1
|
Wu Y, Wang Y, Bao D, Deng X, Zhang S, Yu-Chun L, Ke S, Liu J, Liu Y, Wang Z, Ham P, Hanna A, Pan J, Hu X, Li Z, Zhou J, Wang C. Emerging probing perspective of two-dimensional materials physics: terahertz emission spectroscopy. LIGHT, SCIENCE & APPLICATIONS 2024; 13:146. [PMID: 38951490 PMCID: PMC11217405 DOI: 10.1038/s41377-024-01486-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 04/09/2024] [Accepted: 05/15/2024] [Indexed: 07/03/2024]
Abstract
Terahertz (THz) emission spectroscopy (TES) has emerged as a highly effective and versatile technique for investigating the photoelectric properties of diverse materials and nonlinear physical processes in the past few decades. Concurrently, research on two-dimensional (2D) materials has experienced substantial growth due to their atomically thin structures, exceptional mechanical and optoelectronic properties, and the potential for applications in flexible electronics, sensing, and nanoelectronics. Specifically, these materials offer advantages such as tunable bandgap, high carrier mobility, wideband optical absorption, and relatively short carrier lifetime. By applying TES to investigate the 2D materials, their interfaces and heterostructures, rich information about the interplay among photons, charges, phonons and spins can be unfolded, which provides fundamental understanding for future applications. Thus it is timely to review the nonlinear processes underlying THz emission in 2D materials including optical rectification, photon-drag, high-order harmonic generation and spin-to-charge conversion, showcasing the rich diversity of the TES employed to unravel the complex nature of these materials. Typical applications based on THz emissions, such as THz lasers, ultrafast imaging and biosensors, are also discussed. Step further, we analyzed the unique advantages of spintronic terahertz emitters and the future technological advancements in the development of new THz generation mechanisms leading to advanced THz sources characterized by wide bandwidth, high power and integration, suitable for industrial and commercial applications. The continuous advancement and integration of TES with the study of 2D materials and heterostructures promise to revolutionize research in different areas, including basic materials physics, novel optoelectronic devices, and chips for post-Moore's era.
Collapse
Affiliation(s)
- Yifei Wu
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, 100084, Beijing, China
| | - Yuqi Wang
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, 100084, Beijing, China
| | - Di Bao
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, 100084, Beijing, China
| | - Xiaonan Deng
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, 100084, Beijing, China
| | - Simian Zhang
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, 100084, Beijing, China
| | - Lin Yu-Chun
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, 100084, Beijing, China
| | - Shengxian Ke
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, 100084, Beijing, China
| | - Jianing Liu
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, 100084, Beijing, China
| | - Yingjie Liu
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, 100084, Beijing, China
| | - Zeli Wang
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, 100084, Beijing, China
| | - Pingren Ham
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, 100084, Beijing, China
| | - Andrew Hanna
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, 100084, Beijing, China
| | - Jiaming Pan
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, 100084, Beijing, China
| | - Xinyue Hu
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, 100084, Beijing, China
| | - Zhengcao Li
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, 100084, Beijing, China
| | - Ji Zhou
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, 100084, Beijing, China
| | - Chen Wang
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, 100084, Beijing, China.
- Beijing Advanced Innovation Center for Integrated Circuits, 100084, Beijing, China.
| |
Collapse
|
2
|
Fang S, Guo W, Huang Y, Shi M, Tian X, Quan B, Xu X, Yi J, Jiang N, Gu C. Angular dependent terahertz emission from the interplay between nanocrystal diamond film and plasmonic metasurface. iScience 2024; 27:108939. [PMID: 38323012 PMCID: PMC10844821 DOI: 10.1016/j.isci.2024.108939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 11/15/2023] [Accepted: 01/15/2024] [Indexed: 02/08/2024] Open
Abstract
Composite structures integrated with metasurfaces and nonlinear films have emerged as alternative candidates to enhance nonlinear response. The cooperative interaction between the two components is complicated. Herein, a split-ring resonator (SRR)-type metasurface was fabricated on a free-standing nanocrystal diamond (NCD) film utilizing electron beam lithography, electron beam evaporation, and a lift-off process. The terahertz (THz) radiation from the SRR-NCD under normal incidence originates from the high-order magnetic resonance of SRR because the NCD film cannot produce detectable THz radiation at this incident angle. As increasing the incident angle, the contribution of the THz radiation from the NCD film gradually increases until reaching 40° incident angle limitation. The results indicate that this angular-dependent THz radiation is induced by the interplay between the NCD film and SRR. This study offers a new approach to investigate nonlinear processes in composite structures.
Collapse
Affiliation(s)
- Shuangquan Fang
- College of Mechanical Engineering, Yangzhou University, Yangzhou 225127, China
| | - Wenpeng Guo
- College of Mechanical Engineering, Yangzhou University, Yangzhou 225127, China
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Yuanyuan Huang
- Shaanxi Joint Lab of Graphene, State Key Laboratory of Photon-Technology in Western China Energy, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon-Technology, Northwest University, Xi’an 710069, China
| | - Mingjian Shi
- Shaanxi Joint Lab of Graphene, State Key Laboratory of Photon-Technology in Western China Energy, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon-Technology, Northwest University, Xi’an 710069, China
| | - Xuezeng Tian
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Baogang Quan
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- Songshan Lake Material Laboratory, Guangdong 523808, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinlong Xu
- Shaanxi Joint Lab of Graphene, State Key Laboratory of Photon-Technology in Western China Energy, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon-Technology, Northwest University, Xi’an 710069, China
| | - Jian Yi
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Nan Jiang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Changzhi Gu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
3
|
Pettine J, Padmanabhan P, Sirica N, Prasankumar RP, Taylor AJ, Chen HT. Ultrafast terahertz emission from emerging symmetry-broken materials. LIGHT, SCIENCE & APPLICATIONS 2023; 12:133. [PMID: 37258515 PMCID: PMC10232484 DOI: 10.1038/s41377-023-01163-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/28/2023] [Accepted: 04/16/2023] [Indexed: 06/02/2023]
Abstract
Nonlinear optical spectroscopies are powerful tools for investigating both static material properties and light-induced dynamics. Terahertz (THz) emission spectroscopy has emerged in the past several decades as a versatile method for directly tracking the ultrafast evolution of physical properties, quasiparticle distributions, and order parameters within bulk materials and nanoscale interfaces. Ultrafast optically-induced THz radiation is often analyzed mechanistically in terms of relative contributions from nonlinear polarization, magnetization, and various transient free charge currents. While this offers material-specific insights, more fundamental symmetry considerations enable the generalization of measured nonlinear tensors to much broader classes of systems. We thus frame the present discussion in terms of underlying broken symmetries, which enable THz emission by defining a system directionality in space and/or time, as well as more detailed point group symmetries that determine the nonlinear response tensors. Within this framework, we survey a selection of recent studies that utilize THz emission spectroscopy to uncover basic properties and complex behaviors of emerging materials, including strongly correlated, magnetic, multiferroic, and topological systems. We then turn to low-dimensional systems to explore the role of designer nanoscale structuring and corresponding symmetries that enable or enhance THz emission. This serves as a promising route for probing nanoscale physics and ultrafast light-matter interactions, as well as facilitating advances in integrated THz systems. Furthermore, the interplay between intrinsic and extrinsic material symmetries, in addition to hybrid structuring, may stimulate the discovery of exotic properties and phenomena beyond existing material paradigms.
Collapse
Affiliation(s)
- Jacob Pettine
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Prashant Padmanabhan
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Nicholas Sirica
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Rohit P Prasankumar
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
- Deep Science Fund, Intellectual Ventures, Bellevue, WA, 98005, USA
| | - Antoinette J Taylor
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Hou-Tong Chen
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.
| |
Collapse
|
4
|
Cheng L, Xiong Y, Kang L, Gao Y, Chang Q, Chen M, Qi J, Yang H, Liu Z, Song JC, Chia EE. Giant photon momentum locked THz emission in a centrosymmetric Dirac semimetal. SCIENCE ADVANCES 2023; 9:eadd7856. [PMID: 36598995 PMCID: PMC9812375 DOI: 10.1126/sciadv.add7856] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Strong second-order optical nonlinearities often require broken material centrosymmetry, thereby limiting the type and quality of materials used for nonlinear optical devices. Here, we report a giant and highly tunable terahertz (THz) emission from thin polycrystalline films of the centrosymmetric Dirac semimetal PtSe2. Our PtSe2 THz emission is turned on at oblique incidence and locked to the photon momentum of the incident pump beam. Notably, we find an emitted THz efficiency that is giant: It is two orders of magnitude larger than the standard THz-generating nonlinear crystal ZnTe and has values approaching that of the noncentrosymmetric topological material TaAs. Further, PtSe2 THz emission displays THz sign and amplitude that is controlled by the incident pump polarization and helicity state even as optical absorption is only weakly polarization dependent and helicity independent. Our work demonstrates how photon drag can activate pronounced optical nonlinearities that are available even in centrosymmetric Dirac materials.
Collapse
Affiliation(s)
- Liang Cheng
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Ying Xiong
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Lixing Kang
- Division of Advanced Materials, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Yu Gao
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Qing Chang
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Mengji Chen
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Jingbo Qi
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Hyunsoo Yang
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Zheng Liu
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 637371, Singapore
| | - Justin C.W. Song
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Elbert E. M. Chia
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| |
Collapse
|
5
|
Jung H, Hale LL, Gennaro SD, Briscoe J, Iyer PP, Doiron CF, Harris CT, Luk TS, Addamane SJ, Reno JL, Brener I, Mitrofanov O. Terahertz Pulse Generation with Binary Phase Control in Nonlinear InAs Metasurface. NANO LETTERS 2022; 22:9077-9083. [PMID: 36367359 DOI: 10.1021/acs.nanolett.2c03456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The effect of terahertz (THz) pulse generation has revolutionized broadband coherent spectroscopy and imaging at THz frequencies. However, THz pulses typically lack spatial structure, whereas structured beams are becoming essential for advanced spectroscopy applications. Nonlinear optical metasurfaces with nanoscale THz emitters can provide a solution by defining the beam structure at the generation stage. We develop a nonlinear InAs metasurface consisting of nanoscale optical resonators for simultaneous generation and structuring of THz beams. We find that THz pulse generation in the resonators is governed by optical rectification. It is more efficient than in ZnTe crystals, and it allows us to control the pulse polarity and amplitude, offering a platform for realizing binary-phase THz metasurfaces. To illustrate this capability, we demonstrate an InAs metalens, which simultaneously generates and focuses THz pulses. The control of spatiotemporal structure using nanoscale emitters opens doors for THz beam engineering and advanced spectroscopy and imaging applications.
Collapse
Affiliation(s)
- Hyunseung Jung
- Sandia National Laboratories, Albuquerque, New Mexico 87123, United States
- Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, New Mexico 87123, United States
| | - Lucy L Hale
- Electronic and Electrical Engineering, University College London, London WC1E 7JE, U.K
| | - Sylvain D Gennaro
- Sandia National Laboratories, Albuquerque, New Mexico 87123, United States
- Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, New Mexico 87123, United States
| | - Jayson Briscoe
- Sandia National Laboratories, Albuquerque, New Mexico 87123, United States
- Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, New Mexico 87123, United States
| | - Prasad P Iyer
- Sandia National Laboratories, Albuquerque, New Mexico 87123, United States
- Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, New Mexico 87123, United States
| | - Chloe F Doiron
- Sandia National Laboratories, Albuquerque, New Mexico 87123, United States
- Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, New Mexico 87123, United States
| | - C Thomas Harris
- Sandia National Laboratories, Albuquerque, New Mexico 87123, United States
- Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, New Mexico 87123, United States
| | - Ting Shan Luk
- Sandia National Laboratories, Albuquerque, New Mexico 87123, United States
- Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, New Mexico 87123, United States
| | - Sadhvikas J Addamane
- Sandia National Laboratories, Albuquerque, New Mexico 87123, United States
- Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, New Mexico 87123, United States
| | - John L Reno
- Sandia National Laboratories, Albuquerque, New Mexico 87123, United States
- Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, New Mexico 87123, United States
| | - Igal Brener
- Sandia National Laboratories, Albuquerque, New Mexico 87123, United States
- Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, New Mexico 87123, United States
| | - Oleg Mitrofanov
- Sandia National Laboratories, Albuquerque, New Mexico 87123, United States
- Electronic and Electrical Engineering, University College London, London WC1E 7JE, U.K
| |
Collapse
|
6
|
Guan Z, Wang B, Wang GL, Zhou XX, Jin C. Analysis of low-frequency THz emission from monolayer graphene irradiated by a long two-color laser pulse. OPTICS EXPRESS 2022; 30:26912-26930. [PMID: 36236874 DOI: 10.1364/oe.463568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/26/2022] [Indexed: 06/16/2023]
Abstract
Terahertz (THz) radiations from graphene are expected to provide a powerful light source for their wide applications. However, their conversion efficiencies are limited with either long-duration or few-cycle single-color laser pulses. Here, we theoretically demonstrate that THz waves can be efficiently generated from monolayer graphene by using a long-duration two-color laser pulse at normal incidence. Our simulated results show that low-frequency THz emissions are sensitive to the phase difference between two colors, the laser intensity, and the fundamental wavelength. Their dependence on these parameters can be very well reproduced by asymmetry parameters accounting for electron populations of conduction and valence bands. On the contrary, a newly defined σ parameter including the Landau-Zener tunneling probability cannot precisely predict such dependence. Furthermore, the waveform of THz electric field driven by two-color laser pulses exhibits the typical feature of a half-cycle pulse.
Collapse
|
7
|
Ultrafast photothermoelectric effect in Dirac semimetallic Cd 3As 2 revealed by terahertz emission. Nat Commun 2022; 13:1623. [PMID: 35338125 PMCID: PMC8956572 DOI: 10.1038/s41467-022-29168-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 02/17/2022] [Indexed: 11/18/2022] Open
Abstract
The thermoelectric effects of topological semimetals have attracted tremendous research interest because many topological semimetals are excellent thermoelectric materials and thermoelectricity serves as one of their most important potential applications. In this work, we reveal the transient photothermoelectric response of Dirac semimetallic Cd3As2, namely the photo-Seebeck effect and photo-Nernst effect, by studying the terahertz (THz) emission from the transient photocurrent induced by these effects. Our excitation polarization and power dependence confirm that the observed THz emission is due to photothermoelectric effect instead of other nonlinear optical effect. Furthermore, when a weak magnetic field (~0.4 T) is applied, the response clearly indicates an order of magnitude enhancement on transient photothermoelectric current generation compared to the photo-Seebeck effect. Such enhancement supports an ambipolar transport nature of the photo-Nernst current generation in Cd3As2. These results highlight the enhancement of thermoelectric performance can be achieved in topological Dirac semimetals based on the Nernst effect, and our transient studies pave the way for thermoelectric devices applicable for high field circumstance when nonequilibrium state matters. The large THz emission due to highly efficient photothermoelectric conversion is comparable to conventional semiconductors through optical rectification and photo-Dember effect. Many topological semimetals are excellent thermoelectric materials, but previous studies were limited to steady-state properties. Here, the authors observe a transient thermoelectric response in Cd3As2 by detecting the resulting THz emission, with an enhanced response when a small magnetic field is applied.
Collapse
|
8
|
Chang J, Wang H, Lei Z, Du W, Huang Y, Zhou Y, Zhu L, Xu X. Coherent Elliptically Polarized Terahertz Wave Generation in WSe 2 by Linearly Polarized Femtosecond Laser Excitation. J Phys Chem Lett 2021; 12:10068-10078. [PMID: 34623821 DOI: 10.1021/acs.jpclett.1c02770] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Coherent polarization control of terahertz (THz) wave radiation in both the time-domain and the frequency-domain is significant in information technology, material science, and spectroscopic analysis. Elliptically polarized THz radiation is generally limited to chiral materials induced by circularly polarized light excitation. Herein, we demonstrate the coherent elliptically polarized THz radiation from few-layer tungsten diselenide (WSe2) in both the time-domain and the frequency-domain under linearly polarized femtosecond laser excitation. This coherent elliptical THz radiation is mainly dominated by in-plane anisotropic shift current and out-of-plane drift current, which is verified by the THz radiation dependence on the pump laser polarization angles, incident angles, and sample azimuthal angles systematically. The ellipticity and major axis direction of the elliptical THz wave can be efficiently controlled by either pump light polarization or sample azimuthal angle due to the controllable amplitudes and phases of two coherent orthogonal THz wave components. Our finding provides a method to distinguish drift and shift photocurrents in different directions and offers a unique design concept for elliptical THz generation with two-dimensional (2D) material physics.
Collapse
Affiliation(s)
- Jiawei Chang
- Shaanxi Joint Lab of Graphene, State Key Laboratory of Photon-Technology in Western China Energy, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon-Technology, Xi'an 710069, China
| | - He Wang
- Shaanxi Joint Lab of Graphene, State Key Laboratory of Photon-Technology in Western China Energy, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon-Technology, Xi'an 710069, China
| | - Zhen Lei
- Shaanxi Joint Lab of Graphene, State Key Laboratory of Photon-Technology in Western China Energy, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon-Technology, Xi'an 710069, China
| | - Wanyi Du
- Shaanxi Joint Lab of Graphene, State Key Laboratory of Photon-Technology in Western China Energy, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon-Technology, Xi'an 710069, China
| | - Yuanyuan Huang
- Shaanxi Joint Lab of Graphene, State Key Laboratory of Photon-Technology in Western China Energy, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon-Technology, Xi'an 710069, China
| | - Yixuan Zhou
- Shaanxi Joint Lab of Graphene, State Key Laboratory of Photon-Technology in Western China Energy, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon-Technology, Xi'an 710069, China
| | - Lipeng Zhu
- School of Electronic Engineering, Xi'an University of Posts and Telecommunications, Xi'an 710121, China
| | - Xinlong Xu
- Shaanxi Joint Lab of Graphene, State Key Laboratory of Photon-Technology in Western China Energy, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon-Technology, Xi'an 710069, China
| |
Collapse
|
9
|
Otteneder M, Hubmann S, Lu X, Kozlov DA, Golub LE, Watanabe K, Taniguchi T, Efetov DK, Ganichev SD. Terahertz Photogalvanics in Twisted Bilayer Graphene Close to the Second Magic Angle. NANO LETTERS 2020; 20:7152-7158. [PMID: 32915581 DOI: 10.1021/acs.nanolett.0c02474] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We report on the observation of photogalvanic effects in tBLG with a twist angle of 0.6°. We show that excitation of the tBLG bulk causes a photocurrent, whose sign and magnitude are controlled by the orientation of the radiation electric field and the photon helicity. The observed photocurrent provides evidence for the reduction of the point group symmetry in low twist-angle tBLG to the lowest possible one. The developed theory shows that the current is formed by asymmetric scattering in gyrotropic tBLG. We also detected the photogalvanic current formed in the vicinity of the edges. For both bulk and edge photocurrents, we demonstrate the emergence of pronounced oscillations upon variation of the gate voltage. The gate voltages associated with the oscillations correlate with peaks in resistance measurements. These are well explained by interband transitions between a multitude of isolated bands in tBLG.
Collapse
Affiliation(s)
| | - Stefan Hubmann
- Terahertz Center, University of Regensburg, 93040 Regensburg, Germany
| | - Xiaobo Lu
- ICFO - Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona 08860, Spain
| | - Dmitry A Kozlov
- Rzhanov Institute of Semiconductor Physics, 630090 Novosibirsk, Russia
| | | | - Kenji Watanabe
- Research Center for Functional Materials, National Institute of Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute of Material Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Dmitri K Efetov
- ICFO - Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona 08860, Spain
| | - Sergey D Ganichev
- Terahertz Center, University of Regensburg, 93040 Regensburg, Germany
| |
Collapse
|
10
|
Yao Z, Huang Y, Zhu L, Obraztsov PA, Du W, Zhang L, Xu X. Interfacial THz generation from graphene/Si mixed-dimensional van der Waals heterostructure. NANOSCALE 2019; 11:16614-16620. [PMID: 31460543 DOI: 10.1039/c9nr03570b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Even though Si is the most cost efficient and extensively used semiconductor in modern optoelectronics, it is not considered to be an effective THz emitter due to its low carrier drift velocity and small saturated built-in electric field from the inversion layer. Herein, we present an effective way to enhance THz generation using a graphene/Si Schottky junction (GSSJ) excited with a femtosecond laser under electrical gating without rapid saturation and with high carrier drift velocity. This mixed-dimensional van der Waals interface demonstrates large saturation pump fluence with an invalid inversion layer by removing the native oxide on the Si surface. The THz emission amplitude from GSSJ effectively increases with the gate voltage. The THz emission from GSSJ under the same excitation conditions is stronger than that from the surface of InAs (100) and GaAs (100). The results not only show an efficient THz emission from GSSJ but also demonstrate the ability of THz generation for probing the mixed-dimensional van der Waals interface.
Collapse
Affiliation(s)
- Zehan Yao
- Shaanxi Joint Lab of Graphene, State Key Lab Incubation Base of Photoelectric Technology and Functional Materials, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon-Technology, Northwest University, Xi'an 710069, China.
| | - Yuanyuan Huang
- Shaanxi Joint Lab of Graphene, State Key Lab Incubation Base of Photoelectric Technology and Functional Materials, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon-Technology, Northwest University, Xi'an 710069, China.
| | - Lipeng Zhu
- School of Electronic Engineering, Xi'an University of Posts and Telecommunications, Xi'an 710121, China
| | - Petr A Obraztsov
- A. M. Prokhorov General Physics Institute, RAS, 38 Vavilov st., Moscow, 119991, Russia.
| | - Wanyi Du
- Shaanxi Joint Lab of Graphene, State Key Lab Incubation Base of Photoelectric Technology and Functional Materials, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon-Technology, Northwest University, Xi'an 710069, China.
| | - Longhui Zhang
- Shaanxi Joint Lab of Graphene, State Key Lab Incubation Base of Photoelectric Technology and Functional Materials, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon-Technology, Northwest University, Xi'an 710069, China.
| | - Xinlong Xu
- Shaanxi Joint Lab of Graphene, State Key Lab Incubation Base of Photoelectric Technology and Functional Materials, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon-Technology, Northwest University, Xi'an 710069, China. and Guangxi Key Laboratory of Automatic Detecting Technology and Instruments, Guilin University of Electronic Technology, Guilin 541004, People's Republic of China
| |
Collapse
|
11
|
Huang Y, Yao Z, He C, Zhu L, Zhang L, Bai J, Xu X. Terahertz surface and interface emission spectroscopy for advanced materials. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2019; 31:153001. [PMID: 30669133 DOI: 10.1088/1361-648x/ab00c0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Surfaces and interfaces are of particular importance for optoelectronic and photonic materials as they are involved in many physical and chemical processes such as carrier dynamics, charge transfer, chemical bonding, transformation reactions and so on. Terahertz (THz) emission spectroscopy provides a sensitive and nondestructive method for surface or interface analysis of advanced materials ranging from graphene to transition metal dichalcogenides, topological insulators, hybrid perovskites, and mixed-dimensional heterostructures based on 2D materials. In this review paper, we start with the THz radiation mechanisms under ultrafast laser excitation. Then we concentrate on the recent progresses of THz emission spectroscopy on the surface and interface properties of advanced materials, including transient surface photocurrents, surface nonlinear polarization, surface states, interface potential, and gas molecule adsorption/desorption processes. This novel spectroscopic method can not only promote the development of new and compact THz sources, but also provide a nondestructive optical method for surface and interface characterization of photocurrent and nonlinear polarization dynamics of materials.
Collapse
Affiliation(s)
- Yuanyuan Huang
- Shaanxi Joint Lab of Graphene, State Key Lab Incubation Base of Photoelectric Technology and Functional Materials, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics and Photon-Technology, Northwest University, Xi'an 710069, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
12
|
Yao Z, Zhu L, Huang Y, Zhang L, Du W, Lei Z, Soni A, Xu X. Interface Properties Probed by Active THz Surface Emission in Graphene/SiO 2/Si Heterostructures. ACS APPLIED MATERIALS & INTERFACES 2018; 10:35599-35606. [PMID: 30252433 DOI: 10.1021/acsami.8b11301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Graphene/semiconductor heterostructures demonstrate an improvement of traditional electronic and optoelectronic devices because of their outstanding charge transport properties inside and at the interfaces. However, very limited information has been accessed from the interfacial properties by traditional measurement. Herein, we present an active THz surface emission spectroscopy for the interface build-in potential and charge detrapping time constant evaluation from the interface of graphene on SiO2/Si (Gr/SiO2/Si). The active THz generation presents an intuitive insight into the depletion case, weak inversion case, and strong inversion case at the interface in the heterostructure. By analyzing the interface electric-field-induced optical rectification (EFIOR) in a strong inversion case, the intrinsic build-in potential is identified as -0.15 V at Gr/SiO2/Si interface. The interface depletion layer presents 44% positive THz intrinsic modulation by the reverse gate voltage and 70% negative THz intrinsic modulation by the forward gate voltage. Moreover, a time-dependent THz generation measurement has been used to deduce the charge detrapping decay time constant. The investigation will not only highlight the THz surface emission spectroscopy for the graphene-based interface analysis but also demonstrate the potential for the efficient THz intrinsic modulation as well as the enhancement of THz emission by the heterostructures.
Collapse
Affiliation(s)
- Zehan Yao
- Shaanxi Joint Lab of Graphene, State Key Lab Incubation Base of Photoelectric Technology and Functional Materials, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics and Photon-Technology , Northwest University , Xi'an 710069 , China
| | - Lipeng Zhu
- Shaanxi Joint Lab of Graphene, State Key Lab Incubation Base of Photoelectric Technology and Functional Materials, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics and Photon-Technology , Northwest University , Xi'an 710069 , China
| | - Yuanyuan Huang
- Shaanxi Joint Lab of Graphene, State Key Lab Incubation Base of Photoelectric Technology and Functional Materials, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics and Photon-Technology , Northwest University , Xi'an 710069 , China
| | - Longhui Zhang
- Shaanxi Joint Lab of Graphene, State Key Lab Incubation Base of Photoelectric Technology and Functional Materials, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics and Photon-Technology , Northwest University , Xi'an 710069 , China
| | - Wanyi Du
- Shaanxi Joint Lab of Graphene, State Key Lab Incubation Base of Photoelectric Technology and Functional Materials, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics and Photon-Technology , Northwest University , Xi'an 710069 , China
| | - Zhen Lei
- Shaanxi Joint Lab of Graphene, State Key Lab Incubation Base of Photoelectric Technology and Functional Materials, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics and Photon-Technology , Northwest University , Xi'an 710069 , China
| | - Ajay Soni
- School of Basic Sciences , Indian Institute of Technology , Mandi , Himachal Pradesh 175005 , India
| | - Xinlong Xu
- Shaanxi Joint Lab of Graphene, State Key Lab Incubation Base of Photoelectric Technology and Functional Materials, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics and Photon-Technology , Northwest University , Xi'an 710069 , China
| |
Collapse
|
13
|
Autere A, Jussila H, Dai Y, Wang Y, Lipsanen H, Sun Z. Nonlinear Optics with 2D Layered Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1705963. [PMID: 29575171 DOI: 10.1002/adma.201705963] [Citation(s) in RCA: 206] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 11/28/2017] [Indexed: 05/09/2023]
Abstract
2D layered materials (2DLMs) are a subject of intense research for a wide variety of applications (e.g., electronics, photonics, and optoelectronics) due to their unique physical properties. Most recently, increasing research efforts on 2DLMs are projected toward the nonlinear optical properties of 2DLMs, which are not only fascinating from the fundamental science point of view but also intriguing for various potential applications. Here, the current state of the art in the field of nonlinear optics based on 2DLMs and their hybrid structures (e.g., mixed-dimensional heterostructures, plasmonic structures, and silicon/fiber integrated structures) is reviewed. Several potential perspectives and possible future research directions of these promising nanomaterials for nonlinear optics are also presented.
Collapse
Affiliation(s)
- Anton Autere
- Department of Electronics and Nanoengineering, Aalto University, Tietotie 3, FI-02150, Finland
| | - Henri Jussila
- Department of Electronics and Nanoengineering, Aalto University, Tietotie 3, FI-02150, Finland
| | - Yunyun Dai
- Department of Electronics and Nanoengineering, Aalto University, Tietotie 3, FI-02150, Finland
| | - Yadong Wang
- Department of Electronics and Nanoengineering, Aalto University, Tietotie 3, FI-02150, Finland
| | - Harri Lipsanen
- Department of Electronics and Nanoengineering, Aalto University, Tietotie 3, FI-02150, Finland
| | - Zhipei Sun
- Department of Electronics and Nanoengineering, Aalto University, Tietotie 3, FI-02150, Finland
- QTF Centre of Excellence, Department of Applied Physics, Aalto University, Aalto, FI-00076, Finland
| |
Collapse
|
14
|
Zhu L, Huang Y, Yao Z, Quan B, Zhang L, Li J, Gu C, Xu X, Ren Z. Enhanced polarization-sensitive terahertz emission from vertically grown graphene by a dynamical photon drag effect. NANOSCALE 2017; 9:10301-10311. [PMID: 28702541 DOI: 10.1039/c7nr02227a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Improving terahertz (THz) emission from graphene is a challenge for graphene-based THz photonics as graphene demonstrates a weak light-matter interaction. With a unique ultra-black surface structure, vertically grown graphene (VGG) is proposed to enhance the light-matter interaction and further enhance THz emission. Herein, enhanced THz radiation is observed by THz time-domain emission spectroscopy from VGG compared with single-layer graphene. The radiated THz amplitude shows a linear dependence on pump power, which demonstrates a second order nonlinear effect. Considering the symmetry of VGG on a substrate, we can exclude the optical rectification effect and photogalvanic effect (PGE) by the D6h point group with centrosymmetry. Thus we analyze the transient photocurrent related to THz emission only by the photon drag effect (PDE). The polarization-sensitive THz radiation signals are wave-vector reliant and demonstrate cos 2φ and sin 2φ dependence on the polarization angles of the pump laser. This is consistent with the theoretical analysis of PDE. Our results show the enhanced, ultrafast, broadband THz radiation property of VGG, which paves the way for high performance THz emitters and THz detectors based on graphene materials.
Collapse
Affiliation(s)
- L Zhu
- Shaanxi Joint Lab of Graphene, State Key Lab Incubation Base of Photoelectric Technology and Functional Materials, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon-Technology, Northwest University, Xi'an 710069, China.
| | - Y Huang
- Shaanxi Joint Lab of Graphene, State Key Lab Incubation Base of Photoelectric Technology and Functional Materials, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon-Technology, Northwest University, Xi'an 710069, China.
| | - Z Yao
- Shaanxi Joint Lab of Graphene, State Key Lab Incubation Base of Photoelectric Technology and Functional Materials, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon-Technology, Northwest University, Xi'an 710069, China.
| | - B Quan
- Beijing National Laboratory for Condensed Matter Physics, and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - L Zhang
- Shaanxi Joint Lab of Graphene, State Key Lab Incubation Base of Photoelectric Technology and Functional Materials, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon-Technology, Northwest University, Xi'an 710069, China.
| | - J Li
- Beijing National Laboratory for Condensed Matter Physics, and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - C Gu
- Beijing National Laboratory for Condensed Matter Physics, and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - X Xu
- Shaanxi Joint Lab of Graphene, State Key Lab Incubation Base of Photoelectric Technology and Functional Materials, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon-Technology, Northwest University, Xi'an 710069, China.
| | - Z Ren
- Shaanxi Joint Lab of Graphene, State Key Lab Incubation Base of Photoelectric Technology and Functional Materials, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon-Technology, Northwest University, Xi'an 710069, China.
| |
Collapse
|
15
|
Huang Y, Zhu L, Zhao Q, Guo Y, Ren Z, Bai J, Xu X. Surface Optical Rectification from Layered MoS 2 Crystal by THz Time-Domain Surface Emission Spectroscopy. ACS APPLIED MATERIALS & INTERFACES 2017; 9:4956-4965. [PMID: 28098966 DOI: 10.1021/acsami.6b13961] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Surface optical rectification was observed from the layered semiconductor molybdenum disulfide (MoS2) crystal via terahertz (THz) time-domain surface emission spectroscopy under linearly polarized femtosecond laser excitation. The radiated THz amplitude of MoS2 has a linear dependence on ever-increasing pump fluence and thus quadratic with the pump electric field, which discriminates from the surface Dember field induced THz radiation in InAs and the transient photocurrent-induced THz generation in graphite. Theoretical analysis based on space symmetry of MoS2 crystal suggests that the underlying mechanism of THz radiation is surface optical rectification under the reflection configuration. This is consistent with the experimental results according to the radiated THz amplitude dependences on azimuthal and incident polarization angles. We also demonstrated the damage threshold of MoS2 due to microscopic bond breaking under the femtosecond laser irradiation, which can be monitored via THz time-domain emission spectroscopy and Raman spectroscopy.
Collapse
Affiliation(s)
- Yuanyuan Huang
- Shaanxi Joint Lab of Graphene, State Key Lab Incubation Base of Photoelectric Technology and Functional Materials, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics and Photon-Technology, Northwest University , Xi'an 710069, China
| | - Lipeng Zhu
- Shaanxi Joint Lab of Graphene, State Key Lab Incubation Base of Photoelectric Technology and Functional Materials, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics and Photon-Technology, Northwest University , Xi'an 710069, China
| | - Qiyi Zhao
- Shaanxi Joint Lab of Graphene, State Key Lab Incubation Base of Photoelectric Technology and Functional Materials, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics and Photon-Technology, Northwest University , Xi'an 710069, China
| | - Yaohui Guo
- Shaanxi Joint Lab of Graphene, State Key Lab Incubation Base of Photoelectric Technology and Functional Materials, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics and Photon-Technology, Northwest University , Xi'an 710069, China
| | - Zhaoyu Ren
- Shaanxi Joint Lab of Graphene, State Key Lab Incubation Base of Photoelectric Technology and Functional Materials, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics and Photon-Technology, Northwest University , Xi'an 710069, China
| | - Jintao Bai
- Shaanxi Joint Lab of Graphene, State Key Lab Incubation Base of Photoelectric Technology and Functional Materials, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics and Photon-Technology, Northwest University , Xi'an 710069, China
| | - Xinlong Xu
- Shaanxi Joint Lab of Graphene, State Key Lab Incubation Base of Photoelectric Technology and Functional Materials, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics and Photon-Technology, Northwest University , Xi'an 710069, China
| |
Collapse
|
16
|
Zhang M, Yeow JT. Nanotechnology-Based Terahertz Biological Sensing: A review of its current state and things to come. IEEE NANOTECHNOLOGY MAGAZINE 2016. [DOI: 10.1109/mnano.2016.2572244] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
17
|
Ye T, Meng S, Zhang J, E Y, Yang Y, Liu W, Yin Y, Wang L. Mechanism and modulation of terahertz generation from a semimetal--graphite. Sci Rep 2016; 6:22798. [PMID: 26972818 PMCID: PMC4789595 DOI: 10.1038/srep22798] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 02/18/2016] [Indexed: 11/19/2022] Open
Abstract
Semi-metals might offer a stronger interaction and a better confinement for terahertz wave than semiconductors, while preserve tunability. Particularly, graphene-based materials are envisioned as terahertz modulators, filters and ultra-broadband sources. However, the understanding of terahertz generation from those materials is still not clear, thus limits us recognizing the potential and improving device performances. Graphite, the mother material of graphene and a typical bulk semi-metal, is a good system to study semi-metals and graphene-based materials. Here we experimentally modulate and maximize the terahertz signal from graphite surface, thus reveal the mechanism - surface field driving photon induced carriers into transient current to radiate terahertz wave. We also discuss the differences between graphite and semiconductors; particularly graphite shows very weak temperature dependency from room temperature to 80 °C. Above knowledge will help us understand terahertz generations, achieve maximum output and electric modulation, in semi-metal or graphene based devices.
Collapse
Affiliation(s)
- Tong Ye
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190
| | - Sheng Meng
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190
| | - Jin Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190
| | - Yiwen E
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190
| | - Yuping Yang
- School of Science, Minzu University of China, Beijing, 100081
| | - Wuming Liu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190
| | - Yan Yin
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190.,Cooperative Innovation Centre of Terahertz Science, Chengdu, Sichuan, 610054
| | - Li Wang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190.,Cooperative Innovation Centre of Terahertz Science, Chengdu, Sichuan, 610054
| |
Collapse
|