1
|
Miller EJ, Phan MD, Shah J, Honerkamp-Smith AR. Passive and reversible area regulation of supported lipid bilayers in response to fluid flow. Biophys J 2023; 122:2242-2255. [PMID: 36639867 PMCID: PMC10257118 DOI: 10.1016/j.bpj.2023.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/21/2022] [Accepted: 01/09/2023] [Indexed: 01/14/2023] Open
Abstract
Biological and model membranes are frequently subjected to fluid shear stress. However, membrane mechanical responses to flow remain incompletely described. This is particularly true of membranes supported on a solid substrate, and the influences of membrane composition and substrate roughness on membrane flow responses remain poorly understood. Here, we combine microfluidics, fluorescence microscopy, and neutron reflectivity to explore how supported lipid bilayer patches respond to controlled shear stress. We demonstrate that lipid membranes undergo a significant, passive, and partially reversible increase in membrane area due to flow. We show that these fluctuations in membrane area can be constrained, but not prevented, by increasing substrate roughness. Similar flow-induced changes to membrane structure may contribute to the ability of living cells to sense and respond to flow.
Collapse
Affiliation(s)
| | - Minh D Phan
- Large-Scale Structures Group, Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee; Center for Neutron Science, Department of Chemical & Biomolecular Engineering, University of Delaware, Newark, Delaware
| | | | | |
Collapse
|
2
|
Abstract
Transmembrane proteins involved in metabolic redox reactions and photosynthesis catalyse a plethora of key energy-conversion processes and are thus of great interest for bioelectrocatalysis-based applications. The development of membrane protein modified electrodes has made it possible to efficiently exchange electrons between proteins and electrodes, allowing mechanistic studies and potentially applications in biofuels generation and energy conversion. Here, we summarise the most common electrode modification and their characterisation techniques for membrane proteins involved in biofuels conversion and semi-artificial photosynthesis. We discuss the challenges of applications of membrane protein modified electrodes for bioelectrocatalysis and comment on emerging methods and future directions, including recent advances in membrane protein reconstitution strategies and the development of microbial electrosynthesis and whole-cell semi-artificial photosynthesis.
Collapse
|
3
|
Herrera P, Apaza L, Sandoval M. One-dimensional displacement of active matter on curved substrates. Mol Phys 2020. [DOI: 10.1080/00268976.2020.1711974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Pedro Herrera
- Department of Physics, Universidad Autonoma Metropolitana-Iztapalapa, Mexico City, Mexico
| | - Leonardo Apaza
- Department of Physics, Universidad Autonoma Metropolitana-Iztapalapa, Mexico City, Mexico
| | - Mario Sandoval
- Department of Physics, Universidad Autonoma Metropolitana-Iztapalapa, Mexico City, Mexico
| |
Collapse
|
4
|
Navikas V, Gavutis M, Rakickas T, Valiokas RN. Scanning Probe-Directed Assembly and Rapid Chemical Writing Using Nanoscopic Flow of Phospholipids. ACS APPLIED MATERIALS & INTERFACES 2019; 11:28449-28460. [PMID: 31287949 DOI: 10.1021/acsami.9b07547] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Nanofluidic systems offer a huge potential for discovery of new molecular transport and chemical phenomena that can be employed for future technologies. Herein, we report on the transport behavior of surface-reactive compounds in a nanometer-scale flow of phospholipids from a scanning probe. We have investigated microscopic deposit formation on polycrystalline gold by lithographic printing and writing of 1,2-dioleoyl-sn-glycero-3-phosphocholine and eicosanethiol mixtures, with the latter compound being a model case for self-assembled monolayers (SAMs). By analyzing the ink transport rates, we found that the transfer of thiols was fully controlled by the fluid lipid matrix allowing to achieve a certain jetting regime, i.e., transport rates previously not reported in dip-pen nanolithography (DPN) studies on surface-reactive, SAM-forming molecules. Such a transport behavior deviated significantly from the so-called molecular diffusion models, and it was most obvious at the high writing speeds, close to 100 μm s-1. Moreover, the combined data from imaging ellipsometry, scanning electron microscopy, atomic force microscopy (AFM), and spectroscopy revealed a rapid and efficient ink phase separation occurring in the AFM tip-gold contact zone. The force curve analysis indicated formation of a mixed ink meniscus behaving as a self-organizing liquid. Based on our data, it has to be considered as one of the co-acting mechanisms driving the surface reactions and self-assembly under such highly nonequilibrium, crowded environment conditions. The results of the present study significantly extend the capabilities of DPN using standard AFM instrumentation: in the writing regime, the patterning speed was already comparable to that achievable by using electron beam systems. We demonstrate that lipid flow-controlled chemical patterning process is directly applicable for rapid prototyping of solid-state devices having mesoscopic features as well as for biomolecular architectures.
Collapse
Affiliation(s)
- Vytautas Navikas
- Department of Nanoengineering , Center for Physical Sciences and Technology , Savanorių 231 , Vilnius LT-02300 , Lithuania
| | - Martynas Gavutis
- Department of Nanoengineering , Center for Physical Sciences and Technology , Savanorių 231 , Vilnius LT-02300 , Lithuania
| | - Tomas Rakickas
- Department of Nanoengineering , Center for Physical Sciences and Technology , Savanorių 231 , Vilnius LT-02300 , Lithuania
| | - Ramu Nas Valiokas
- Department of Nanoengineering , Center for Physical Sciences and Technology , Savanorių 231 , Vilnius LT-02300 , Lithuania
| |
Collapse
|
5
|
Heath GR, Harrison PL, Strong PN, Evans SD, Miller K. Visualization of diffusion limited antimicrobial peptide attack on supported lipid membranes. SOFT MATTER 2018; 14:6146-6154. [PMID: 29999090 DOI: 10.1039/c8sm00707a] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Understanding the mechanism of action of antimicrobial peptides (AMP) is fundamental to the development and design of peptide based antimicrobials. Utilizing fast-scan atomic force microscopy (AFM) we detail the attack of an AMP on both prototypical prokaryotic (DOPC:DOPG) and eukaryotic (DOPC:DOPE) model lipid membranes on the nanoscale and in real time. Previously shown to have a favourable therapeutic index, we study Smp43, an AMP with a helical-hinge-helical topology isolated from the venom of the North African scorpion Scorpio maurus palmatus. We observe the dynamic formation of highly branched defects being supported by 2D diffusion models and further experimental data from liposome leakage assays and quartz crystal microbalance-dissipation (QCM-D) analysis, we propose that Smp43 disrupts these membranes via a common mechanism, which we have termed 'diffusion limited disruption' that encompasses elements of both the carpet model and the expanding pore mechanism.
Collapse
Affiliation(s)
- George R Heath
- Department of Physics and Astronomy, Leeds University, Leeds, LS2 9JT, UK.
| | | | | | | | | |
Collapse
|
6
|
Aufderhorst-Roberts A, Chandra U, Connell SD. Three-Phase Coexistence in Lipid Membranes. Biophys J 2017; 112:313-324. [PMID: 28122217 PMCID: PMC5266263 DOI: 10.1016/j.bpj.2016.12.025] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 11/25/2016] [Accepted: 12/12/2016] [Indexed: 01/01/2023] Open
Abstract
Phospholipid ternary systems are useful model systems for understanding lipid-lipid interactions and their influence on biological properties such as cell signaling and protein translocation. Despite extensive studies, there are still open questions relating to membrane phase behavior, particularly relating to a proposed state of three-phase coexistence, due to the difficulty in clearly distinguishing the three phases. We look in and around the region of the phase diagram where three phases are expected and use a combination of different atomic force microscopy (AFM) modes to present the first images of three coexisting lipid phases in biomimetic cell lipid membranes. Domains form through either nucleation or spinodal decomposition dependent upon composition, with some exhibiting both mechanisms in different domains simultaneously. Slow cooling rates are necessary to sufficiently separate mixtures with high proportions of lo and lβ phase. We probe domain heights and mechanical properties and demonstrate that the gel (lβ) domains have unusually low structural integrity in the three-phase region. This finding supports the hypothesis of a “disordered gel” state that has been proposed from NMR studies of similar systems, where the addition of small amounts of cholesterol was shown to disrupt the regular packing of the lβ state. We use NMR data from the literature on chain disorder in different mixtures and estimate an expected step height that is in excellent agreement with the AFM data. Alternatively, the disordered solid phase observed here and in the wider literature could be explained by the lβ phase being out of equilibrium, in a surface kinetically trapped state. This view is supported by the observation of unusual growth of nucleated domains, which we term “tree-ring growth,” reflecting compositional heterogeneity in large disordered lβ phase domains.
Collapse
Affiliation(s)
| | - Udayan Chandra
- School of Physics and Astronomy, University of Leeds, Leeds, United Kingdom
| | - Simon D Connell
- School of Physics and Astronomy, University of Leeds, Leeds, United Kingdom.
| |
Collapse
|
7
|
Marquardt D, Heberle FA, Miti T, Eicher B, London E, Katsaras J, Pabst G. 1H NMR Shows Slow Phospholipid Flip-Flop in Gel and Fluid Bilayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:3731-3741. [PMID: 28106399 PMCID: PMC5397887 DOI: 10.1021/acs.langmuir.6b04485] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
We measured the transbilayer diffusion of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) in large unilamellar vesicles, in both the gel (Lβ') and fluid (Lα) phases. The choline resonance of headgroup-protiated DPPC exchanged into the outer leaflet of headgroup-deuterated DPPC-d13 vesicles was monitored using 1H NMR spectroscopy, coupled with the addition of a paramagnetic shift reagent. This allowed us to distinguish between the inner and outer bilayer leaflet of DPPC, to determine the flip-flop rate as a function of temperature. Flip-flop of fluid-phase DPPC exhibited Arrhenius kinetics, from which we determined an activation energy of 122 kJ mol-1. In gel-phase DPPC vesicles, flip-flop was not observed over the course of 250 h. Our findings are in contrast to previous studies of solid-supported bilayers, where the reported DPPC translocation rates are at least several orders of magnitude faster than those in vesicles at corresponding temperatures. We reconcile these differences by proposing a defect-mediated acceleration of lipid translocation in supported bilayers, where long-lived, submicron-sized holes resulting from incomplete surface coverage are the sites of rapid transbilayer movement.
Collapse
Affiliation(s)
- Drew Marquardt
- Institute
of Molecular Biosciences, Biophysics Division, NAWI Graz, University of Graz, Graz 8010, Austria
- BioTechMed-Graz, Graz 8010, Austria
- E-mail: (D.M.)
| | - Frederick A. Heberle
- The Bredesen
Center and Department of Physics and Astronomy, University
of Tennessee, Knoxville, Tennessee 37996, United States
- Joint Institute for Biological Sciences, Biology and Soft
Matter Division, and Shull Wollan
Center—A Joint Institute for Neutron Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- E-mail: (F.A.H.)
| | - Tatiana Miti
- Department
of Physics, University of South Florida, Tampa, Florida 33620,United States
| | - Barbara Eicher
- Institute
of Molecular Biosciences, Biophysics Division, NAWI Graz, University of Graz, Graz 8010, Austria
- BioTechMed-Graz, Graz 8010, Austria
| | - Erwin London
- Department
of Biochemistry and Cell Biology, Stony Brook, New York 11794, United States
| | - John Katsaras
- The Bredesen
Center and Department of Physics and Astronomy, University
of Tennessee, Knoxville, Tennessee 37996, United States
- Joint Institute for Biological Sciences, Biology and Soft
Matter Division, and Shull Wollan
Center—A Joint Institute for Neutron Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Georg Pabst
- Institute
of Molecular Biosciences, Biophysics Division, NAWI Graz, University of Graz, Graz 8010, Austria
- BioTechMed-Graz, Graz 8010, Austria
- E-mail: (G.P.)
| |
Collapse
|
8
|
Johnson A, Bao P, Hurley CR, Cartron M, Evans SD, Hunter CN, Leggett GJ. Simple, Direct Routes to Polymer Brush Traps and Nanostructures for Studies of Diffusional Transport in Supported Lipid Bilayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:3672-3679. [PMID: 28350169 PMCID: PMC5459270 DOI: 10.1021/acs.langmuir.7b00497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 03/23/2017] [Indexed: 06/06/2023]
Abstract
Patterned poly(oligo ethylene glycol) methyl ether methacrylate (POEGMEMA) brush structures may be formed by using a combination of atom-transfer radical polymerization (ATRP) and UV photopatterning. UV photolysis is used to selectively dechlorinate films of 4-(chloromethyl)phenyltrichlorosilane (CMPTS) adsorbed on silica surfaces, by exposure either through a mask or using a two-beam interferometer. Exposure through a mask yields patterns of carboxylic acid-terminated adsorbates. POEGMEMA may be grown from intact Cl initiators that were masked during exposure. Corrals, traps, and other structures formed in this way enable the patterning of proteins, vesicles, and, following vesicle rupture, supported lipid bilayers (SLBs). Bilayers adsorbed on the carboxylic acid-terminated surfaces formed by C-Cl bond photolysis in CMPTS exhibit high mobility. SLBs do not form on POEGMEMA. Using traps consisting of carboxylic acid-functionalized regions enclosed by POEGMEMA structures, electrophoresis may be observed in lipid bilayers containing a small amount of a fluorescent dye. Segregation of dye at one end of the traps was measured by fluorescence microscopy. The increase in the fluorescence intensity was found to be proportional to the trap length, while the time taken to reach the maximum value was inversely proportional to the trap length, indicating uniform, rapid diffusion in all of the traps. Nanostructured materials were formed using interferometric lithography. Channels were defined by exposure of CMPTS films to maxima in the interferogram, and POEGMEMA walls were formed by ATRP. As for the micrometer-scale patterns, bilayers did not form on the POEGMEMA structures, and high lipid mobilities were measured in the polymer-free regions of the channels.
Collapse
Affiliation(s)
- Alexander Johnson
- Department
of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, United
Kingdom
- Krebs
Institute, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Peng Bao
- Molecular
and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, United
Kingdom
| | - Claire R. Hurley
- Department
of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, United
Kingdom
| | - Michaël Cartron
- Department
of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield S10 2TN, United Kingdom
| | - Stephen D. Evans
- Molecular
and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, United
Kingdom
| | - C. Neil Hunter
- Department
of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield S10 2TN, United Kingdom
| | - Graham J. Leggett
- Department
of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, United
Kingdom
- Krebs
Institute, University of Sheffield, Sheffield S10 2TN, United Kingdom
| |
Collapse
|
9
|
Blachon F, Harb F, Munteanu B, Piednoir A, Fulcrand R, Charitat T, Fragneto G, Pierre-Louis O, Tinland B, Rieu JP. Nanoroughness Strongly Impacts Lipid Mobility in Supported Membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:2444-2453. [PMID: 28219008 DOI: 10.1021/acs.langmuir.6b03276] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In vivo lipid membranes interact with rough supramolecular structures such as protein clusters and fibrils. How these features whose size ranges from a few nanometers to a few tens of nanometers impact lipid and protein mobility is still being investigated. Here, we study supported phospholipid bilayers, a unique biomimetic model, deposited on etched surfaces bearing nanometric corrugations. The surface roughness and mean curvature are carefully characterized by AFM imaging using ultrasharp tips. Neutron specular reflectivity supplements this surface characterization and indicates that the bilayers follow the large-scale corrugations of the substrate. We measure the lateral mobility of lipids in both the fluid and gel phases by fluorescence recovery after patterned photobleaching. Although the mobility is independent of the roughness in the gel phase, it exhibits a 5-fold decrease in the fluid phase when the roughness increases from 0.2 to 10 nm. These results are interpreted with a two-phase model allowing for a strong decrease in the lipid mobility in highly curved or defect-induced gel-like nanoscale regions. This suggests a strong link between membrane curvature and fluidity, which is a key property for various cell functions such as signaling and adhesion.
Collapse
Affiliation(s)
- Florence Blachon
- Université Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622 Villeurbanne, France
| | - Frédéric Harb
- Doctoral School for Science and Technology, Platform for Research in NanoSciences and Nanotechnology, Campus Pierre Gemayel, Lebanese University , Fanar-Metn BP 90239 Beirut, Lebanon
| | - Bogdan Munteanu
- CNRS, INSA de Lyon, LaMCoS, UMR5259, Université de Lyon , 69621 Lyon, France
| | - Agnès Piednoir
- Université Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622 Villeurbanne, France
| | - Rémy Fulcrand
- Université Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622 Villeurbanne, France
| | - Thierry Charitat
- Université de Strasbourg, Institut Charles Sadron , UPR22, CNRS, 67034 Strasbourg Cedex 2, France
| | - Giovanna Fragneto
- Institut Laue-Langevin , 71 Avenue des Martyrs, F-38042 Grenoble, France
| | - Olivier Pierre-Louis
- Université Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622 Villeurbanne, France
| | - Bernard Tinland
- CINaM-CNRS, Aix-Marseille Université , UMR7325, 13288 Marseille, France
| | - Jean-Paul Rieu
- Université Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622 Villeurbanne, France
| |
Collapse
|
10
|
Li W, Chung JK, Lee YK, Groves JT. Graphene-Templated Supported Lipid Bilayer Nanochannels. NANO LETTERS 2016; 16:5022-6. [PMID: 27362914 DOI: 10.1021/acs.nanolett.6b01798] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The use of patterned substrates to impose geometrical restriction on the lateral mobility of molecules in supported lipid membranes has found widespread utility in studies of cell membranes. Here, we template-pattern supported lipid membranes with nanopatterned graphene. We utilize focused ion beam milling to pattern graphene on its growth substrate, then transfer the patterned graphene to fresh glass substrates for subsequent supported membrane formation. We observe that graphene functions as an excellent lateral diffusion barrier for supported lipid bilayers. Additionally, the observed diffusion dynamics of lipids in nanoscale graphene channels reveal extremely low boundary effects, a common problem with other materials. We suggest this is attributable to the ultimate thinness of graphene.
Collapse
Affiliation(s)
- Wan Li
- Department of Chemistry, University of California , Berkeley, California 94720, United States
| | - Jean K Chung
- Department of Chemistry, University of California , Berkeley, California 94720, United States
| | - Young Kwang Lee
- Department of Chemistry, University of California , Berkeley, California 94720, United States
| | - Jay T Groves
- Department of Chemistry, University of California , Berkeley, California 94720, United States
| |
Collapse
|
11
|
Kataoka-Hamai C, Kaizuka Y, Taguchi T. Binding of Lipopolysaccharide and Cholesterol-Modified Gelatin on Supported Lipid Bilayers: Effect of Bilayer Area Confinement and Bilayer Edge Tension. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:1250-1258. [PMID: 26735125 DOI: 10.1021/acs.langmuir.5b04302] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Binding of amphiphilic molecules to supported lipid bilayers (SLBs) often results in lipid fibril extension from the SLBs. Previous studies proposed that amphiphiles with large and flexible hydrophilic regions trigger lipid fibril formation in SLBs by inducing membrane curvature via their hydrophilic regions. However, no experimental studies have verified this mechanism of fibril formation. In this work, we investigated the binding of lipopolysaccharide (LPS) and cholesterol-modified gelatin to SLBs using fluorescence microscopy. SLBs with restricted and unrestricted bilayer areas were employed to identify the mechanism of fibril generation. We show that the main cause of lipid fibril formation is an approximately 20% expansion in the bilayer area rather than increased membrane curvature. The data indicate that bilayer area confinement plays a critical role in morphological changes of SLBs even when bound amphiphilic molecules have a large hydrophilic domain. We also show that bilayer area change after LPS insertion is dependent on the patch shape of the SLB. When an SLB patch consists of a broad bilayer segment connected to a long thin streak, bilayer area expansion mainly occurs within the bilayer streak. The results indicate that LPS insertion causes net lipid flow from the broad bilayer region to the streak area. The differential increase in area is explained by the instability of planar bilayer streaks that originate from the large energetic contribution of line tension arising along the bilayer edge.
Collapse
Affiliation(s)
- Chiho Kataoka-Hamai
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science , 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Yoshihisa Kaizuka
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science , 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
| | - Tetsushi Taguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science , 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| |
Collapse
|
12
|
Heath GR, Li M, Polignano IL, Richens JL, Catucci G, O’Shea P, Sadeghi SJ, Gilardi G, Butt JN, Jeuken LJC. Layer-by-Layer Assembly of Supported Lipid Bilayer Poly-l-Lysine Multilayers. Biomacromolecules 2015; 17:324-35. [DOI: 10.1021/acs.biomac.5b01434] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- George R. Heath
- School
of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Mengqiu Li
- School
of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | | | - Joanna L. Richens
- Cell
Biophysics Group, Institute of Biophysics, Imaging and Optical Science,
School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| | - Gianluca Catucci
- Life
Sciences and Systems Biology, University of Torino, 10123, Turin, Italy
| | - Paul O’Shea
- Cell
Biophysics Group, Institute of Biophysics, Imaging and Optical Science,
School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| | - Sheila J. Sadeghi
- Life
Sciences and Systems Biology, University of Torino, 10123, Turin, Italy
| | - Gianfranco Gilardi
- Life
Sciences and Systems Biology, University of Torino, 10123, Turin, Italy
| | - Julea N. Butt
- Centre
for Molecular and Structural Biochemistry, School of Biological Sciences,
and School of Chemistry, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Lars J. C. Jeuken
- School
of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
13
|
Zhang L, Christensen SM, Bendix PM, Bhatia VK, Loft S, Stamou D. Interferometric Detection of Single Gold Nanoparticles Calibrated against TEM Size Distributions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:3550-3555. [PMID: 25824101 DOI: 10.1002/smll.201403498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 03/02/2015] [Indexed: 06/04/2023]
Abstract
Single nanoparticle analysis: An interferometric optical approach calibrates sizes of gold nanoparticles (AuNPs) from the interference intensities by calibrating their interferometric signals against the corresponding transmission electron microscopy measurements. This method is used to investigate whether size affects the diffusion behavior of AuNPs conjugated to supported lipid bilayer membranes and to multiplex the simultaneous detection of three different AuNP labels.
Collapse
Affiliation(s)
- Lixue Zhang
- Bio-Nanotechnology Laboratory, Department of Chemistry Nano-Science Center, Lundbeck Foundation Center Biomembranes in Nanomedicine, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Sune M Christensen
- Bio-Nanotechnology Laboratory, Department of Chemistry Nano-Science Center, Lundbeck Foundation Center Biomembranes in Nanomedicine, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Poul Martin Bendix
- Bio-Nanotechnology Laboratory, Department of Chemistry Nano-Science Center, Lundbeck Foundation Center Biomembranes in Nanomedicine, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Vikram Kjøller Bhatia
- Bio-Nanotechnology Laboratory, Department of Chemistry Nano-Science Center, Lundbeck Foundation Center Biomembranes in Nanomedicine, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Steffen Loft
- Institute of Public Health Department of Environmental Health, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Dimitrios Stamou
- Bio-Nanotechnology Laboratory, Department of Chemistry Nano-Science Center, Lundbeck Foundation Center Biomembranes in Nanomedicine, University of Copenhagen, 2100, Copenhagen, Denmark
| |
Collapse
|