly approaching a quality applicable for catalytic and optoelectronic applications, replacing materials synthesized using expensive traditional routes. Here, we review the current state of development for producing functional nanocrystals using biomineralization and distill the wide variety of biosynthetic pathways into two main approaches: templating and catalysis. Throughout, we compare and contrast biomineralization and traditional syntheses, highlighting optimizations from traditional syntheses that can be implemented to improve biomineralized nanocrystal properties such as size and morphology, making them competitive with chemically synthesized state-of-the-art functional nanomaterials.
Collapse
Affiliation(s)
- Toriana
N. Vigil
- University
of Virginia, Charlottesville, Virginia 22903, United States
| | - Leah C. Spangler
- Virginia
Commonwealth University, Richmond, Virginia 23284, United States
| |
Collapse
|
3
|
Li Q, Wang Y, Zhang G, Su R, Qi W. Biomimetic mineralization based on self-assembling peptides. Chem Soc Rev 2023; 52:1549-1590. [PMID: 36602188 DOI: 10.1039/d2cs00725h] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Biomimetic science has attracted great interest in the fields of chemistry, biology, materials science, and energy. Biomimetic mineralization is the process of synthesizing inorganic minerals under the control of organic molecules or biomolecules under mild conditions. Peptides are the motifs that constitute proteins, and can self-assemble into various hierarchical structures and show a high affinity for inorganic substances. Therefore, peptides can be used as building blocks for the synthesis of functional biomimetic materials. With the participation of peptides, the morphology, size, and composition of mineralized materials can be controlled precisely. Peptides not only provide well-defined templates for the nucleation and growth of inorganic nanomaterials but also have the potential to confer inorganic nanomaterials with high catalytic efficiency, selectivity, and biotherapeutic functions. In this review, we systematically summarize research progress in the formation mechanism, nanostructural manipulation, and applications of peptide-templated mineralized materials. These can further inspire researchers to design structurally complex and functionalized biomimetic materials with great promising applications.
Collapse
Affiliation(s)
- Qing Li
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China.
| | - Yuefei Wang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China. .,Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Gong Zhang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China. .,State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou Industrial Park, Suzhou 215123, P. R. China
| | - Rongxin Su
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China. .,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China.,Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Wei Qi
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China. .,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China.,Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, P. R. China
| |
Collapse
|
4
|
Faeli Qadikolae A, Sharma S. Facet Selectivity of Cetyltrimethyl Ammonium Bromide Surfactants on Gold Nanoparticles Studied Using Molecular Simulations. J Phys Chem B 2022; 126:10249-10255. [PMID: 36416533 DOI: 10.1021/acs.jpcb.2c06236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We have studied facet selectivity of cetyltrimethyl ammonium bromide (CTAB) surfactants of varying alkyl tail lengths (C17TAB and C10TAB) during their adsorption on a spherical gold metal nanoparticle (MNP) using umbrella sampling and well-tempered metadynamics techniques in molecular simulations. We show that the surfactants strongly adsorb with their alkyl tails wrapped around the MNP. The adsorption morphologies are dictated by the strong preference of the polar head group of the surfactants to adsorb on to the atoms that lie between the facets of the MNP, that is, in the vicinity of low-coordinated gold atoms. The alkyl tails do not display any strong facet preference. Owing to the longer alkyl tails, C17TAB molecules pack together better than the C10TAB molecules in the adsorbed state on the MNP. These findings suggest that the regions near the edges of the facets and low-coordinated atoms are expected to be preferentially covered with the adsorbed surfactants.
Collapse
Affiliation(s)
- Abolfazl Faeli Qadikolae
- Department of Chemical and Biomolecular Engineering, Ohio University, Athens, Ohio45701, United States
| | - Sumit Sharma
- Department of Chemical and Biomolecular Engineering, Ohio University, Athens, Ohio45701, United States
| |
Collapse
|
5
|
Kanhaiya K, Heinz H. Adsorption and Diffusion of Oxygen on Pure and Partially Oxidized Metal Surfaces in Ultrahigh Resolution. NANO LETTERS 2022; 22:5392-5400. [PMID: 35730668 DOI: 10.1021/acs.nanolett.2c00490] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The interaction of gas molecules with metal and oxide surfaces plays a critical role in corrosion, catalysis, sensing, and heterogeneous materials. However, insights into the dynamics of O2 from picoseconds to microseconds have remained unavailable to date. We obtained 3D potential energy surfaces for adsorption of O2 on 11 common pristine and partially oxidized (hkl) surfaces of Ni and Al in picometer resolution and high accuracy of 0.1 kcal/mol, identified binding sites, and surface mobility from 25 to 300 °C. We explain relative oxidation rates and parameters for oxide growth. We employed over 150 000 molecular mechanics and molecular dynamics simulations with the interface force field (IFF) using structural data from X-ray diffraction (XRD) and low-energy electron diffraction (LEED). The methods reach 10 to 50 times higher accuracy than possible before and are suited to analyze gas interactions with metals up to the micrometer scale including defects and irregular nanostructures.
Collapse
Affiliation(s)
- Krishan Kanhaiya
- Department of Chemical and Biological Engineering, University of Colorado at Boulder, Boulder, Colorado 80309, United States
| | - Hendrik Heinz
- Department of Chemical and Biological Engineering, University of Colorado at Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
6
|
Qi X, Jin B, Cai B, Yan F, De Yoreo J, Chen CL, Pfaendtner J. Molecular Driving Force for Facet Selectivity of Sequence-Defined Amphiphilic Peptoids at Au-Water Interfaces. J Phys Chem B 2022; 126:5117-5126. [PMID: 35763341 DOI: 10.1021/acs.jpcb.2c02638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Shape-controlled colloidal nanocrystal syntheses often require facet-selective solution-phase chemical additives to regulate surface free energy, atom addition/migration fluxes, or particle attachment rates. Because of their highly tunable properties and robustness to a wide range of experimental conditions, peptoids represent a very promising class of next-generation functional additives for control over nanocrystal growth. However, understanding the origin of facet selectivity at the molecular level is critical to generalizing their design. Herein we employ molecular dynamics simulations and biased sampling methods and report stronger selectivity to Au(111) than to Au(100) for Nce3Ncp6, a peptoid that has been shown to assist the formation of 5-fold twinned Au nanostars. We find that facet selectivity is achieved through synergistic effects of both peptoid-surface and solvent-surface interactions. Moreover, the amphiphilic nature of Nce3Ncp6 together with the order of peptoid-peptoid and peptoid-surface binding energies, that is, peptoid-Au(100) < peptoid-peptoid < peptoid-Au(111), further amplifies its distinct collective behavior on different Au surfaces. Our studies provide a fundamental understanding of the molecular origin of facet-selective adsorption and highlight the possibility of future designs and uses of sequence-defined peptoids for predictive syntheses of nanocrystals with designed shapes and properties.
Collapse
Affiliation(s)
- Xin Qi
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Biao Jin
- Physical Science Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Bin Cai
- Physical Science Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Feng Yan
- Physical Science Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - James De Yoreo
- Physical Science Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States.,Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Chun-Long Chen
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States.,Physical Science Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Jim Pfaendtner
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States.,Physical Science Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
7
|
Ccorahua R, Noguchi H, Hayamizu Y. Cosolvents Restrain Self-Assembly of a Fibroin-Like Peptide on Graphite. J Phys Chem B 2021; 125:10893-10899. [PMID: 34559528 DOI: 10.1021/acs.jpcb.1c02594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Controllable self-assembly of peptides on solid surfaces has been investigated for establishing functional bio/solid interfaces. In this work, we study the influence of organic solvents on the self-assembly of a fibroin-like peptide on a graphite surface. The peptide has been designed by mimicking fibroin proteins to have strong hydrogen bonds among peptides enabling their self-assembly. We have employed cosolvents of water and organic solvents with a wide range of dielectric constants to control peptide self-assembly on the surface. Atomic force microscopy has revealed that the peptides self-assemble into highly ordered monolayer-thick linear structures on graphite after incubation in pure water, where the coverage of peptides on the surface is more than 85%. When methanol is mixed, the peptide coverage becomes zero at a threshold concentration of 30% methanol on graphite and 25% methanol on MoS2. The threshold concentration in ethanol, isopropanol, dimethyl sulfoxide, and acetone varies depending on the dielectric constant with restraining self-assembly of the peptides, and particularly low dielectric-constant protic solvents prevent the peptide self-assembly significantly. The observed phenomena are explained by competitive surface adsorption of the organic solvents and peptides and the solvation effect of the peptide assembly.
Collapse
Affiliation(s)
- Robert Ccorahua
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Tokyo 152-8550, Japan
| | - Hironaga Noguchi
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Tokyo 152-8550, Japan
| | - Yuhei Hayamizu
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Tokyo 152-8550, Japan
| |
Collapse
|
8
|
Gisbert-González JM, Ferre-Vilaplana A, Herrero E. Glutamate adsorption on gold electrodes at different pH values. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
9
|
Abstract
The field of single nanoparticle plasmonics has grown enormously. There is no doubt that a wide diversity of the nanoplasmonic techniques and nanostructures represents a tremendous opportunity for fundamental biomedical studies as well as sensing and imaging applications. Single nanoparticle plasmonic biosensors are efficient in label-free single-molecule detection, as well as in monitoring real-time binding events of even several biomolecules. In the present review, we have discussed the prominent advantages and advances in single particle characterization and synthesis as well as new insight into and information on biomedical diagnosis uniquely obtained using single particle approaches. The approaches include the fundamental studies of nanoplasmonic behavior, two typical methods based on refractive index change and characteristic light intensity change, exciting innovations of synthetic strategies for new plasmonic nanostructures, and practical applications using single particle sensing, imaging, and tracking. The basic sphere and rod nanostructures are the focus of extensive investigations in biomedicine, while they can be programmed into algorithmic assemblies for novel plasmonic diagnosis. Design of single nanoparticles for the detection of single biomolecules will have far-reaching consequences in biomedical diagnosis.
Collapse
Affiliation(s)
- Xingyi Ma
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Korea.
| | - Sang Jun Sim
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Korea.
| |
Collapse
|
10
|
Pan Y, Paschoalino WJ, Szuchmacher Blum A, Mauzeroll J. Recent Advances in Bio-Templated Metallic Nanomaterial Synthesis and Electrocatalytic Applications. CHEMSUSCHEM 2021; 14:758-791. [PMID: 33296559 DOI: 10.1002/cssc.202002532] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/08/2020] [Indexed: 06/12/2023]
Abstract
Developing metallic nanocatalysts with high reaction activity, selectivity and practical durability is a promising and active subfield in electrocatalysis. In the classical "bottom-up" approach to synthesize stable nanomaterials by chemical reduction, stabilizing additives such as polymers or organic surfactants must be present to cap the nanoparticle to prevent material bulk aggregation. In recent years, biological systems have emerged as green alternatives to support the uncoated inorganic components. One key advantage of biological templates is their inherent ability to produce nanostructures with controllable composition, facet, size and morphology under ecologically friendly synthetic conditions, which are difficult to achieve with traditional inorganic synthesis. In addition, through genetic engineering or bioconjugation, bio-templates can provide numerous possibilities for surface functionalization to incorporate specific binding sites for the target metals. Therefore, in bio-templated systems, the electrocatalytic performance of the formed nanocatalyst can be tuned by precisely controlling the material surface chemistry. With controlled improvements in size, morphology, facet exposure, surface area and electron conductivity, bio-inspired nanomaterials often exhibit enhanced catalytic activity towards electrode reactions. In this Review, recent research developments are presented in bio-approaches for metallic nanomaterial synthesis and their applications in electrocatalysis for sustainable energy storage and conversion systems.
Collapse
Affiliation(s)
- Yani Pan
- Department of Chemistry, McGill University, 801 Sherbrooke West, Montreal H3 A 0B8, Quebec, Canada
| | - Waldemir J Paschoalino
- Department of Chemistry, McGill University, 801 Sherbrooke West, Montreal H3 A 0B8, Quebec, Canada
- Department of Analytical Chemistry, Institute of Chemistry, University of Campinas, P.O. Box 6154, 13084-971, Campinas, SP, Brazil
| | - Amy Szuchmacher Blum
- Department of Chemistry, McGill University, 801 Sherbrooke West, Montreal H3 A 0B8, Quebec, Canada
| | - Janine Mauzeroll
- Department of Chemistry, McGill University, 801 Sherbrooke West, Montreal H3 A 0B8, Quebec, Canada
| |
Collapse
|
11
|
|
12
|
Xie M, Lyu Z, Chen R, Xia Y. A Mechanistic Study of the Multiple Roles of Oleic Acid in the Oil-Phase Synthesis of Pt Nanocrystals. Chemistry 2020; 26:15636-15642. [PMID: 32820552 DOI: 10.1002/chem.202003202] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/11/2020] [Indexed: 11/06/2022]
Abstract
Oleic acid (OAc) is commonly used as a surfactant and/or solvent for the oil-phase synthesis of metal nanocrystals but its explicit roles are yet to be resolved. Here, we report a systematic study of this problem by focusing on a synthesis that simply involves heating of Pt(acac)2 in OAc for the generation of Pt nanocrystals. When heated at 80 °C, the ligand exchange between Pt(acac)2 and OAc leads to the formation of a PtII -oleate complex that serves as the actual precursor to Pt atoms. Upon increasing the temperature to 120 °C, the decarbonylation of OAc produces CO, which can act as a reducing agent for the generation of Pt atoms and thus formation of nuclei. Afterwards, several catalytic reactions can take place on the surface of the Pt nuclei to produce more CO, which also serves as a capping agent for the formation of Pt nanocrystals enclosed by {100} facets. The emergence of Pt nanocrystals further promotes the autocatalytic surface reduction of PtII precursor to enable the continuation of growth. This work not only elucidates the critical roles of OAc at different stages in a synthesis of Pt nanocrystals, but also represents a pivotal step forward toward the rational synthesis of metal nanocrystals.
Collapse
Affiliation(s)
- Minghao Xie
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, 30332, USA
| | - Zhiheng Lyu
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, 30332, USA
| | - Ruhui Chen
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, 30332, USA
| | - Younan Xia
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, 30332, USA.,The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, 30332, USA
| |
Collapse
|
13
|
Yang T, Shi Y, Janssen A, Xia Y. Oberflächenstabilisatoren und ihre Rolle bei der formkontrollierten Synthese von kolloidalen Metall‐Nanokristallen. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201911135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Tung‐Han Yang
- The Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University Atlanta GA 30332 USA
| | - Yifeng Shi
- School of Chemical and Biomolecular Engineering Georgia Institute of Technology Atlanta GA 30332 USA
| | - Annemieke Janssen
- School of Chemistry and Biochemistry Georgia Institute of Technology Atlanta GA 30332 USA
| | - Younan Xia
- The Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University Atlanta GA 30332 USA
- School of Chemical and Biomolecular Engineering Georgia Institute of Technology Atlanta GA 30332 USA
- School of Chemistry and Biochemistry Georgia Institute of Technology Atlanta GA 30332 USA
| |
Collapse
|
14
|
Yu Q, Wu G, Zhang T, Zhao X, Zhou Z, Liu L, Chen W, Alvarez PJJ. Targeting specific cell organelles with different-faceted nanocrystals that are selectively recognized by organelle-targeting peptides. Chem Commun (Camb) 2020; 56:7613-7616. [PMID: 32515442 DOI: 10.1039/d0cc02930k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Targeting specific cellular organelles is an elusive therapeutic goal that could be achieved by manipulating nanocrystal facets. As proof of concept, different facet-engineered nanonods (high-energy (001) CdS and (001) CdSe, and low-energy (101) CdS and (110) CdSe) exploited selective binding by organelle-targeting peptides and subsequent intracellular protein sorting to inhibit specific organelles without significant cytotoxicity.
Collapse
Affiliation(s)
- Qilin Yu
- College of Environmental Science & Eng., Nankai University, Tianjin 300350, China.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Yang T, Shi Y, Janssen A, Xia Y. Surface Capping Agents and Their Roles in Shape‐Controlled Synthesis of Colloidal Metal Nanocrystals. Angew Chem Int Ed Engl 2020; 59:15378-15401. [DOI: 10.1002/anie.201911135] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Indexed: 01/13/2023]
Affiliation(s)
- Tung‐Han Yang
- The Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University Atlanta GA 30332 USA
| | - Yifeng Shi
- School of Chemical and Biomolecular Engineering Georgia Institute of Technology Atlanta GA 30332 USA
| | - Annemieke Janssen
- School of Chemistry and Biochemistry Georgia Institute of Technology Atlanta GA 30332 USA
| | - Younan Xia
- The Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University Atlanta GA 30332 USA
- School of Chemical and Biomolecular Engineering Georgia Institute of Technology Atlanta GA 30332 USA
- School of Chemistry and Biochemistry Georgia Institute of Technology Atlanta GA 30332 USA
| |
Collapse
|
16
|
Mark LO, Zhu C, Medlin JW, Heinz H. Understanding the Surface Reactivity of Ligand-Protected Metal Nanoparticles for Biomass Upgrading. ACS Catal 2020. [DOI: 10.1021/acscatal.9b04772] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lesli O. Mark
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, United States
| | - Cheng Zhu
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, United States
| | - J. Will Medlin
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, United States
| | - Hendrik Heinz
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, United States
| |
Collapse
|
17
|
Lin CH, Ju SP, Su JW, Li DE. Peptide Capping Agent Design for Gold (111) Facet by Molecular Simulation and Experimental Approaches. Sci Rep 2020; 10:2090. [PMID: 32034260 PMCID: PMC7005706 DOI: 10.1038/s41598-020-59144-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 01/23/2020] [Indexed: 11/21/2022] Open
Abstract
The stochastic tunneling-basin hopping method (STUN-BH) was utilized to obtain the most stable peptide S7 configuration (Ac-Ser-Ser-Phe-Pro-Gln-Pro-Asn-CONH2) adsorbed on Au(111) facet. After the most stable S7 configuration was found, molecular dynamics (MD) simulation was conducted to investigate the thermal stability between S7 and Au facet at 300 K in both vacuum and water environment. Moreover, further design sets of peptide sequences on Au(111) facet were used to compare with S7. All molecular simulations were carried out by the large-scale atomic/molecular massively parallel simulator (LAMMPS). The Amber99sb-ILDN force field was employed for modeling the interatomic interaction of peptides, and the TIP3P water was used for the water environment. The CHARMM-METAL force field was introduced to model the S7, PF8 (Ac-Pro-Phe-Ser-Pro-Phe-Ser-Pro-Phe-CONH2) and FS8 (Ac-Phe-Ser-Phe-Ser-Phe-Ser-Phe-Ser-CONH2) interactions with Au(111). The MD simulation results demonstrate that the morphology of Pro affects the adsorption stability of Phe. Therefore, we designed two sequences, PF8 and FS8, to confirm our simulation result through experiment. The present study also develops a novel low-temperature plasma synthesis method to evaluate the facet selecting performance of the designed peptide sequences of S7, PF8, and FS8. The experimental results suggest that the reduced Au atom seed is captured with the designed peptide sequences and slowing growing under room temperature for 72 hours. The experimental results are in the excellent agreement with the simulation finding that the Pro in the designed peptide sequences plays a critical role in the facet selection for Au atom stacking.
Collapse
Affiliation(s)
- Che-Hsin Lin
- Department of Mechanical and Electro-Mechanical Engineering, National Sun Yat-sen University, Kaohsiung, 804, Taiwan
| | - Shin-Pon Ju
- Department of Mechanical and Electro-Mechanical Engineering, National Sun Yat-sen University, Kaohsiung, 804, Taiwan.
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
| | - Jia-Wei Su
- Department of Mechanical and Electro-Mechanical Engineering, National Sun Yat-sen University, Kaohsiung, 804, Taiwan
| | - Dai-En Li
- Department of Mechanical and Electro-Mechanical Engineering, National Sun Yat-sen University, Kaohsiung, 804, Taiwan
| |
Collapse
|
18
|
Si W, Wang Y, Peng Y, Chen J, Li J. CeO 2 facets control: from single (100) to multiple. RSC Adv 2020; 10:1271-1274. [PMID: 35494671 PMCID: PMC9048269 DOI: 10.1039/c9ra09731g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 12/27/2019] [Indexed: 11/21/2022] Open
Abstract
Three different facets of CeO2 films with distinctive morphologies could be synthesized and tuned on a SrTiO3 substrate by pulsed laser deposition.
Collapse
Affiliation(s)
- Wenzhe Si
- State Key Joint Laboratory of Environment Simulation and Pollution Control
- National Engineering Laboratory for Multi Flue Gas Pollution Control Technology and Equipment
- School of Environment
- Tsinghua University
- Beijing
| | - Yu Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control
- National Engineering Laboratory for Multi Flue Gas Pollution Control Technology and Equipment
- School of Environment
- Tsinghua University
- Beijing
| | - Yue Peng
- State Key Joint Laboratory of Environment Simulation and Pollution Control
- National Engineering Laboratory for Multi Flue Gas Pollution Control Technology and Equipment
- School of Environment
- Tsinghua University
- Beijing
| | - Jianjun Chen
- State Key Joint Laboratory of Environment Simulation and Pollution Control
- National Engineering Laboratory for Multi Flue Gas Pollution Control Technology and Equipment
- School of Environment
- Tsinghua University
- Beijing
| | - Junhua Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control
- National Engineering Laboratory for Multi Flue Gas Pollution Control Technology and Equipment
- School of Environment
- Tsinghua University
- Beijing
| |
Collapse
|
19
|
Zhao Z, Chen C, Liu Z, Huang J, Wu M, Liu H, Li Y, Huang Y. Pt-Based Nanocrystal for Electrocatalytic Oxygen Reduction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1808115. [PMID: 31183932 DOI: 10.1002/adma.201808115] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 02/12/2019] [Indexed: 06/09/2023]
Abstract
Currently, Pt-based electrocatalysts are adopted in the practical proton exchange membrane fuel cell (PEMFC), which converts the energy stored in hydrogen and oxygen into electrical power. However, the broad implementation of the PEMFC, like replacing the internal combustion engine in the present automobile fleet, sets a requirement for less Pt loading compared to current devices. In principle, the requirement needs the Pt-based catalyst to be more active and stable. Two main strategies, engineering of the electronic (d-band) structure (including controlling surface facet, tuning surface composition, and engineering surface strain) and optimizing the reactant adsorption sites are discussed and categorized based on the fundamental working principle. In addition, general routes for improving the electrochemical surface area, which improves activity normalized by the unit mass of precious group metal/platinum group metal, and stability of the electrocatalyst are also discussed. Furthermore, the recent progress of full fuel cell tests of novel electrocatalysts is summarized. It is suggested that a better understanding of the reactant/intermediate adsorption, electron transfer, and desorption occurring at the electrolyte-electrode interface is necessary to fully comprehend these electrified surface reactions, and standardized membrane electrode assembly (MEA) testing protocols should be practiced, and data with full parameters detailed, for reliable evaluation of catalyst functions in devices.
Collapse
Affiliation(s)
- Zipeng Zhao
- Department of Materials Science and Engineering, University of California, Los Angeles, CA, 90095, USA
| | - Changli Chen
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Zeyan Liu
- Department of Materials Science and Engineering, University of California, Los Angeles, CA, 90095, USA
| | - Jin Huang
- Department of Materials Science and Engineering, University of California, Los Angeles, CA, 90095, USA
| | - Menghao Wu
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Haotian Liu
- Department of Materials Science and Engineering, University of California, Los Angeles, CA, 90095, USA
| | - Yujing Li
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Yu Huang
- Department of Materials Science and Engineering, University of California, Los Angeles, CA, 90095, USA
- California Nanosystems Institute, University of California, Los Angeles, CA, 90095, USA
| |
Collapse
|
20
|
Jamil T, Gissinger JR, Garley A, Saikia N, Upadhyay AK, Heinz H. Dynamics of carbohydrate strands in water and interactions with clay minerals: influence of pH, surface chemistry, and electrolytes. NANOSCALE 2019; 11:11183-11194. [PMID: 31150033 DOI: 10.1039/c9nr01867k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Carbohydrate hydrogels are extensively used in pharmaceuticals and engineered biomaterials. Molecular conformations, assembly, and interactions of the carbohydrate strands with stabilizers such as clay minerals in aqueous solution are difficult to quantify in experiments and the hydrogel properties remain largely a result of trial-and-error studies. We analyzed the assembly of gellan gum in aqueous solution and interactions with dispersed clay minerals in all-atomic detail using molecular dynamics simulation, atomic force microscopy (AFM), and comparisons to earlier measurements. Gellan strands associate at low pH values of 2 and gradually disassemble to double strands with weak association of -0.4 kcal per mole carbohydrate ring as the pH values increases to 9. Ionization of the carbonic acid side groups in the backbone extends the chains and accelerates the conformational dynamics via rapidly changing intramolecular ion bridges. Gellan interactions with clay minerals depend on the strength of electric triple layers between clay, cations, and anionic polymer strands, as well as weaker hydrogen bonds along the edges, which are tunable as a function of the clay surface chemistry, local ionic strength, and pH values. Interaction energies range from -4 to +6 kcal per mol carbohydrate ring and were most favorable for electric triple layers with high charge mobility, which can be achieved for intermediate cation exchange capacity of the clay mineral and high pH values to increase ionization of the clay edges and of the polymer. The findings provide understanding and help control the dynamics and stabilization of carbohydrate hydrogels by clay minerals.
Collapse
Affiliation(s)
- Tariq Jamil
- Department of Chemical and Biological Engineering, University of Colorado at Boulder, Boulder, CO 80309, USA.
| | - Jacob R Gissinger
- Materials Science and Engineering Program, University of Colorado at Boulder, Boulder, CO 80309, USA
| | - Amanda Garley
- Department of Chemical and Biological Engineering, University of Colorado at Boulder, Boulder, CO 80309, USA.
| | - Nabanita Saikia
- Department of Chemical and Biological Engineering, University of Colorado at Boulder, Boulder, CO 80309, USA.
| | | | - Hendrik Heinz
- Department of Chemical and Biological Engineering, University of Colorado at Boulder, Boulder, CO 80309, USA. and Materials Science and Engineering Program, University of Colorado at Boulder, Boulder, CO 80309, USA
| |
Collapse
|
21
|
Zhu E, Yan X, Wang S, Xu M, Wang C, Liu H, Huang J, Xue W, Cai J, Heinz H, Li Y, Huang Y. Peptide-Assisted 2-D Assembly toward Free-Floating Ultrathin Platinum Nanoplates as Effective Electrocatalysts. NANO LETTERS 2019; 19:3730-3736. [PMID: 31038977 DOI: 10.1021/acs.nanolett.9b00867] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We demonstrate the 2-D anisotropic formation of ultrathin free-floating Pt nanoplates from the assembly of small nanocrystals using T7 peptide (Ac-TLTTLTN-CONH2). As-formed nanoplates are rich in grain boundaries that can promote their catalytic activities. Furthermore, we demonstrate that a minor number of Pd atoms can selectively deposit on and stabilize the grain boundaries, which leads to enhanced structure stability. The Pd-enhanced Pt polycrystal nanoplates show great oxygen reduction reaction activities with 15.5 times higher specific activity and 13.7 times higher mass activity than current state-of-the-art commercial Pt/C electrocatalysts as well as 2.5 times higher mass activity for hydrogen evolution reaction compared with Pt/C.
Collapse
Affiliation(s)
- Enbo Zhu
- School of Materials Science and Engineering , Beijing Institute of Technology , Beijing 100081 , P. R. China
| | | | - Shiyi Wang
- Department of Chemical and Biological Engineering , University of Colorado Boulder , Boulder , Colorado 80309 , United States
| | - Mingjie Xu
- Irvine Materials Research Institute , University of California , Irvine , California 92697 , United States
- Fok Ying Tung Research Institute , Hong Kong University of Science and Technology , Guangzhou 511458 , P. R. China
| | | | | | | | | | | | - Hendrik Heinz
- Department of Chemical and Biological Engineering , University of Colorado Boulder , Boulder , Colorado 80309 , United States
| | - Yujing Li
- School of Materials Science and Engineering , Beijing Institute of Technology , Beijing 100081 , P. R. China
| | | |
Collapse
|
22
|
Aminpour M, Montemagno C, Tuszynski JA. An Overview of Molecular Modeling for Drug Discovery with Specific Illustrative Examples of Applications. Molecules 2019; 24:E1693. [PMID: 31052253 PMCID: PMC6539951 DOI: 10.3390/molecules24091693] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/17/2019] [Accepted: 04/23/2019] [Indexed: 01/29/2023] Open
Abstract
In this paper we review the current status of high-performance computing applications in the general area of drug discovery. We provide an introduction to the methodologies applied at atomic and molecular scales, followed by three specific examples of implementation of these tools. The first example describes in silico modeling of the adsorption of small molecules to organic and inorganic surfaces, which may be applied to drug delivery issues. The second example involves DNA translocation through nanopores with major significance to DNA sequencing efforts. The final example offers an overview of computer-aided drug design, with some illustrative examples of its usefulness.
Collapse
Affiliation(s)
- Maral Aminpour
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 2R3, Canada.
- Ingenuity Lab, Edmonton, AB T6G 2R3, Canada.
- Department of Oncology, University of Alberta, Edmonton, AB T6G 1Z2, Canada.
| | - Carlo Montemagno
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 2R3, Canada.
- Ingenuity Lab, Edmonton, AB T6G 2R3, Canada.
- Southern Illinois University, Carbondale, IL 62901, USA.
| | - Jack A Tuszynski
- Department of Oncology, University of Alberta, Edmonton, AB T6G 1Z2, Canada.
- Department of Physics, University of Alberta, Edmonton, AB T6G 2E1, Canada.
- Department of Mechanical Engineering and Aerospace Engineering (DIMEAS), Politecnico di Torino, 10129 Turin, Italy.
| |
Collapse
|
23
|
Li Y, Hou F, Sun X, Xiao Z, Zhang X, Li G. Toward an Understanding of Capping Molecules on Pt Nanoparticles for Hydrogenation: the Key Role of Hydroxyl Groups. ChemistrySelect 2019. [DOI: 10.1002/slct.201900100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yueting Li
- Key Laboratory for Green Chemical Technology of Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin University Tianjin 300072 China
| | - Fang Hou
- Key Laboratory for Green Chemical Technology of Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin University Tianjin 300072 China
| | - Xiaoqing Sun
- Key Laboratory for Green Chemical Technology of Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin University Tianjin 300072 China
| | - Zhourong Xiao
- Key Laboratory for Green Chemical Technology of Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin University Tianjin 300072 China
| | - Xiangwen Zhang
- Key Laboratory for Green Chemical Technology of Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin University Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 China
| | - Guozhu Li
- Key Laboratory for Green Chemical Technology of Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin University Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 China
| |
Collapse
|
24
|
Zhu E, Wang S, Yan X, Sobani M, Ruan L, Wang C, Liu Y, Duan X, Heinz H, Huang Y. Long-Range Hierarchical Nanocrystal Assembly Driven by Molecular Structural Transformation. J Am Chem Soc 2018; 141:1498-1505. [DOI: 10.1021/jacs.8b08023] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
| | - Shiyi Wang
- Department of Chemical and Biological Engineering, University of Colorado—Boulder, Boulder, Colorado 80309, United States
| | | | - Masoud Sobani
- Department of Polymer Engineering, University of Akron, Akron, Ohio 45433, United States
| | | | | | | | | | - Hendrik Heinz
- Department of Chemical and Biological Engineering, University of Colorado—Boulder, Boulder, Colorado 80309, United States
| | | |
Collapse
|
25
|
Wang Y, Satyavolu NSR, Lu Y. Sequence-Specific Control of Inorganic Nanomaterials Morphologies by Biomolecules. Curr Opin Colloid Interface Sci 2018; 38:158-169. [PMID: 31289450 DOI: 10.1016/j.cocis.2018.10.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Controlling morphologies of nanomaterials such as their shapes and surface features has been a major endeavor in the field of nanoscale science and engineering, because the morphology is a major determining factor for functional properties of nanomaterials. Compared with conventional capping ligands based on organic molecules or polymers, the programmability of biomolecules makes them attractive alternatives for morphology-controlled nanomaterials synthesis. Towards the goal of predictable control of the synthesis, many studies have been performed on using different sequences of biomolecules to generate specific nanomaterial morphology. In this review, we summarize recent studies in the past few years on using DNA and peptide sequences to control inorganic nanomaterial morphologies, focusing on both case studies and mechanistic investigations. The functional properties resulting from such a sequence-specific control are also discussed, along with strengths and limitations of different approaches to achieving the goal.
Collapse
Affiliation(s)
- Yiming Wang
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Ave., Urbana, IL 61801, United States
| | - Nitya Sai Reddy Satyavolu
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Ave., Urbana, IL 61801, United States
| | - Yi Lu
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Ave., Urbana, IL 61801, United States
| |
Collapse
|
26
|
Abdalla MAM, Peng H, Wu D, Abusin L, Mbah TJ. Prediction of Hydrophobic Reagent for Flotation Process Using Molecular Modeling. ACS OMEGA 2018; 3:6483-6496. [PMID: 31458827 PMCID: PMC6644759 DOI: 10.1021/acsomega.8b00413] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 06/06/2018] [Indexed: 05/06/2023]
Abstract
The interaction or nonbonded energies of base organic ions and water molecules during the flotation process of minerals have important meanings for organizing hydrophobic and stable collectors. Furthermore, the interaction, cross-term, and valence energies of optimized structures are important for understanding the properties and structures of selective collectors. The simulation of pure scheelite mineral (PSM) surfaces with four different negative ions, using an adsorption locator module is demonstrated. The interaction energies for base organic ions and water molecules were resolved and detected by shaping the best hydrophobic interaction and the most stable suspension over the PSM surface (112) and (101). The adsorption locator results for base organic ions and water molecules on PSM surfaces (112) and (101) using buffer width 0.5 Å and temperature range from 318.15 to 283.15 K confirmed the results obtain from Forcite calculations. The results have demonstrated that the possibilities of using consistent valence force field implemented by Forcite and adsorption locator modules in the selection of flotation reagents are cost saving. Furthermore, hydrophobicity of the main negative ions in soaps were solved by the simulation methods and results are in a good agreement with the experimental methods that proved that mustard soap is more selective on the mineral surfaces than sunflower soap when used as a collector. Increasing the molecular weight of negative ions increases the interaction energy between base collector ions and PSM surfaces (112) and (101) significantly.
Collapse
|
27
|
Wang J, Kattel S, Wang Z, Chen JG, Liu CJ. L-Phenylalanine-Templated Platinum Catalyst with Enhanced Performance for Oxygen Reduction Reaction. ACS APPLIED MATERIALS & INTERFACES 2018; 10:21321-21327. [PMID: 29856210 DOI: 10.1021/acsami.8b04578] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Pt-based materials are the most efficient catalysts for the oxygen reduction reaction (ORR) in proton-exchange membrane fuel cells. However, fabrication of active and stable Pt catalysts still remains challenging. In this work, Pt-l-phenylalanine (Pt-LPHE) films, with highly dispersed Pt nanoparticles (NPs) featuring predominately (111) facets, have been prepared via a room-temperature electron reduction method. Loading Pt-LPHE onto carbon support produces a novel nanomaterial (Pt-AL/C), resulting in a simultaneous loading of highly dispersed Pt NPs and N doping. Density functional theory calculations demonstrate that the N dopants stabilize the Pt NPs and reduce the *O/*OH binding energies on the Pt NPs. As a result, the Pt-AL/C nanomaterial shows significantly enhanced ORR activity and stability over commercial Pt/C after 10 000 cycle stability tests. This work provides a novel eco-friendly and energy-neutral approach for preparing metal NPs with controllable structures and sizes.
Collapse
Affiliation(s)
- Jiajun Wang
- Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology , Tianjin University , Tianjin 300072 , P. R. China
| | - Shyam Kattel
- Department of Chemical Engineering , Columbia University , 500 W. 120th Street , New York , New York 10027 , United States
- Chemistry Division , Brookhaven National Laboratory , Upton, New York 11973 , United States
| | - Zongyuan Wang
- Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology , Tianjin University , Tianjin 300072 , P. R. China
| | - Jingguang G Chen
- Department of Chemical Engineering , Columbia University , 500 W. 120th Street , New York , New York 10027 , United States
| | - Chang-Jun Liu
- Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology , Tianjin University , Tianjin 300072 , P. R. China
| |
Collapse
|
28
|
Geada IL, Ramezani-Dakhel H, Jamil T, Sulpizi M, Heinz H. Insight into induced charges at metal surfaces and biointerfaces using a polarizable Lennard-Jones potential. Nat Commun 2018; 9:716. [PMID: 29459638 PMCID: PMC5818522 DOI: 10.1038/s41467-018-03137-8] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 01/22/2018] [Indexed: 12/11/2022] Open
Abstract
Metallic nanostructures have become popular for applications in therapeutics, catalysts, imaging, and gene delivery. Molecular dynamics simulations are gaining influence to predict nanostructure assembly and performance; however, instantaneous polarization effects due to induced charges in the free electron gas are not routinely included. Here we present a simple, compatible, and accurate polarizable potential for gold that consists of a Lennard–Jones potential and a harmonically coupled core-shell charge pair for every metal atom. The model reproduces the classical image potential of adsorbed ions as well as surface, bulk, and aqueous interfacial properties in excellent agreement with experiment. Induced charges affect the adsorption of ions onto gold surfaces in the gas phase at a strength similar to chemical bonds while ions and charged peptides in solution are influenced at a strength similar to intermolecular bonds. The proposed model can be applied to complex gold interfaces, electrode processes, and extended to other metals. Molecular dynamics models for predicting the behavior of metallic nanostructures typically do not take into account polarization effects in metals. Here, the authors introduce a polarizable Lennard–Jones potential that provides quantitative insight into the role of induced charges at metal surfaces and related complex material interfaces.
Collapse
Affiliation(s)
- Isidro Lorenzo Geada
- Department of Physics, University of Mainz, Staudingerweg 7, D-55128, Mainz, Germany
| | - Hadi Ramezani-Dakhel
- Department of Polymer Engineering, University of Akron, 250S Forge St, Akron, OH, 44325, USA.,Institute for Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, IL, 60637, USA.,Department of Biochemistry and Molecular Biology, University of Chicago, 929 East 57th Street, Chicago, IL, 60637, USA
| | - Tariq Jamil
- Department of Chemical and Biological Engineering, University of Colorado-Boulder, 3415 Colorado Ave, Boulder, CO, 80309, USA
| | - Marialore Sulpizi
- Department of Physics, University of Mainz, Staudingerweg 7, D-55128, Mainz, Germany.
| | - Hendrik Heinz
- Department of Polymer Engineering, University of Akron, 250S Forge St, Akron, OH, 44325, USA. .,Department of Chemical and Biological Engineering, University of Colorado-Boulder, 3415 Colorado Ave, Boulder, CO, 80309, USA.
| |
Collapse
|
29
|
Walsh TR, Knecht MR. Biointerface Structural Effects on the Properties and Applications of Bioinspired Peptide-Based Nanomaterials. Chem Rev 2017; 117:12641-12704. [DOI: 10.1021/acs.chemrev.7b00139] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Tiffany R. Walsh
- Institute
for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia
| | - Marc R. Knecht
- Department
of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33146, United States
| |
Collapse
|
30
|
Nayebi N, Cetinel S, Omar SI, Tuszynski JA, Montemagno C. A computational method for selecting short peptide sequences for inorganic material binding. Proteins 2017; 85:2024-2035. [PMID: 28734030 DOI: 10.1002/prot.25356] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 07/18/2017] [Accepted: 07/21/2017] [Indexed: 12/14/2022]
Abstract
Discovering or designing biofunctionalized materials with improved quality highly depends on the ability to manipulate and control the peptide-inorganic interaction. Various peptides can be used as assemblers, synthesizers, and linkers in the material syntheses. In another context, specific and selective material-binding peptides can be used as recognition blocks in mining applications. In this study, we propose a new in silico method to select short 4-mer peptides with high affinity and selectivity for a given target material. This method is illustrated with the calcite (104) surface as an example, which has been experimentally validated. A calcite binding peptide can play an important role in our understanding of biomineralization. A practical aspect of calcite is a need for it to be selectively depressed in mining sites.
Collapse
Affiliation(s)
- Niloofar Nayebi
- Ingenuity Lab, University of Alberta, Edmonton, Alberta, Canada.,Department of Physics, University of Alberta, Edmonton, Alberta, Canada
| | - Sibel Cetinel
- Ingenuity Lab, University of Alberta, Edmonton, Alberta, Canada.,Department of Chemical and Material Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Sara Ibrahim Omar
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada
| | - Jack A Tuszynski
- Department of Physics, University of Alberta, Edmonton, Alberta, Canada.,Department of Oncology, University of Alberta, Edmonton, Alberta, Canada
| | - Carlo Montemagno
- Ingenuity Lab, University of Alberta, Edmonton, Alberta, Canada.,Department of Chemical and Material Engineering, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
31
|
Guo Y, Sato W, Shoyama K, Halim H, Itabashi Y, Shang R, Nakamura E. Citric Acid Modulated Growth of Oriented Lead Perovskite Crystals for Efficient Solar Cells. J Am Chem Soc 2017. [DOI: 10.1021/jacs.7b03856] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Yunlong Guo
- Institute
of Chemistry, Chinese Academy of Science, Beijing, 100190, PR China
- Department
of Chemistry, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku,
Tokyo 113-0033, Japan
| | - Wataru Sato
- Department
of Chemistry, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku,
Tokyo 113-0033, Japan
| | - Kazutaka Shoyama
- Department
of Chemistry, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku,
Tokyo 113-0033, Japan
| | - Henry Halim
- Department
of Chemistry, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku,
Tokyo 113-0033, Japan
| | - Yuki Itabashi
- Department
of Chemistry, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku,
Tokyo 113-0033, Japan
| | - Rui Shang
- Department
of Chemistry, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku,
Tokyo 113-0033, Japan
| | - Eiichi Nakamura
- Department
of Chemistry, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku,
Tokyo 113-0033, Japan
| |
Collapse
|
32
|
Ramezani-Dakhel H, Bedford NM, Woehl TJ, Knecht MR, Naik RR, Heinz H. Nature of peptide wrapping onto metal nanoparticle catalysts and driving forces for size control. NANOSCALE 2017; 9:8401-8409. [PMID: 28604905 DOI: 10.1039/c7nr02813j] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Colloidal metal nanocrystals find many applications in catalysis, energy conversion devices, and therapeutics. However, the nature of ligand interactions and implications on shape control have remained uncertain at the atomic scale. Large differences in peptide adsorption strength and facet specificity were found on flat palladium surfaces versus surfaces of nanoparticles of 2 to 3 nm size using accurate atomistic simulations with the Interface force field. Folding of longer peptides across many facets explains the formation of near-spherical particles with local surface disorder, in contrast to the possibility of nanostructures of higher symmetry with shorter ligands. The average particle size in TEM correlates inversely with the surface coverage with a given ligand and with the strength of ligand adsorption. The role of specific amino acids and sequence mutations on the nanoparticle size and facet composition is discussed, as well as the origin of local surface disorder that leads to large differences in catalytic reactivity.
Collapse
|
33
|
Dharmawardhana CC, Kanhaiya K, Lin TJ, Garley A, Knecht MR, Zhou J, Miao J, Heinz H. Reliable computational design of biological-inorganic materials to the large nanometer scale using Interface-FF. MOLECULAR SIMULATION 2017. [DOI: 10.1080/08927022.2017.1332414] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Chamila C. Dharmawardhana
- Department of Chemical and Biological Engineering, University of Colorado at Boulder, Boulder, CO, USA
| | - Krishan Kanhaiya
- Department of Chemical and Biological Engineering, University of Colorado at Boulder, Boulder, CO, USA
| | - Tzu-Jen Lin
- Department of Chemical Engineering, Chung Yuan Christian University, Taoyuan City, Taiwan, ROC
| | - Amanda Garley
- Department of Chemical and Biological Engineering, University of Colorado at Boulder, Boulder, CO, USA
| | - Marc R. Knecht
- Department of Chemistry, University of Miami, Coral Gables, FL, USA
| | - Jihan Zhou
- Department of Physics and Astronomy and California NanoSystems Institute, University of California, Los Angeles, CA, USA
| | - Jianwei Miao
- Department of Physics and Astronomy and California NanoSystems Institute, University of California, Los Angeles, CA, USA
| | - Hendrik Heinz
- Department of Chemical and Biological Engineering, University of Colorado at Boulder, Boulder, CO, USA
| |
Collapse
|
34
|
Wang W, Anderson CF, Wang Z, Wu W, Cui H, Liu CJ. Peptide-templated noble metal catalysts: syntheses and applications. Chem Sci 2017; 8:3310-3324. [PMID: 28507701 PMCID: PMC5416928 DOI: 10.1039/c7sc00069c] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 02/11/2017] [Indexed: 01/10/2023] Open
Abstract
Noble metal catalysts have been widely used in many applications because of their high activity and selectivity. However, a controllable preparation of noble metal catalysts still remains as a significant challenge. To overcome this challenge, peptide templates can play a critical role in the controllable syntheses of catalysts owing to their flexible binding with specific metallic surfaces and self-assembly characteristics. By employing peptide templates, the size, shape, facet, structure, and composition of obtained catalysts can all be specifically controlled under the mild synthesis conditions. In addition, catalysts with spherical, nanofiber, and nanofilm structures can all be produced by associating with the self-assembly characteristics of peptide templates. Furthermore, the peptide-templated noble metal catalysts also reveal significantly enhanced catalytic behaviours compared with conventional catalysts because the electron conductivity, metal dispersion, and reactive site exposure can all be improved. In this review, we summarize the research progresses in the syntheses of peptide-templated noble metal catalysts. The applications of the peptide-templated catalysts in organic reactions, photocatalysis, and electrocatalysis are discussed, and the relationship between structure and activity of these catalysts are addressed. Future opportunities, including new catalytic materials designed by using biological principles, are indicated to achieve selective, eco-friendly, and energy neutral synthesis approaches.
Collapse
Affiliation(s)
- Wei Wang
- Tianjin Co-Innovation Center of Chemical Science & Engineering , School of Chemical Engineering and Technology , Tianjin University , Tianjin 300072 , China .
- International Joint Research Centre for Catalytic Technology , Key Laboratory of Chemical Engineering Process & Technology for High-Efficiency Conversion , School of Chemistry and Material Science , Heilongjiang University , Harbin 150080 , China
| | - Caleb F Anderson
- Department of Chemical and Biomolecular Engineering , Institute for NanoBioTechnology , Johns Hopkins University , Baltimore , MD 21218 , USA
| | - Zongyuan Wang
- Tianjin Co-Innovation Center of Chemical Science & Engineering , School of Chemical Engineering and Technology , Tianjin University , Tianjin 300072 , China .
| | - Wei Wu
- International Joint Research Centre for Catalytic Technology , Key Laboratory of Chemical Engineering Process & Technology for High-Efficiency Conversion , School of Chemistry and Material Science , Heilongjiang University , Harbin 150080 , China
| | - Honggang Cui
- Department of Chemical and Biomolecular Engineering , Institute for NanoBioTechnology , Johns Hopkins University , Baltimore , MD 21218 , USA
| | - Chang-Jun Liu
- Tianjin Co-Innovation Center of Chemical Science & Engineering , School of Chemical Engineering and Technology , Tianjin University , Tianjin 300072 , China .
| |
Collapse
|
35
|
Bellucci L, Bussi G, Di Felice R, Corni S. Fibrillation-prone conformations of the amyloid-β-42 peptide at the gold/water interface. NANOSCALE 2017; 9:2279-2290. [PMID: 28124697 DOI: 10.1039/c6nr06010b] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Proteins in the proximity of inorganic surfaces and nanoparticles may undergo profound adjustments that trigger biomedically relevant processes, such as protein fibrillation. The mechanisms that govern protein-surface interactions at the molecular level are still poorly understood. In this work, we investigate the adsorption onto a gold surface, in water, of an amyloid-β (Aβ) peptide, which is the amyloidogenic peptide involved in Alzheimer's disease. The entire adsorption process, from the peptide in bulk water to its conformational relaxation on the surface, is explored by large-scale atomistic molecular dynamics (MD) simulations. We start by providing a description of the conformational ensemble of Aβ in solution by a 22 μs temperature replica exchange MD simulation, which is consistent with previous results. Then, we obtain a statistical description of how the peptide approaches the gold surface by multiple MD simulations, identifying the preferential gold-binding sites and giving a kinetic picture of the association process. Finally, relaxation of the Aβ conformations at the gold/water interface is performed by a 19 μs Hamiltonian-temperature replica exchange MD simulation. We find that the conformational ensemble of Aβ is strongly perturbed by the presence of the surface. In particular, at the gold/water interface the population of the conformers akin to amyloid fibrils is significantly enriched, suggesting that this extended contact geometry may promote fibrillation.
Collapse
Affiliation(s)
- Luca Bellucci
- Center S3, CNR Institute of Nanoscience, via Campi 213/A, 41125 Modena, Italy.
| | - Giovanni Bussi
- SISSA-Scuola Internazionale Superiore di Studi Avanzati, via Bonomea 265, 34136 Trieste, Italy
| | - Rosa Di Felice
- Center S3, CNR Institute of Nanoscience, via Campi 213/A, 41125 Modena, Italy. and Department of Physics and Astronomy, University of Southern California, Los Angeles, CA 90089, USA
| | - Stefano Corni
- Center S3, CNR Institute of Nanoscience, via Campi 213/A, 41125 Modena, Italy.
| |
Collapse
|
36
|
Xue T, Lin Z, Chiu CY, Li Y, Ruan L, Wang G, Zhao Z, Lee C, Duan X, Huang Y. Molecular ligand modulation of palladium nanocatalysts for highly efficient and robust heterogeneous oxidation of cyclohexenone to phenol. SCIENCE ADVANCES 2017; 3:e1600615. [PMID: 28070555 PMCID: PMC5218513 DOI: 10.1126/sciadv.1600615] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 11/21/2016] [Indexed: 05/22/2023]
Abstract
Metallic nanoparticles are emerging as an exciting class of heterogeneous catalysts with the potential advantages of exceptional activity, stability, recyclability, and easier separation than homogeneous catalysts. The traditional colloid nanoparticle syntheses usually involve strong surface binding ligands that could passivate the surface active sites and result in poor catalytic activity. The subsequent removal of surface ligands could reactivate the surface but often leads to metal ion leaching and/or severe Ostwald ripening with diminished catalytic activity or poor stability. Molecular ligand engineering represents a powerful strategy for the design of homogeneous molecular catalysts but is insufficiently explored for nanoparticle catalysts to date. We report a systematic investigation on molecular ligand modulation of palladium (Pd) nanoparticle catalysts. Our studies show that β-functional groups of butyric acid ligand on Pd nanoparticles can significantly modulate the catalytic reaction process to modify the catalytic activity and stability for important aerobic reactions. With a β-hydroxybutyric acid ligand, the Pd nanoparticle catalysts exhibit exceptional catalytic activity and stability with an unsaturated turnover number (TON) >3000 for dehydrogenative oxidation of cyclohexenone to phenol, greatly exceeding that of homogeneous Pd(II) catalysts (TON, ~30). This study presents a systematic investigation of molecular ligand modulation of nanoparticle catalysts and could open up a new pathway toward the design and construction of highly efficient and robust heterogeneous catalysts through molecular ligand engineering.
Collapse
Affiliation(s)
- Teng Xue
- Department of Materials Science and Engineering, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Zhaoyang Lin
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Chin-Yi Chiu
- Department of Materials Science and Engineering, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Yongjia Li
- Department of Materials Science and Engineering, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Lingyan Ruan
- Department of Materials Science and Engineering, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Gongming Wang
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Zipeng Zhao
- Department of Materials Science and Engineering, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Chain Lee
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Xiangfeng Duan
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
- Corresponding author. (X.D.); (Y.H.)
| | - Yu Huang
- Department of Materials Science and Engineering, University of California Los Angeles, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
- Corresponding author. (X.D.); (Y.H.)
| |
Collapse
|
37
|
Ramakrishnan SK, Zhu J, Gergely C. Organic-inorganic interface simulation for new material discoveries. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2016. [DOI: 10.1002/wcms.1277] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Sathish Kumar Ramakrishnan
- Nanobiology Institute; Yale University; West Haven CT USA
- Laboratoire Charles Coulomb (L2C); UMR 5221 CNRS-Université de Montpellier; Montpellier France
| | - Jie Zhu
- Nanobiology Institute; Yale University; West Haven CT USA
| | - Csilla Gergely
- Laboratoire Charles Coulomb (L2C); UMR 5221 CNRS-Université de Montpellier; Montpellier France
| |
Collapse
|
38
|
Martínez-Rodríguez RA, Vidal-Iglesias FJ, Solla- Gullón J, Cabrera CR, Feliu JM. Electrochemical Characterisation of Platinum Nanoparticles Prepared in a Water-in-Oil Microemulsion in the Presence of Different Modifiers and Metal Precursors. ChemElectroChem 2016. [DOI: 10.1002/celc.201600295] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Roberto A. Martínez-Rodríguez
- Institute of Electrochemistry; University of Alicante; Ap. 99 03080 Alicante Spain
- NASA-URC Center for Advanced Nanoscale Materials (CANM); Department of Chemistry; University of Puerto Rico; Río Piedras Campus, P.O. Box 23346 San Juan 00931-3346 Puerto Rico
| | | | - José Solla- Gullón
- Institute of Electrochemistry; University of Alicante; Ap. 99 03080 Alicante Spain
| | - Carlos R. Cabrera
- NASA-URC Center for Advanced Nanoscale Materials (CANM); Department of Chemistry; University of Puerto Rico; Río Piedras Campus, P.O. Box 23346 San Juan 00931-3346 Puerto Rico
| | - Juan M. Feliu
- Institute of Electrochemistry; University of Alicante; Ap. 99 03080 Alicante Spain
| |
Collapse
|
39
|
Facile synthesis of platinum octahedra and cubes through the manipulation of reduction kinetics. ADV POWDER TECHNOL 2016. [DOI: 10.1016/j.apt.2016.04.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
40
|
Galloway JM, Bird SM, Talbot JE, Shepley PM, Bradley RC, El-Zubir O, Allwood DA, Leggett GJ, Miles JJ, Staniland SS, Critchley K. Nano- and micro-patterning biotemplated magnetic CoPt arrays. NANOSCALE 2016; 8:11738-11747. [PMID: 27221982 DOI: 10.1039/c6nr03330j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Patterned thin-films of magnetic nanoparticles (MNPs) can be used to make: surfaces for manipulating and sorting cells, sensors, 2D spin-ices and high-density data storage devices. Conventional manufacture of patterned magnetic thin-films is not environmentally friendly because it uses high temperatures (hundreds of degrees Celsius) and high vacuum, which requires expensive specialised equipment. To tackle these issues, we have taken inspiration from nature to create environmentally friendly patterns of ferromagnetic CoPt using a biotemplating peptide under mild conditions and simple apparatus. Nano-patterning via interference lithography (IL) and micro-patterning using micro-contact printing (μCP) were used to create a peptide resistant mask onto a gold surface under ambient conditions. We redesigned a biotemplating peptide (CGSGKTHEIHSPLLHK) to self-assemble onto gold surfaces, and mineralised the patterns with CoPt at 18 °C in water. Ferromagnetic CoPt is biotemplated by the immobilised peptides, and the patterned MNPs maintain stable magnetic domains. This bioinspired study offers an ecological route towards developing biotemplated magnetic thin-films for use in applications such as sensing, cell manipulation and data storage.
Collapse
Affiliation(s)
- J M Galloway
- School of Physics and Astronomy, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK and School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK.
| | - S M Bird
- Department of Chemistry, University of Sheffield, Dainton Building, Brook Hill, S3 7HF, UK
| | - J E Talbot
- School of Computer Science, University of Manchester, Kilburn Building, Oxford Road, Manchester, M13 9PL, UK
| | - P M Shepley
- School of Physics and Astronomy, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | - R C Bradley
- Department of Materials Science and Engineering, University of Sheffield, Sir Robert Hadfield Building, Maplin Street, Sheffield, S1 3JD, UK
| | - O El-Zubir
- Department of Chemistry, University of Sheffield, Dainton Building, Brook Hill, S3 7HF, UK and School of Chemistry, University of Newcastle, Chemical Nanoscience Laboratories, Bedson Building, Newcastle Upon Tyne, NE1 7RU, UK
| | - D A Allwood
- Department of Materials Science and Engineering, University of Sheffield, Sir Robert Hadfield Building, Maplin Street, Sheffield, S1 3JD, UK
| | - G J Leggett
- Department of Chemistry, University of Sheffield, Dainton Building, Brook Hill, S3 7HF, UK
| | - J J Miles
- School of Computer Science, University of Manchester, Kilburn Building, Oxford Road, Manchester, M13 9PL, UK
| | - S S Staniland
- Department of Chemistry, University of Sheffield, Dainton Building, Brook Hill, S3 7HF, UK
| | - K Critchley
- School of Physics and Astronomy, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| |
Collapse
|
41
|
Zan G, Wu Q. Biomimetic and Bioinspired Synthesis of Nanomaterials/Nanostructures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:2099-147. [PMID: 26729639 DOI: 10.1002/adma.201503215] [Citation(s) in RCA: 175] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 09/09/2015] [Indexed: 05/13/2023]
Abstract
In recent years, due to its unparalleled advantages, the biomimetic and bioinspired synthesis of nanomaterials/nanostructures has drawn increasing interest and attention. Generally, biomimetic synthesis can be conducted either by mimicking the functions of natural materials/structures or by mimicking the biological processes that organisms employ to produce substances or materials. Biomimetic synthesis is therefore divided here into "functional biomimetic synthesis" and "process biomimetic synthesis". Process biomimetic synthesis is the focus of this review. First, the above two terms are defined and their relationship is discussed. Next different levels of biological processes that can be used for process biomimetic synthesis are compiled. Then the current progress of process biomimetic synthesis is systematically summarized and reviewed from the following five perspectives: i) elementary biomimetic system via biomass templates, ii) high-level biomimetic system via soft/hard-combined films, iii) intelligent biomimetic systems via liquid membranes, iv) living-organism biomimetic systems, and v) macromolecular bioinspired systems. Moreover, for these five biomimetic systems, the synthesis procedures, basic principles, and relationships are discussed, and the challenges that are encountered and directions for further development are considered.
Collapse
Affiliation(s)
- Guangtao Zan
- Department of Chemistry, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, P. R. China
- School of Materials Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Qingsheng Wu
- Department of Chemistry, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, P. R. China
- School of Materials Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| |
Collapse
|
42
|
Heinz H. Adsorption of biomolecules and polymers on silicates, glasses, and oxides: mechanisms, predictions, and opportunities by molecular simulation. Curr Opin Chem Eng 2016. [DOI: 10.1016/j.coche.2015.12.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
43
|
Amiens C, Ciuculescu-Pradines D, Philippot K. Controlled metal nanostructures: Fertile ground for coordination chemists. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2015.07.013] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
44
|
Heinz H, Ramezani-Dakhel H. Simulations of inorganic-bioorganic interfaces to discover new materials: insights, comparisons to experiment, challenges, and opportunities. Chem Soc Rev 2016; 45:412-48. [PMID: 26750724 DOI: 10.1039/c5cs00890e] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Natural and man-made materials often rely on functional interfaces between inorganic and organic compounds. Examples include skeletal tissues and biominerals, drug delivery systems, catalysts, sensors, separation media, energy conversion devices, and polymer nanocomposites. Current laboratory techniques are limited to monitor and manipulate assembly on the 1 to 100 nm scale, time-consuming, and costly. Computational methods have become increasingly reliable to understand materials assembly and performance. This review explores the merit of simulations in comparison to experiment at the 1 to 100 nm scale, including connections to smaller length scales of quantum mechanics and larger length scales of coarse-grain models. First, current simulation methods, advances in the understanding of chemical bonding, in the development of force fields, and in the development of chemically realistic models are described. Then, the recognition mechanisms of biomolecules on nanostructured metals, semimetals, oxides, phosphates, carbonates, sulfides, and other inorganic materials are explained, including extensive comparisons between modeling and laboratory measurements. Depending on the substrate, the role of soft epitaxial binding mechanisms, ion pairing, hydrogen bonds, hydrophobic interactions, and conformation effects is described. Applications of the knowledge from simulation to predict binding of ligands and drug molecules to the inorganic surfaces, crystal growth and shape development, catalyst performance, as well as electrical properties at interfaces are examined. The quality of estimates from molecular dynamics and Monte Carlo simulations is validated in comparison to measurements and design rules described where available. The review further describes applications of simulation methods to polymer composite materials, surface modification of nanofillers, and interfacial interactions in building materials. The complexity of functional multiphase materials creates opportunities to further develop accurate force fields, including reactive force fields, and chemically realistic surface models, to enable materials discovery at a million times lower computational cost compared to quantum mechanical methods. The impact of modeling and simulation could further be increased by the advancement of a uniform simulation platform for organic and inorganic compounds across the periodic table and new simulation methods to evaluate system performance in silico.
Collapse
Affiliation(s)
- Hendrik Heinz
- Department of Chemical and Biological Engineering, University of Colorado-Boulder, Boulder, CO 80309, USA.
| | | |
Collapse
|
45
|
Hughes ZE, Walsh TR. Non-covalent adsorption of amino acid analogues on noble-metal nanoparticles: influence of edges and vertices. Phys Chem Chem Phys 2016; 18:17525-33. [DOI: 10.1039/c6cp02323a] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
First-principles calculations on nanoscale-sized noble metal nanoparticles demonstrate that planes, edges and vertices show different noncovalent adsorption propensities depending on the adsorbate functional group.
Collapse
Affiliation(s)
- Zak E. Hughes
- Institute for Frontier Materials
- Deakin University
- Geelong VIC 3216
- Australia
| | - Tiffany R. Walsh
- Institute for Frontier Materials
- Deakin University
- Geelong VIC 3216
- Australia
| |
Collapse
|
46
|
Tan LH, Yue Y, Satyavolu NSR, Ali AS, Wang Z, Wu Y, Lu Y. Mechanistic Insight into DNA-Guided Control of Nanoparticle Morphologies. J Am Chem Soc 2015; 137:14456-64. [DOI: 10.1021/jacs.5b09567] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Li Huey Tan
- Department of Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Yuan Yue
- State Key Laboratory of Supramolecular
Structure and Materials, Jilin University, Changchun 130012, PR China
| | - Nitya Sai Reddy Satyavolu
- Department of Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Arzeena Sultana Ali
- Department of Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Zidong Wang
- Department of Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Yuqing Wu
- State Key Laboratory of Supramolecular
Structure and Materials, Jilin University, Changchun 130012, PR China
| | - Yi Lu
- Department of Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
47
|
Ramakrishnan SK, Jebors S, Martin M, Cloitre T, Agarwal V, Mehdi A, Martinez J, Subra G, Gergely C. Engineered Adhesion Peptides for Improved Silicon Adsorption. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:11868-11874. [PMID: 26440047 DOI: 10.1021/acs.langmuir.5b02857] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Engineering peptides that present selective recognition and high affinity for a material is a major challenge for assembly-driven elaboration of complex systems with wide applications in the field of biomaterials, hard-tissue regeneration, and functional materials for therapeutics. Peptide-material interactions are of vital importance in natural processes but less exploited for the design of novel systems for practical applications because of our poor understanding of mechanisms underlying these interactions. Here, we present an approach based on the synthesis of several truncated peptides issued from a silicon-specific peptide recovered via phage display technology. We use the photonic response provided by porous silicon microcavities to evaluate the binding efficiency of 14 different peptide derivatives. We identify and engineer a short peptide sequence (SLVSHMQT), revealing the highest affinity for p(+)-Si. The molecular recognition behavior of the obtained peptide fragment can be revealed through mutations allowing identification of the preferential affinity of certain amino acids toward silicon. These results constitute an advance in both the engineering of peptides that reveal recognition properties for silicon and the understanding of biomolecule-material interactions.
Collapse
Affiliation(s)
| | - Said Jebors
- Institut des Biomolécules Max Mousseron (IBMM), UMR5247 CNRS, Université de Montpellier , 15 Avenue Charles Flahault, Montpellier, France
| | - Marta Martin
- Laboratoire Charles Coulomb (L2C), UMR 5221 CNRS-Université de Montpellier , Montpellier, France
| | - Thierry Cloitre
- Laboratoire Charles Coulomb (L2C), UMR 5221 CNRS-Université de Montpellier , Montpellier, France
| | - Vivechana Agarwal
- ICIICAP-Universidad Autonoma del Estado de Morelos , Av. Universidad 1001, Col Chamilpa, Cuernavaca, Morelos, México
| | - Ahmad Mehdi
- Institut Charles Gerhardt-UMR5253, Université de Montpellier , F-34095 Montpellier, France
| | - Jean Martinez
- Institut des Biomolécules Max Mousseron (IBMM), UMR5247 CNRS, Université de Montpellier , 15 Avenue Charles Flahault, Montpellier, France
| | - Gilles Subra
- Institut des Biomolécules Max Mousseron (IBMM), UMR5247 CNRS, Université de Montpellier , 15 Avenue Charles Flahault, Montpellier, France
| | - Csilla Gergely
- Laboratoire Charles Coulomb (L2C), UMR 5221 CNRS-Université de Montpellier , Montpellier, France
| |
Collapse
|
48
|
Pal J, Pal T. Faceted metal and metal oxide nanoparticles: design, fabrication and catalysis. NANOSCALE 2015; 7:14159-14190. [PMID: 26255749 DOI: 10.1039/c5nr03395k] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The review addresses new advances in metal, bimetallic, metal oxide, and composite particles in their nanoregime for facet-selective catalytic applications. The synthesis and growth mechanisms of the particles have been summarized in brief in this review with a view to develop critical examination of the faceted morphology of the particles for catalysis. The size, shape and composition of the particles have been found to be largely irrelevant in comparison to the nature of facets in catalysis. Thus selective high- and low-index facets have been found to selectively promote adsorption, which eventually leads to an effective catalytic reaction. As a consequence, a high density of atoms rest at the corners, steps, stages, kinks etc on the catalyst surface in order to host the adsorbate efficiently and catalyze the reaction. Again, surface atomic arrangement and bond length have been found to play a dominant role in adsorption, leading to effective catalysis.
Collapse
Affiliation(s)
- Jaya Pal
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, India.
| | | |
Collapse
|
49
|
Wright LB, Palafox-Hernandez JP, Rodger PM, Corni S, Walsh TR. Facet selectivity in gold binding peptides: exploiting interfacial water structure. Chem Sci 2015; 6:5204-5214. [PMID: 29449926 PMCID: PMC5669244 DOI: 10.1039/c5sc00399g] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 06/20/2015] [Indexed: 11/21/2022] Open
Abstract
Peptide sequences that can discriminate between gold facets under aqueous conditions offer a promising route to control the growth and organisation of biomimetically-synthesised gold nanoparticles. Knowledge of the interplay between sequence, conformations and interfacial properties is essential for predictable manipulation of these biointerfaces, but the structural connections between a given peptide sequence and its binding affinity remain unclear, impeding practical advances in the field. These structural insights, at atomic-scale resolution, are not easily accessed with experimental approaches, but can be delivered via molecular simulation. A current unmet challenge lies in forging links between predicted adsorption free energies derived from enhanced sampling simulations with the conformational ensemble of the peptide and the water structure at the surface. To meet this challenge, here we use an in situ combination of Replica Exchange with Solute Tempering with Metadynamics simulations to predict the adsorption free energy of a gold-binding peptide sequence, AuBP1, at the aqueous Au(111), Au(100)(1 × 1) and Au(100)(5 × 1) interfaces. We find adsorption to the Au(111) surface is stronger than to Au(100), irrespective of the reconstruction status of the latter. Our predicted free energies agree with experiment, and correlate with trends in interfacial water structuring. For gold, surface hydration is predicted as a chief determining factor in peptide-surface recognition. Our findings can be used to suggest how shaped seed-nanocrystals of Au, in partnership with AuBP1, could be used to control AuNP nanoparticle morphology.
Collapse
Affiliation(s)
- Louise B Wright
- Dept. of Chemistry , University of Warwick , Coventry , CV4 7AL , UK
| | | | - P Mark Rodger
- Dept. of Chemistry , University of Warwick , Coventry , CV4 7AL , UK
- Centre for Scientific Computing , University of Warwick , Coventry , CV4 7AL , UK .
| | - Stefano Corni
- Centro S3 CNR Istituto Nanoscienze , Modena , Italy .
| | - Tiffany R Walsh
- Institute for Frontier Materials , Deakin University , Geelong , 3216 , VIC , Australia .
| |
Collapse
|
50
|
Limo MJ, Perry CC. Thermodynamic Study of Interactions Between ZnO and ZnO Binding Peptides Using Isothermal Titration Calorimetry. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:6814-6822. [PMID: 26037020 DOI: 10.1021/acs.langmuir.5b01347] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
While material-specific peptide binding sequences have been identified using a combination of combinatorial methods and computational modeling tools, a deep molecular level understanding of the fundamental principles through which these interactions occur and in some instances modify the morphology of inorganic materials is far from being fully realized. Understanding the thermodynamic changes that occur during peptide-inorganic interactions and correlating these to structural modifications of the inorganic materials could be the key to achieving and mastering control over material formation processes. This study is a detailed investigation applying isothermal titration calorimetry (ITC) to directly probe thermodynamic changes that occur during interaction of ZnO binding peptides (ZnO-BPs) and ZnO. The ZnO-BPs used are reported sequences G-12 (GLHVMHKVAPPR), GT-16 (GLHVMHKVAPPR-GGGC), and alanine mutants of G-12 (G-12A6, G-12A11, and G-12A12) whose interaction with ZnO during solution synthesis studies have been extensively investigated. The interactions of the ZnO-BPs with ZnO yielded biphasic isotherms comprising both an endothermic and an exothermic event. Qualitative differences were observed in the isothermal profiles of the different peptides and ZnO particles studied. Measured ΔG values were between -6 and -8.5 kcal/mol, and high adsorption affinity values indicated the occurrence of favorable ZnO-BP-ZnO interactions. ITC has great potential in its use to understand peptide-inorganic interactions, and with continued development, the knowledge gained may be instrumental for simplification of selection processes of organic molecules for the advancement of material synthesis and design.
Collapse
Affiliation(s)
- Marion J Limo
- Biomolecular and Materials Interface Research Group, Interdisciplinary Biomedical Research Centre, School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, United Kingdom
| | - Carole C Perry
- Biomolecular and Materials Interface Research Group, Interdisciplinary Biomedical Research Centre, School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, United Kingdom
| |
Collapse
|