1
|
Garg A, Mejia E, Nam W, Vikesland P, Zhou W. Biomimetic Transparent Nanoplasmonic Meshes by Reverse-Nanoimprinting for Bio-Interfaced Spatiotemporal Multimodal SERS Bioanalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204517. [PMID: 36161480 DOI: 10.1002/smll.202204517] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Indexed: 06/16/2023]
Abstract
Multicellular systems, such as microbial biofilms and cancerous tumors, feature complex biological activities coordinated by cellular interactions mediated via different signaling and regulatory pathways, which are intrinsically heterogeneous, dynamic, and adaptive. However, due to their invasiveness or their inability to interface with native cellular networks, standard bioanalysis methods do not allow in situ spatiotemporal biochemical monitoring of multicellular systems to capture holistic spatiotemporal pictures of systems-level biology. Here, a high-throughput reverse nanoimprint lithography approach is reported to create biomimetic transparent nanoplasmonic microporous mesh (BTNMM) devices with ultrathin flexible microporous structures for spatiotemporal multimodal surface-enhanced Raman spectroscopy (SERS) measurements at the bio-interface. It is demonstrated that BTNMMs, supporting uniform and ultrasensitive SERS hotspots, can simultaneously enable spatiotemporal multimodal SERS measurements for targeted pH sensing and non-targeted molecular detection to resolve the diffusion dynamics for pH, adenine, and Rhodamine 6G molecules in agarose gel. Moreover, it is demonstrated that BTNMMs can act as multifunctional bio-interfaced SERS sensors to conduct in situ spatiotemporal pH mapping and molecular profiling of Escherichia coli biofilms. It is envisioned that the ultrasensitive multimodal SERS capability, transport permeability, and biomechanical compatibility of the BTNMMs can open exciting avenues for bio-interfaced multifunctional sensing applications both in vitro and in vivo.
Collapse
Affiliation(s)
- Aditya Garg
- Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Elieser Mejia
- Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Wonil Nam
- Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Peter Vikesland
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Wei Zhou
- Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| |
Collapse
|
2
|
Flexible Silicon Dimer Nanocavity with Electric and Magnetic Enhancement. PHOTONICS 2022. [DOI: 10.3390/photonics9040267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
High-index dielectrics have recently been regarded as promising building blocks in nanophotonics owing to optical electric and magnetic Mie resonances. In particular, silicon is gaining great interest as the backbone of modern technology. Here, silicon dimer nanocavities with different sizes of silicon nanospheres were constructed using a probe nanomanipulation method and interacted with a few-layered R6G membrane to investigate the enhancement of electric and magnetic mode coupling. The evidence of the enhancement of fluorescence and slightly prolonged lifetime of R6G indicated the existence of nanocavities. In addition, the simulated electric and magnetic field distributions and decomposed mode of nanocavity were used to analyze the contribution of electric and magnetic modes to the R6G enhanced fluorescence. Such silicon dimer is a flexible nanocavity with electric and magnetic mode enhancement and has promising applications in sensing and all-dielectric metamaterials or nanophotonic devices.
Collapse
|
3
|
Maccaferri N, Zhao Y, Isoniemi T, Iarossi M, Parracino A, Strangi G, De Angelis F. Hyperbolic Meta-Antennas Enable Full Control of Scattering and Absorption of Light. NANO LETTERS 2019; 19:1851-1859. [PMID: 30776244 DOI: 10.1021/acs.nanolett.8b04841] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We introduce a novel concept of hybrid metal-dielectric meta-antenna supporting type II hyperbolic dispersion, which enables full control of absorption and scattering of light in the visible/near-infrared spectral range. This ability lies in the different nature of the localized hyperbolic Bloch-like modes excited within the meta-antenna. The experimental evidence is corroborated by a comprehensive theoretical study. In particular, we demonstrate that two main modes, one radiative and one non-radiative, can be excited by direct coupling with the free-space radiation. We show that the scattering is the dominating electromagnetic decay channel, when an electric dipolar mode is induced in the system, whereas a strong absorption process occurs when a magnetic dipole is excited. Also, by varying the geometry of the system, the relative ratio of scattering and absorption, as well as their relative enhancement and/or quenching, can be tuned at will over a broad spectral range, thus enabling full control of the two channels. Importantly, both radiative and nonradiative modes supported by our architecture can be excited directly with far-field radiation. This is observed to occur even when the radiative channels (scattering) are almost totally suppressed, thereby making the proposed architecture suitable for practical applications. Finally, the hyperbolic meta-antennas possess both angular and polarization independent structural integrity, unlocking promising applications as hybrid meta-surfaces or as solvable nanostructures.
Collapse
Affiliation(s)
- Nicolò Maccaferri
- Istituto Italiano di Tecnologia , Via Morego 30 , 16163 , Genova , Italy
| | - Yingqi Zhao
- Istituto Italiano di Tecnologia , Via Morego 30 , 16163 , Genova , Italy
| | - Tommi Isoniemi
- Istituto Italiano di Tecnologia , Via Morego 30 , 16163 , Genova , Italy
| | - Marzia Iarossi
- Istituto Italiano di Tecnologia , Via Morego 30 , 16163 , Genova , Italy
- DIBRIS , Università degli Studi di Genova , Via Balbi 5 , 16126 Genova , Italy
| | | | - Giuseppe Strangi
- Istituto Italiano di Tecnologia , Via Morego 30 , 16163 , Genova , Italy
- Department of Physics , Case Western Reserve University , 10600 Euclid Avenue , Cleveland , Ohio 44106 , United States
- CNR-NANOTEC Istituto di Nanotecnologia and Department of Physics , University of Calabria , Arcavacata 87036 , Italy
| | | |
Collapse
|
4
|
Jung I, Ih S, Yoo H, Hong S, Park S. Fourier Transform Surface Plasmon Resonance of Nanodisks Embedded in Magnetic Nanorods. NANO LETTERS 2018; 18:1984-1992. [PMID: 29406756 DOI: 10.1021/acs.nanolett.7b05439] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this study, we demonstrate the synthesis and application of magnetic plasmonic gyro-nanodisks (GNDs) for Fourier transform surface plasmon resonance based biodetection. Plasmonically active and magnetically responsive gyro-nanodisks were synthesized using electrochemical methods with anodized aluminum templates. Due to the unique properties of GNDs (magnetic responsiveness and surface plasmon bands), periodic extinction signals were generated under an external rotating magnetic field, which is, in turn, converted into frequency domains using Fourier transformation. After the binding of a target on GNDs, an increase in the shear force causes a shift in the frequency domain, which allows us to investigate biodetection for HA1 (the influenza virus). Most importantly, by modulating the number and the location of plasmonic nanodisks (a method for controlling the hydrodynamic forces by rationally designing the nanomaterial architecture), we achieved enhanced biodetection sensitivity. We expect that our results will contribute to improved sensing module performance, as well as a better understanding of dynamic nanoparticle systems, by harnessing the perturbed periodic fluctuation of surface plasmon bands under the modulated magnetic field.
Collapse
Affiliation(s)
| | | | - Haneul Yoo
- Department of Physics and Astronomy and Institute of Applied Physics , Seoul National University , Seoul , 151-747 South Korea
| | - Seunghun Hong
- Department of Physics and Astronomy and Institute of Applied Physics , Seoul National University , Seoul , 151-747 South Korea
| | | |
Collapse
|
5
|
Wang H, Wang X, Yan C, Zhao H, Zhang J, Santschi C, Martin OJF. Full Color Generation Using Silver Tandem Nanodisks. ACS NANO 2017; 11:4419-4427. [PMID: 28319666 DOI: 10.1021/acsnano.6b08465] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Plasmonic effects associated with metallic nanostructures have been widely studied for color generation. It became apparent that highly saturated and bright colors are hard to obtain, and very small nanostructures need to be fabricated. To address this issue, in this study, we employ metal-insulator-metal sandwich nanodisks that support enhanced in-phase electric dipole modes, which are blue-shifted with respect to a single metal disk. The blue shift enables the generation of short wavelength colors with larger nanostructures. The radiation modes hybridize with the Wood's anomaly in periodic structures, creating narrow and high-resonance peaks in the reflection and deep valleys in the transmission spectra, thus producing vivid complementary colors in both cases. Full colors can be achieved by tuning the radius of the nanodisks and the periodicity of the arrays. Good agreement between simulations and experiments is demonstrated and analyzed in CIE1931, sRGB, and HSV color spaces. The presented method has potential for applications in imaging, data storage, ultrafine displays, and plasmon-based biosensors.
Collapse
Affiliation(s)
- Hao Wang
- Nanophotonics and Metrology Laboratory (NAM), Swiss Federal Institute of Technology Lausanne (EPFL) , 1015 Lausanne, Switzerland
| | - Xiaolong Wang
- Nanophotonics and Metrology Laboratory (NAM), Swiss Federal Institute of Technology Lausanne (EPFL) , 1015 Lausanne, Switzerland
| | - Chen Yan
- Nanophotonics and Metrology Laboratory (NAM), Swiss Federal Institute of Technology Lausanne (EPFL) , 1015 Lausanne, Switzerland
| | | | | | - Christian Santschi
- Nanophotonics and Metrology Laboratory (NAM), Swiss Federal Institute of Technology Lausanne (EPFL) , 1015 Lausanne, Switzerland
| | - Olivier J F Martin
- Nanophotonics and Metrology Laboratory (NAM), Swiss Federal Institute of Technology Lausanne (EPFL) , 1015 Lausanne, Switzerland
| |
Collapse
|
6
|
Yu B, Woo J, Kong M, O'Carroll DM. Mode-specific study of nanoparticle-mediated optical interactions in an absorber/metal thin film system. NANOSCALE 2015; 7:13196-206. [PMID: 26098863 DOI: 10.1039/c5nr02217g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
We present an experimental and theoretical study of the electromagnetic interaction between a single gold nanoparticle and a thin gold substrate separated by a sub-50 nm-thick optically absorptive polythiophene spacer layer. Single-particle dark-field scattering spectra show distinct resonance features assigned to four different modes: a horizontal image dipole coupling mode, a vertical image dipole coupling mode and horizontal and vertical coupling modes between localized surface plasmon resonances (LSPRs) and surface plasmon polaritons (SPPs). Relatively broadband spectral tuning of the modes can be achieved by modification of the thickness of either the absorptive spacer or the underlying metal film. Dark-field images also reveal the existence of particles for which the signal of the horizontal image dipole coupling mode is suppressed. This is attributed to partial-embedding of gold nanoparticles into the polythiophene spacer and leads to higher scattered light intensities at longer wavelengths. Full-field electromagnetic simulations show good agreement with the experimental results for the various sample conditions. Strong local electric field confinement at longer wavelengths in the polythiophene spacer, due to the vertical image dipole coupling mode and a LSPR-SPP coupling mode, is also observed in simulations and contributes to absorption enhancement in the spacer. Furthermore, we find absorption enhancement in the semiconducting polythiophene spacer increases with decreasing thickness, indicating the increased light trapping ability of the gold nanoparticles for ultra-thin semiconductor layers. The need for ever-thinner semiconductor layers in optoelectronic devices requires effective light trapping at deeply-subwavelength scales. This work demonstrates that light trapping in sub-50 nm-thick semiconductor layers is possible using a "sphere-on-plane" system and offers insight into how coupling modes can be manipulated in this system.
Collapse
Affiliation(s)
- Binxing Yu
- Rutgers University, Department of Chemistry and Chemical Biology, 610 Taylor Road, Piscataway, NJ 08854, USA.
| | | | | | | |
Collapse
|
7
|
Zhang XM, Xiao JJ, Zhang Q, Li LM, Yao Y. Plasmonic TM-like cavity modes and the hybridization in multilayer metal-dielectric nanoantenna. OPTICS EXPRESS 2015; 23:16122-16132. [PMID: 26193585 DOI: 10.1364/oe.23.016122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Plasmonic hybridized transverse magnetic like (TM-like) cavity modes in multi-layered metal-dielectric circular nanoantenna are systematically studied. The main purpose is to explore the symmetry features of the vertical modal profile and its impact on the in-plane interference of gap plasmonic waves that are responsible to the resonant mode. It is found that only vertically in-phase modes are excitable when illuminated by a plane wave under normal incidence and more could be selectively excited using a dipole source, within the wavelength range from 430 nm-1250 nm. More specifically, the excitation of localized cavity modes is shown to be highly sensitive to the dipole position which determines symmetry matching and the degree of field overlap between the dipole source and the cavity mode pattern. Furthermore, we show that the resonance frequencies can be approximately predicted by the dispersion relations of plasmonic wave in the corresponding two-dimensional multilayered structure. Our results would be helpful for the design of photonic nanoantennas with alternative metal and dielectric medium.
Collapse
|
8
|
Stacked optical antennas for plasmon propagation in a 5 nm-confined cavity. Sci Rep 2015; 5:11237. [PMID: 26057661 PMCID: PMC4460891 DOI: 10.1038/srep11237] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 05/20/2015] [Indexed: 11/08/2022] Open
Abstract
The sub-wavelength concentration and propagation of electromagnetic energy are two complementary aspects of plasmonics that are not necessarily co-present in a single nanosystem. Here we exploit the strong nanofocusing properties of stacked optical antennas in order to highly concentrate the electromagnetic energy into a 5 nm metal-insulator-metal (MIM) cavity and convert free radiation into guided modes. The proposed nano-architecture combines the concentration properties of optical nanoantennas with the propagation capability of MIM systems, paving the way to highly miniaturized on-chip plasmonic waveguiding.
Collapse
|
9
|
Verre R, Yang ZJ, Shegai T, Käll M. Optical magnetism and plasmonic Fano resonances in metal-insulator-metal oligomers. NANO LETTERS 2015; 15:1952-8. [PMID: 25621936 DOI: 10.1021/nl504802r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The possibility of achieving optical magnetism at visible frequencies using plasmonic nanostructures has recently been a subject of great interest. The concept is based on designing structures that support plasmon modes with electron oscillation patterns that imitate current loops, that is, magnetic dipoles. However, the magnetic resonances are typically spectrally narrow, thereby limiting their applicability in, for example, metamaterial designs. We show that a significantly broader magnetic response can be realized in plasmonic pentamers constructed from metal-insulator-metal (MIM) sandwich particles. Each MIM unit acts as a magnetic meta-atom and the optical magnetism is rendered quasi-broadband through hybridization of the in-plane modes. We demonstrate that scattering spectra of individual MIM pentamers exhibit multiple Fano resonances and a broad subradiant spectral window that signals the magnetic interaction and a hierarchy of coupling effects in these intricate three-dimensional nanoparticle oligomers.
Collapse
Affiliation(s)
- R Verre
- Department of Applied Physics, Chalmers University of Technology , 41296 Göteborg, Sweden
| | | | | | | |
Collapse
|