1
|
Hartelt M, Terekhin PN, Eul T, Mahro AK, Frisch B, Prinz E, Rethfeld B, Stadtmüller B, Aeschlimann M. Energy and Momentum Distribution of Surface Plasmon-Induced Hot Carriers Isolated via Spatiotemporal Separation. ACS NANO 2021; 15:19559-19569. [PMID: 34852458 PMCID: PMC8717854 DOI: 10.1021/acsnano.1c06586] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/10/2021] [Indexed: 06/13/2023]
Abstract
Understanding the differences between photon-induced and plasmon-induced hot electrons is essential for the construction of devices for plasmonic energy conversion. The mechanism of the plasmonic enhancement in photochemistry, photocatalysis, and light-harvesting and especially the role of hot carriers is still heavily discussed. The question remains, if plasmon-induced and photon-induced hot carriers are fundamentally different or if plasmonic enhancement is only an effect of field concentration producing these carriers in greater numbers. For the bulk plasmon resonance, a fundamental difference is known, yet for the technologically important surface plasmons, this is far from being settled. The direct imaging of surface plasmon-induced hot carriers could provide essential insight, but the separation of the influence of driving laser, field-enhancement, and fundamental plasmon decay has proven to be difficult. Here, we present an approach using a two-color femtosecond pump-probe scheme in time-resolved 2-photon-photoemission (tr-2PPE), supported by a theoretical analysis of the light and plasmon energy flow. We separate the energy and momentum distribution of the plasmon-induced hot electrons from that of photoexcited electrons by following the spatial evolution of photoemitted electrons with energy-resolved photoemission electron microscopy (PEEM) and momentum microscopy during the propagation of a surface plasmon polariton (SPP) pulse along a gold surface. With this scheme, we realize a direct experimental access to plasmon-induced hot electrons. We find a plasmonic enhancement toward high excitation energies and small in-plane momenta, which suggests a fundamentally different mechanism of hot electron generation, as previously unknown for surface plasmons.
Collapse
Affiliation(s)
- Michael Hartelt
- Department
of Physics and Research Center OPTIMAS,TU
Kaiserslautern, Erwin-Schrödinger-Straße 46, 67663 Kaiserslautern, Germany
| | - Pavel N. Terekhin
- Department
of Physics and Research Center OPTIMAS,TU
Kaiserslautern, Erwin-Schrödinger-Straße 46, 67663 Kaiserslautern, Germany
| | - Tobias Eul
- Department
of Physics and Research Center OPTIMAS,TU
Kaiserslautern, Erwin-Schrödinger-Straße 46, 67663 Kaiserslautern, Germany
| | - Anna-Katharina Mahro
- Department
of Physics and Research Center OPTIMAS,TU
Kaiserslautern, Erwin-Schrödinger-Straße 46, 67663 Kaiserslautern, Germany
| | - Benjamin Frisch
- Department
of Physics and Research Center OPTIMAS,TU
Kaiserslautern, Erwin-Schrödinger-Straße 46, 67663 Kaiserslautern, Germany
| | - Eva Prinz
- Department
of Physics and Research Center OPTIMAS,TU
Kaiserslautern, Erwin-Schrödinger-Straße 46, 67663 Kaiserslautern, Germany
| | - Baerbel Rethfeld
- Department
of Physics and Research Center OPTIMAS,TU
Kaiserslautern, Erwin-Schrödinger-Straße 46, 67663 Kaiserslautern, Germany
| | - Benjamin Stadtmüller
- Department
of Physics and Research Center OPTIMAS,TU
Kaiserslautern, Erwin-Schrödinger-Straße 46, 67663 Kaiserslautern, Germany
- Institute
of Physics, Johannes Gutenberg University
Mainz, Staudingerweg
7, 55128 Mainz, Germany
| | - Martin Aeschlimann
- Department
of Physics and Research Center OPTIMAS,TU
Kaiserslautern, Erwin-Schrödinger-Straße 46, 67663 Kaiserslautern, Germany
| |
Collapse
|
2
|
Lloyd-Hughes J, Oppeneer PM, Pereira Dos Santos T, Schleife A, Meng S, Sentef MA, Ruggenthaler M, Rubio A, Radu I, Murnane M, Shi X, Kapteyn H, Stadtmüller B, Dani KM, da Jornada FH, Prinz E, Aeschlimann M, Milot RL, Burdanova M, Boland J, Cocker T, Hegmann F. The 2021 ultrafast spectroscopic probes of condensed matter roadmap. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:353001. [PMID: 33951618 DOI: 10.1088/1361-648x/abfe21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 05/05/2021] [Indexed: 06/12/2023]
Abstract
In the 60 years since the invention of the laser, the scientific community has developed numerous fields of research based on these bright, coherent light sources, including the areas of imaging, spectroscopy, materials processing and communications. Ultrafast spectroscopy and imaging techniques are at the forefront of research into the light-matter interaction at the shortest times accessible to experiments, ranging from a few attoseconds to nanoseconds. Light pulses provide a crucial probe of the dynamical motion of charges, spins, and atoms on picosecond, femtosecond, and down to attosecond timescales, none of which are accessible even with the fastest electronic devices. Furthermore, strong light pulses can drive materials into unusual phases, with exotic properties. In this roadmap we describe the current state-of-the-art in experimental and theoretical studies of condensed matter using ultrafast probes. In each contribution, the authors also use their extensive knowledge to highlight challenges and predict future trends.
Collapse
Affiliation(s)
- J Lloyd-Hughes
- Department of Physics, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, United Kingdom
| | - P M Oppeneer
- Department of Physics and Astronomy, Uppsala University, PO Box 516, S-75120 Uppsala, Sweden
| | - T Pereira Dos Santos
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States of America
| | - A Schleife
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States of America
- Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States of America
- National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States of America
| | - S Meng
- Institute of Physics, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - M A Sentef
- Max Planck Institute for the Structure and Dynamics of Matter, Center for Free Electron Laser Science (CFEL), 22761 Hamburg, Germany
| | - M Ruggenthaler
- Max Planck Institute for the Structure and Dynamics of Matter, Center for Free Electron Laser Science (CFEL), 22761 Hamburg, Germany
| | - A Rubio
- Max Planck Institute for the Structure and Dynamics of Matter, Center for Free Electron Laser Science (CFEL), 22761 Hamburg, Germany
- Nano-Bio Spectroscopy Group and ETSF, Universidad del País Vasco UPV/EHU 20018 San Sebastián, Spain
- Center for Computational Quantum Physics (CCQ), The Flatiron Institute, 162 Fifth Avenue, New York, NY, 10010, United States of America
| | - I Radu
- Department of Physics, Freie Universität Berlin, Germany
- Max Born Institute, Berlin, Germany
| | - M Murnane
- JILA, University of Colorado and NIST, Boulder, CO, United States of America
| | - X Shi
- JILA, University of Colorado and NIST, Boulder, CO, United States of America
| | - H Kapteyn
- JILA, University of Colorado and NIST, Boulder, CO, United States of America
| | - B Stadtmüller
- Department of Physics and Research Center OPTIMAS, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - K M Dani
- Femtosecond Spectroscopy Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Japan
| | - F H da Jornada
- Department of Materials Science and Engineering, Stanford University, Stanford, 94305, CA, United States of America
| | - E Prinz
- Department of Physics and Research Center OPTIMAS, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - M Aeschlimann
- Department of Physics and Research Center OPTIMAS, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - R L Milot
- Department of Physics, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, United Kingdom
| | - M Burdanova
- Department of Physics, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, United Kingdom
| | - J Boland
- Photon Science Institute, Department of Electrical and Electronic Engineering, University of Manchester, United Kingdom
| | - T Cocker
- Michigan State University, United States of America
| | | |
Collapse
|
3
|
Da Browski M, Dai Y, Petek H. Ultrafast Photoemission Electron Microscopy: Imaging Plasmons in Space and Time. Chem Rev 2020; 120:6247-6287. [PMID: 32530607 DOI: 10.1021/acs.chemrev.0c00146] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Plasmonics is a rapidly growing field spanning research and applications across chemistry, physics, optics, energy harvesting, and medicine. Ultrafast photoemission electron microscopy (PEEM) has demonstrated unprecedented power in the characterization of surface plasmons and other electronic excitations, as it uniquely combines the requisite spatial and temporal resolution, making it ideally suited for 3D space and time coherent imaging of the dynamical plasmonic phenomena on the nanofemto scale. The ability to visualize plasmonic fields evolving at the local speed of light on subwavelength scale with optical phase resolution illuminates old phenomena and opens new directions for growth of plasmonics research. In this review, we guide the reader thorough experimental description of PEEM as a characterization tool for both surface plasmon polaritons and localized plasmons and summarize the exciting progress it has opened by the ultrafast imaging of plasmonic phenomena on the nanofemto scale.
Collapse
Affiliation(s)
- Maciej Da Browski
- Department of Physics and Astronomy and Pittsburgh Quantum Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States.,Department of Physics and Astronomy, University of Exeter, Stocker Road, Exeter, Devon EX4 4QL, U.K
| | - Yanan Dai
- Department of Physics and Astronomy and Pittsburgh Quantum Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Hrvoje Petek
- Department of Physics and Astronomy and Pittsburgh Quantum Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
4
|
Yamagiwa K, Shibuta M, Nakajima A. Visualization of Surface Plasmons Propagating at the Buried Organic/Metal Interface with Silver Nanocluster Sensitizers. ACS NANO 2020; 14:2044-2052. [PMID: 31999096 DOI: 10.1021/acsnano.9b08653] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Visualization of surface plasmon polariton (SPP) propagation at dielectric/metal interfaces is indispensable in providing opportunities for the precise designing and controlling of the functionalities of future plasmonic nanodevices. Here, we report the visualization of SPPs propagating along the buried organic/metal interface of fullerene (C60)/Au(111), through dual-colored two-photon photoemission electron microscopy (2P-PEEM) which precisely visualizes the SPP propagation of plasmonic metal nanostructures. Although SPPs excited by near-infrared photons at the few monolayer C60/Au(111) interface are clearly visualized as interference beat patterns between the SPPs and incident light, faithfully reflecting SPP properties modulated by the overlayer, photoemission signals are suppressed for thicker C60 films, due to less valence electrons participating in 2P-photoemission processes. With the use of silver (Agn (n = 21 and 55)) nanoclusters, which exhibit enhancement of overall photoemission intensities due to localized surface plasmons functioning as SPP sensitizers, it is revealed that the 2P-PEEM is applicable to the imaging of SPPs for thick C60/Au(111) interfaces, where SPP properties are hardly modulated by the added small amount (∼0.1 monolayer) of Agn sensitizers.
Collapse
Affiliation(s)
- Kana Yamagiwa
- Department of Chemistry, Faculty of Science and Technology , Keio University , 3-14-1 Hiyoshi , Kohoku-ku, Yokohama 223-8522 , Japan
| | - Masahiro Shibuta
- Keio Institute of Pure and Applied Science (KiPAS) , Keio University , 3-14-1 Hiyoshi , Kohoku-ku, Yokohama 223-8522 , Japan
| | - Atsushi Nakajima
- Department of Chemistry, Faculty of Science and Technology , Keio University , 3-14-1 Hiyoshi , Kohoku-ku, Yokohama 223-8522 , Japan
- Keio Institute of Pure and Applied Science (KiPAS) , Keio University , 3-14-1 Hiyoshi , Kohoku-ku, Yokohama 223-8522 , Japan
| |
Collapse
|
5
|
Budai J, Pápa Z, Márton I, Wróbel P, Stefaniuk T, Márton Z, Rácz P, Dombi P. Plasmon-plasmon coupling probed by ultrafast, strong-field photoemission with <7 Å sensitivity. NANOSCALE 2018; 10:16261-16267. [PMID: 30124717 DOI: 10.1039/c8nr04242j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The coupling of propagating surface plasmon waves and localized plasmon oscillations in nanostructures is an essential phenomenon determining electromagnetic field enhancement on the nanoscale. Here, we use our recently developed ultrafast photoemission near-field probing technique to investigate the fundamental question of plasmon-plasmon coupling and its effect on large field enhancement factors. By measuring and analyzing plasmon field enhancement values at different nanostructured surfaces, we can separate the contributions from propagating and localized plasmons. When resonance conditions are met, a significant field enhancement factor can be attributed to the generation of localized plasmons on surface nanostructures, acting as dipole sources resonantly driven by the propagating plasmon field. Our plasmon-plasmon coupling results can contribute directly to applications in surface-enhanced Raman scattering (SERS) and the development of plasmonic sensors and nanostructured photocathodes.
Collapse
Affiliation(s)
- Judit Budai
- ELI-ALPS Research Institute, ELI-HU Non-Profit Ltd., 6720 Szeged, Hungary. and Department of Optics and Quantum Electronics, University of Szeged, 6720 Szeged, Hungary
| | - Zsuzsanna Pápa
- ELI-ALPS Research Institute, ELI-HU Non-Profit Ltd., 6720 Szeged, Hungary. and MTA "Lendület" Ultrafast Nanooptics Group, Wigner Research Centre for Physics, 1121 Budapest, Hungary
| | - István Márton
- MTA "Lendület" Ultrafast Nanooptics Group, Wigner Research Centre for Physics, 1121 Budapest, Hungary
| | - Piotr Wróbel
- Faculty of Physics, University of Warsaw, 02-093 Warsaw, Poland
| | | | - Zsuzsanna Márton
- ELI-ALPS Research Institute, ELI-HU Non-Profit Ltd., 6720 Szeged, Hungary. and Department of Experimental Physics, University of Pécs, 7624 Pécs, Hungary
| | - Péter Rácz
- MTA "Lendület" Ultrafast Nanooptics Group, Wigner Research Centre for Physics, 1121 Budapest, Hungary
| | - Péter Dombi
- ELI-ALPS Research Institute, ELI-HU Non-Profit Ltd., 6720 Szeged, Hungary. and MTA "Lendület" Ultrafast Nanooptics Group, Wigner Research Centre for Physics, 1121 Budapest, Hungary
| |
Collapse
|
6
|
Lehr M, Foerster B, Schmitt M, Krüger K, Sönnichsen C, Schönhense G, Elmers HJ. Momentum Distribution of Electrons Emitted from Resonantly Excited Individual Gold Nanorods. NANO LETTERS 2017; 17:6606-6612. [PMID: 29052414 DOI: 10.1021/acs.nanolett.7b02434] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Electron emission by femtosecond laser pulses from individual Au nanorods is studied with a time-of-flight momentum resolving photoemission electron microscope (ToF k-PEEM). The Au nanorods adhere to a transparent indium-tin oxide substrate, allowing for illumination from the rear side at normal incidence. Localized plasmon polaritons are resonantly excited at 800 nm with 100 fs long pulses. The momentum distribution of emitted electrons reveals two distinct emission mechanisms: a coherent multiphoton photoemission process from the optically heated electron gas leads to an isotropic emission distribution. In contrast, an additional emission process resulting from the optical field enhancement at both ends of the nanorod leads to a strongly directional emission parallel to the nanorod's long axis. The relative intensity of both contributions can be controlled by the peak intensity of the incident light.
Collapse
Affiliation(s)
- Martin Lehr
- Institut für Physik, Johannes Gutenberg-Universität , Staudinger Weg 7, D-55128 Mainz, Germany
| | - Benjamin Foerster
- Institut für physikalische Chemie, Johannes Gutenberg-Universität , Duesbergweg 10-14, D-55128 Mainz, Germany
- Graduate School for Excellence Materials Science in Mainz, Johannes Gutenberg University Mainz , Staudingerweg 9, D-55128 Mainz, Germany
| | - Mathias Schmitt
- Institut für physikalische Chemie, Johannes Gutenberg-Universität , Duesbergweg 10-14, D-55128 Mainz, Germany
| | - Katja Krüger
- Institut für physikalische Chemie, Johannes Gutenberg-Universität , Duesbergweg 10-14, D-55128 Mainz, Germany
| | - Carsten Sönnichsen
- Institut für physikalische Chemie, Johannes Gutenberg-Universität , Duesbergweg 10-14, D-55128 Mainz, Germany
| | - Gerd Schönhense
- Institut für Physik, Johannes Gutenberg-Universität , Staudinger Weg 7, D-55128 Mainz, Germany
| | - Hans-Joachim Elmers
- Institut für Physik, Johannes Gutenberg-Universität , Staudinger Weg 7, D-55128 Mainz, Germany
| |
Collapse
|
7
|
Podbiel D, Kahl P, Makris A, Frank B, Sindermann S, Davis TJ, Giessen H, Hoegen MHV, Meyer Zu Heringdorf FJ. Imaging the Nonlinear Plasmoemission Dynamics of Electrons from Strong Plasmonic Fields. NANO LETTERS 2017; 17:6569-6574. [PMID: 28945435 DOI: 10.1021/acs.nanolett.7b02235] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We use subcycle time-resolved photoemission microscopy to unambiguously distinguish optically triggered electron emission (photoemission) from effects caused purely by the plasmonic field (termed "plasmoemission"). We find from time-resolved imaging that nonlinear plasmoemission is dominated by the transverse plasmon field component by utilizing a transient standing wave from two counter-propagating plasmon pulses of opposite transverse spin. From plasmonic foci on flat metal surfaces, we observe highly nonlinear plasmoemission up to the fifth power of intensity and quantized energy transfer, which reflects the quantum-mechanical nature of surface plasmons. Our work constitutes the basis for novel plasmonic devices such as nanometer-confined ultrafast electron sources as well as applications in time-resolved electron microscopy.
Collapse
Affiliation(s)
- Daniel Podbiel
- Faculty of Physics and CENIDE, University of Duisburg-Essen , Lotharstr. 1, 47057 Duisburg, Germany
| | - Philip Kahl
- Faculty of Physics and CENIDE, University of Duisburg-Essen , Lotharstr. 1, 47057 Duisburg, Germany
| | - Andreas Makris
- Faculty of Physics and CENIDE, University of Duisburg-Essen , Lotharstr. 1, 47057 Duisburg, Germany
| | - Bettina Frank
- Fourth Physics Institute and Research Center SCoPE, University of Stuttgart , Pfaffenwaldring 57, 70550 Stuttgart, Germany
| | - Simon Sindermann
- Faculty of Physics and CENIDE, University of Duisburg-Essen , Lotharstr. 1, 47057 Duisburg, Germany
| | - Timothy J Davis
- Fourth Physics Institute and Research Center SCoPE, University of Stuttgart , Pfaffenwaldring 57, 70550 Stuttgart, Germany
- School of Physics, University of Melbourne , Parkville, Victoria 3052, Australia
| | - Harald Giessen
- Fourth Physics Institute and Research Center SCoPE, University of Stuttgart , Pfaffenwaldring 57, 70550 Stuttgart, Germany
| | - Michael Horn-von Hoegen
- Faculty of Physics and CENIDE, University of Duisburg-Essen , Lotharstr. 1, 47057 Duisburg, Germany
| | | |
Collapse
|
8
|
Zeng YS, Qu SW, Chen BJ, Chan CH. All-plasmonic Optical Phased Array Integrated on a Thin-film Platform. Sci Rep 2017; 7:9959. [PMID: 28855700 PMCID: PMC5577131 DOI: 10.1038/s41598-017-10398-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 08/08/2017] [Indexed: 11/17/2022] Open
Abstract
Optical phased arrays have been demonstrated to enable a variety of applications ranging from high-speed on-chip communications to vertical surface emitting lasers. Despite the prosperities of the researches on optical phased arrays, presently, the reported designs of optical phased arrays are based on silicon photonics while plasmonic-based optical phased arrays have not been demonstrated yet. In this paper, a passive plasmonic optical phased array is proposed and experimentally demonstrated. The beam of the proposed plasmonic optical phased array is steerable in the far-field area and a high directivity can be achieved. In addition, radio frequency phased array theory is demonstrated to be applicable to the description of the coupling conditions of the delocalized surface plasmons in optical phased arrays and thus the gap between the phased arrays at two distinctly different wavelengths can be bridged. The potential applications of the proposed plasmonic phased arrays include on-chip optical wireless nanolinks, optical interconnections and integrated plasmonic lasers.
Collapse
Affiliation(s)
- Yuan-Song Zeng
- School of Electronic Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, 611731, China
| | - Shi-Wei Qu
- School of Electronic Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, 611731, China.
| | - Bao-Jie Chen
- State Key Laboratory of Millimeter Waves, Partner Laboratory in City University of Hong Kong, Kowloon, Hong Kong, China
| | - Chi Hou Chan
- State Key Laboratory of Millimeter Waves, Partner Laboratory in City University of Hong Kong, Kowloon, Hong Kong, China
| |
Collapse
|
9
|
Lummen TTA, Lamb RJ, Berruto G, LaGrange T, Dal Negro L, García de Abajo FJ, McGrouther D, Barwick B, Carbone F. Imaging and controlling plasmonic interference fields at buried interfaces. Nat Commun 2016; 7:13156. [PMID: 27725670 PMCID: PMC5062594 DOI: 10.1038/ncomms13156] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 09/08/2016] [Indexed: 11/20/2022] Open
Abstract
Capturing and controlling plasmons at buried interfaces with nanometre and femtosecond resolution has yet to be achieved and is critical for next generation plasmonic devices. Here we use light to excite plasmonic interference patterns at a buried metal–dielectric interface in a nanostructured thin film. Plasmons are launched from a photoexcited array of nanocavities and their propagation is followed via photon-induced near-field electron microscopy (PINEM). The resulting movie directly captures the plasmon dynamics, allowing quantification of their group velocity at ∼0.3 times the speed of light, consistent with our theoretical predictions. Furthermore, we show that the light polarization and nanocavity design can be tailored to shape transient plasmonic gratings at the nanoscale. This work, demonstrating dynamical imaging with PINEM, paves the way for the femtosecond and nanometre visualization and control of plasmonic fields in advanced heterostructures based on novel two-dimensional materials such as graphene, MoS2, and ultrathin metal films. Visualizing surface plasmon polaritons at buried interfaces has remained elusive. Here, the authors develop a methodology to study the spatiotemporal evolution of buried near-fields within complex heterostructures, enabling the characterization of the next generation of plasmonic devices.
Collapse
Affiliation(s)
- Tom T A Lummen
- Laboratory for Ultrafast Microscopy and Electron Scattering, ICMP, École Polytechnique Fédérale de Lausanne, Station 6, CH-1015 Lausanne, Switzerland
| | - Raymond J Lamb
- SUPA, School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ, UK
| | - Gabriele Berruto
- Laboratory for Ultrafast Microscopy and Electron Scattering, ICMP, École Polytechnique Fédérale de Lausanne, Station 6, CH-1015 Lausanne, Switzerland
| | - Thomas LaGrange
- Interdisciplinary Center for Electron Microscopy (CIME), École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Luca Dal Negro
- Department of Electrical and Computer Engineering and Photonics Center, Boston University, 8 Saint Mary's Street, Boston, Massachusetts 02215, USA
| | - F Javier García de Abajo
- ICFO - Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, 08860 Barcelona, Spain.,ICREA - Institució Catalana de Recerca i Estudis Avancats, Passeig Lluís Companys, 23, Barcelona 08010, Spain
| | - Damien McGrouther
- SUPA, School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ, UK
| | - B Barwick
- Department of Physics, Trinity College, 300 Summit Street, Hartford, Connecticut 06106, USA
| | - F Carbone
- Laboratory for Ultrafast Microscopy and Electron Scattering, ICMP, École Polytechnique Fédérale de Lausanne, Station 6, CH-1015 Lausanne, Switzerland
| |
Collapse
|
10
|
Compaijen PJ, Malyshev VA, Knoester J. Elliptically polarized modes for the unidirectional excitation of surface plasmon polaritons. OPTICS EXPRESS 2016; 24:3858-3872. [PMID: 26907039 DOI: 10.1364/oe.24.003858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We propose a new method for the directional excitation of surface plasmon polaritons by a metal nanoparticle antenna, based on the elliptical polarization of the normal modes of the antenna when it is in close proximity to a metallic substrate. The proposed theoretical model allows for the full characterization of the modes, giving the dipole configuration, frequency and lifetime. As a proof of principle, we have performed calculations for a dimer antenna and we report that surface plasmon polaritons can be excited in a given direction with an intensity of more than two orders of magnitude larger than in the opposite direction. Furthermore, using the fact that the response to any excitation can be written as a superposition of the normal modes, we show that this directionality can easily be accessed by exciting the system with a local source or a plane wave. Lastly, exploiting the interference between the normal modes, the directionality can be switched for a specific excitation. We envision the proposed mechanism to be a very useful tool for the design of antennas in layered media.
Collapse
|
11
|
Gruenke NL, Cardinal MF, McAnally MO, Frontiera RR, Schatz GC, Van Duyne RP. Ultrafast and nonlinear surface-enhanced Raman spectroscopy. Chem Soc Rev 2016; 45:2263-90. [PMID: 26848784 DOI: 10.1039/c5cs00763a] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Ultrafast surface-enhanced Raman spectroscopy (SERS) has the potential to study molecular dynamics near plasmonic surfaces to better understand plasmon-mediated chemical reactions such as plasmonically-enhanced photocatalytic or photovoltaic processes. This review discusses the combination of ultrafast Raman spectroscopic techniques with plasmonic substrates for high temporal resolution, high sensitivity, and high spatial resolution vibrational spectroscopy. First, we introduce background information relevant to ultrafast SERS: the mechanisms of surface enhancement in Raman scattering, the characterization of plasmonic materials with ultrafast techniques, and early complementary techniques to study molecule-plasmon interactions. We then discuss recent advances in surface-enhanced Raman spectroscopies with ultrafast pulses with a focus on the study of molecule-plasmon coupling and molecular dynamics with high sensitivity. We also highlight the challenges faced by this field by the potential damage caused by concentrated, highly energetic pulsed fields in plasmonic hotspots, and finally the potential for future ultrafast SERS studies.
Collapse
Affiliation(s)
- Natalie L Gruenke
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA.
| | | | | | | | | | | |
Collapse
|
12
|
Asymmetric light reflectance from metal nanoparticle arrays on dielectric surfaces. Sci Rep 2015; 5:18331. [PMID: 26679353 PMCID: PMC4683376 DOI: 10.1038/srep18331] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 11/16/2015] [Indexed: 12/02/2022] Open
Abstract
Asymmetric light reflectance associated with localized surface plasmons excited in metal nanoparticles on a quartz substrate is observed and analyzed. This phenomenon is explained by the superposition of two waves, the wave reflected by the air/quartz interface and that reflected by the metal nanoparticles, and the resulting interference effects. Far field behavior investigation suggests that zero reflection can be achieved by optimizing the density of metal nanoparticles. Near field behavior investigation suggests that the coupling efficiency of localized surface plasmon can be additionally enhanced by separating the metal NPs from substrates using a thin film with refractive index smaller than the substrate. The latter behavior is confirmed via surface-enhanced Raman spectroscopy studies using metal nanoparticles on Si/SiO2 substrates.
Collapse
|
13
|
Birr T, Zywietz U, Chhantyal P, Chichkov BN, Reinhardt C. Ultrafast surface plasmon-polariton logic gates and half-adder. OPTICS EXPRESS 2015; 23:31755-31765. [PMID: 26698967 DOI: 10.1364/oe.23.031755] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In this paper, we present a plasmonic model system for the realization of ultrafast all-optical NOT, AND, OR, and XOR gate operations using linear interference effects in dielectric crossed waveguide structures. The waveguides for the surface plasmon-polaritons are produced by a simple but highly accurate microscopic lithographic process and are optimized for single mode operation at an excitation laser wavelength of 800 nm. The functionality of the presented structures is demonstrated using sub-30 fs laser pulses from a mode locked titanium:sapphire laser. Using leakage radiation microscopy we show ultrafast SPP switching and logic operations of one basic structure consisting of two crossed waveguides with an additional output waveguide along the bisecting line of the input waveguides. The individual gates are realized on a footprint of 10 µm × 20 µm. Experimental investigations are supported by finite-difference time-domain simulations, where good agreement between experimental results and numerical simulations is obtained. To exploit the high precision of the fabrication method and its huge potential for realizing functional complex plasmonic circuitry we experimentally demonstrate a half-adder structure and its operation by combining and cascading several plasmonic waveguide components and logic gate elements on an area of only 10 µm × 28 µm.
Collapse
|
14
|
Mårsell E, Losquin A, Svärd R, Miranda M, Guo C, Harth A, Lorek E, Mauritsson J, Arnold CL, Xu H, L’Huillier A, Mikkelsen A. Nanoscale Imaging of Local Few-Femtosecond Near-Field Dynamics within a Single Plasmonic Nanoantenna. NANO LETTERS 2015; 15:6601-8. [PMID: 26375959 PMCID: PMC4621049 DOI: 10.1021/acs.nanolett.5b02363] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 09/11/2015] [Indexed: 05/22/2023]
Abstract
The local enhancement of few-cycle laser pulses by plasmonic nanostructures opens up for spatiotemporal control of optical interactions on a nanometer and few-femtosecond scale. However, spatially resolved characterization of few-cycle plasmon dynamics poses a major challenge due to the extreme length and time scales involved. In this Letter, we experimentally demonstrate local variations in the dynamics during the few strongest cycles of plasmon-enhanced fields within individual rice-shaped silver nanoparticles. This was done using 5.5 fs laser pulses in an interferometric time-resolved photoemission electron microscopy setup. The experiments are supported by finite-difference time-domain simulations of similar silver structures. The observed differences in the field dynamics across a single particle do not reflect differences in plasmon resonance frequency or dephasing time. They instead arise from a combination of retardation effects and the coherent superposition between multiple plasmon modes of the particle, inherent to a few-cycle pulse excitation. The ability to detect and predict local variations in the few-femtosecond time evolution of multimode coherent plasmon excitations in rationally synthesized nanoparticles can be used in the tailoring of nanostructures for ultrafast and nonlinear plasmonics.
Collapse
Affiliation(s)
- Erik Mårsell
- Department of Physics, Lund University, P.O. Box 118, 221 00 Lund, Sweden
| | - Arthur Losquin
- Department of Physics, Lund University, P.O. Box 118, 221 00 Lund, Sweden
| | - Robin Svärd
- Department of Physics, Lund University, P.O. Box 118, 221 00 Lund, Sweden
| | - Miguel Miranda
- Department of Physics, Lund University, P.O. Box 118, 221 00 Lund, Sweden
| | - Chen Guo
- Department of Physics, Lund University, P.O. Box 118, 221 00 Lund, Sweden
| | - Anne Harth
- Department of Physics, Lund University, P.O. Box 118, 221 00 Lund, Sweden
| | - Eleonora Lorek
- Department of Physics, Lund University, P.O. Box 118, 221 00 Lund, Sweden
| | - Johan Mauritsson
- Department of Physics, Lund University, P.O. Box 118, 221 00 Lund, Sweden
| | - Cord L. Arnold
- Department of Physics, Lund University, P.O. Box 118, 221 00 Lund, Sweden
| | - Hongxing Xu
- Department of Physics, Lund University, P.O. Box 118, 221 00 Lund, Sweden
- School of Physics and Technology, and Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Anne L’Huillier
- Department of Physics, Lund University, P.O. Box 118, 221 00 Lund, Sweden
| | - Anders Mikkelsen
- Department of Physics, Lund University, P.O. Box 118, 221 00 Lund, Sweden
- E-mail:
| |
Collapse
|
15
|
Gong Y, Joly AG, Hu D, El-Khoury PZ, Hess WP. Ultrafast imaging of surface plasmons propagating on a gold surface. NANO LETTERS 2015; 15:3472-3478. [PMID: 25844522 DOI: 10.1021/acs.nanolett.5b00803] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We record time-resolved nonlinear photoemission electron microscopy (tr-PEEM) images of propagating surface plasmons (PSPs) launched from a lithographically patterned rectangular trench on a flat gold surface. Our tr-PEEM scheme involves a pair of identical, spatially separated, and interferometrically locked femtosecond laser pulses. Power-dependent PEEM images provide experimental evidence for a sequential coherent nonlinear photoemission process, in which one laser source launches a PSP through a linear interaction, and the second subsequently probes the PSP via two-photon photoemission. The recorded time-resolved movies of a PSP allow us to directly measure various properties of the surface-bound wave packet, including its carrier wavelength (783 nm) and group velocity (0.95c). In addition, tr-PEEM images reveal that the launched PSP may be detected at least 250 μm away from the coupling trench structure.
Collapse
Affiliation(s)
- Yu Gong
- †Physical Sciences Division, ‡Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, United States
| | - Alan G Joly
- †Physical Sciences Division, ‡Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, United States
| | - Dehong Hu
- †Physical Sciences Division, ‡Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, United States
| | - Patrick Z El-Khoury
- †Physical Sciences Division, ‡Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, United States
| | - Wayne P Hess
- †Physical Sciences Division, ‡Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, United States
| |
Collapse
|
16
|
Compaijen PJ, Malyshev VA, Knoester J. Engineering plasmon dispersion relations: hybrid nanoparticle chain-substrate plasmon polaritons. OPTICS EXPRESS 2015; 23:2280-2292. [PMID: 25836096 DOI: 10.1364/oe.23.002280] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We consider the dispersion relations of the optical excitations in a chain of silver nanoparticles situated above a metal substrate and show that they are hybrid plasmon polaritons, composed of localized surface plasmons and surface plasmon polaritons. We demonstrate a strong dependence of the system's optical properties on the plasma frequency of the substrate and that choosing the appropriate plasma frequency allows one to engineer the modes to have a very high, very low or even negative group velocity. For the latter, Poynting vector calculations reveal opposite phase and energy propagation. We expect that our results will contribute to the design of nano-optical devices with specific transport properties.
Collapse
|